
1

1

Real-Time Operating Systems
With Example PICOS18

Sebastian Fischmeister

CSE480/CIS700 S. Fischmeister 2

What is an Operating System?

 A program that acts as an intermediary between a user
of a computer and the computer hardware

 Operating system goals:
o Execute user programs and make solving user problems

easier.
o Make the computer system convenient to use

 Use the computer hardware in an efficient manner

2

CSE480/CIS700 S. Fischmeister 3

Computer System Components

1. Hardware – provides basic computing resources (CPU,
memory, I/O devices)

2. Operating system – controls and coordinates the use of
the hardware among the various application programs
for the various users

3. Applications programs – define the ways in which the
system resources are used to solve the computing
problems of the users (compilers, database systems,
video games, business programs)

4. Users (people, machines, other computers)

CSE480/CIS700 S. Fischmeister 4

Abstract View of System Components

3

CSE480/CIS700 S. Fischmeister 5

What is an RTOS?

 Often used as a control device in a dedicated application
such as controlling scientific experiments, medical
imaging systems, industrial control systems, and some
display systems

 Well-defined fixed-time constraints

CSE480/CIS700 S. Fischmeister 6

More Precisely?

 The system allows access to sensitive resources with
defined response times.
o Maximum response times are good for hard real-time
o Average response times are ok for soft real-time

 Any system that provides the above can be classified as
a real-time system
o 10us for a context switch, ok?
o 10s for a context switch, ok?

4

CSE480/CIS700 S. Fischmeister 7

Taxonomy of RTOSs

 Small, fast, proprietary kernels
 RT extensions to commercial timesharing systems
 Component-based kernels
 University-based kernels

CSE480/CIS700 S. Fischmeister 8

Small, Fast, Proprietary Kernels

 They come in two varieties:
o Homegrown
o Commercial offerings

 Usually used for small embedded systems
 Typically specialized for one particular application
 Typically stripped down and optimized versions:

o Fast context switch
o Small size, limited functionality
o Low interrupt latency
o Fixed or variable sized partitions for memory management

 PICOS18, pSOS, MicroC, …

5

CSE480/CIS700 S. Fischmeister 9

RT Extensions

 A common approach is to extend Unix
o Linux: RT-Linux, RTLinuxPro, RTAI,
o Posix: RT-Posix
o MACH: RT-MACH

 Also done for Windows based on virtualization.
 Generally slower and less predictable.
 Richer environment, more functionality.
 These systems use familiar interfaces, even standards.
 Problems when converting an OS to an RTOS:

o Interface problems (nice and setpriority in Linux)
o Timers too coarse
o Memory management has no bounded execution time
o Intolerable overhead, excessive latency

CSE480/CIS700 S. Fischmeister 10

How to do an RT Extension?

 Compliant kernels
o Takes an existing RTOS and make it execute other UNIX

binaries (see LynxOS).
o Interfaces need to be reprogrammed.
o Behavior needs to be correctly reimplemented.

6

CSE480/CIS700 S. Fischmeister 11

How to do an RT Extension?

 Dual kernels
o Puts an RTOS kernel between the hardware and the OS.
o Hard tasks run in the RTOS kernel, the OS runs when

CPU is available.
o Native applications can run without any changes.
o Hard tasks get real-time properties.
o See RTLinuxPro

 Problems:
 A single failing hard task can kill the whole system.
 The RTOS kernel requires its own IO drivers.

CSE480/CIS700 S. Fischmeister 12

How to do an RT Extension?

 Core kernel modifications
o Takes the non-RT operating systems and modifies it to

become an RTOS.
 Problem: (need to do all this)

o Implement high-resolution timers
o Make the kernel preemptive
o Implement priority inheritance
o Replace FIFOs with priority queues
o Find and change long kernel execution paths

7

CSE480/CIS700 S. Fischmeister 13

Component-based Kernels

 The source consists of a number of components that can be
selectively included to compose the RTOS.

 See OS-Kit, Coyote, PURE, 2k, MMLite, Pebble, Chaos, eCos.

 eCos
o Hardware Abstraction Layer (HAL)
o Real-time kernel

 Interrupt handling
 Exception handling
 Choice of schedulers
 Thread support
 Rich set of synchronization primitives
 Timers, counters and alarms
 Choice of memory allocators
 Debug and instrumentation support

Counters -- Count event occurrences
Clocks -- Provide system clocks
Alarms -- Run an alarm function
Mutexes -- Synchronization primitive
Condition Variables -- Synchronization primitive
Semaphores -- Synchronization primitive
Mail boxes -- Synchronization primitive
Event Flags -- Synchronization primitive
Spinlocks -- Low-level Synchronization Primitive
Scheduler Control -- Control the state of the scheduler
Interrupt Handling -- Manage interrupt handlers

CSE480/CIS700 S. Fischmeister 14

Component-based Kernels

 eCos
o µITRON 3.0 compatible API
o POSIX compatible API
o ISO C and math libraries
o Serial, ethernet, wallclock and watchdog device drivers
o USB slave support
o TCP/IP networking stacks
o GDB debug support

 All components can be added through a configuration
file that includes and excludes parts of the source code.

8

CSE480/CIS700 S. Fischmeister 15

Research Kernels

 Many researchers built a new kernel for one of these
reasons:
o Challenge basic assumptions made in timesharing OS
o Developing real-time process models
o Developing real-time synchronization primitives
o Developing solutions facilitating timing analysis
o Strong emphasis on predictability
o Strong emphasis on fault tolerance
o Investigate the object-oriented approach
o Real-time multiprocessor support
o Investigating QoS

16

What Typically Differs

9

CSE480/CIS700 S. Fischmeister 17

Requirements

 RTOS must be predictable
o We have to validate the system
o We have to validate the OS calls/services

 We must know upper bounds to
o Execution time of system calls
o Memory usage

 We must have static bounds on
o Memory layout
o Size of data structures (e.g. queues)

 Fine grain interrupt control

CSE480/CIS700 S. Fischmeister 18

RTOS Predictability

 All components of the RTOS must be predictable
o System calls, device drivers, kernel internal management

 Memory access
o Page faults, lookup time, caches

 Disk access
o Bound for head movement while reading/writing data

 Net access
o Bound for time for transmission, switching
o Dropped packets??

 Scheduling must be deterministic

10

CSE480/CIS700 S. Fischmeister 19

Admission Control

 Admission control is a function that decides if new work
entering the system should be admitted or not.

 To perform this it requires:
o A model of the state of system resources
o Knowledge about incoming requests
o An algorithm to make the admission decision
o Policies for actions to take upon admission and rejection

 Statically scheduled systems require no admission
control.

CSE480/CIS700 S. Fischmeister 20

Admission Control

 The admission algorithm requires preanalyzed tasks
 Shared data
 Execution time
 Precedence information
 Importance level
 Deadlines

 Positive decision assigns time slices to the task
 Negative decision has options:

o Run a simpler version of the task
o Run on a different machine
o Reject the task

 Admission algorithms can be complex as they have to consider multiple
resources (e.g., networked video streaming).

11

CSE480/CIS700 S. Fischmeister 21

Resource Reservation

 Resource reservation is the act of actually assigning
resources to a task.
o Initially no resource reservation, only allocation as the task

runs.
o Valuable for hard real-time systems.
o Introduces an overhead as resources might be unused

 => introduction of resource reclaiming strategies

 Closely linked to resource kernels that offer interfaces
for resource reservation, donation, and reflection.

CSE480/CIS700 S. Fischmeister 22

Task Declaration

 RTOSs tailored to microprocessors often require a static
declaration of tasks.

 Advantages are:
o Simple check that the system has sufficient resources.
o No admission control necessary.
o No overhead introduced by the admission test.
o No thread spawning problems

 => but quite static

12

CSE480/CIS700 S. Fischmeister 23

Boot from ROM

 The RTOS typically boots from the ROM when used on
microprocessors.

 Requires the application program to actually start up the
RTOS:
void main (void) {
 /* Perform Initializations */
 ...
 OSInit();
 ...
 /* Create at least one task by calling

OSTaskCreate() */
 OSStart();
}

CSE480/CIS700 S. Fischmeister 24

Configurability

 As mentioned with component-based RTOS, the system
must be configurable.

 Include only components needed for the present system
 Components must be removable

o Inter-module dependencies limit configurability
 Configuration tailors OS to system

o Different configuration possibilities

 Example RoboVM (PICDEM and modular robot).

13

CSE480/CIS700 S. Fischmeister 25

Configurability

 Remove unused functions
o May be done via linker automatically

 Replace functionality
o Motor placement comes in three functions:

 Calculated
 Lookup table (program memory)
 Lookup table (EEPROM)

 Conditional compilation
o Use #if, #ifdef constructs
o Needs configuration editor
o Example: Linux make config….

CSE480/CIS700 S. Fischmeister 26

Problem with Configurability

 Per (boolean) configuration option, we obtain two new
OS versions.

 Embedded systems require extensive testing.
 The application must be tested with each configuration

separately:
o 100 configuration options we get around 2^100
o Require hardware setup
o Require software setup
o Require reporting for automated testing

14

CSE480/CIS700 S. Fischmeister 27

Embedded RTOS I/O

 I/O normally only through kernel via an system call.
o Expensive but provides control

 In an RTOS for embedded systems, tasks are allowed to
do I/O operations directly
o Direct fast access
o Direct task to task communication between chips

 Problem: Can cause troubles if tasks interfere
 Solution: Programmer must do synchronization too

CSE480/CIS700 S. Fischmeister 28

Embedded RTOS: Interrupts

 Normal OS: Interrupts are kernel only
o Must be reliable (dropped disk interrupts…)
o Costly: Notification via context switch/syscalls

 Embedded OS: tasks can use interrupts
o Again: only trusted/tested programs
o Speed important
o Fast task control possible
o But: modularity decreases, as tasks may have to share

interrupts correctly

15

29

PICOS18

CSE480/CIS700 S. Fischmeister 30

Terminology

 Critical section, or critical region, is code that needs to
be treated indivisibly.
o No interrupts
o No context switch

 Resource is an entity used by a task.
o Printer, keyboard, CAN bus, serial port

 Shared resource is a resource that can be used by more
than one task.
o => mutual exclusion

 Multitasking is the process of scheduling and switching
the CPU between several tasks.

16

CSE480/CIS700 S. Fischmeister 31

Task

 Task, also called thread, is a user application.
o Shares the CPU and resources with other tasks
o Follows a defined life cycle

CSE480/CIS700 S. Fischmeister 32

Context Switches

 A context switch occurs whenever the multitasking
kernel decides to run a different task.
o Save the current task’s context in the storage area.
o Restores the new task’s context from the storage area.
o Resumes the new task

 Context switching adds overhead.
 The more registers a processor has, the higher the

overhead => irrelevant for RTOS as long as its known.

17

CSE480/CIS700 S. Fischmeister 33

Kernels

 The kernel is responsible for managing the tasks.
 Most fundamental service is the context switch.

 Non-preemtive kernels, also cooperative multitasking
o The task needs to explicitly give up control of the CPU.
o Allows low interrupt latency, because they may be never

disabled.
o Allows non-reentrant functions at the task level.
o Response time is determined by the longest task.
o No overhead for protecting shared data.
o Responsiveness may be low, because of low priority task

requiring a lot of time until it releases the CPU.

CSE480/CIS700 S. Fischmeister 34

Kernels

 Preemptive kernel
o Responsiveness is good, because tasks get preempted.
o A higher-priority task can preempt a lower priority task that

still requires more time to compute.
o Response time becomes deterministic, because at the

next tick, the OS switches to the other new task.
o Non-reentrant functions require careful programming.
o Periodic execution of the ‘tick’ adds to the overhead.

18

CSE480/CIS700 S. Fischmeister 35

Introduction

 PICOS18 is a preemptive RTOS for the PIC18 series.
 Bases on OSEK/VDX, an open industry standard.
 Developed by Pragmatec.
 GPL

 www.picos18.com
 www.picos18.com/forum

CSE480/CIS700 S. Fischmeister 36

Services

 PICOS18 provides
o Core services: initialization, scheduling
o Alarm and counter manager
o Hook routines
o Task manager
o Event manager
o Interrupt manager

19

CSE480/CIS700 S. Fischmeister 37

PICOS18 Interrupt Routine

 Part of the user application.
 One for the high priority interrupts and one for low

priority interrupts.

 Most important part: AddOneTick()

 Let’s have a look.

CSE480/CIS700 S. Fischmeister 38

PICOS18 Context Switch

 The active task gets suspended and its context gets
pushed onto its stack.

 The preempted task gets resumed and its context gets
restored.

 Let’s have look at the save_task_ctx routine.

20

CSE480/CIS700 S. Fischmeister 39

Static Declarations

 PICOS18 requires you to statically declare
o Alarms
o Resources
o Tasks

 Let’s have a look.

CSE480/CIS700 S. Fischmeister 40

Task API

 StatusType ActivateTask (TaskType TaskID)
o Change the state of a task from SUSPENDED to READY.

 StatusType TerminateTask (void)
o Changes the state of a task from READY to SUSPENDED.

 StatusType ChainTask (TaskType TaskID)
o Terminates the current task, activates a follow up task.

 StatusType Schedule(void)
o Invoke the scheduler to find a new active task.
o Not necessary, because PICOS18 is a preemptive OS.

 StatusType GetTaskID (TaskRefType TaskID)
 StatusType GetTaskState (TaskType TaskID,

TaskStateRefType State)

21

CSE480/CIS700 S. Fischmeister 41

Tasks Implementation

 At most 16 events.
 The task state is encoded in the following variables:

o tsk_X_state_ID
 Bits 0-3: task identifier
 Bit 4: unused
 Bit 5-7: task state

o tsk_X_active_prio
 Bits 0-3: task priority
 Bit 5-7: activation counter

o Let’s look at some of the functions in pro_man.c

CSE480/CIS700 S. Fischmeister 42

Event Management

 StatusType SetEvent (TaskType TaskID,
EventMaskType Mask)

o Posts an event to another task. Causes a scheduling
operation.

 StatusType ClearEvent (EventMaskType Mask)
o Clears the event, otherwise an infinite loop.

 StatusType GetEvent (TaskType TaskID,
EventMaskRefType Event)

o Receives the event value for a specific task.
 StatusType WaitEvent (EventMaskType Mask)

o Blocks the current task until the event occurs.

22

CSE480/CIS700 S. Fischmeister 43

Event Implementation

 At most 16 events.
 The event status is encoded in these two variables:

o EventMaskType event_X
 For each task 16 possible events.

o EventMaskType wait_X
 Each task can listen for 16 possible events.

 Let’s have a look at the code.

CSE480/CIS700 S. Fischmeister 44

Alarm Management

 StatusType GetAlarm (AlarmType AlarmID,
TickRefType Tick)

o Returns the number of ticks until the alarm goes off.
 StatusType SetRelAlarm (AlarmType AlarmID,

TickType increment, TickType cycle)
o Registers an alarm relative to the current kernel counter.

 StatusType SetAbsAlarm (AlarmType AlarmID,
TickType start, TickType cycle)

o Registers an alarm as absolute kernel counter tick value.
 StatusType CancelAlarm (AlarmType AlarmID)

o Deactivate an alarm.

23

CSE480/CIS700 S. Fischmeister 45

Alarm Implementation

 Each tick the alarm counters get incremented by one.
 If the alarm value equals the counter value, then the

alarm will cause an event.

 Let’s look at the code.

CSE480/CIS700 S. Fischmeister 46

Sample Application

 Let’s look at the sample application that comes with
PICOS18.

