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Outline
• Real-Time and Embedded systems
• Resource-bound computation
• Resource-bound formalisms

– ACSR (Algebra of communicating shared resources)
– Schedulability Analysis Problem
– PACSR (Probabilistic ACSR)
– Schedulability analysis for soft real-time systems
– Design framework for embedded systems
– P2ACSR (Probabilistic ACSR with power consumption)
– Scheduling synthesis and parametric schedulability analysis
– ACSR-VP (ACSR with Value-Passing)

• Conclusions
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Real-time, Embedded Systems
• Difficulties

– Increasing complexity
– Decentralized
– Safety critical
– End-to-end timing constraints
– Resource constrained

• Non-functional: power, size, etc.
• Development of reliable and robust embedded

software
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Properties of embedded systems
• Adherence to safety-critical properties
• Meeting timing constraints
• Satisfaction of resource constraints
• Confinement of resource accesses
• Supporting fault tolerance
• Domain specific requirements

– Mobility
– Software configuration
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Real-time Behaviors
• Correctness and reliability of real-time systems

depends on
– Functional correctness
– Temporal correctness

• Factors that affect temporal behavior are
– Synchronization and communication
– Resource limitations and availability/failures
– Scheduling algorithms
– End-to-end temporal constraints

• An integrated framework to bridge the gap between
concurrency theory and real-time scheduling
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Scheduling Problems
• Priority Assignment Problem
• Schedulability Analysis Problem
• Soft timing/performance analysis (Probabilistic

Performance Analysis)
• End-to-end Design Problem

– Parametric Analysis
– End-to-end constraints, intermediate timing constraints
– Execution Synchronization Problem
– Start-time Assignment Problem with Inter-job

Temporal Constraints
• Fault tolerance: dealing with failures, overloads
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Scheduling Factors
• Static priority vs dynamic priority

– Cyclic executive, RM (Rate Monotonic), EDF (Earliest
Deadline First)

• Priority inversion problem
• Independent tasks vs. dependent tasks
• Single processor vs. multiple processors
• Communication delays
• Uncertainty in execution times
• Resource use tradeoffs
• End-to-end timing requirements
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Example: Simple Scheduling Problem

• ( period, [ e-, e+ ] ), where e- and e+ are the lower and upper bound of
execution time, respectively.

• Goal is to find the priority of each job so that jobs are schedulable
• Considering only worst case leads to scheduling anomaly

(12, [1,2])

(4, [2,3]) (12, [1,3])

(4, [1,2])
(4, [1,2])

J2,2

J3,1 J2,1

J1,1
J1,2

CPU1 CPU2 CPU3
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Example (2)

Let J1,1 > J2,1 and J2,2 > J3,1

Consider worst case execution time for all jobs, i.e.,
Execution time E1,1 = 2, E2,1 = 3, E2,2 = 2, E3,1 = 3

(12, [1,2])

(4, [2,3]) (12, [1,3])

(4, [1,2])
(4, [1,2])

J2,2

J3,1 J2,1

J1,1 J1,2
CPU1

CPU2 CPU3

J1,1

J3,1

4 8 12

4 8 12

J2,1 J1,1 J2,1 J1,1

J3,1 J2,2 J3,1

CPU2

CPU1
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Example (3)

With same priorities, J1,1 > J2,1 and J2,2 > J3,1

Let execution time E1,1 = 1, E2,1 = 1,, E2,2 = 2, E3,1 = 3

(12, [1,2])

(4, [2,3]) (12, [1,3])

(4, [1,2])
(4, [1,2])

J2,2

J3,1 J2,1

J1,1 J1,2

CPU1 CPU2 CPU3

So with the priority assignment of J1,1 > J2,1 and J2,2 > J3,1,

jobs cannot be scheduled and scheduling problems are in general NP-hard

J1,1

J3,1

4 8 12

4 8 12

J2,1 J1,1 J1,1

J2,2

CPU2

CPU1

J3,1 missed its deadline
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End-to-end Design Problem
• Given a task set with end-to-end constraints on inputs and

outputs
– Freshness from input X to output Y (F(Y|X)) constraints:

bound time from input X to output Y
– Correlation between input X1 and X2 (C(Y|X1,X2))

constraints: max time-skew between inputs to output
– Separation between output Y (u(Y) and l(Y)) constraints:

separation between consecutive values on a single output Y
• Derive scheduling for every task

– Periods, offsets, deadlines
– priorities

• Meet the end-to-end requirements
• Subject to

– Resource limitations, e.g., memory, power, weight, bandwidth
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Job1

s1 s1+e1

Job2

s2 s2+e2

[ 5,7 ] [ 3,4 ]

≤ 25

≥ 14

≤ 10≤ 12

Start-time Assignment Problem with Inter-job Temporal Constraints

Goal is to statically determine the range of start times for each job
so that jobs are schedulable and all inter-job temporal constraints
are satisfied.

Example: Start-time Problem
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Example: power-aware RT scheduling

• Dynamic Voltage Scaling allows tradeoffs between
performance and power consumption

• Problem is how to minimize power consumption while
meeting timing constraints.

• Example: three tasks with probabilistic execution
time distribution

1423

1032

831

PeriodWorst-case execution timeTask
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Our approach and objectives
• Design formalisms for real-time and embedded

systems
– Resource-bound real-time process algebras
– Executable specifications
– Logic for specifying properties

• Design analysis techniques
– Automated verification techniques
– Parameterized end-to-end schedulability analysis

• Toolset implementation
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Resource-bound computation
• Computational systems are always constrained in their

behaviors
• Resources capture physical constraints
• Resources should be supported as a first-class notion

in modeling and analysis
• Resource-bound computation is a general framework

of wide applicability
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Resources
• Resources capture constraints on executions
• Resources can be

– Serially reusable:
• processors, memory, communication channels

– Consumable
• power

• Resource capacities
– Single-capacity resources
– Multiple-capacity resources
– Time-sliced, etc.
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Process Algebras
• Process algebras are abstract and compositional

methodologies for concurrent-system specification
and analysis.

• “Design methodology which systematically allows to
build complex systems from smaller ones” [Milner]
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Process Algebras
• A process algebra consists of

– a set of operators and syntactic rules for constructing
processes

– a semantic mapping which assigns meaning or
interpretation to every process

– a notion of equivalence or partial order between
processes

– a set of algebraic laws that allow syntactic manipulation
of processes.

• Ancestors
– CCS, CSP, ACP,…
– focus on communication and concurrency
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Advantages of Process Algebra

 A large system can be broken into simpler subsystems and then
proved correct in a modular fashion.

1 A hiding or restriction operator allows one to abstract away
unnecessary details.

2 Equality for the process algebra is also a congruence relation;
and thus, allows the substitution of one component with another
equal component in large systems.
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ACSR
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ACSR
• ACSR (Algebra of Communicating Shared Resource)

– A real-time process algebra which features discrete
time, resources, and priorities

– Timeouts, interrupts, and exception handling
– Two types of actions:

• Instantaneous events
• Timed actions
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Events
• Events represent non-time consuming activities

–   events are instantaneous:     crash

– point-to-point synchronization
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Events
• Events

– have priorities:

– have input and output capabilities

   or

)p?,e(
1

)p,!e(
2

)10,job(
10

)p,e(
1 )p,e(

2
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Actions
• Actions represent activities that

– take time
– require access to resources
– each resource usage has priority of access

– each resource can be used at most once
– resources of action A:
– idling action:

• Examples:
{(cpu,2}},  {(cpu1,3),(cpu2,4)},
{(semaphore,5)}

( ) ( ){ }
2211

,,, prprA =

!
( )A!
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Syntax for ACSR processes
• Process terms

• Process names

C

Pb

FP

P

SRQP

PP

PP

Pna

PA

NILP

I

a

t

|

|

\|

][|

),,(|

|||

|

).,(|

:|

::

!

"

+

=

PC
def

=
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Constant and Nil

PC
def

= C is a constant that
represents the process
algebra expression P

P = NIL
P does nothing
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Prefix Operators
P performs timed
action A and then

behaves as Q

P = A:Q

P = (a,n).Q P performs event
(a,n) and then
behaves as Q

EXAMPLE

Operator).1,hangup(:)}2,phone{(=Talk

Talk).1,pickup).(1,ring(=Operator
def
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Choice
P can choose

nondeterministically
to behave like Q or R

P = Q+R

EXAMPLE

'').1,(                 

').1,(

CARgoright

CARgoleftCAR
def

+

=
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Parallel Composition
P is composed by Q and R
that may synchronize on

events and must synchronize
on timed actions

P = Q || R

EXAMPLE

CallerOperatorConverse

Callerhangup

phoneringCaller

Operatorhangup

phoneringOperator

def

def

def

||

).1,!(:                        

)}3,').{(2,!(

).1?,(:                        

)}2,).{(1?,(

=

=

=

3 October 2003 ESSES 2003 30

Scope
Q may execute for at most t
time units. If message a is

produced, control is delegated
to R, else control is delegated to
S. At any time T may interrupt.

)T,S,R(   Q=P a

t

def

!

EXAMPLE

NIL!.finish+Run:)}1,run{(=Run

)rkBeepedToWo                                   

GoToWork,                                   

,eGoForCoffe(   Run=Runner

def

finish

10

def

!
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Hiding/Restriction
P behaves just as Q but

resources in I are no longer
visible to the environment

P = [Q]I

EXAMPLE

phone]Home[||PayPhone||Caller

P = Q\F P behaves just as Q but
labels in F are no longer

visible to the environment
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ACSR semantics
• Gives an unambiguous meaning to language expressions.

• Semantics is operational, given by a set of semantic
rules.

• Example of a labeled transition system:

P P P P P
IC

0 1 2 3 4

!
" #" " #" " #""" " #""" " #"

N C gate, train gate, train
 ...

{ } { }

ACSR

specification

Semantic

rules

Labeled
transition
system
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ACSR semantics
• Two-level semantics:

– A collection of inference rules gives the unprioritized
transition relation

– A preemption relation on actions and events disables
some of the transitions, giving a prioritized transition
relation

PP !"#"
$

PP !"#" $
%
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Unprioritized transition relation

( ) ( )
PPpa

pa
!! "!

#
,

:,
   ActI

PPA
A
!"!

#

:
   ActT

• Prefix operators

PQP

PP

!"#"+

!"#"
$

$

    ChoiceL

• Choice

( )

( )
QPQP

PP
pa

pa

|||| ,

,

!"" #"

!"" #"
    ParIL

• Parallel



18

3 October 2003 ESSES 2003 35

Unprioritized transition relation (II)

( ) ( ) !="
##$$ %$

#$%$#$%$
& 21    

||||

    
21

21

AA
QPQP

QQPP
AA

AA

''    ParT

• Resource-constrained execution

( ) ( )

( )
QPQP

QQPP
pp

papa

!!""" #"

!"" #"!"" #"
+ ||||

    
21

21

,

,!?,

$
    ParCom

• Priority-based communication

( ){ }12 |0,    
][][ 21

1

AIrrA
PP

PP

I

AA

I

A

!"=
#$$ %$

#$%$
&

    CloseT

• Resource closure
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Examples
• Resource conflict

• Processes must provide for preemption

• Unprioritized transitions:

QrQ != :)}2,{( NILQP ~||PrP != :)}1,{(

PPrP ::)}1,{( !+"= QQrQ ::)}2,{( !+"=

QP ||

QP ||! QP !||

!

)}1,{(r )}2,{(r
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Unprioritized transition relation (III)

)0(    
),,(),,( 1

>
!"#$#!

"#$#

%

t
SRQPSRQP

PP
a

t

Aa

t

A

    ScopeCT

)0(    
),,( ),(

),(

>
!!"!#

$!! "!
t

QSRQP

PP
na

t

na

%
    ScopeE

)0,)((    
),,(),,(

>!
"#$%$"

#$%$
tael

SRQPSRQP

PP
a

t

ea

t

e

    ScopeCI

)0(    
),,(

=
!"#"$

!"#"
t

RSRQP

RR
a

t

%

%

    ScopeT

)0(    
),,(

>
!"#"$

!"#"
t

SSRQP

SS
a

t

%

%

    ScopeI
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Example
• A Scheduler

SchedSched :!=

).,.,().1,(
_____

max
SchedrcSchedkillNILtc y

t!+
"#

(...):    . . .  (...):(...):  0

(tc,1)

1maxmax

yy

t

y

tSched !""!"!" ###

$
%%%

%%%

∅ Sched

rc

Sched

rc kill

Sched
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Preemption relation

!" p

• To take priorities into account in the semantics we
define the relation  α is preempted by β :

)()(),( !"#"#$
rr

r %&'

)()(),( !"#"!$
rr

r <%&

)}5,(),7,{()}5,(),3,{( 2121 rrrr p

)()( !"#" $

• An action α preempts action β iff
– no lower priorities:
– some higher priorities:
– it contains fewer resources
e.g.

)1,()}4,{( !pr

• An event preempts an action iff
– τ with non-zero priority preempts all

actions e.g.

)3,!()1,!( aa p

• An event preempts another event iff
– same label, higher priority            e.g.
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Prioritized transition relation
• We define

    when
– there is an unprioritized transition

– there is no                 such that

• Compositional

PP !"#" $
%

PP !"#"
$

PP !!"#"$ !" p
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Example

• Unprioritized and prioritized transitions:

PPrP ::)}1,{( !+"= QQrQ ::)}2,{( !+"=

QP ||

QP ||! QP !||

!

)}1,{(r )}2,{(r
p

QP ||

QP !||

!

)}2,{(r

π

π
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Example (cont.)
• Resource closure enforces progress

[ ]
}{||
r

QP

[ ]
}{||
r

QP! [ ]
}{||
r

QP !

)}1,{(r )}2,{(rp
)}2,{(r

π

)}0,{(r

p

[ ]
}{||
r

QP

[ ]
}{||
r

QP !
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Compositionality of preemption relation
• Given

12

211

212

211

12

211

).2,(

).1,().2,(

).2,().3,(

).5,().3,(

).2,(

).1,().2,(

SaR

SaSaR

TbTaQ

TbTaQ

SaP

SbSaP

=

+=

+=

+=

=

+=

•  Given P1 and P2, can they be treated as equivalent?
   That is, for all Q, P1 || Q = P2 || Q?

•  How about R1 and R2?
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• This requirement was captured formally through
   the notion of bisimulation, a binary relation on
   the states of systems.

• Observational equivalence is based on the idea
  that two equivalent systems exhibit the same
  behavior at their interfaces with the environment.

• Two states are bisimilar if for each single
   computational step of the one there exists an
   appropriate matching (multiple) step of the other,
   leading to bisimilar states.

A
a

B

A

C

ED

C D

B

a

b c

cb

a

∼

Bisimulation
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Prioritized strong equivalence

• An equivalence relation is congruence when it is
preserved by all the operators of the language.

• This implies that replacement of equivalent
components in any complex system leads to equivalent
behavior.

• Strong bisimulation       over                      is a
congruence relation with respect to the ACSR
operators.

PP !"#" $
%

!~
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Equational Laws

• Equational laws are a set of axioms on the syntactic
level of the language that characterize the
equivalence relation.

• They may be used for manipulating complex systems
at the level of their syntactic (ACSR) description.

• There is a set of laws that is complete for finite state
ACSR processes:

...

)||(||||)||(              

                 

RQPRQPPQQP

PPPPNILP

=+=+

=+=+
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Equational Laws

• ACSR-specific laws for scope and resource closure:

( )
( )

( )( )

[ ] { }
[ ] [ ]II

I

a

a

t

a

t

a

t

a

t

a

t

PePe

AIrrAPAAPA

RSRQP

aeltSQeSRQPe

aeltSSRQPeSRQPe

tSSRQPASRQPA

..

)(|)0,(:)(:

),,( 

)(0 if.,),,( .

)(0 if),,( .),,( .

0 if),,( :),,( :

12211

0

1

=
!"=#=

=$

=%>+=$

&%>+$=$

>+$=$ !

'

()
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Laws (1)

!
!
!
!
!
!
!
!
!
!

"

#

+

$+$+

$+$+

=

++

=

=

=+

++=++

+=+

=+

=+

%

% % %

% % %

%

%%%%

=

&&

& & &

& & &

/='
&&

&&&&

)()(

,,

0)()(
,,

)||)).(()(,(

)||):((

)):(||(

)||(:):(

)::(||).:(

)||(||||)||(

||||

 if     

)()(

NIL

lj

ki

flel

LlJj

ljlj

Ll Ii

l

Jj

jjiil

Jj Kk Ll

llkkjj

BA
KkIi

kiki

Ll

ll

Kk

kk

Jj

jj

Ii

ii

SQfe

SQePAf

SfRBQe

RPBA

SfRBQePA

RQPRQP

PQQP

QQP

RQPRQP

PQQP

PPP

PP

(()

*+**+

,,

p

Par(3)

Par(2)

Par(1)

Choice(5)

Choice(4)

Choice(3)

Choice(2)

Choice(1)
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Laws (2)

PP

FEPFEP

FaaFPna

FaaFPnaFPna

FPAFPA

FQFPFQP

F

tSSRQ

SRQPSRQPSRQPP

RSRQP

beltSQeSRQPe

beltSSRQPeSRQPe

tSSRQPASRQPA

b

t

b

t

b

t

b

t

b

b

t

b

t

b

t

b

t

b

t

=/

!=

"=

#=

=

+=+

=

>=$

$+$=$+

=$

=%>+=$

&%>+$=$

>+$=$

'

'

0\

\\\

, if     NIL\)).,((

, if     )\).(,(\)).,((

)\(:\):(

)\()\(\)(

NIL\NIL

0 if     ),,(NIL

),,(),,(),,()(

),,(

)(0 if   )).(,(),,(.

)(0 if    )),,(.(),,(.

0 if    )),,((:),,(:

2121

0

1

1

()

Scope(6)

Scope(5)

Scope(4)

Scope(3)

Scope(2)

Scope(1)

Res(7)

Res(6)

Res(5)

Res(4)

Res(3)

Res(2)

Res(1)
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Laws (3)

PXIUUEE

EPXrecEXPXrec

QXrecPQXXPQP

XPXrecPPXrec

EPEP

PP

PP

PePe

AIrrAPAAPA

QPQP

Ji

iJ

Ji

iJ

IJ

UJ

Ji

Ui

II

JIJI

II

III

III

I

Ji

in  guarded is  and finite is  , ,  where

)]\[.( )]\[.( 

.  then in  guarded is  and  ]/[ If

]/. [. 

\][]\[

][

][]][[

].[].[

)}(|)0,{(      where][:)(]:[

][][][

NIL]NIL[

0

2211

UU
!!

"!

/

#

==

=+

==

=

=

=

=

=

$!=#=

+=+

=

%%

&

Rec(3)

Rec(2)

Rec(1)

Close(7)

Close(6)

Close(5)

Close(4)

Close(3)

Close(2)

Close(1)
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Soundness of the laws
• Theorem:

if  P=Q  then

• Proof approach:
– Construct the set of prioritized derivations for

each P
– Prove that if P=Q, then the sets of derivations

are the same

QP !~
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Completeness of the laws
• Theorem:

if P and Q are finite-state processes and
then P=Q

QP !~
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Schedulability Analysis
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Schedulability Analysis
• Can all real-time tasks meet their deadlines?

• Factors include
– Delay caused by synchronization between tasks
– Delay caused by precedence between tasks
– Delay caused by resource constraints
– Scheduling disciplines and synchronization protocols
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Outline
• ACSR-VP: ACSR with value-passing and dynamic

priorities
• Specifying real-time systems using ACSR-VP

– Specifying task models
– Specifying scheduling disciplines

• Analyzing real-time systems using bisimulation
– Specification correctness
– Schedulability analysis

• Schedulability analysis using VERSA (ACSR Toolkit)
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ACSR (Algebra of Communicating Shared Resources)

• A timed process algebra based on CCS with notions of time,
resources and priorities

• Discrete time and dense time
• Static priorities
• Actions: Instantaneous Events + Timed Actions

– Timed action: a set of (resource, priority) pairs
{(cpu, 4),(data, 3)}, {(cpu1, 2),(cpu2, 3)}, ∅

– Instantaneous event: (event, priority) pair
(signal, 2), (chan, 2) (τ, 3)

• Real-time operators for timeout, interrupt, exception
• Graphical specification language (GCSR)
• Toolkit (VERSA)
• No value passing communication, no variables for priorities
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ACSR-VP (ACSR with Value Passing)

• Extends ACSR with variables and value passing
communications

• Values can be specifies using expressions
– Timed Actions:

{(cpu, x), (data, y + 1)}
– Instantaneous events:

(signal !8, x) – output
(chan?y, 2) – input

• Dynamic priorities
• Exchange priority information without global variables
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ACSR-VP Syntax

PxC
xC

IP

FP

P

PP

PP

be
Pbe

Pe

PA

NILP

I

=

+

!

=

)(
 process a be  todefined name process

)(|

hiding resource\\|

nrestrictioevent \|

close resource][|

ncompositio parallel|||

choice|

)expressionboolean  :(
process lconditiona

|

prefixevent  ousinstantane.|

prefixaction  timed:|

nothing does that process::

21

21
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ACSR-VP Example
Preemptable and Non-preemptable Jobs
• Both jobs execute c time units on cpu with priority π
• Non-preemptable job: once it acquires cpu, it

executes to completion

• Preemptable job: its execution can be preempted by
actions on cpu of other jobs with higher priorities

)1(Exec:)},{()()(Exec

)0(ExecJob:Job

11

111

+!<

+"

=

=
scpucss

def

def

#

)(Exec:
)1(Exec:)},{()()(Exec

)0(ExecJob:Job

2

22

222

s
scpucss

def

def

!+
+"<

+!

=

=
#
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Unprioritized Operational Semantics

[ ] [ ]

[ ] [ ]

[ ]

( ) ''

','
ParC2

)()((
''

','
ParT

).,(ActI3

).,!(ActI2
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Unprioritized Operational Semantics
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Preemption
A preemption relation is defined for two any actions α

and β, denoted           read β preempts α .
Examples:

,!" p
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Prioritized Operational Semantics
The operational semantics of ACSR-VP, the prioritized

transition relation          is defined as follows:
!
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Modeling a Real-Time System
• A real-time system consists of a set of tasks running in parallel

under a specific scheduling discipline
• A task is a process composed of a sequence of jobs executed

serially
• A task can be

– Independent or dependent
– Preemptable or non-preemptable
– Periodic or aperiodic

• Possible timing constraints of a task are:

 taskaperiodicfor 

 timesarrival-inter maximum and Minimump ,p

 taskperiodicfor  Periodp
deadline and timeExecution d c,

 timeStartingb

21
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Specification of a real-Time System
A real-time system is specified by the process RTS:

Tasks are specified by the processes Ti :

• Process Jobi : internal characteristics, e.g.,:
– resource requirements
– synchronization

• Process Activatori : external timing attributes, e.g.,
– periodic or aperiodic
– period and deadline

• Events start, end are synchronization events:
– start: activate jobs
– end: mark deadlines of jobs – deadlock if unsuccessful

[ ]
R

def

n21
T    T  T   RTS L=

},{\)Activator  Job(T endstartii

def

i =
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Sample Activators
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Sample Jobs
Job 1
• preemptable, independent jobs

running on cpu
priority π and execution time c:

• s for accumulated execution time
• t for the elapsed time
• Job can response to end event only when its current execution is

finished

Job).1?,(Wait:it         Wa

Wait)(                    
))1,(Exec:                                   

)1,1(Exec:)},({)( ),(Exec

)0,0(Exec).1?,(Job: Job          

end

cs
ts

tscpucsts

start

def

def

def

+!=

"=+
+!+

++"<=

+!=

#
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Sample Jobs
Job 2
• nonpreemptable, independent jobs

on multiprocessors cpu1, … , cpuk
with priorities π1, …, πk     and execution time c:

• A job can be executed on any of the processors
• Once a processor is assigned to a job, the job

executes on that processor until completion

.Job )1?,( Wait : Wait 

 Wait): )},({( Exec

Exec. )1?,(Job: Job  

1

end

cpu

start

def

c

i

ki

i

def

def

+!=

=

+!=

"
##

$
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Sample Jobs
Job 3
• dependent jobs on processor cpu  with priority π and execution time c

a single preemptable critical section of length cs on resource data (with priority π
’) after at c’ time units execution:

• P and V operations are modeled by the processes P and V with events (p?,0) and
(v?,0)

• When s equals c’, Exec waits for (p?,0) to enter the critical section CS(s,t)

V :  P0V        

P :  V0P        

),(Exec).0,!()'(

))1,(CS:                           

)1,1(CS:)},({(  )'(  ),(CS

.Job )1?,( Wait : Wait

Wait          )(

))1,(Exec:                            

),(CS).0,!((         )'(

))1,(Exec:                            

)1,1(Exec:)}({(cpu,)c'sc(sExec

Exec(0,0). )1?,(Job: Job 
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Scheduling Disciplines
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Other Time-Driven Scheduling Disciplines
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The Priority Inversion Problem
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Task parameters
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Priority Inheritance Protocol
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Traces of tasks

section)   criticalin   :(

P)}1,{({}{}26

P)}1,{({}{}25
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Weak Bisimulation
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Analyzing Real-Time Systems in ACSR-VP

• Two types of analyses
– Validation
– Schedulability analysis

• Basic idea
– Checking weak bisimulation ≈π
– Searching deadlocked states

• Practical Issues
– Ensure that the EDFSys and PIPSys processes are

finite state
– Translate ACSR-VP processes to ACSR processes and

use VERSA, the toolkit for ACSR
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Validating the EDFSys Specification
Construct a correctness specification, EDFSpec, that is sequential

and easy to inspect
Verify that                       EDFSys ≈π EDFSpec
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Schedulability Analysis
Lemma 1 If    EDFSys is deadlock free, then it is

schedulable.
Lemma 2  If

then  EDFSys is deadlock free.
Lemma 3  If    PIPSysis deadlock free, then it is

schedulable.
Lemma 4 If

then  PIPSys is deadlock free

,}\{\EDFSys !
"#$cpu

,}\{\PIPSys !
"#$cpu
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Example 1
• Consider an instance EDFSys1 of EDFSys where:

Task T1:  c1 = 1, d1 = 2, p1 = 3
Task T2: c2 = 2, d2 = 3, p2 = 3

• The following sufficient condition for schedulability from [Liu
and Lay 73] is not satisfied:

• The following equation

is satisfied, i.e., the task system is schedulable.
More specifically, we have

1
d

c

d

c

2

2

1

1 !+

,}\{\EDFSys !
"#$cpu

EDFSys1                 

 EDFSys1
,3)({(cpu,3)}

,3)({(cpu,3)}{(cpu,2)},2)(,2)(

!
"

!

!
"

!!!
"

!
"

##$#### $#

##$#### $#### $###$###$#
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Example 2
• Consider another instance EDFSys2 of EDFSys where:

Task T1:  c1 = 2, d1 = 2, p1 = 3
Task T2: c2 = 2, d2 = 3, p2 = 3

• The equivalence

is false and the task system is therefore not schedulable.

• More specifically, we have

,}\{\EDFSys2
!

"#$cpu

NIL                 

 EDFSys2
{(cpu,3)}

,3)({(cpu,2)}{(cpu,2)},2)(,2)(

!

!
"

!!!
"

!
"

### $#

##$#### $#### $###$###$#
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Summary
• The ACSR paradigm:

– Formalism for modular specification of real-time
systems along with scheduling disciplines

– Formal characterization of the schedulability analysis in
process algebra

• Automated schedulability analysis
– Provide techniques for detecting timing anomalies

before an implementation is developed
– Integrate into a methodology for engineering reliable

real-time systems
• Tools:

– GCSR (Graphical ACSR)
– XVERSA: VERSA and GCSR
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Probabilistic ACSR
for soft real-time scheduling

analysis
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PACSR (Probabilistic ACSR)
• ACSR extension for probabilistic behaviors.

• Objective :
– formally describe behavioral variations in systems that

arise due to failures in physical devices.

• Since failing devices are modeled by resources we
associate a failure probability p(r) with every
resource r
– at any time unit, r is down with probability p(r) or up

with probability 1-p(r)
– failures are assumed to be independent
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Syntax for PACSR processes
• Similar to ACSR

• Process terms

• Process names

• Distinction: For all resources r we write     for the
failed occurrence of resource r. Thus, an action can
specify access to failed resources.

CPbFPPSRQP

PPPPPnaPANILP

I

a

t
    |        |    \    |    ][    |    ),,(    |         

   ||    |        |    ).,(    |    :    |    ::

!"

+=

PC
def

=

r
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EXAMPLE

PlaceCallphone :)}1,{(

Resource failures and recoveries
• An action containing resource r cannot be taken when

r is failed, i.e.,

• Failed resources:

• Recoveries are modeled by using failed resources in
actions

NILPAArr =!" :)( # failed, is

)(1)(    , rrr prpr !=

eUsePayPhonphone :)}1,{(+
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PACSR Semantics
• Semantics of a PACSR process is given in terms of

probabilistic transition systems: some transitions are
labeled with probabilities and others with
actions/events.

• Labeled Concurrent Markov Chain (LCMC)

τ

τ

a

c

1/2

1/2

1/3

2/3

b

d
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PACSR Semantics
• Configurations are pairs of the form (P,W), where

– P  is a PACSR process, and
– W  is a world capturing the state of resources as follows

• A configuration (P,W) is characterized as
– Probabilistic, if P requires resources whose state is not in W.

Example:   (  {r1,1}:Q , {r2} )

– Nondeterministic, if all resource information required by P is
in W.

Example:  (  (a,1):NIL ,  ∅ )

WrWrrWrWrr !"#$!"#$ ,   and   ,
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PACSR semantics (II)
• The semantics is given via a pair of transition

relations:
– Probabilistic transition relation,

– Nondeterministic transition relation,

• Let imr(P) be resources that can be used in the first
step:

{ })(,'| ArPPr
A !"#$#

)',(),( WPWP p
pr
!"!

),(),( WQWP !"!
#
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Operational semantics
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• The nondeterministic transition relation is taken from ACSR,
with one exception:
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• The probabilistic transition relation is as follows:
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W(Z) is a set of all possible scenarios of resources; e.g.,
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• Let                                 ,    pr(r1) = ½ and pr(r2) = 1/3.

Then  imr(P) = {r1,r2}  and  W({r1,r2})={{r1,r2}, {r1,r2}, {r1,r2}, {r1,r2} }

• Thus by the probabilistic transition relation

Example
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• and by the nondeterministic transition relation
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Example: A faulty channel
where pr(ch) = 0.99

}ch{\)FCh}.ch{+

FCh.!out:}ch.({in+

      

 

FCh:=FCh !

ch

in
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),( !FCh
_____
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),( !P
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}){,( chP }){,( chP
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),.(
_____

!FChout

!

!
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Probabilistic HML with until
• In order to analyze PACSR specifications we may want

to check whether a specification satisfies a property
written as a logical formula.

• We use a probabilistic HML with an ‘until’ operator
• The ‘until’ operator is parameterized with regular

expressions over event names.
• Syntax

   where Φ is a regular expression over actions and ω ∈{≤
,≥}

'|'|'||:: fffffffttf
t

pp !!
""#¬=
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The until operator

'| ffP
t

q!
"= There is some execution with

probability ≤ q for which f holds
until f’ becomes true within time t
and observable behavior from Φ

EXAMPLE

truehangup}wait,talk{true
20

01.0

*

≡  the probability that within 20 time units

    after any number of talk and wait actions

    action hangup arises is ≤ 0.01
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Semantics for until
•

if there exists a scheduler σ such that the set of
computations that
– start at s
– contain only states (except the last) satisfying f1
– have observable content Φ
– end in a state satisfying f2

have probability greater than π

21| ffs
!>

"=
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Resolving non-determinism
• Analysis involves computing the probability of reaching a set of

desired states (within a time period) via an acceptable set of
behaviors.

• Example:

• What is the probability that event head takes place?

• Such probability depends on how the nondeterminism of s is
resolved.

τ

τ

head

tail

1/2

1/2

1/3

2/3s
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Model Checking
• Schedulers are used for resolving non-determinism. These are

functions that given a computation ending in a nondeterministic
state choose the next transition to take place.

• Given a scheduler σ of a system P, sets of states A and B, and a
regular expression Φ, we may compute probabilities

• So for example:

                            
'| ffP

t

q!
"= iff    there is  scheduler σ  such that

q ≥ PrA(P → B, Φ, t, σ)
where  A = { P’ | P’ |= f },

B = { P’ | P’ |= f’ }

– PrA(P → B, Φ, t, σ), the probability of reaching a state in B,
passing only via states in A, via paths with observable
content in Φ, and within t time units
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Model checking until
• To check

– Compute the least solution to the set of equations:

– Return true if
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Equivalence Relations
• New notions of equivalence for the LCMC model taking account

both action types and probabilities.

• In particular two LCMCs are strongly bisimilar if
1. they reach sets of bisimilar states with the same

probability, and
2. for each nondeterministic step of one there exists a step of

the other leading to bisimilar states.

1
s

2
s

1
t

2
t
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t
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t
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u
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v

1
v
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Equivalence Relations
• There is a set of laws that completely axiomatizes

strong bisimulation for PACSR processes.

• Other equivalence notions include weak bisimulation
which relates systems that have the same observable
behavior, that is, it ignores τ actions.
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Two Examples
• EDF with probabilistic execution time
• Telecommunication application
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EDF task scheduling

• Periodic process Job: Period pi, computation time ci

– At each step, total time t increases, active time e increases only if
resource cpu is available; complete when e=ci

• Resource cpu: scheduling
– Priority of a task dynamically increases closer to the deadline

• Process Actuator keeps timing deadlines
– Every pi seconds, signal start is sent to the task, which can accept it

only if it has finished execution

i
Job( )istart

i
,!

?
i
ce=

0,0 == te

?
i
ce<

!1+= tt

)}0),(,{(
max

tppcpu
i
""1,1 +=+= eett

i
Actuator

)?,( istart

i
p

!

cpu

!

start tei
Exec
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EDF task with probabilistic completion

• The task may decide to become inactive after completing a
computation step

• Resource cont controls probabilistic completion
– failure means “terminate early”

tei
Exec

,,iJob
( )istart

i
,!

?ice =

0,0 == te

?
i
ce <

!1+= tt

)}0,1,(),0),(,{( m ax conttppcpu i ""1,1 +=+= eett

)}0,1,(),0),(,{( max conttppcpu i ""

i
Actuator

)?,( istart

ip!

cpu,cont

!

start
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A Telecommunication Application
• Based on the specification of a switching system

considered in AJK97.

• The system consists of a number of concurrent
processes with real-time constraints.

• Probabilistic behavior is present in the form of
– probabilistic arrival of alarms, and
– uncertain execution times of processes.
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Env

BP

outin

Sched

kill kill
tc tc

rcrc

a AS AH

Example: A Telecommunication Application
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PACSR Specification

IFBPAH

ASSchedBEnvSys

\\\)||||            

||:||||(
0
!= The system in its

initial state: a parallel
composition of all the

components
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sent via channel a

• The System

• The environment
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PACSR Specification
• Background Process

• The Scheduler
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The background process
competes for processor
time managed by the

scheduler. Its duration is
geometrically distributed.
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• The buffer

• The Alarm Sampler and the Alarm Handler
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Two configurations
• Consider two versions of the system:

S1 with
– Possibility of 1 alarm per time unit,
– Buffer size of  3
– Capability of processing 2 alarms per time unit, and

S2 with
– Possibility of 2 alarms per time unit
– Buffer size of 6
– Capability of processing 4 alarms per time unit

• Comparison criterion: What is the probability of
overflow in the alarm buffer?
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Checking f = tt〈overflow〉 
t
≤q tt

3.5x10-93.2x10-5100
3.1x10-92.9x10-590
2.8x10-92.5x10-580
2.4x10-92.2x10-570
2.1x10-91.9x10-560
1.6x10-91.5x10-550
1.3x10-91.2x10-540
1.0x10-99x10-630
6x10-105x10-620
3x10-102x10-610

S2S1T(time units)

The table
shows for

various values
of t, the

probability q
that makes

property f true
for each of the

systems.
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Design of Embedded Systems in
a Resource-oriented Framework
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Embedded systems design process

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource
modeling

timing
estimation

Schedulability

analysis

resource
tradeoffs

task

allocation

e2e timing

constraints

platform
parameters
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Modeling and code generation
• High-level model captures functionality of the system and

assumptions about the environment
• Code generation breaks the functional behavior into a set of

tasks

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource

modeling

timing
estimation

Schedulability

analysis

resource

tradeoffs

task

allocation

e2e timing
constraints

platform

parameters
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Timing parameter estimation
• Estimate the execution time for task on a given platform
• Assign task periods based on end-to-end timing constraints

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource

modeling

timing
estimation

Schedulability

analysis

resource

tradeoffs

task

allocation

e2e timing
constraints

platform

parameters
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Resource modeling
• Resource is a critical notion in embedded and real-time system

design, yet lacks systematic formal treatment
• Key idea: resource attributes capture tradeoffs

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource

modeling

timing
estimation

Schedulability

analysis

resource

tradeoffs

task

allocation

e2e timing
constraints

platform

parameters

3 October 2003 ESSES 2003 116

Formal schedulability analysis
• Resource conflicts introduce execution delays
• Violations of timing constraints lead to deadlocks in the model

behavior
• Discovered by state-space exploration

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource

modeling

timing
estimation

Schedulability

analysis

resource

tradeoffs

task

allocation

e2e timing
constraints

platform

parameters
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Modeling and Analysis of
Power-Aware Systems
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Motivation
• Features of mobile embedded systems:

– Resource constraints
• Limited battery life

– Uncertainty
• changing communication delays, failures

• Solution:
– a unified formal framework for designing and reasoning

about power-constrained, timed systems with
probabilistic behavior
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P2ACSR – A power-aware extension of PACSR

• A unified framework for modeling and analyzing power-aware
real-time systems.

• We associate a further attribute to resource usage,  that of
power consumption.

• The syntax remains the same, except that actions are tuples of
the form (r,p,c), where r is the resource, p is the priority level
and c the power consumption of the resource usage.

EXAMPLE

2

1

:)}3,1,{(

+     

:)}0,1,{(

Callcellphone

Callphone
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P2ACSR
• Semantics is given similarly to PACSR, as a LCMC.

• We can use various techniques to perform various
analyses on P2ACSR models including:
– Model checking

We may express temporal logic properties involving
power consumption bounds and check that they are
satisfied by P2ACSR processes.

– Probabilistic bounds on power consumption
We may compute the probability that power
consumption exceeds certain limits.

– Average power consumption
We may compute the average power consumption during
intervals of interest.
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P2ACSR
• P2ACSR is an extension of PACSR, a probabilistic real-

time process algebra.

• In P2ACSR:
– system is a collection of concurrent processes
– communication among processes is instantaneous
– access to serially-reusable resources consumes time and

power
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Resources
• Resources capture constraints on executions
• Features of resources:

– Serially reusable
• processors, memory, communication channels

– Unreliable
• Fail with a fixed probability in each step

– Require time and power
• May allow different levels of power consumption
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Actions

• Actions represent computation
– actions take one unit of time
– require access to resources

• each resource r has priority of access pr

• each resource r has power use level cr

• each resource can be used at most once

– resources of action A:
– power consumption of action A:

( ) ( ){ }
222111

,,,,, cprcprA =

( )A!

!
"

=
)(

)(
Ar

rcApc
#
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Power constraints

• Resource classes R 1,…,R n
– correspond to different power sources

• Attributes of resource class R i:
– capacity Ci – maximum amount of power in one step

– charge Pi – total amount of power

• Valid actions satisfy capacity constraints:
– for each R i , irAr ri

i

cApc C
R

<=! "" ),(
)(

#
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Processes

• Event and action steps
• Choice P1+P2

• Parallel composition P1||P2

• Temporal scope, time-outs, exceptions, …

• Structural operational semantic rules build behaviors
of complex processes from behaviors of component
processes
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P2ACSR semantics
• Before steps of a process can be computed, status of

relevant resources has to be determined

• Resource status is kept in a world

• Non-deterministic configurations Sn

– world has complete knowledge of resources

• Probabilistic configurations Sp
– incomplete knowledge

• Probabilistic steps:
– acquire missing knowledge

np SS !
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Non-deterministic rules
• Action can happen if all resources are available and

power constraints are obeyed:

• Parallel processes can proceed if their actions do not
conflict and the joint step does not violate constraints

• Model: Labeled Concurrent Markov Chains

)(,)(   ),,(),:( AvalidWAPWPA
A !"#$# %

( ) ( ) )(,    
||||

    
2121

21

21

AAvalidAA
QPQP

QQPP
AA

AA

!"=#
$$%% &%

$%&%$%&%
!

''
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Example

in outC

!

C’
)1?,(in

)1,!(out
)}2,1,{(cpu

cpu !,C

!,'C

}{,' cpuC

!,).1,!( Cout

)1,!(out

)1?,(in

1

)}2,1,{(cpu

• C is a process that reliably translates messages from
in to out in 1 time unit using 2 units of power per
message

• π(cpu) = 1
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Example

in outFC

!

FC’
)1?,(in

)1,!(out
)}2,1,{(cpu

cpu
)}1,1,{(cpu

!,FC

!,'FC

}{,' cpuFC

!,).1,!( FCout

)1,!(out

)1?,(in

0.99

)}2,1,{(cpu

}{,' cpuFC

0.01

)}1,1,{(cpu

• FC (fault-tolerant C) accommodates for cpu failures
– π(cpu) = 0.99

• If cpu fails, the message is not delivered, but less power is
consumed

• Message is delivered with probability 1
– What is the expected power consumption per message?
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A logic for power constraints
•        :  Power-aware probabilistic HML with until

– Propositional operators
– until operators specify probabilistic bounds on

power consumption along a set of paths

• Basic variant:

• With time constraints:

• With resource class constraints:
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Semantics for           : until
•

if there exists a scheduler σ such that the set of
computations that
– start at s
– contain only states (except the last) satisfying f1
– have observable content Φ
– consume no more power than p
– end in a state satisfying f2

have probability greater than π

21| ffs
p!

>
"=

#

pc

PHMLuL
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Model checking until
• To check

– Compute the least solution to the set of equations:

– Additional annotation          in the variable set
– Return true if
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Example
• Power consumption per message:

in outFC

!

FC’
)1?,(in

)1,!(out
)}2,1,{(cpu

cpu
)}1,1,{(cputtoutcpucpuinttFC

2

1
*},{|,

>

!
""=#

ttoutcpucpuinttFC
3

999.0
*},{|,

!

>
""=#
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Example ttoutcpucpuinttFC
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Power-aware scheduling

• Trade-off: power vs. execution time
• CMOS-based processors can operate at reduced

voltage levels
– Power dissipation is proportional to V2

– StrongARM SA2:
• 600 MHz / 500 mJ or 150 MHz / 160 mJ

• Tasks can take less than worst-case time
– Adjust frequency dynamically to utilize “time slack”
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Dynamic Voltage Scaling

• Dynamic voltage scaling is a technique proposed for
making energy savings by dynamically altering the
power consumed by a processor.

• Lower frequency execution implies longer processing
of tasks.

• This may lead to violation of real-time constraints.

• [Pillai and Shin 01] propose extensions to real-time
scheduling algorithms to make use of dynamic voltage
scaling.
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Case study: two kinds of resources

• Power-aware resources:
– Attributes:

• Priority (dynamic) – schedulability analysis
• Power consumption (dynamic) – power calculations

• “abstract” resources:
– Attributes:

• Availability (static) – probabilistic completion
• No power consumption, same priority
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Taski = (start?,0) . Execi,0,0 + ∅ : Taski             i = {1,…,I}
Execi,e,t = e < ci →  ( ∅ : Execi,e,t+1

                       + {(cpu, dmax−(pi−t ))                 } : Execi,e+1,t+1

 + e = ci → Taski        i = {1,…,I}
                                                 e= {0,…, ci}

t = {0,…, ci}

Power-Aware Real-Time Scheduling

• Let I  be a set of tasks with periods pi and worst-case execution
times ci, sharing the same CPU.

• In reality tasks often take much less time to execute.

• This probabilistic execution time may be modeled in PACSR as
follows:

potential for early
termination (geometric

distribution)

,(cont,1)
+{(cpu,dmax−(pi−t )),(cont,1))} : Taski )
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Power-Aware Real-Time Scheduling

• The algorithm of [Pillai and Shin] takes advantage of the
possibility of early termination of a task by then executing the
next task at the lowest possible frequency.

• Specifically, on every release or completion of a task it re-
computes the sum

where  is the computation time of the last execution of
task i or ci if task i has just been released.

• Based on this value it decides the lowest frequency that is
consistent with the current effective utilization.

n

last

n

last

p

c

p

c
+...+=

1

1

!

last

i
c
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Taski = (starti?,0) . (releasei!, i). Execi,0,0 + ∅ : Taski             i = {1,…,I}
Execi,e,t = e < ci →

    ((fast? , i) ( ∅ : Execi,e,t+1

                           + {(cpu, dmax−(pi−t )),(cont,1)} : Execi,e+1,t+1

                                      + {(cpu, dmax−(pi−t )), (cont,1)} : (endi,e+1!,i). Taski )
    + (slow? , i) ( ∅ : Execi,e,t+1

                              + {(cpu, dmax−(pi−t )),(cont,1)} :
({(cpu, dmax−(pi−t )),(cont,1)} : Execi,e+1,t+2

                                      + {(cpu, dmax−(pi−t )), (cont,1)} : (endi,e+1!,i). Taski )
 + e = ci → Taski        

Power-Aware Real-Time Scheduling
• First we extend the model of a task with the ability of executing

slower or faster. It responds to messages fast and slow. In the
slow mode a computation step takes twice as long, i.e two time
units. It also signals its release when execution commences and
its completion time when it completes.
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Speed-sensitive task

teiExec ,,iJob
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1,1 +=+= eett
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conttppcpu
i
""
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conttppcpu
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cpu,cont

start

fast

slow

end
i,j

release
j

• If operating frequency is fast, take one time unit per
scheduling step

• If operating frequency is slow, take two time units per
scheduling step
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Power-Aware Real-Time Scheduling
• The DVS algorithm is represented as the  P2ACSR process:

• Scale responds to release and completion signals and triggers the
re-computation of

},{\)Proc||(=
3,2,1 downupfastccc
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SetNewend

SetNewend

SetNewrelease

SetNewrelease

SetNewreleaseScale
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• SetNew decides the lowest  frequency to the current effective
utilization and sends the appropriate signal

SetNewe1,e2,e3 = e1/p1 + e2/p2 + e3/p3  < ½ →(fdown!,4). Scalee1,e2,e3

       + e1/p1 + e2/p2 + e3/p3  ≥ ½ →(fup!,4). Scalee1,e2,e3

• DVSfast and DVSslow describe the processor operating in the high
and low frequency, respectively
 DVSfast ={(power,1,pwfast)}:DVSfast + (fast!,1).DVSfast

+(fdown?,0).DVSslow + (fup?,0).DVSfast

DVSslow ={(power,1,pwslow)}:DVSslow + (slow!,1).DVSslow

+(fdown?,0).DVSslow + (fup?,0).DVSfast

Power-Aware Real-Time Scheduling
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Operating frequency manipulation
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• Recompute
frequency each
time a task is
released or
completed

• Consume pwfast
in fast mode
and pwslow in
slow mode
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Analysis of DVS
• We considered the following set of tasks:

• The algorithm guarantees the task set remains schedulable.

• We computed the expected power consumption for one major
frame (t=p1⋅p2⋅p3) for pr(cont)=1/3 and pwfast=2, pwslow=1.

1413
1032
831

PeriodExecution timeTask

– With DVS minimum power consumption = 1906.66
and   maximum power consumption = 1922.65

– Without DVS power consumption = 2240
– Thus expected savings between 14% and 14.8%.
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Conclusions
• We have developed a timed, probabilistic, process

algebra that allows modeling the power consumption of
system resources

• Various techniques for quantitative analysis of power
properties have been developed and implemented in
the PARAGON toolset
– Probabilistic bounds computation
– Model checking

• Research direction:
– Uniform resource attribute model



74

3 October 2003 ESSES 2003 147

ACSR-VP
for design synthesis and

parametric analysis
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Example: A Start-time Assignment Problem

• Start-time Assignment Problem with Inter-job Temporal
Constraints

• The order of execution of job is not known
• Goal is to statically determine the range of start times for each

job so that jobs are schedulable and all inter-job temporal
constraints are satisfied.

Job1

s1 s1+e1

Job2

s2 s2+e2

[ 4,7 ] [ 3,4 ]

≤ 25

≥ 14

≤ 10≤ 12



75

3 October 2003 ESSES 2003 149

ACSR-VP (ACSR With Value-passing)

• Extends ACSR with
– variables:  (a?x,1).(c!x,1)...
– value passing communications: (c!7,1)… || (c?x,1)...
– parameterized processes: P(x) = (x > 1) → (a!x,1).nil

• Priorities can be specified using expressions
– timed actions:  {(data, y+1)}
– instantaneous events: (signal!8, x+3)

• Syntax

P

A
S
C

::=

::=
::=
::=
::=

NIL  |  a . P  |  A : P  |  P + P  |   P || P
b → P   |   P \ F   |   [ P ] I   |  C
(τ, e)  |  (c?x, e)  |  (c!e1, e2)
∅  |  { S }
(r, e)  |   (r, e), S
X   |   X( v )

→

a
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Symbolic Graph With Assignment (SGA)

P(x) = (a!x,1).Q(x)
Q(y) = (y ≤ 0) → (b!y,1).Q(y+1)
         + (y > 0) → (a!y-1,1).Q(y-1)

P(0) ⇒ (a!0,1).(b!0,1).(a!0,1)…
Q(y)P(0)

true
(a!0,1)
y := 0

y ≤ 0
(b!y,1)
y := y+1

y > 0
(a!y-1,1)
y := y-1

SGA is a directed graph with edges labeled with b,α, and θ, where b is
a Boolean condition, α is an action, and θ is an assignment.

We use SGA to capture the semantics of ACSR-VP
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P(x) = (x < 0) → (b!x,1).nil 
        + (x ≥ 0) → (a!x+1,1).nil Q(y) = (a!y,1).nil

P(x)
x ≥ 0
(a!x+1,1)
Id

x < 0
(b!x,1)
Id

Q(y)

true
(a!y,1)
Id

Symbolic Bisimulation (Informal Description)

XPQ (x,y) = (x < 0 ⇒ false) 
                ∧ (x ≥ 0 ⇒ (true ∧ x+1 = y)) 
                ∧ (true ⇒ (x ≥ 0 ∧ y = x+1))

∼x ≥ 0 ∧ x+1=y 
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Suppose we have an ACSR-VP term System (0,s1,s2) that model a real-ti
me system or a scheduling problem. We generate the Symbolic Graph
with Assignment for System (0,s1,s2)

SGA of 
System (0,s1,s2)

Idle ∅

Schedulability Analysis Using Symbolic
Bisimulation

Given two SGAs, we can apply th
e symbolic weak bisimulation alg
orithm to check the equivalence o
f System (0,s1,s2) and thr idle proc
ess ∅∞, which never deadlocks

That is, finding a condition that
makes a system schedulable is e
quivalent to finding a symbolic
bisimulation relation with a non
-blocking process

≈b
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ACSR-VP approach
• Provides a formal framework for modeling real-time systems, especially

for real-time scheduling problems such as
– Priority Assignment Problem
– Execution Synchronization Problem

• Start-time assignment problem
• Period assignment problem

• Deals with unknown parameters in the problems rather than “yes/no”
answer ( i.e., parametric approach )

• Provides a fully automatic method for the analysis of real-time
scheduling problems

• Takes advantages of existing techniques such as integer programming
and BDD
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Overview of General Approach

Constraint Logic Programming or Theorem Prover

Solution Space (Ranges of Free Variables)

System Described 
in ACSR-VP

Non-blocking Process 
in ACSR-VP

Symbolic Weak Bisimulation

Predicate Equations with Free Variables

SGA SGA
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Example: Start-time Assignment Problem

• Start-time Assignment Problem with Inter-job Temporal
Constraints

• Goal is to statically determine the range of start times for each
job so that jobs are schedulable and all inter-job temporal
constraints are satisfied.

Job1

s1 s1+e1

Job2

s2 s2+e2

[ 4,7 ] [ 3,4 ]

≤ 25

≥ 14

≤ 10≤ 12
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Jobi(t,s) = ( t < s ) → ∅ : Jobi(t+1,s)
              + ( t = s ) → (Start!,1).Job’i (0,t,s)

Modeling With ACSR-VP
• The following fragments of ACSR-VP describe the start time assignment

problem with inter-job temporal constraints

Job’i(e,t,s) = ( e < ei
- ) → {(cpu,1)}: Job’i(e+1,t+1,s)

                  + ( e = ei
- ) → Job’’i (e,t,s)

Job’’i(e,t,s) = ( e < ei
+ ) → {(cpu,1)}: Job’’i(e+1,t+1,s)

                   + ( e ≤ ei
+ ) → (Finished!,1).Idle

Constraint(t) = (start?,1).Constraint1(t) + ∅ : Constraint(t+1)
Constraint1(t) = (Finished?,1).Constraint2(t) + ∅ : Constraint1(t+1)

System(s1,…,sn) = (Job1(0,s1)||…|| Jobn(0,sn)||Constraint(0))\{Start,Finished}

Constraint2(t) = ( t ≤ 12 ) → Constraint3(t,0)
Constraint3(t) = …
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X0 ( t, s1, s2 ) = ( t ≤ 5 ∧ t < s2 ) → X1 ( t+1, s1, s2 )
                     ∧ ( t ≤ 5 ∧ t = s1 ) → X2 ( 0, t+5, s2 )
                     ∧ (   ( t ≤ 5 ∧ t < s1 ∧ X1 ( t+1, s1, s2 ) )
                         ∨ ( t < 5 ∧ t = s1 ∧ X2 ( 0, t+5, s2 ) )  )
X1 ( t, s1, s2 )  = …  X2 …
X2 ( e, s1, s2 ) = …  X1 …

Predicate Equations
• The following fragments of predicate equations are generated

from the symbolic weak bisimulation algorithm with the infinite
idle process

To get the values of s1 and s2, we can ask
a query X0 ( 0,s1,s2 )
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Solution Space
• The solutions to the predicate equations can be

obtained using linear/integer programming techniques,
constraint logic programming techniques, or a theorem
prover.

• The solutions for the previous example are:

Start time S1

Start time S2

3 4 4 5 5

14 14 15 14 15

5

16
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An Automatic Approach
• The disadvantage of symbolic weak bisimulation is that it requires to add

new τ edges into SGA. This will increase the size of predicate equations
• The disadvantage of CLP is that there is no guarantee that it terminates

• Reachability Analysis: Finding a condition that makes a system
schedulable is equivalent to finding a condition that guarantees there is
always a cycle in an SGA regardless of a path taken
– No need to add new τ edges

• Restricted ACSR-VP
– Give syntactic restriction to identify a decidable subset of ACSR-VP

• Control Variable : in finite range;  Values can be changed
• Data Variable : could be in infinite range;  Values cannot be changed
• P(x:0..100,y) = (x<0 ∧ x+y>10) → ∅:Q(x+3, y)

– Generate a boolean expression or boolean equations (i.e., no need to use CLP)
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Conclusions: resources
• We have presented a family of resource-bound

process-algebraic formalisms
– the notion of a resource plays central role

• Abstractions of physical resources
• Resource sharing: coordination and synchronization
• Resource consumption takes time: real-time behavior
• Resource failures: probabilistic behavior

• Sample application domain: analysis of scheduling
problems
– Other domains: protocol analysis, rapid prototyping
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Conclusions: analysis techniques
• Analysis of safety properties by means of deadlock

detection
• Conformance analysis by means of equivalence and

preorder checking
• Probabilistic analysis techniques:

– Model checking
– Resource utilization

• Parametric analysis in ACSR-VP
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Extensions
• Presented: serially reusable resources with access

constraints
• Other types of resources:

– Consumable resources: each resource use depletes
resource stock

– Multi-capacity resources: allow simultaneous access by a
limited number of processes

• Other kinds of resource constraints:
– non-functional constraints such as memory, power

consumption, weight, etc.
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