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Continuous-valued time series data are collected in mealtip
domains, including surveillance, pose tracking, ICU pdtie
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Abstract

Continuous time series data often comprise or con-
tain repeatednotifs — patterns that have similar
shape, and yet exhibit nontrivial variability. Iden-
tifying these maotifs, even in the presence of vari-
ation, is an important subtask in both unsuper-
vised knowledge discovery and constructing useful
features for discriminative tasks. This paper ad-
dresses this task using a probabilistic framework
that models generation of data as switching be-
tween a random walk state and states that gener-
ate motifs. A motif is generated from a contin-
uous shape template that can undergo non-linear
transformations such as temporal warping and ad-
ditive noise. We propose an unsupervised algo-
rithm that simultaneously discovers both the set of
canonical shape templates and a template-specific
model of variability manifested in the data. Experi-
mental results on three real-world data sets demon-
strate that our model is able to recover templates in
data where repeated instances show large variabil-
ity. The recovered templates provide higher clas-
sification accuracy and coverage when compared
to those from alternatives such as random projec-
tion based methods and simpler generative models
that do not model variability. Moreover, in analyz-
ing physiological signals from infants in the ICU,
we discover both known signatures as well as novel
physiomarkers.

Introduction and Background

monitoring, and finance. These time series often contain

tifs — segments that repeat within and across different se
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severe complications such as infection. Discovering these
peated segments can provide primitives that are usefubfor d
main understanding and as higher-level, meaningful featur
that can be used to segment time series or discriminate among
time series data from different groups.

In many domains, different instances of the same motif can
be structurally similar but vary greatly in terms of poinsei
distance [Hoppner, 200R For example, the temporal posi-
tion profile of the body in a front kick can vary greatly, de-
pending on how quickly the leg is raised, the extent to which
itis raised and then how quickly it is brought back to positio
Yet, these profiles are structurally similar, and differizam
that of a round-house kick. Bradycardia and apnea are also
known to manifest significant variation in both amplitudelan
temporal duration. Our goal is to deal with the unsupervised
discovery of theseleformablemotifs in continuous time se-
ries data.

Much work has been done on the problem of motif detec-
tion in continuous time series data. One very popular and
successful approach is the work of Keogh and colleagues
(e.g.,[Mueenet al,, 2009), in which a motif is defined via
a pair of windows of the same length that are closely matched
in terms of Euclidean distance. Such pairs are identified via
a sliding window approach followed by random projections
to identify highly similar pairs that have not been previgus
identified. However, this method is not geared towards find-
ing motifs that can exhibit significant deformation. Anathe
line of work tries to find regions of high density in the space
of all subsequences via clustering; see O$42893; Den-
ton [2009 and more recently Minnen et. d2007. These
works define a motif as a vector of means and variances
over the length of the window, a representation that also is
not geared to capturing deformable motifs. Of these meth-
ods, only the work of Minnen et. al2007 addresses de-
formation, using dynamic time warping to measure warped
distance. However, motifs often exhibit structured transf

ries. For example, in trajectories of people at an airportMations, where the warp changes gradually over time. As
we might see repeated motifs in a person checking in at th&¥€ show in our results, encoding this bias greatly improves

ticket counter, stopping to buy food, etc. In pose tracking,
we might see characteristic patterns such as bending dow

sitting, kicking, etc. And in physiologic signals, recogable . ) ; o
shapes such as bradycardia and apnea are known to precéH@thOdS rely on having a segmentation of the time series into

*equal contribution

performance. The work of Listgarten et. §009; Kim
gt. al.[2004 focus on developing a probabilistic model for
aligning sequences that exhibit variability. However,sthe

corresponding motifs. This assumption allows them to im-
pose relatively few constraints on the model, renderingithe



highly under-constrained in our unsupervised setting. (@
This paper proposes a method, which we call CSTM (Con-

tinuous Shape Template Model), that is specifically tadjete

to the task of unsupervised discovery of deformable matifs i

continuous time series data. CSTM seeks to explain the en- y E

tire data in terms of repeated, warped motifs interspersibd w WO,/ 7

non-repeating segments. In particular, we define a hidden, Y e

segmental Markov model in which each state either generates

a motif or samples from a non-repeated random walk (NRW).

The individual motifs are represented by smooth continu-

ous functions that are subject to non-linear warp and scale (b)

transformations. Our warp model is inspired by Listgarten Wi W

et. al.[2004, but utilizes a significantly more constrained W W

version, more suited to our task. We learn both the motifs

and their allowed warps in an unsupervised way from un-

segmented time series data. We demonstrate the applicabil-

ity of CSTM to three distinct real-world domains and show Figure 1: a) The template S shows the canonical shape for

that it achieves considerably better performance thaniprevthe pen-tip velocity along the x-dimension and a piecewise

ous methods, which were not tailored to this task. Bézier fit to the signal. The generation of two differentisa

formed versions of the template are shown; for simplicity, w

. assume only a temporal warp is used anttacks the warp

2 Generative Model at each time, b) The resulting character ‘w’ generated by in-

The CSTM model assumes that the observed time series {§grating velocities along both the x and y dimension.
generated by switching between a state that generates non-

repeating segments and states that generate repeating (strbetween adjacent pieces (see figure 1). The intermediate con
turally similar) segments omotifs Motifs are generated trol pointsp; andp. control the tangent directions of the
as samples from a shape template that can undergo nof@urve at the start and end, as well as the interpolation shape
linear transformations such as shrinkage, amplificatido-or Between end pointg; < [0, 1] controls the position on the
cal shifts. The transformations applied at each obserweel ti curve, and each piece of the curve is interpolated as
t for a sequence are tracked via latent states, the distributi 5

over which is inferred. Simultaneously, the canonical ghap £(r) = Z < 3 ) (1— 1) irips

W e-6-2@

\<

1)

template and the likelihood of possible transformations fo i
each template are learned from the data. The random-walk
state generates trajectory data without long-term memory=or higher-dimensional signals ", p; € R"*1. Although

Thus, these segments lack repetitive structural pattéd8s.  only ¢ continuity is imposed here, it is possible to impose ar-

low, we describe more formally the components of the CSTMjtrary continuity within this framework of piecewise Bezi
generative model. In Table 1, we summarize the notation usegl;rves if such additional bias is relevant.

for each component of the model.

i=0

Shape Transfor mation M odel

A Canonical Shape Template (CST) Motifs are generated by non-uniform sampling and scaling

Each shape template, indexed hyis represented as a con- of s*. Temporal warp can be introduced by moving slowly

tinuous functiors® (1) wherel € (0, L*] andL* is the length  or quickly throughs®. The allowable temporal warps are

of the kth template. Although the choice of function class for specified as an ordered sets, . . ., w, } of time increments

sk is flexible, a parameterization that encodes the propertyhat determines the rate at which we advance throsfgh

of motifs expected to be present in given data will yield bet-A template-specific warp transition matri¥® specifies the

ter results. In many domains, motifs appear as smooth fungrobability of transitions between warp states. To gemeesat

tions. A possible representation might be anregularized — seriesyy, - - -, yr, letw; € {ws, ..., w,} be the random vari-

Markovian model. However, these penalize smooth functionable tracking the warp ang be the position within the tem-

with higher curvature more than those with lower curvature plate s* at timet. Then,y;,; would be generated from the

a bias not always justified. A promising alternative is piece values*(p;1 1) wherep; 1 = p; +wsy1 andw; 1 ~ 78 (wy).

wise Bézier splinegGallier, 1999. Shape templates of vary- (For all our experiments, the allowable warps éte2, 3} ot

ing complexity are intuitively represented by using fewer o whereét is the sampling rate; this posits that the longest se-

more pieces. For our purpose, it suffices to present the mathyuence froms* is at most three times the shortest sequence

ematics for the case of piecewise third order Bézier curvesampled from it.)

over two dimensions, where the first dimension is the ime  We also want to model scale deformations. Analogously,

and the second diemsnion is the signal value. the set of allowable scaling coefficients are maintaineteas t
A third order Bezier curve is parameterized by four pointsset{ci,...,c,}. Let g1 € {ec1,...,cn} be the sampled

p; € R?fori € 0,---,3. Control pointspy andp; are the  scale value at time + 1, sampled from the scale transition

start and end of each curve piece in the template and sharewlatrix 77(’;. Thus, the observation,,; would be generated



around the value; 15(p;11), a scaled version of the value | Symbol | Description

of the motif atp, 1, whereg, 1 ~ 7} (¢:). Finally, an ad- Yt Observation at time t
ditive noise value/; ; ~ N(0,&) models small shifts. The Kt Index of the template used at time t
parameted is shared across all templates. Pt Position within the template at time t
In summary, putting together all three possible deformal — wt Temporal warp applied at time t
tions, we have thay; 11 = vii1 + dri15"(pip1). We use o Scale tranformation applied at time t
z = {pt, P+, 14} to represent the values of all transforma-| ¢ Additive noise at time t _ _
tions at timet. 24 Vector{p;, ¢, ¢ } of transformations at time t
In many natural domains, motion models are often smooth
due to inertia. For example, while kicking, as the persos get| " kth template, length of template Is*
tired, he may decrease the pace at which he raises his ldg. 7= Warp transition matrix fokth template
But, the decrease in his pace is likely to be smooth rather thg wf; Scale transition matrix fokth template
transitioning between a very fast and very slow pace from ong
time step to another. One simple way to capture this biasis 7 Transition matrix for transitions between templa-
by constraining the scale and warp transition matrices to be tes and NRW
band diagonal. Specifically, (w,w’) = 0if jw — w’| > b _ _
where2b + 1 is the size of the band. (We skt= 1 for Table 1: Notation for the generative process of CSTM.
all our experiments.) Experimentally, we observe that & th
absence of such a prior, the model is able to align random b~ T () (6)
walk sequences to motif sequences by switching arbitrarily ¢
between transformation states, leading to noisy tempéatds v~ N(0,0) (7)
poor performance. Yy = v+ ¢us" (pr) (8)

Non-repeating Random Walk (NRW) .
We use the NRW model to capture data not generated frorﬁ’ L earning the model

the templates (see also Dent®@909). If this data has dif- The canonical shape templates, their template-specifisira
ferent noise characteristics, our task becomes simpldreas t formation models, the NRW model, the template transition
noise characteristics can help disambiguate between-motifatrix and the latent states(r, 21.7) for the observed se-
generated segments and NRW segments. The generation figs are all inferred from the data using hard EM. Coordinate
smooth series can be modeled using an autoregressive prascent is used to update model parameters in the M-step. In
cess. We use adR(1) process for our experiments where the E-step, given the model parameters, Viterbi is used for
y: = N(yi—1,0). We refer to the NRW model as ttigh  inferring the latent trace.

t late.
. 31 E-step

Template Transitions _ _ Given y1.7 and the modelM from the previous iteration,
Transitions between generating NRW data and motifs fromp the E-step, we compute assignments to the latent vari-
the CSTs are modeled via a transition matrk,of size  aples{xy.;, 2.7} using approximate Viterbi decoding (we

(K +1) x (K + 1) where the number of CSTs i§. The  yset; : ¢, as shorthand for the sequences of time indices
random variables; tracks the template for an observed se-;, ¢, 41, #):

ries. Transitions into and out of templates are only alloaed

the start and end of the template, respectively. Thus, wient  {r1.7, 27,0} = argmax, . .. . P(kir, 21.7|y1.7, M)
position within the template is at the end i.g,, ; = L,
we have thak; ~ 7 (k;—1), otherwisex; = k;_1. For7, we
fix the self-transition parameter for the NRW state\aa pre-
specified input. Different settings afallows control over the
proportion of data assigned to motifs versus NRW. As-
creases, more of the data is explained by the NRW state anglp M -step

as a result, the recovered templates have lower variance. %iven the datays.r and the latent tracd .., 210}, the

) Below, we summarize the generative process at each tlmmodel parameters are optimized by taking the gradient of the

During the forward phase within Viterbi, at each time, we
prune to maintain only the top belief state& For our ex-
periments, we maintai’ x 20 states. This does not degrade
performance as most transitions are highly unlikRely

& penalized complete data log-likelihood w.r.t. each patame
e ™ Tﬁ(m_l’pt_l) (2) 2Although we use pruning to speed up Viterbi, exact infer-
we ~ g (we-1) 3) ence is also feasible. The cost of exact inference in thisahisd

. re it 4 O(maz(T * W? x D* « K, T « K?)) whereT is the length of the
oy = { min(p;—1 + w, ); if ke =ri1 (4 series,W and D are dimensions of the warp and scale transforma-
1, if kg #Kki—1 (5)  tion matrices respectively and is the number of templates.

- 3Pruning within segmental Hidden Markov Models has been

Learning\ while simultaneously learning the remaining param- used extensively for speech recognition. To the best of aomwk
eters leads to degenerate results where all points end bp NRW  edge, no theoretical guarantees exist for these pruningnseh but
state with learned = 1. in practice they have been shown to perform well.



Below, we discuss the penalty for each component and thef hill-climbing moves are typically used to get to an opti-

corresponding update equations. mum. We employ a variant which has been commercially
Updating .., 7 and T gggg)yed for large and diverse image collectiofBiebel,

A Dirichlet prior, conjugate to the multinomial distribofi, )

is used for each row of the transition matrices as perfalty Updating o and ¢

andP,. In both cases, the prior matrix is constrained to beGiven the assignments of the data to the NRW and the tem-

band-diagonal. As a result, the posterior matrices are alsplate states, and the fitted template functions, the vagmnc

band-diagonal. The update is the straightforward MAP esandd are computed easily.

timate for multinomials with a Dirichlet prior, so we omit . .

details for lack of space. For all our experiments, we set 5"3 _ Escaping local max_lma _ )

weak prior favoring shorter warps: I, 3,0), Dir(4,5,1) EMis knpwn to get stuck in local maxima, hgvmg too many

and DiK0, 7, 3) for each of the rows of,, andr, given our clusters in one part of the space and too few in anofheda

setting of allowable warps. As always, the effect of the prio €t al- 1994. Split and merge steps can help escape these

decreases with larger amounts of data. In our experimeats, weonfigurations by: a) splitting clusters that have high vari

found the recovered templates to be insensitive to thengetti ance due to the assignment of a mixture of series, and b)

for a reasonable ranfje merging similar clusters. At ea_ch such step, fc_>r each exjsti
The template transition matri¥ is updated similarly. A témplatek, 2-means clustering is run on the aligned segmen-

single hyperparametsris used to control the strength of the tations. Letkl and k2 be the _|n_d|ces representing the two

prior. We sety = n/(K2L), wheren is the total amount €W clusters created from splitting théh cluster. Then, the

of observed datd, is the anticipated template length used in split scoreL;”"** for each cluster iy, + Lys - Ly, where

the initializations, and¥ is the pre-set number of templates. L; defines the observation likelihood of the data in cluster

This is equivalent to assuming that the prior has the sam&he merge score for two template clustdrg;’’® is com-

strength as the data and is distributed uniformly across aluted by defining the likelihood score based on the center of

shape templates. L&(F) be the indicator function for the the new cluster (indexed b/ k") inferred from all time se-

eventE. To update the transitions out of the NRW state,  ries assigned to both clusteksand%” being merged. Thus,
. - L7507 = Liggr — Ly — L. A split-merge step with candi-
Tor = (1-\) N4 2=y Z(ht1 = 0)T (ke = k) date clustergk, &', k") is accepted if.;"'" 4 L}79¢ > 0.8

W+ Yo Tkt = 00 (e = K) 34 peak-hased initialization

Transitions are only allowed at the end of each templateThe choice of window length is not always obvious, espe-

Thus, to update transitions between shape templates, cially in domains where motifs show considerable warp. An
T aItern_ative approachisto (_jescribe the desired mo_tifsr'mﬂe
T o)+ ZI(Ht—1 = k)Z(ke = K)T(pr_1 = L*) of their structural complexity — the number of distinct psak

in the motif. Given such a specification, we first character-

=2 ize a segment in the continuous time series by the set of
Fitting Shape Templates its extremal points[Fink and Gandhi, 20]6— their heights
Given the scaled and aligned segments of all observed timé;, - - -, i, and positionss, ..., t3,. We can find segments

series assigned to any given shape tempiétehe smooth  of the desired structure using a simple sliding window ap-
piecewise function can be fitted independently for eachehapproach, in which we extract segmeatthat contain the given
template. Thus, collecting terms from the log-likelihoetir number of extremal points (we only consider windows in
evant for fitting each template, we get: which the boundary points are extremal points). We now de-
. fine d;, = f3, — fo_q (taking f§ = 0), that is, the height
(yr — ¥ (p1))? difference between two consecutive peaks. phak profile
Ly =Py — ZI(’“ - k)T (©) 5%, ...,0%, is awarp invariant signature for the window: two
t=1 windows that have the same structure but undergo only tem-
where P,. is a regularization for théth shape template. poralwarp have the same peak profile. Multidimensional sig-
A natural regularization for controlling model complexigy ~ nals are handled by concatenating the peak profile of each di-
the BIC penalty[Schwarz, 197Bspecified a$.5 log(N vy, mension. We now define the distance between two segments
wherey,, is the number of Bézier pieces used aNds the ~ with the same number of peaks as the weighted sum dfthe
number of samples assigned to the template. distance of their peak profile and tlig distance of the times
Piecewise Bézier curve fitting to chains has been studie@t Which the peaks occur:
extensively.Ly is not differentiable and non-convex; a series M ) M /
d(s,8') =Y 1165, = 05 lla+n Y llt5, —tolla (10)
m=1 m=1

“4If the motifs exhibit large unstructured warp, the prior otle
rows of the warp matrices can be initialized as a symmetrniicBliet
distribution. However, as seen in our experiments, we fbaitin 8In order to avoid curve fitting exhaustively to all candidpéirs
natural domains, having a structured prior improves regove for the merge move, we propose plausible pairs based on $he di

°A modified BIC penalty ofy(0.5 log(N)vy,) can be used if fur-  tance between their template means, and then evaluate tiem u
ther tuning is desired. Higher valuespfead to smoother curves.  the correct objective.



The parameter controls the extent to which temporal warp  os-
is considered in the similarity metric (for exampke,= 0
defines an entirely warp-invariant distance); we yse 1.
Using the metrial, we cluster segments (using e.g., kmeans} |
and select the to most compact clusters as an initialization £

for CSTM. Compactness is evaluated as the distance betwe: oz
all segments in the cluster to a single segment in the cluste

minimized over the choice of this Segment_ 0" CSTM+PB Mueen2 Mueen Mueen10 Mueenzs Mueens0 Chiuz  Chis  Chiul0 Chiuzs  Chius0

061

I nitial
I CsT™

. Figure 2: Comparison of our model with an initialization us-
4 Experiments and Results ing the peak-based method, and initializations from Mueen
We evaluated the performance of our CSTM model on fougnd Chiu with different settings for R.
different datasets. We compare on both classification accu- o o )
racy and coverage, Comparing to the Wide|y-used randornflr-ld.lng Sllmllar sequences at. ConseCU.tlv.e |te-rat|0ns,. weause
projection-based methods of Mueen et. [2D09; Chiu et.  Sliding window to remove windows within distanadetimes
al. [2003. We also compare against variants of our modefthe distances between the closest pair and iterate. We refer
to elucidate the importance of novel bias our model imposef? this method as Mueen We also experiment witkChiu
over prior work. We give a brief overview of our experimen- LChiuetal, 2003, a method widely used for motif-discovery.

tal setup before describing our results. Unlike Mueen, Chiu selects a motif at each iteration based
on its frequency in the data. For both methods, to extract

4.1 Experimental Overview matches to existing motifs on a test sequence, at each point,

Datasetsand Metric we compute the distance to all motifs at all shifts and label

The Characterdata is a collection of x and y-pen tip veloci- th€ Point with the closest matched motif. .
ties generated by writing characters on a talkeogh and Since prior works[Minnenet al, 2007 have extensively
Folias, 2002. We concatenated the individual series to formUSed dynamic time warping for computing similarity between
a set of labeled unsegmented data for motif discovery. warped subsequences, we define the varGBIM-DTW
The Kinect Exercisedata was created using Microsoft Where each row of the warp matrix is set to be the uniform
Kinect. The data features six leg exercises such as frorﬂ'smbu“on'_ CSTM-NW allows no warps. We also de-
kick, rotation, and knee high, interspersed with other mis-in€ the varianCSTM-MC which represents the motif as
cellaneous activity as the subject relaxes. The dataset w&sSIMPle template encoded as a mean vector (one for each
collected in two different settings. We extract the three di POINt), s done in majority of prior worksOates, 2002;
mensional coordinates of the ankle. Minnenet al, 2007; Denton, 2005
A Simulateddataset of seven hand-drawn curves was useg 2 Reslts
to evaluate how model performance degrades under different o _ i i
amounts of non-repeating segments. With these templaté%ur method, similar to prior work, requires an input of the
and a random intialization of our model, we generated fout€mplate length and the number of templakeésWhen char-
different datasets where the proportions of non-repeatigg ~ acterizing the motif length is unintuitive, peak basediamit
ments werd 0%, 25%, 50% and80%. ization can be used to deflng the |n|t|a_l .templates based on
On heart rate data collected from infants in the Edinburgrfomplexity of the desired motifs. In addition, our method re
NICU [Williams et al, 2004, our goal is to find known ~quires a setting of the NRW self-transition parametecon-
and novel clinical physiomarkers. This dataset is not fullytrols the tightness of the recovered templates and can be in-
labeled, but provides labeled examples of bradycardia. Ougrementally increased (or decreased) to tune to desidéxata
work was primarily motivated by settings such as this wherg'on-trivial partition of the data is obtained whan< & «1/w
simple clustering fails due to the amount of warp and nonwherew is the maximum allowed warp.In all our experi-
repeating segments in the data. ments, we sek = 0.5, a value which respects this constraint.
On the first three datasets which are fully labeled, we evaluWe subsample the data at the Nyquist frequelityquist,
ate the quality of our recovered templates using classificat 19298,

We treat the discovered motifs as the feature basis and the@thar acter Data. On the character dataset, for different set-
relative proportions within a segment as the feature veotor  tings of the parameters, number of clusters and the distance
that segment. Thus, for each true motif class (e.g., a chave computed classification accuracies for Mueen and Chiu.
acter or action) a mean feature vector is computed from thehe window length is easy to infer for this data even with-
training set. On the test set, each true motif is assigned a laut knowledge of the actual labels; we set it tolse(in the

bel based on distance between its feature vector and the meagbsampled version). We experiment with different initial

feature vector for each class. Classification performamce ojzations for CSTM: using the motifs derived by the meth-
the test set are reported. This way of measuring accuracyis

less sensitive to the number of templates used. "Essentially, this inequality is derived by comparing tHesli-
. hood of NRW to the template state for a given data and elirimigat
Baseline Methods terms that are approximately equal.

Mueen [Mueenet al, 2009, repeatedly finds the closest  ®ntuitively, this is the highest frequency at which therestsl
matched pair from the set of all candidate windows. To avoidnformation in the signal.



33.00 sion fails to align warped motifs, the DTW model aligns too

. _T 64.00 freely resulting in convergence to poor optimum. The con-
| P 7 .00 fusion matrix for CSTM-DTW in figure 4 shows that many

© N 70.75 Mueen more characters are confused when contrasted with the con-
© I 76.25 B CSTM-NW fusion matrix for CSTM in figure 4. Where CSTM misses,

B CSTM-DTW we see that it fails in intuitive ways, with many of the mis-
classifications occurring between similar looking letters

32.10 B CSTM-MC urt i
—— 63.75 ST letters that have similar parts; for example, we see that h is
5 ﬁ 75.00 confused with m and n, p with r and w with v.
< I <625 | CSTM#PB Kinect Data. Next, we tested the performance of our method
I 35.00 on the Kinect Exercise dataset. To evaluate Mueen on this
dataset, we tested Mueen with parameter settings taken from
30.00 4000 50.00 60.00 70.00  80.00  90.00 the cross product of template lengths of 5, 10, 15, or 20, dis-

Figure 3: Accuracy on Character (top) and Kinect (bottom)tance thresholds of 2, 5, 10, 25, or 50, and a number of tem-
for CSTM and its variants. Two different initializationsrfo plates of 5, 10, 15, or 20. A mean accuracy20f, was
CSTM are compared: Mueen10 and peak-based. achieved over these 80 different parameter settings; accur
cies over50% were achieved only on 7 of the 80, and the
ods of Mueen and Chiu, and those derived using the peakbest accuracy waé2%. Using Mueen0 as an initialization
based initialization. Figure 2 shows the classificatioruage  (with 10 clusters and window length 10, as above), we eval-
cies for these different initializations. The performamde uate CSTM and its variants. CSTM achieves performance of
a random classifier for this dataset48%. Our method over86%, compared to th&2% achieved by Mueer? di-
consistently dominates Mueen and Chiu by a large amourectly. CSTM with a peak-based initialization (using eitbe
and yields average and best case performan68.65% and  or 7 peaks) produced very similar results, showing again the
76.25% over all initializations. Our method is also relatively relative robustness of CSTMs to initialization. Comparing
insensitive to the choice of initialization. Our best perfo to different variants of CSTM, we see that the lack of bias in
mance is achieved by initializing with the peak-based me:itho the template representation in this dataset lowers pesooe
(CSTM+PB) which requires no knowledge of the length of dramatically to56.25%. We note that the templates here are
the template. Moreover, for those parameter settings wherkelatively short, so, unlike the character data, the drqpein
Mueen does relatively well, our model achieves significanformance due to unstructured warp is relatively smaller.
gain by fitting warped versions of a motif to the same tem-
plate. In contrast, Mueen and Chiu must expend additione @ - £ " . s 9
templates for each warped version of a pattern, fragmeni — \ . i
ing the true data clusters and filling some templates with re::
dundant information, thereby preventing other characir p :
terns from being learned. Increasing the distance paramt .
ter for Mueen can capture more warped characters within th
same template; however, many characters in this dataset a “|
remarkably similar and performance suffers from their mis-_ |
classification ag increases.

Figure 5: a) ROC curve for bradycardia, b-c) novel phys-
iomarkers rocovered by CSTM, d) an example bradycardia

cluster recovered by CSTM, e) aligned version of cluster in
d, and f) an example bradycardia cluster from Mueen)

True label

Synthetic Data. To evaluate how our model performs as the
proportion of non-repeating segments increases, we dealua
: the different variants of CSTM and Muelhon simulated

. ) . . . data of hand-drawn curves. CSTM performancesig even
Figure 4: Confusion matrix showing performance of CSTM at the80% random walk level, and performs considerably bet-
(left) and CSTM-DTW (right) on the character data. ter than Mueen10, whose performance is arou¥d. More-

In the next batch of experiments, we focused on a singlé®ver, CSTM's performancer{.5% — 90%) is consistently
initialization. Since Mueen performed better than Chiwl an higher than its less-structured variartis¥ — 72%).
is relatively more stable, we consider the Mug@mitializa-  NICU Data. On the NICU data, we compute the ROC curve
tion, and compare CSTM against its variants with no warpfor identifying bradycardia (true positive and false pivsit
with uniform warp, and without a template prior. In figure 3a, measures are computed as each new cluster is added up to a
we see that performance degrades in all cases. A qualitativetal of 20 clusters). We perform a single run with peak based
examination of the results shows that, while the no-warp verclustering usin@ — 7 peaks and multiple runs for Mueen with

eghlIimnopagrsuvw
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different settings for d (see figure 5a). The ROC curve from[Gallier, 1999 J. Gallier.Curves and Surfaces in Geometric

CSTM dominates those from Mueen with significantly higher Modeling: Theory and Algorithms Morgan Kaufmann,

true positive rates at lower false positive rates. In5band5  1999.

we show examples of novel clusters not previously knowr 200D E. H& K ledae di f }

(and potentially clinically significant). In 5d and 5f, wecs 1 oppner, P F. Hoppner. Knowledge discovery from se
S L guential data. 2002.

clusters containing bradycardia signals generated by CSTg{I ) ) _

and Mueen respectively. The former is able to capture highlyKe€ogh and Folias, ZOOZE-_ Keogh and T. Folias. UCR time

variable versions of bradycardia while those in the latter a = Series data mining archive. 2002.

fairly homogeneous. [Kim et al, 2004 S. Kim, P. Smyth, and S. Luther. Model-
. . . ing waveform shapes with random effects segmental hid-
5 Discussion and Conclusion den Markov models. 1d. Mach. Learn. Re2006.

We have presented a new model for unsupervised diSCOVe[Y_istgartenet al, 200§ J. Listgarten, R. Neal, S. Roweis,
of deformable motifs in continuous time series data. Our ang A, Emili. Multiple alignment of continuous time se-

probabilistic model seeks to explain the entire series dewki ries. INNIPS 2005.

tify repeating and non-repeating segments. This apprdach . .

lows us to model and learn important representational biase Minnenet al, 2007 D. Minnen, C. L. Isbell, I. Essa, and

regarding the nature of deformable motifs. We demonstrate 1- Starner. Discovering multivariate motifs using subse-

the importance of these design choices on multiple realdvor ~ dUence density estimation and greedy mixture learning. In

domains, and show that our approach performs consistently AAAI, 2007.

better compared to prior works. [Mueenet al, 2009 A. Mueen, E. Keogh, Q. Zhu, S. Cash,
Our work can be extended in several ways. Our warp- and B. Westover. Exact discovery of time series motifs. In

invariant signatures can be used for a forward lookup within  SDM 2009.

beam pruning to significantly speed up inference wién [Nyquist, 1928 H. Nyquist. Certain topics in telegraph

the number of templates is large. Our current implementa- transr,nission theory. 1928.

tion requires fixing this number of clusters. However, our ap i i

proach can easily be adapted to incremental data exploratiolOates, 200R T. Oates. PERUSE:an unsupervised algorithm

where additional templates can be introduced at a giveariter ~ for finding recurring patterns in time series. IGDM,

tion to refine existing templates or discover new templates. 2002.

Bayesian nonparametric prior is another approach thaticoul[Schwarz, 197B G. Schwarz. Estimating the dimension of a

be used to systematically control the number of classeslbase model. InAnnals of Statistics1978.

on model complexity. A different extension could build a [Uedaet al, 1998 N. Ueda, R. Nakano, Z. Ghahramani. and
hierarchy of motifs, where larger motifs are comprised of G. Hinton. Split and mérgé EM alg(’)riihm for impr0\’/ing

multiple occurrences of smaller motifs, thereby possilsty-p . - ) -
viding an understanding of the data at different time scales Gaussian mixture density estimatesNIPS 1998.

More broadly, this work can serve as a basis for building non{Williams et al, 2009 C. Williams, J. Quinn, and N. McIn-

parametric priors over deformable multivariate curves. tosh. Factorial switching Kalman filters for condition mon-
itoring in neonatal intensive care. MIPS 2005.
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