

	Laws (2)	
Scope(1)	$A: P\Delta^b_t(Q, R, S) = A: (P\Delta^b_{t-1}(Q, R, S)) + S \text{if } t > 0$	
Scope(2)	$e.P\Delta_t^b(Q,R,S) = e.(P\Delta_{t-1}^b(Q,R,S)) + S \text{if } t > 0 \land \overline{l(e)} \neq b$	
Scope(3)	$e.P\Delta_t^b(Q,R,S) = (\tau,\pi(e)).Q + S \text{ if } t > 0 \land \overline{l(e)} = b$	
Scope(4)	$P\Delta_0^b(Q,R,S) = R$	
Scope(5)	$(P_1 + P_2)\Delta_t^b(Q, R, S) = P_1\Delta_t^b(Q, R, S) + P_2\Delta_t^b(Q, R, S)$	
Scope(6)	$NIL\Delta_t^b(Q, R, S) = S \text{if } t > 0$	
Res(1)	$\text{NIL} \setminus F = \text{NIL}$	
Res(2)	$(P+Q) \setminus F = (P \setminus F) + (Q \setminus F)$	
Res(3)	$(A:P) \setminus F = A: (P \setminus F)$	
Res(4)	$((a,n).P) \setminus F = (a,n).(P \setminus F)$ if $a, \overline{a} \notin F$	
Res(5)	$((a,n).P) \setminus F = \text{NIL} \text{if } a, \overline{a} \in F$	
Res(6)	$P \setminus E \setminus F = P \setminus E \cup F$	
Res(7)	$P \setminus \emptyset = P$	

		Laws (3)	
	Cl (1)		
	Close(1)	$[\operatorname{NIL}]_I = \operatorname{NIL}$	
	Close(2)	$[P + Q]_{I} = [P]_{I} + [Q]_{I}$	
	Close(3)	$[A_1:P]_I = (A_1 \cup A_2) : [P]_I \text{where } A_2 = \{(r,0) \mid r \in I - \rho(A_I)\}$	
	Close(4)	$[e.P]_I = e.[P]_I$	
	Close(5)	$[[P]_I]_J = [P]_{I \cup J}$	
	Close(6)	$[P]_{\emptyset} = P$	
	Close(7)	$[P \setminus E]_I = [P]_I \setminus E$	
	Rec(1)	rec X.P = P[rec X.P / X]	
	Rec(2)	If $P = Q[P X]$ and X is guarded in Q then $P = rec X.Q$	
	Rec(3)	$\operatorname{rec} X.(P + \sum_{i \in J} [X \setminus E_i]_{U_i}) = \operatorname{rec} X.(\sum_{J \subseteq I} [P \setminus E_J]_{U_J})$	
		where $E_J = \bigcup_{i \in J} E_i, U_J = \bigcup_{i \in J} U_i, I$ is finite and X is guarded in P	
3 October 2003		ESSES 2003	50

	ACS	SR-VP Syntax	
<i>P</i> ::=	NIL A · P	process that does nothing timed action prefix	
	$e.P$ $be \rightarrow P$ $P + P$	instantaneous event prefix conditional process (<i>be</i> : boolean expression) choice	
	$P_1 \parallel P_2$ $[P]_I$	parallel composition resource close	
	$P \setminus F$ $P \setminus \setminus I$ $C(\underline{x})$	event restriction resource hiding process name defined to be a process C(x) = P	
3 October 2003		ESSES 2003	58

Example: $P = \{(cpu,2)\}: P_1 + \{(cpu,3)\}: P_2$

• Prioritized transition :

3 October 2003

ESSES 2003

 $P \xrightarrow{\{(cpu,3)\}}{} P$

63

Activator 1	A pariadia tagk with (h, d, n)	
Activator 1.2	$\frac{def}{def}$	
Activator	$def = \emptyset^\circ$: Activator'	
Activator	$d' = (start!, 1) . \emptyset^{d} : (end!, 2).$	
	\emptyset^{p-d} : Activator'	
Activator 2.	An aperiodic task with (b, d, p_1, p_2)	
Activator	$\stackrel{def}{=} \mathscr{O}^{\mathrm{b}} : \operatorname{Activator'}$	
Activator Activator	$ \stackrel{def}{=} \mathscr{O}^{b} : \text{Activator'} $ $ \stackrel{'}{=} (start!,1) \mathscr{O}^{d} : (end!,2). $ $ \mathscr{O}^{p_{1}-dp_{2}-d} : \text{Activator'} $	
Activator Activator where	$ \stackrel{def}{=} \mathscr{O}^{b} : \text{Activator'} $ $ \stackrel{def}{=} (start!, 1) : \mathscr{O}^{d} : (end!, 2). $ $ \qquad \qquad$	

	ready time	r = 5	$r_{1} = 10$	$r_{\rm c} = 0$
	comp. time	$c_1 = 5$	$c_2 = 10$ $c_2 = 8$	$c_{2} = 13$
	deadline	$d_1^1 = 30$	$d_2^2 = 30$	$d_{3}^{3} = 30$
Constants :	start time of CS	$cs_1 = 3$	$cs_{2} = 5$	$cs_3 = 1$
	length of CS	$c'_1 = 2$	$c'_{2} = 2$	$c'_{3} = 10$
	priority	$\pi_1 = 3$	$\pi_{2} = 2$	$\pi_3 = 1$
	max priority	$\pi_{max} = 4$		

		Irac	ces of	tasks			
Time	process T ₁	process T ₂	process T ₃	process P			
0	8	8	start ?, {(cpu,1)}	P			
1	Ő.	8	req!1, p!1, {(cpu,1)} •	req?1, p?1, V(1)			
2	8	8	{(<i>cpu</i> ,1)} •	V(1)			
3	8	8	{(<i>cpu</i> ,1)} •	V(1)			
4	8	8	{(<i>cpu</i> ,1)} •	V(1)			
5	start?,{(cpu,3)}	8	8	V(1)			
6	{(<i>cpu</i> ,3)}	8	8	V(1)			
7	req!3,{}	8	<i>chan</i> ?3, {(<i>cpu</i> ,3)} •	req?3, chan!3, V(3)			
8	8	-{}	{(<i>cpu</i> ,3)} •	V(3)			
9	8	8	{(<i>cpu</i> ,3)} •	V(3)			
10	8	start?,{}	{(<i>cpu</i> ,3)} •	V(3)			
11	<u> </u>	8	{(<i>cpu</i> ,3)} •	V(3)			
12	<u>{}</u>	8	{(<i>cpu</i> ,3)}, <i>v</i> ? •	v!, P	(•: in critical	section)	
13	$p!3, \{(cpu, 3)\}$	0	8	p?3, V(3)		,	
14	{(cpu,3)},v? •	8	8	V!, P			
15	$\{(cpu, 5)\}$	0	8	P D			
10	$\{(cpu, s)\}$	{} {(amu 2)}		P			
19	<u>8</u>	$\{(cpu, 2)\}$	8	r D			
10	<u>v</u>	$\{(cpu,2)\}$	U N	1 D			
20	<u>y</u>	$\{(cpu,2)\}$	8	P			
20	<u>0</u> A	$\{(cpu,2)\}$	8	P			
22	8	$real 2 n! 2 {(cnu 2)}$	8	rea?2 n?2 V(2)			
23	8	$\{(cpu,2)\}, v?$ •	8	v!P			
24	Ň.	$\{(cpu,2)\}$	ă –	Р			
25	ñ	8	$\{(cpu,1)\}$	Р			
26	<u>Ă</u>	Ă	$\{(cny 1)\}$	р			

Weak Bisimulation	
Def. If $t \in D^*$, then $\hat{t} \in (D - \{\tau\})^*$ is the sequence derived by deleting all occurrences of π from <i>t</i> .	
Def. If $t = \alpha_1 \dots \alpha_n \in D^*$, then $E \stackrel{t}{\Rightarrow} E'$ if $P(\xrightarrow{(\tau, -)})^* \xrightarrow{\alpha_1} (\xrightarrow{(\tau, -)})^* \dots (\xrightarrow{(\tau, -)})^* \xrightarrow{\alpha_n} (\xrightarrow{(\tau, -)})^* P'$, where "_" in $(\tau, _)$ represents arbitrary integer.	
Def. For a given transition system " \rightarrow ", any binary relation <i>r</i> is a weak bisimulation if, for $(P,Q) \in r$ and for any action $\alpha \in D$, 1. if $P \xrightarrow{\alpha} P'$, then, for some $Q', Q \xrightarrow{\alpha} Q'$ and $(P',Q') \in r$, and 2. if $Q \xrightarrow{\alpha} Q'$, then, for some $P', P \xrightarrow{\alpha} P'$ and $(P',Q') \in r$.	
Def. \approx_{π} is the largest weak bisimulation over " \rightarrow_{π} ". It is an equivalence relation (though not a congruence) for ACSR.	
3 October 2003 ESSES 2003	76

Scheo	Julability Analysis	
Lemma 1 If EDFS schedulable.	ys is deadlock free, then it i	is
Lemma 2 <i>If</i>		
EDF	$Sys \setminus \{cpu\} \approx_{\pi} \emptyset^{\infty},$	
then EDFSys is dea	adlock free.	
Lemma 3 <i>If</i> PIPS schedulable.	y s is deadlock free, then it is	5
Lemma 4 <i>If</i>		
PIPS	$\operatorname{ys} \setminus \{cpu\} \approx_{\pi} \varnothing^{\infty},$	
then PIPSys is dea	dlock free	
3 October 2003	ESSES 2003	79

PACSR Specification• The buffer
 $B_0 = in.B_1 + \phi: B_0$ $B_i = in.B_{i+1} + \sum_{1 \le i \le j} d_j.B_{i-j} + \phi: B_i + \overline{out}_i.B_i$ $B_n = in.\overline{overflow}.NIL + \sum_{1 \le i \le n} d_j.B_{n-j} + \phi: B_n + \overline{out}_n.B_n$ • The Alarm Sampler and the Alarm Handler $AS = AS' || (\phi^p : AS)$ $AH = \sum_i out_i.AH_{n(i)} + \phi: AH$ $AS' = (\overline{tc}, 2).AS'' + \phi: \overline{rc}.NIL$ $AH_i^A = \phi^{pt(i)}: \overline{d_i}.\overline{rc}.AH$ $3 \operatorname{Cuber 2003}$ ESES 203

T(time units)	S ₁	S ₂	7
10	2x10 ⁻⁶	3×10 ⁻¹⁰	
20	5×10-6	6×10 ⁻¹⁰	The table
30	9×10-6	1.0×10-9	shows for various valu
40	1.2×10 ⁻⁵	1.3×10-9	
50	1.5×10 ⁻⁵	1.6×10-9	probability
60	1.9×10 ⁻⁵	2.1x10 ⁻⁹	that makes
70	2.2×10 ⁻⁵	2.4×10 ⁻⁹	property f tru
80	2.5×10 ⁻⁵	2.8×10 ⁻⁹	systems.
90	2.9×10 ⁻⁵	3.1×10 ⁻⁹	
100	3.2×10 ⁻⁵	3.5×10 ⁻⁹	

Modeling and Analysis of Power-Aware Systems

Example
$$FC, \emptyset = tt \langle in \cdot \{cpu, cpu\}^* \cdot out \rangle_{>0.999}^{\leq 3} tt$$

 $X_{u \langle in \{pu, cpu\} out \rangle^{\leq 3} u} = X_{u \langle \{pu, cpu\} out \rangle^{\leq 3} u}^{FC, \emptyset}$
 $X_{u \langle in \{pu, cpu\} out \rangle^{\leq 3} u} = 0.99 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 3} u}^{FC, \{cpu\}} + 0.01 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 3} u}^{FC, \{cpu\}}$
 $x_{u \langle \{pu, cpu\} out \rangle^{\leq 3} u} = 0.99 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 3} u}^{FC, \{cpu\}} + 0.01 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 3} u}^{FC, \{cpu\}}$
 $x_{u \langle \{pu, cpu\} out \rangle^{\leq 3} u} = X_{u \langle \{pu, cpu\} out \rangle^{\leq 3} u}^{FC, \emptyset} = 1$
 $X_{u \langle \{pu, cpu\} out \rangle^{\leq 3} u} = X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + 0.01 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}}$
 $x_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} = 0.99 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + 0.01 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}}$
 $X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} = 1 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} = X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} = 0 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} = 0 \cdot X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{FC, \{cpu\}} + X_{u \langle \{pu, cpu\} out \rangle^{\leq 2} u}^{$

	А	nalysis of	DVS				
• We consid	dered the	following set of to	asks:				
	Task	Execution time	Period]			
	1	3	8	-			
	2	3	10	_			
	3	1	14				
 The algor We comp frame (†= 	ithm guar uted the e p ₁ ·p ₂ ·p ₃) f	antees the task se expected power con or pr(cont)=1/3 an	t remains nsumption d pw _{fast} =2,	schedulable. for one major , pw _{slow} =1.			
and maximum power consumption = 1906.66							
- Without DVS <i>power consumption = 2240</i>							
- Thus 3 October 2003	expected	d savings between ESSES 2003	14% and 14	1.8%.	14:		

	Solution Space							
 The solutions to the predicate equations can be obtained using linear/integer programming techniques, constraint logic programming techniques, or a theorem prover. The solutions for the previous example are: 								
		2						
	Start time S_1	3	4	4	5	5	5	
	Start time S_1 Start time S_2	3 14	4	4	5 14	5 15	5 16	

	Q & A	
3 October 2003	ESSES 2003	165