UPPAAL tutorial

e What's inside UPPAAL
* The UPPAAL input languages

UPPAAL tool

= Developed jointly by Uppsala & Aalborg University
= >>28,000 downloads since 1999

UPPAAL Tool

i

mmmmmm

(Ror)
o
o BAE T ol
EZ = |
,,,,,,,,,, o fel Check
L3
g 3
¥ Frorererery o
=

Verification

h
il

Architecture of UPPAAL

A
A
xta

(Server)

Linux, Windows, Solaris, MacOS 4

What's inside UPPAAL

OUTLINE

= Data Structures
= DBM’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms
= Reachability analysis
= Liveness checking
= Verification Options

'r!"
UPPSALA [(8
UNIVERSITET AALBORG UNIVERSITY

Coppront
Noes iomaton o p: e gpastcom

UPPAAL 347, Aug 2004.

All Operations on Zones
(needed for verification)

= Transformation

S1
= Conjunction Sz‘/s3l \s‘n
= Post condition (delay) ; / / \\
= Reset Si Sj
= Consistency Checking
= Inclusion
= Emptiness

Zones = Conjuctive constraints

= A zone Zis a conjunctive formula:
g; 89, &... &g,
where g; may be x;~ b; or x-x;~by
= Use a zero-clock x, (constant 0), we have
{X%; ~ b; | ~is <or=, ijsn}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

Inclusion
x<=1

Z1 y-X<=2
z-y<=2

z<=9

Z2 |x<=2
y-x<=3
y<=3
z-y<=3
z<=7

10

Canonical Dastructures for Zones
. . Bellman 1958, Dill 1989
Difference Bounded Matrices

Inclusion
X N
x<=1 2 \2‘ shortest 17 N2
Z1 Y-x<=§ Graph y Path 0 3 y
zy<= Closure
7<=9 9\. ZA/Z E\ z‘/2
257 21 CZ2!
_ X
22 X_<X:2_3 2/' X3 Shortest 2 3
z<=3_ Graph 0 3 y CIPath 0 —3. y
_ - osure
zy<=3 N R

11

Canonical Datastructures for Zones
Difference Bounded Matrices Be'man 1958, Dill 1989

Emptiness

Z x<=1 1/’ \3

y>=5 Graph 0

y-x<=3 ~_y

Negative Cycle
iff
empty solution set

12

Canonical Datastructures for Zones
Difference Bounded Matrices

y ' Conjunction y
z L, Zng ‘ ﬁ
1<=x, 1<=y

X
1<=x, 1<=y -2<=x-y<=3
-2<=x-y<=3 3<=x

))
2 1\ b _1\), A

Y

13

Canonical Dastructures for Zones
Difference Bounded Matrices

Delay

|- | &
y 4 Z
X
1<=x<=4
= = 1<=x, 1<=y
1<=y <=3 2<=xy<=3

o

// X 4 X X
-1 Shortest /{ Remove 1
Path 3 upper 3
\ Closure 0 3 bounds O
on clocks

14

Canonical Datastructures for Zones
Difference Bounded Matrices

y ' Reset y
Z L, {y}z .

1<=x, 1<=y
-2<=x-y<=3 y=0, 1<=x

X
Remove all
L/ bounds -1
0 involving y 0 0
h andsetyto0
N S

15

COMPLEXITY

= Computing the shortest path closure, the
cannonical form of a zone: O(n3) [Dijkstra’s alg.]

= Run-time complexity, mostly in O(n)
(when we keep all zones in cannonical form)

16

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

17

x1-x2<=-4 Shortest
x2-x1<=10 Path
x3-x1<=2 Closure
X2-x3<=2 2 0o(n3)
x0-x1<=3
x3-x0<=5

T

Shortest
Path Space worst O(n2)
Reduction practice O(n)
o(n3) 2

(Minimal graph, a.ka.
compact data structure)
18

Graph Reduction Algorithm

G: weighted graph

1. Equivalence classes based
on 0-cycles.

19

Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

20

10

Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.

3. Shortest Path Reduction

One cycle pr. class

+
Removal of redundant edges
between classes

Safe to remove redundant edges

21

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

22

11

Other Symbolic Datastructures

CDD-representations |

s NDD's Maler et. al.

n CDD's upPPAAL/CAV99

s DDD'’s Mgller, Lichtenberg
= Polyhedra HyTech

23

Inside the UPPAAL tool

= Data Structures
= DBM’s (Difference Bounds Matrices)
» Canonical and Minimal Constraints
)= Algorithms e
= Reachability analysis i S
= Liveness checking R
= Verification Options

24

12

Timed CTL in UPPAAL

EFp| AGp | EGp | AFp | p-->q

Pu=Ad|g.| gl notp| porp | pandp | pimply p

/AN

Process Clock predicate

Location constraint over data variables

(a location in

automaton A) p leads to q

denotes
AG (p imply AF q)

25

Timed CTL in UPPAAL

| EGp | AFp | p-->q

P:ii=Al|g.19gy| notp| porp| pandp | pimply p

Process Clock predicate
Location constraint over data variables
(a location in

p leads to q

denotes
AG (p imply AF q)

automaton A)

SAFETY PROPERTIES

26

13

SAFETY Properties

Fu= EFP | AGP

[\

Reachability

Invariant = - EF - P
Thus, AG P is also checked by
reachability analysis!

27

We have a search problem

(ng,Z,)

V{ERN

5273 /\r\

/N

®

Symbolic state
Symbolic transitions

Reachable?

EF ®

28

14

Forward Reachability

Waiting

Init -> Final ?

Waiting := {(n0,20)}

! INITIAL Passed := @; '
1
1

REPEAT
- pick (n,Z) in Waiting
- ifforsome Z’' £ Z
(n,Z") in Passed then STOP

- else /explore/ add
{(mU):(n,2) =>(m,U) }
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting =@
or
Final is in Waiting

29

Forward Reachability

Waiting

Init -> Final ?
INITIAL Passed := @;
Waiting := {(n0,20)}

REPEAT

= pick (n,Z)in Waiting

1
-ifforsomez < Z '
(n,Z") in Passed then STOP 1

{(mV):(n2) =>(mU)}
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting=0
or
Final is in Waiting

30

Forward Reachability

o)

fWaiting Q & O .F}

Passed /

Init -> Final ?

INITIAL Passed := @;
Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
-ifforsomez' £ 2
- - - {n.Z) in Passed then_STOP_ _ _
1 - else /explore/ add 1
: {mU): (n2)=>mU)} ,
1 to Waiting; 1

Add (n,Z) to Passed
UNTIL Waiting =@

or

Final is in Waiting

31

Forward Reachability

Waiting

O @ O .Final

Passed /

—————— I Waiting,; . _ - . - ___

Init -> Final ?

INITIAL Passed := @;
Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
-ifforsomez < Z
(n,Z") in Passed then STOP
- else /explore/ add

{(muU): (n,2) =>(m,U) }

Add (n,Z) to Passed 1
UNTIL Waiting=0

or

Final is in Waiting

32

16

Forward Reachability

waiting | O 09 O .Fi“al

Passed /

Init -> Final ?

INITIAL Passed := @;
Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
-ifforsomez =< Z
(n,Z") in Passed then STOP
- else /explore/ add

{(mU):(n2) =>m,\U)}

to Waiting;
Add (n,Z) to Passed

-
1 UNTIL Waiting =@
' or
: Final is in Waiting

Further question

Can we find the path with shortest delay, leading to P ?

(i.e. a state satisfying P)

OBSERVATION:

Many scheduling problems ca

n be phrased naturally as

reachability problems for timed automata.

34

17

Verification vs. Optimization

= Verification Algorithms:

= Checks a logical property of the
entire state-space of a model.

= Efficient Blind search.
= Optimization Algorithms:
» Finds (near) optimal solutions.
= Uses techniques to avoid non-
optimal parts of the state-space
(e.g. Branch and Bound).
= Goal: solve opt. problems with
verification.

35

OPTIMAL REACHABILITY

The maximal and minimal delay problem

36

18

Find the trace leading to P with min delay

There may
be a lot of

pathes leading
toP

Which one
with the shortest
delay?

37

Find the trace leading to P with min delay

Idea: delay as "Cost” to reach

a state, thus cost increases
with time at rate 1

38

19

An Simple Algorithm for minimal-cost reachability

= State-Space Exploration + Use of global variable Cost and global clock &
= Update Cost whenever goal state with min(C) < Cost is found:

o)
60 [605 |

= Terminates when entire state-space is explored.
Problem: The search may never terminate!

39

Example (min delay to reach G)

(m,x=0, x=8) G

] (n,x=0, =10, 8-x=10) H (nx=0,8=10, §x= 10) ‘

-+

(n,x=0,x=0, §=20,8-x=20) "{ (n,x= 0, § =20, 6-x= 20) [

R e

(n,x=0, 8=30,0-x=30) H (n,x= 0, 8 =30, &-x=30) }

The minimal delay = 0 but the search may never terminate!
Problem: How to symbolically represent the zone C.

40

20

Priced-Zone

Cost = minimal total time

C can be represented as the zone Z°, where:
— Z° original (ordinary) DBM plus...
— & clock keeping track of the cost/time.

Delay, Reset, Conjunction etc. on Z are
the standard DBM-operations

Delay-Cost is incremented by Delay-operation on Z°.

41

Priced-Zone

Cost = min total time

C can be represented as the zone ZE’, where:
- 2% isthe original zone Z extended with the
global clock d keeping track of the cost/time.

— Delay, Reset, Conjunction etc. on C are the
standard DBM-operations

But inclusion-checking will be different

X

Then: C,&E C,EC,

But. ©.¢C,CC,

42

21

Solution: ()"™-widening operation
= () removes upper bound on the 8—clock:

C,= C,=C,
fce,fce)

)

= In the Algorithm:
= Delay(C") = (Delay(C"))"
= Reset(x,C") = (Reset(x,C"))"
= C'ag=(Carg)

« Itis suffices to apply ()* to the initial state (l,,C,).

43

Example (widening for Min)

d

Z,L7,

44

22

Example (widening for Min)

5 . o
BEARE Z+= Widen(2)

2,87,
X
Example (widening for Min)
0 o
BEES Z+= Widen(2)
P
z
7z Czv, |
Z, €7,
X

23

An Algorithm (Min)

Cost:=w, Pass := {}, Wait := {(1,,Cy)}
while Wait = {} do
select (1,C) from Wait
if (1,¢) E P and Min(C)<Cost then Cost:= Min(C)
if (1,c) E(1,c’) for some (1,C’) in Pass then skip
otherwise add (1,C) to Pass
and forall (m,C’) such that (1,C)

= (m,C"):
Return Cost

Output: Cost = the min cost of a found trace satisfying P.

47

Further reading: Priced Timed Automatalarsen et al]

4
x<3 /\ x<3
1

{x:=0}

= Timed Automata + Costs on transitions and locations.

= Uniformly Priced = Same cost in all locations (edges may have
different costs).

= Cost of performing transition: Transition cost.
= Cost of performing delay d: (d x location cost).

48

24

Priced Timed Automata

4
x<3 A. x<3
1
@ y>3
{x:=0}

Trace: 25)
E(L.
a,x=y=0) —— (b,x=y=0) — (b,x=y=2.5 a,x=0,y=2.5
(y)4(y)2_5xz(y)—>o(y=2.5)

Cost of Execution Trace:
Sumofcosts:4+5+0=9

Problem: Finding the minimum cost of reachingE!

49

Inside the UPPAAL tool

= Data Structures
= DBM’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints

= Algorithms rrsnia 8

UNIVERSITET AALBORG UNIVERSITY

= Reachability analysis i

= Liveness Checking UPPAAL 347, Aug 2000
= Verification Options

50

25

Timed CTL in UPPAAL

Ecp1aFp1p-->g)

Pi=Al|g.|gq| matp|porp|pandp | pimplyp

/N

Process Clock predicate
Location constraint over data variables
(a location in

automaton A)

LIVENESS PROPERTIES P le2dstod

tes

SAFETY PROPERTIES ' (PImPYAFQ)

51

LIVENESS Properties

F::=EGp | AFp | p-->q

Possibly always P
is equivalent to (: AF : P)

Eventually P
is equivalent to (: EG : P)

P leads to Q
is equivalent to

AG (P imply AF Q)
52

26

Algorithm for checking AF P Eventually P

Bouajjani, Tripakis, Yovine'97
On-the-fly symbolic model checking of TCTL

53

Question

AF P ”P will be true for sure in future”

?? Does this automaton satisfy AF P

54

27

Note that

AF P ”P will be true for sure in future”

NO T thereis a path:
X< 5 (m, x=0) >(m,x=1)>(m,2) ... (M,x=k) ...
Idling forever in location m

55

Note that

AF P ”P will be true for sure in future”

This automaton satisfies AF P

56

28

Liveness Algorithm

proc Eventually (So,p) =
ST :=0
Passed := 0
Search(delay (So,~p))
exit(true)
end
@ proc Search(S) =
loop(S,ST) then exit(false) fi
=SA-p

Passed

if
S =
push(ST, S)
if unbounded(S) V deadlocked(S) then
exit(false) fi
if VS’ € Passed : S € S’
then foreach S’ : S = S’ do
Search(delay(S’, —¢))
od
fi
Passed := Passed U {pop(ST)}
end

Bouajjani, Tripakis, Yovine, 97

ST
S0

’

Unexplored

57

Liveness Algorithm

proc Eventually (So,p) =
ST :=0
Passed := 0
Search(delay(So,—p))
exit(true)

end

proc Search(S) =

@ if loop(S,ST) then exit(false) fi
S:=S5SAN-p

Passed

push(ST, S)
if unbounded(S) V deadlocked(S) then
exit (false) fi
if VS’ € Passed : S € S’
then foreach S’ : S = S’ do
Search(delay(S’, —¢))

od

bil

Passed := Passed U {pop(ST)}
end

ST
)

f

Unexplored

58

29

Liveness Algorithm

proc Eventually (So,p) =
ST :=0 Passed ST Unexplored
Passed := 0 X2
Search(delay (So, —¢)) ’
exit(true)
end
proc Search(S) =
if loop(S,ST) then exit(false) fi
S:=SAN-p
® push(ST,S)
if unbounded(S) V deadlocked(S) then
exit (false) fi
if VS’ € Passed : S € S’
then foreach S’ : S = S’ do
Search(delay(S’, —¢))

od
fi
Passed := Passed U {pop(ST)}
end
59
Liveness Algorithm
proc Eventually (So,p) =
ST :=0 Passed ST Unexplored
Passed := 0 T
Search(delay(So,—p)) f
exit(true)
end
proc Search(S) =
if loop(S,ST) then exit(false) fi
S:=S5SAN-p
push(ST, S)
® if unbounded(S) V deadlocked(S) then
exit (false) fi
if VS’ € Passed : S € S’
then foreach S’ : S = S’ do
Search(delay(S’, —¢))
od ??
fi
Passed := Passed U {pop(ST)}
end
60

30

Liveness Algorithm

proc Eventually (So,p) =
ST =0 Passed ST Unexplored
Passed := 0

Search(delay(So, =) ¢
exit(true) f
end

proc Search(S) = jf empty(S) then exit(true) fi
loop(S,ST) then exit(false) fi
=SA-p

if
S =
push(ST, S) »
if unbounded(S) V deadlocked(S) then
exit (false)
® ifvS' € Passed: S Z S’
then foreach S’ : S = S’ do

Search(delay(S’, —p)) >
od ??

bil

Passed := Passed U {pop(ST)}
end

61
Liveness Algorithm

proc Eventually (So,p) =

ST :=0 Passed ST Unexplored

Passed := 0 T

Search(delay(So,—p)) f

exit(true)
end
proc Search(S) =

if loop(S,ST) then exit(false) fi

S:=S5SAN-p

push(ST, S)

if unbounded(S) V deadlocked(S) then

exit (false) fi

if VS’ € Passed : S € S’

® then foreach §': S = S’ do
Search(delay(S’, —¢))
od

fi

Passed := Passed U {pop(ST)}
end

62

31

Liveness Algorithm

proc Eventually (So,p) =
ST :=0) Passed ST Unexplored
Passed := 0 X2
Search(delay (So, —¢)) ’
exit(true)
end
proc Search(S) =
if loop(S,ST) then exit(false) fi
S:=SAN-p
push(ST, S)
if unbounded(S) V deadlocked(S) then
exit (false) fi
if VS’ € Passed : S € S’
then foreach S’ : S = S’ do
Search(delay(S’, —¢))
L od
bil
Passed := Passed U {pop(ST)}
end
63
Liveness Algorithm
proc Eventually (So,p) =
ST :=0 Passed ST Unexplored
Passed := 0 Lo
Search(delay(So,—p)) f
exit(true)
end
proc Search(S) =
if loop(S,ST) then exit(false) fi
S:=S5SAN-p
push(ST, S)
if unbounded(S) V deadlocked(S) then
exit (false) fi
if VS’ € Passed : S € S’
then foreach S’ : S = S’ do
Search(delay(S’, —¢))
od
fi
@ Passed := Passed U {pop(ST)}
end
64

32

Liveness Algorithm

proc Eventually (So,p) =
ST :=0 Passed ST Unexplored
Passed := 0 S0
Search(delay (So, —¢)) ’
exit(true)

end

proc Search(S) =
if loop(S,ST) then exit(false) fi
S:=SAN-p

push(ST, S)

if unbounded(S) V deadlocked(S) then

exit (false) fi

if VS’ € Passed : S € S’

then foreach S’ : S = S’ do
Search(delay(S’, —¢))

od
bil
@ Passed := Passed U {pop(ST)}
end
65
Liveness Algorithm
proc Eventually (So,p) =
ST :=0 Passed ST Unexplored
Passed := 0 Lo
Search(delay(So,—p)) f
exit(true)
end
proc Search(S) =
if loop(S,ST) then exit(false) fi
S:=S5SAN-p
push(ST, S)
if unbounded(S) V deadlocked(S) then
exit (false) fi
if VS’ € Passed : S € S’
then foreach S’ : S = S’ do
Search(delay(S’, —¢))
od
fi
@ Passed := Passed U {pop(ST)}
end
66

33

Question: Time bound synthesis

AF P ”P will be true eventually”
But no time bound is given.

Assume AF P is satisfied by an automaton A.
Can we calculate the Max time bound?

OBS: we know how to calculate the Min |

67

Assume AF P is satisfied

Find the trace leading to P with the max delay

S Almost the same
algorithm as for
synthesizing Min

We need
to explore
p p the Green part

Pp Pp PP, pPppp

68

34

An Algorithm (Max)

Cost:=0, Pass := {}, Wait := {(1,,Cy)}
while Wait = {} do
select (1,C) from Wait
if (1,C) | P and Max(C)>Cost then Cost:= Max(C)
else if forall (1,C’) in Pass: C C’ then
add (1,C) to Pass
forall (m,C’) such that (1,C)

= (m,C"):
Return Cost

Output: Cost = the min cost of a found trace satisfying P.
BUT: L is defined on zones where the lower bound of “cost” is removed

69

Zone-Widening operation for Max

d

c g¢
y 4

70

35

Zone-Widening operation for Max

d

Cty

=g

71

Inside the UPPAAL tool

= Data Structures
= DBM’s (Difference Bounds Matrices)

= Canonical and Minimal Constraints

= Algorithms
= Reachability analysis
= Liveness checking

= Termination

|:> Verification Options

5

UPPS:ALA [(8

UNIVERSITET AALBORG UNIVERSITY

‘Copyront 19952008 by Uppsala Unhersty and Aaborg Universty. Al s ressrved
(ore ormation ot v uppast com

UPPAAL 3.4.7, Aug 2004,

72

36

Verification Options

File Templates View Queries | Options

Diagnostic Trace

[J Diagnostic Trace

_ ¥ Brealth-First e Breadth-First
Overview ¥ Local Reduction e Depth-First
PO | wgiohalReduction

PAIE<> [Vikingl.safe)| 1 active-Clock Reduction
P2[E<>(Viking2.safe) ¥ Re-Use State-Space

P3[E<> (Viking3.safe)| Over-Approximate
P4|E<>(Vikingd.safe g o Ur_lder-Approximate

PS[E<>(Viking4.safe)
PGIE<>(Vikingl.safe and Viking2.safe and Viking3.:

¢ Local Reduction
¢ Active-Clock Reduction
¢ Global Reduction

LT RS

e Re-Use State-Space

Query

o Over-Approximation
Under-Approximation

73

Inactive (passive) Clock Reduction

X is only active in location S1

Definition
x is inactive at S if on all path from
O S, x is always reset before being

S
/ tested.
By g
x:=0
\

8.

X
x<5 X>3

74

37

Global Reduction
(When to store symbolic state)

0

However,
Passed list useful for
efficiency

S
a
o
o
S

@)

No Cycles: Passed list not needed for termination
75

Global Reduction irrssen
(When to store symbolic state)

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

76

38

[RTSS97,CAV03]

To Store Or Not To Stoe?

117 states,

81 statesypoint £ *———-..4%
Ged (=
9 states &
G
G
D) D)
D)
Time OH D)
less than 10% L \ e
(need to =
re-explore

some states)

D
7
Reuse of State Space
A[] propl
A[] prop2
QH Pzzpz Search
prop in existing
A[l prop> Passed
list before
continuing
. search
A[] propn)
Which order

to search?

78

Reuse of State Space

Waiting A[] propl
All] prop2-\
A 3
AE } pzzp4 Search
prop in existing
A[l prop> Passed
list before
continuing
. search
A[] propn _
\ Which order
to search?
79
A[] propl
A[] prop2
A 3
AE } PEZP4 Search
prop in existing
A[l prop> Passed
list before
continuing
. search
A[] propn >,
\ Passed / Which order
Hashtable to search?

SWelgoed o

sacondziry mernory

80

40

Reuse of State Space

Waiting prop2 Al]

A[]
A[]
A[]

REVERSE CREATION

ORDER

Al]
Passed

Q | dWaggediy

—~——> generation order

propl

prop2
prop3
prop4
prop5

propn)

Saconicalry memory

Search

in existing
Passed
list before
continuing
search

Which order
to search?

81

Under-approximation

Bitstate Hashing (Holzman,SPIN)

/Waiting O& O .F>
O @) ooj

Passed /

82

41

Under-approximation
Bitstate Hashing

fWaiting O& O .F}/'
O e

1 Passed=
0 Bitarray
1
0 UPPAAL

8 Mbits

83

Bit-state Hashing

INITIAL Passed := @;
Waiting := {(n0,20)}

REPEAT

{(mV) : (n,Z) => (m,U) }
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = @
or
Final is in Waiting

_— Passed(F(n,2)) = 1 |

Passed(F(n,2)) :=1

84

42

Under Approximation
(good for finding Bugs quickly, debugging)

= Possitive answer is safe (you can trust)
= You can trust your tool if it tells:
a state is reachable (it means Reachable!)
= Negative answer is Inconclusive
= You should not trust your tool if it tells:
a state is non-reachable

= Some of the branch may be terminated by
conflict (the same hashing value of two states)

85

Over-approximation
Convex Hull

86

43

Over-Approximation
(good for safety property-checking)

» Possitive answer is Inconclusive
= a state is reachable means Nothing

(you should not trust your tool when it says so)

= Some of the transitions may be enabled by
Enlarged zones

= Negative answer is safe
= a state is not reachable means Non-reachable
(you can trust your tool when it says so)

87

44

