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Trend 1: Device Proliferation 
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Trend 2: Integration at Scale  
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Trend 3: Closing the Loop 
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MDCPS Research in a Nutshell 
•  Goal: Develop a new development paradigm for the effective design 

and implementation of MCPS that are safe, secure, and reliable 

•  Foundations of MCPS development 
–  Patient modeling 
–  Caregiver modeling 
–  Control-theoretic analysis of physiologically closed-loop scenarios 

•  High-confidence MCPS software development 
–  Model-based development 
–  Integration framework for MCPS 
–  Security for MCPS 
–  [Event recording for medical devices] 

•  MCPS validation and certification 
–  Assurance cases for evidence based certification 
–  Compositional techniques for MCPS and assurance cases 

•  Case studies 
–  GPCA, Closed-loop PCA, Pacemaker, Neurological decision support, … 



•  Therac-25 (1985-1988)  
–  Failure to understand software fault tolerance 

•  Numerous problems with radiation treatment 
(http://www.nytimes.com/2010/01/24/health/24radiation.html?ref=radiation) 

–  Failures in the generation of treatment plans 

•  Pacemakers (500K recalls during 1990-2000) 

•  St Jude pacemaker programmers (2006) 
–  Incorrect reporting of pacemaker state 

•  Difibtech external defibrillators (2007) 
–  Self-test resets low-battery status 

•  Baxter’s Colleague Infusion Pumps (2010) 
–  Software update triggers buffer overflow, stops pump 

Some Software-related Failures 



•  Involved in many clinical accidents 
-  During 2005 and 2009, FDA received 

approximately 56,000 reports of adverse 
events associated with the use of infusion 
pumps 

-  1% deaths, 34% serious injuries 
-  87 infusion pump recalls to address 

safety problems 
•  The most common types of problems 

–  Software Defect 
–  User Interface Issues 
–  Mechanical or Electrical Failure 

U.S. Food and Drug Administration, Center for Devices and Radiological Health. White 
Paper: Infusion Pump Improvement Initiative, April 2010 

Infusion Pump Safety 
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GPCA reference implementation 
•  FDA initiated 

–  GPCA Safety Requirements 
–  GPCA Model (Simulink/Stateflow) 

•  Develop a GPCA reference 
implementation 
–  Model-based development 

•  Provide evidence that the 
implementation satisfies the 
safety requirements 
–  Safety cases 
–  Confidence cases 

•  All artifacts to be available as 
open source 
–  http://rtg.cis.upenn.edu/gip.php3 

Model-Based Development of  
GPCA Reference Implementation 

Safety 
Requirements
 GPCA Model


Formal Modeling & 
Verification


Automated 
Implementation


Testing


GPCA Reference 
Implementation




•  Connectivity, Interoperability, and 
Compositonality 
– VMD (virtual medical device), VMD app 

•  Smart Alarms & Decision Support 
•  Physiological Closed Loop 
•  Assurance and Certification 

Quantum related research 



Supporting Medical Device 
Interoperability 



Virtual Medical Devices (VMD) 
•  MD PnP (initiative for medical devices interoperability) enables a 

new kind of medical device, a Virtual Medical Device (VMD). 
•  VMD is a set of medical devices coordinating over a network for 

clinical scenario.  VMD is a virtual system of systems. 
•  VMD does not physically exist until instantiated at a hospital.  
•  The Medical Device Coordination Framework (MDCF) is prototype 

middleware for managing the correct composition of medical devices 
into VMD. 

Device Coordination 
Algorithm 

+ 
Medical Device Types 

= 
Virtual Medical Device 

(VMD) 

MDCF 
•  Clinician selects appropriate 

VMD 
•  MDCF binds appropriate 

devices into VMD instance 

MDCF displays 
VMD GUI for 
clinician 



VMD Research Issues 
•  Real-time support 

–  Leverage current hospital networks 
•  Non-interference 

–  Assume-guarantee interface 
•  Development environment for VMD 

Apps 
–  Support for programming  clinical-

algorithms with timing constraints  
•  MDCF Platform Implementation 

–  Device connection and configuration 
protocols   

–  VMD setup/tear-down algorithm  
–  Guarantee performance specified by 

VMD App or prevent clinician from 
unsafely instantiating VMD  

•  Safety analysis of the platform  
–  Correctness of the protocols 
–  Guarantees of communication 

Co-Developed with 
   NSF CNS-0930647 (PI: John Hatcliff) 
   Medical Device NIH/NIBIB Quantum Grant (PI: Julian Goldman)  

Generate simulation models 
directly from executable  
VMD App specification 
(for validation)  

Export specification to  
model-checker for  
verification 

VMD App  
Validation & Verification 



VMD Research Issues 
•  Formal VMD requirements and medical 

device capabilities language 
–  Automatic Device – App compatibility checking by MD 

PnP platform 
•  Ensures correct devices used in any given VMD 
•  Reduces scope of standardization efforts to manageable size 

–  I.e. standardize the interface language but not the specific “API” 

–  Precise VMD development artifact 
•  Specs are “executable” 

–  Feed into VMD simulation (i.e. testing) 
–  Feed into verification (i.e. model checking) 

–  Formal semantics 
•  May, must, at-least-one of transitions 
•  Refinement relations between specification and implementation 



Connectivity Support 
•  Open Health Connector (OHC) 

–  Connects legacy devices to 
modern networks and HIT 
systems 

–  Necessary for MD PnP 
research 

•  Open-source, standards-based 
connectivity 
–  Supports 11073 and HL7 

messaging 
•  Customizable 

–  Simple patterns and 
interfaces for implementing 
new device drivers & 
network protocols 

•  Community Support 
–  Users contribute back device & 

network drivers  
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Smart Alarms 
•  85%-99% of alarms 

generated in ICUs are false 
alarms 

•  VMD of multiple devices and 
central “smart” controller  

–  Filter, combine, process, and 
present real-time medical 
information  

–  Suppress clinically irrelevant 
alarms 

–  Provide summaries of the 
patient's state and predictions of 
future trends 

•  Benefits  
–  Improves patient safety 

–  Reduces caregiver workload 
–  Facilitates practice of evidence-

based medicine 

•  Challenges 
–  Filtering and combining data streams from 

multiple devices (clock synch?) 
–  Developing context-aware patient models 
–  Encoding hospital guidelines, extracting 

experts' models, learning models 
statistically 

–  Presenting data concisely and effectively 



Case Study: CABG Smart Alarm  
•  CABG (Coronary Artery Bypass 

Graft)  
–  Monitoring of post-CABG patients 
–  57% reduction in false alarms 
–  No missed true alarms 
–  Rule-based, from clinical 

guidelines and experts 
–  Joint work with Margaret Fortino-

Mullen, RN 
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•  Non-clinical 
implementation 
based on 
recorded data 

•  Barriers to real-
time deployment 



Case Study: Vasospasm Decision 
Caddy 

•  Post-brain surgery risk 
•  Hard to diagnose, deadly if not 

caught early 
•  Provide supporting information 

–  Context for alarms 
–  Give clinicians access to data 
–  15 days of data 

•  3-pronged approach 
–  Guideline driven 
–  Physician driven 
–  Data driven 

•  Current deployment barriers 
–  Few real-time data stream feeds 
–  No interfacing of  streams to the 

systems 
•  Joint work with Soojin Park, MD 
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•  Analyze data in new ways 
–  New device sources 
–  Trending 
–  Waveform analysis 
–  Clinician provide data 
–  Interpolate missing data 



1.  Integrating multiple streams of clinical data 
2.  Poor clock synchronization leads to timing 

uncertainty, making sensor fusion difficult 
3.  Safety analysis of Smart Alarms/CDS 

4.  Translating caregivers' needs into engineering 
requirements is difficult 
–  No "gold standard" for clinical alarms 
–  Effective presentation of CDS recommendations 

•  Interoperability platforms such as ICE standard 
needed for 1, 2, 3  

Technology Gaps in Smart Alarms/CDS 



Physiological Closed-Loop Systems 

•  Benefits 
–  Improved patient safety 
–  Improved clinical outcomes 
–  Reduced deployment cost 

•  Networking existing medical devices 

•  Clinical Use Cases 
–  Closed-loop Patient Controlled Analgesia (PCA) 
–  Closed-loop Blood Glucose (BG) control 
–  Ventilator weaning procedure 

•  Challenges 
–  Hazard identification and mitigation 

•  Network packet delay/drop, sensor disconnection, out-of-sync 
between controllers and devices 

–  Verification and Validation 
•  Proving safety properties at the model level 
•  Validating physiological models with clinical data 

•  QUANTUM gap 
–  Difficult to implement now due to lack of medical 

device interoperability 



PCA Closed-loop System 

•  Quantum use case 
•  Goal: improve the safety of PCA 
•  Approach: 

–  Detect respiratory disturbance 
–  Provide a safety interlock by 

stopping the pump 
–  Activate nurse call 

•  Challenges: 
–  Patient modeling, large 

parameter variation 
–  New hazards due to network 

failures 
–  Parametric design improves 

safety but reduces effectiveness 

•  Safety analysis by formal 
verification 
–  The pump is stopped if patient 

enters alarming region 
–  The patient can not enter the 

critical region 

•  Open-loop stability 
mitigates network hazards 
–  Instead of start/stop, allow 

pump to run for a fixed time 

t1 t2 tcrit Safe 
Critical 

Alarming 



Key Safety Property of Closed-Loop PCA 

Pump stops in time if total delay <= tcrit  
  

Total delay is the sum of: 
  tPOdel: worst case delay from PO (1s) 
  tnet: worst case delay from network (0.5s) 
  tSup: worst case delay from Supervisor (0.2s) 
  tPump: worst case delay from pump (0.1s) 
  tP2PO: worst case latency for pump to stop (2s) 
  tcrit: shortest time the patient can spend in the alarming region before going critical 

Signal Processing 
Time
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Output 
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Drug Level

Patient Model
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SpO2 & HR 
Levels Algorithm 

Processing Time

Supervisor

Pump 
Commands
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Pump Processing 
TimeDrug Infusion

Drug Request



BG Closed-loop System 
•  Background 

–  Glycemic control is important for 
diabetics and ICU patients 

–  Current control guidelines are 
not adaptive to individual 
changes and can result in 
unsafe BG 

•  Goal:  
–  Improve BG control: more in-

target time, less variability 
–  Minimize hypoglycemia incidents 

•  Approach: 
–  Design controllers on patient 

models and software simulators 
–  At runtime, automatically 

compute optimal insulin dose 
and alert caregivers to possible 
unsafe BG 

•  Challenges: 
–  Patient modeling 

•  Not enough data to monitor all 
physiological states 

•  Some factors (e.g., stress, 
physical activity) are hard to 
model 

–  Sensor measurement errors 
–  Actuation (infusion) delays 
–  Meal disturbances 

•  Safety vs. effectiveness 
–  Over-aggressive safety 

algorithm may trigger a lot of 
hyperglycemia 

–  Control design must address 
this trade-off 



•  Adaptive control often involves learning the 
parameters by feeding in extreme inputs 
– Example: aggressively turning a car 

•  Not safe for patient-in-the-loop systems 
•  Open issue: adaptive exploration with safety 

constraints 

Safe Adaptive Exploration 



•  Current approach to certification: 
– Consider every configuration separately 

•  Cannot be used for MCPS assembled at 
bedside 
– Multiple devices in the same category 
– Variation in clinical scenarios 

Regulatory Approval of MCPS 

supervisor 

alarm 
coordinator 

network 



•  An MCPS instance is built to implement a 
clinical scenario 

•  Key idea:  
– Treat clinical scenarios as virtual medical 

devices 
•  Replace approval of MCPS instances with 

– Certify the scenario 
•  Assuming fixed interfaces to constituent devices 

– Certify the interoperability platform 
– Certify devices w.r.t. interfaces 

Modular Certification 

Joint work with J.M. Goldman, J. Hatcliff, A. King, O. Sokolsky, and many others 



Assurance Cases 
•  Regulatory Challenge: evidence-based 

certification 
•  To construct an assurance  

case we need to: 
–  make an explicit set of claims about the 

system 
–  produce the supporting evidence 
–  provide a set of arguments that link the 

claims to the evidence 
–  make clear the assumptions and 

judgments underlying the arguments 
•  Challenges and on-going research: 

–  Effective ways of constructing assurance 
cases 

–  Evaluation strategies for regulators 
–  Certification of interoperating medical 

devices without N**2 problem 

Goal 

Strategy 

Evidence 

Sub-Goal Sub-Goal 

Evidence 

Context 



•  Many devices are 
developed by similar 
methods and rely on 
similar safety claims 

•  Define a pattern for 
model-driven 
development (MDD) 
approaches 

Safety Case Pattern – MDD 

MDD pattern 

The PCA Safety Case – Instance 
of the MDD pattern 

(4) 
validating the 

implementation 

(1) 
modeling the 

system 

(3) 
transformation the model 
into an implementation 

(2) 
verifying this 

model 

Instantiation for the 
PCA safety case 
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