
1

CSE 480/CIS 700
OS Overview – Real-Time Scheduling

Insup Lee
Department of Computer and Information Science

University of Pennsylvania

Fall 2006

Fall 2006 Real-Time Scheduling 2

Real-Time Systems
• Definition

– Systems whose correctness depends on their temporal
aspects as well as their functional aspects

• Performance measure
– Timeliness on timing constraints (deadlines)
– Speed/average case performance are less significant.

• Key property
– Predictability on timing constraints

2

Fall 2006 Real-Time Scheduling 3

Real-time Systems

• Real-time monitoring systems
• Signal processing systems (e.g., radar)
• On-line transaction systems
• Multimedia (e.g., live video multicasting)
• Embedded control systems:

– automotives
– Robots
– Aircrafts
– Medical devices …

Fall 2006 Real-Time Scheduling 4

 Real-Time System Example
• Digital control systems

– periodically performs the following job:

 senses the system status and
 actuates the system according to its current status

Control-Law
Computation

Sensor

Actuator

3

Fall 2006 Real-Time Scheduling 5

Real-Time System Example

Multimedia

• Multimedia applications
– periodically performs the following job:

reads, decompresses, and displays video and audio
streams

Fall 2006 Real-Time Scheduling 6

Scheduling Framework Example

CPU

OS Scheduler

Digital Controller Multimedia

4

Fall 2006 Real-Time Scheduling 7

Fundamental Real-Time Issue

• To specify the timing constraints of real-time
systems
– Hard temporal constraints
– Soft temporal constraints

• To achieve predictability on satisfying their timing
constraints, possibly, with the existence of other
real-time systems

Fall 2006 Real-Time Scheduling 8

Soft Temporal Constraints
• A soft real-time system is one where the response time is

normally specified as an average value. This time is normally
dictated by the business or market.

• A single computation arriving late is not significant to the
operation of the system, though many late arrivals might be.

• Ex: Airline reservation system - If a single computation is late,
the system’s response time may lag. However, the only
consequence would be a frustrated potential passenger.

5

Fall 2006 Real-Time Scheduling 9

Hard Temporal Constraints
• A hard real-time system is one where the response time is

specified as an absolute value. This time is normally dictated by
the environment.

• A system is called a hard real-time if tasks always must finish
execution before their deadlines or if message always can be
delivered within a specified time interval.

• Hard real-time is often associated with safety critical
applications. A failure (e.g. missing a deadline) in a safety-critical
application can lead to loss of human life or severe economical
damage.

Fall 2006 Real-Time Scheduling 10

Real-Time Spectrum

User
interface

Computer
simulation

Internet
video, audio

Cruise
control

Tele
communication

Flight
control

Electronic
engine

Soft RT Hard RTNo RT

6

Fall 2006 Real-Time Scheduling 11

Real-Time Workload
• Job (unit of work)

– a computation, a file read, a message transmission, etc
• Attributes

– Resources required to make progress
– Timing parameters

Released
Absolute
deadline

Relative deadline

Execution time

Fall 2006 Real-Time Scheduling 12

Real-Time Task
• Task : a sequence of similar jobs

– Periodic task (p,e)
• Its jobs repeat regularly
• Period p = inter-release time (0 < p)
• Execution time e = maximum execution time (0 < e < p)
• Utilization U = e/p

5 10 150

7

Fall 2006 Real-Time Scheduling 13

Schedulability
• Property indicating whether a real-time system (a set

of real-time tasks) can meet their deadlines

(4,1)

(5,2)

(7,2)

Fall 2006 Real-Time Scheduling 14

Real-Time Scheduling
• Determines the order of real-time task executions

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

8

Fall 2006 Real-Time Scheduling 15

Real-Time Scheduling
• Static scheduling

– A fixed schedule is determined statically
– E.g., Cyclic Executive

• Static-priority scheduling
– Assign fixed priorities to processes
– A scheduler only needs to know about priorities
– E.g., Rate Monotonic (RM)

• Dynamic-priority scheduling
– Assign priorities based on current state of the system
– E.g., Least Completion Time (LCT), Earliest Deadline

First (EDF), Least Slack Time (LST)

Fall 2006 Real-Time Scheduling 16

RM (Rate Monotonic)
• Optimal static-priority scheduling
• It assigns priority according to period
• A task with a shorter period has a higher priority
• Executes a job with the shortest period

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

9

Fall 2006 Real-Time Scheduling 17

RM (Rate Monotonic)
• Executes a job with the shortest period

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Fall 2006 Real-Time Scheduling 18

RM (Rate Monotonic)
• Executes a job with the shortest period

(4,1)

(5,2)

(7,2)

Deadline Miss !

5

5

10

10 15

15

T1

T2

T3

10

Fall 2006 Real-Time Scheduling 19

Response Time
• Response time

– Duration from released time to finish time

(4,1)

(5,2)

(10,2)

5

5

10

10 15

15

T1

T2

T3

Fall 2006 Real-Time Scheduling 20

Response Time
• Response time

– Duration from released time to finish time

(4,1)

(5,2)

(10,2)

Response Time

5

5

10

10 15

15

T1

T2

T3

11

Fall 2006 Real-Time Scheduling 21

Response Time
• Response Time (ri) [Audsley et al., 1993]

• HP(Ti) : a set of higher-priority tasks than Ti

(4,1)

(5,2)

(10,2)

k

THPT k

i
ii e

p

r
er

ik

!"
"

#
$
$

%
+= &

')(

5

5

10

10

T1

T2

T3

Fall 2006 Real-Time Scheduling 22

RM - Schedulability Analysis
• Real-time system is schedulable under RM

if and only if ri ≤ pi for all task Ti(pi,ei)

Joseph & Pandya,
 “Finding response times in a real-time system”,

The Computer Journal, 1986.

12

Fall 2006 Real-Time Scheduling 23

RM – Utilization Bound
• Real-time system is schedulable under RM if

 ∑Ui ≤ n (21/n-1)

 Liu & Layland,
 “Scheduling algorithms for multi-programming in a

hard-real-time environment”, Journal of ACM, 1973.

Fall 2006 Real-Time Scheduling 24

RM – Utilization Bound
• Real-time system is schedulable under RM if

 ∑Ui ≤ n (21/n-1)

• Example: T1(4,1), T2(5,1), T3(10,1),

 ∑Ui = 1/4 + 1/5 + 1/10
 = 0.55
 3 (21/3-1) ≈ 0.78

 Thus, {T1, T2, T3} is schedulable under RM.

13

Fall 2006 Real-Time Scheduling 25

RM Utilization Bounds

0.5

0.6

0.7

0.8

0.9

1

1.1

1 4 16 64 256 1024 4096

The Number of Tasks

U
ti
li
z
a
ti
o
n

RM – Utilization Bound

• Real-time system is schedulable under RM if
 ∑Ui ≤ n (21/n-1)

Fall 2006 Real-Time Scheduling 26

EDF (Earliest Deadline First)
• Optimal dynamic priority scheduling
• A task with a shorter deadline has a higher priority
• Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

14

Fall 2006 Real-Time Scheduling 27

EDF (Earliest Deadline First)
• Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Fall 2006 Real-Time Scheduling 28

EDF (Earliest Deadline First)
• Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

15

Fall 2006 Real-Time Scheduling 29

EDF (Earliest Deadline First)
• Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Fall 2006 Real-Time Scheduling 30

EDF (Earliest Deadline First)
• Optimal scheduling algorithm

– if there is a schedule for a set of real-time tasks,
 EDF can schedule it.

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

16

Fall 2006 Real-Time Scheduling 31

Processor Demand Bound
• Demand Bound Function : dbf(t)

– the maximum processor demand by workload over any
interval of length t

(4,1)

(5,2)

(7,2)

t

5

5

10

10 15

15

T1

T2

T3

Fall 2006 Real-Time Scheduling 32

EDF - Schedulability Analysis
• Real-time system is schedulable under EDF

if and only if dbf(t) ≤ t for all interval t

Baruah et al.
“Algorithms and complexity concerning the preemptive
 scheduling of periodic, real-time tasks on one

 processor”, Journal of Real-Time Systems, 1990.

• Demand Bound Function : dbf(t)
– the maximum processor demand by workload over any

interval of length t

17

Fall 2006 Real-Time Scheduling 33

EDF – Utilization Bound
• Real-time system is schedulable under EDF if and only

if
 ∑Ui ≤ 1

 Liu & Layland,
 “Scheduling algorithms for multi-programming in a

hard-real-time environment”, Journal of ACM, 1973.

Fall 2006 Real-Time Scheduling 34

• Domino effect during overload conditions
– Example: T1(4,3), T2(5,3), T3(6,3), T4(7,3)

EDF – Overload Conditions

T1

50 7

T2 T3 T4

3 6

Deadline Miss !

T1

50 7

T3

3 6

Better schedules :

T1

50 7

T4

3 6

18

Fall 2006 Real-Time Scheduling 35

RM vs. EDF

• Rate Monotonic
– Simpler implementation, even in systems without explicit

support for timing constraints (periods, deadlines)
– Predictability for the highest priority tasks

• EDF
– Full processor utilization
– Misbehavior during overload conditions

• For more details: Buttazzo, “Rate monotonic vs. EDF:
Judgement Day”, EMSOFT 2003.

Fall 2006 Real-Time Scheduling 36

Priority Inversion and the MARS
Pathfinder

• Landed on the Martian surface on July 4th, 1997
• Unconventional landing – boucing into the Martian surface
• A few days later, not long after Pathfinder started gathering meteorological

data, the spacecraft began experiencing total system reset, each resulting in
losses of data

• What happened:
– Pathfinder has an “information bus”
– The meteorological data gathering task ran as an infrequent, low priority thread,

and used the information bus to publish its data (while holding the mutex on bus).
– A communication task that ran with medium priority.
– It is possible for an interrupt to occur that caused (medium priority)

communications task to be scheduled during the short interval of the (high
priority) information bus thread was blocked waiting for the (low priority)
meteorological data thread.

– After some time passed, a watch dog timer goes off, noticing that the data bus
has not been executed for some time, it concluded that something had gone really
bad, and initiated a total system reset.

19

Fall 2006 Real-Time Scheduling 37

The Priority Inversion Problem

T1

T2

T3

failed attempt to lock R lock(R) unlock(R)

lock(R) unlock(R)

Priority order: T1 > T2 > T3

T2 is causing a higher priority task T1 wait !

Fall 2006 Real-Time Scheduling 38

Priority Inversion
T1 has highest priority, T2 next, and T3 lowest
T3 comes first, starts executing, and acquires some resource (say, a lock).
T1 comes next, interrupts T3 as T1 has higher priority
But T1 needs the resource locked by T3, so T1 gets blocked
T3 resumes execution (this scenario is still acceptable so far)
T2 arrives, and interrupts T3 as T2 has higher priority than T3, and T2

executes till completion
In effect, even though T1 has priority than T2, and arrived earlier than T2,

T2 delayed execution of T1
This is “priority inversion” !! Not acceptable.
Solution T3 should inherit T1’s priority at step 5

20

Fall 2006 Real-Time Scheduling 39

Priority Inheritance Protocol

T1

T2

T3

lock R fails lock(R) unlock(R)

lock(R) unlock(R)

T3 blocks T2

T3 directly blocks T1
T3 has priority of T1

T2 arrives

Fall 2006 Real-Time Scheduling 40

