
1

3 October 2003 ESSES 2003 1

Resource-bound process algebras for
Schedulability and Performance Analysis of

Real-Time and Embedded Systems

Insup Lee1, Oleg Sokolsky1, Anna Philippou2

 1SDRL (Systems Design Research Lab)
RTG (Real-Time Systems Group)

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA

 2 Department of Computer Science
 University of Cyprus

 Nicosia, CY

3 October 2003 ESSES 2003 2

Outline
• Real-Time and Embedded systems
• Resource-bound computation
• Resource-bound formalisms

– ACSR (Algebra of communicating shared resources)
– Schedulability Analysis Problem
– PACSR (Probabilistic ACSR)
– Schedulability analysis for soft real-time systems
– Design framework for embedded systems
– P2ACSR (Probabilistic ACSR with power consumption)
– Scheduling synthesis and parametric schedulability analysis
– ACSR-VP (ACSR with Value-Passing)

• Conclusions

2

3 October 2003 ESSES 2003 3

Real-time, Embedded Systems
• Difficulties

– Increasing complexity
– Decentralized
– Safety critical
– End-to-end timing constraints
– Resource constrained

• Non-functional: power, size, etc.
• Development of reliable and robust embedded

software

3 October 2003 ESSES 2003 4

Properties of embedded systems
• Adherence to safety-critical properties
• Meeting timing constraints
• Satisfaction of resource constraints
• Confinement of resource accesses
• Supporting fault tolerance
• Domain specific requirements

– Mobility
– Software configuration

3

3 October 2003 ESSES 2003 5

Real-time Behaviors
• Correctness and reliability of real-time systems

depends on
– Functional correctness
– Temporal correctness

• Factors that affect temporal behavior are
– Synchronization and communication
– Resource limitations and availability/failures
– Scheduling algorithms
– End-to-end temporal constraints

• An integrated framework to bridge the gap between
concurrency theory and real-time scheduling

3 October 2003 ESSES 2003 6

Scheduling Problems
• Priority Assignment Problem
• Schedulability Analysis Problem
• Soft timing/performance analysis (Probabilistic

Performance Analysis)
• End-to-end Design Problem

– Parametric Analysis
– End-to-end constraints, intermediate timing constraints
– Execution Synchronization Problem
– Start-time Assignment Problem with Inter-job

Temporal Constraints
• Fault tolerance: dealing with failures, overloads

4

3 October 2003 ESSES 2003 7

Scheduling Factors
• Static priority vs dynamic priority

– Cyclic executive, RM (Rate Monotonic), EDF (Earliest
Deadline First)

• Priority inversion problem
• Independent tasks vs. dependent tasks
• Single processor vs. multiple processors
• Communication delays
• Uncertainty in execution times
• Resource use tradeoffs
• End-to-end timing requirements

3 October 2003 ESSES 2003 8

Example: Simple Scheduling Problem

• (period, [e-, e+]), where e- and e+ are the lower and upper bound of
execution time, respectively.

• Goal is to find the priority of each job so that jobs are schedulable
• Considering only worst case leads to scheduling anomaly

(12, [1,2])

(4, [2,3]) (12, [1,3])

(4, [1,2])
(4, [1,2])

J2,2

J3,1 J2,1

J1,1
J1,2

CPU1 CPU2 CPU3

5

3 October 2003 ESSES 2003 9

Example (2)

Let J1,1 > J2,1 and J2,2 > J3,1

Consider worst case execution time for all jobs, i.e.,
Execution time E1,1 = 2, E2,1 = 3, E2,2 = 2, E3,1 = 3

(12, [1,2])

(4, [2,3]) (12, [1,3])

(4, [1,2])
(4, [1,2])

J2,2

J3,1 J2,1

J1,1 J1,2
CPU1

CPU2 CPU3

J1,1

J3,1

4 8 12

4 8 12

J2,1 J1,1 J2,1 J1,1

J3,1 J2,2 J3,1

CPU2

CPU1

3 October 2003 ESSES 2003 10

Example (3)

With same priorities, J1,1 > J2,1 and J2,2 > J3,1

Let execution time E1,1 = 1, E2,1 = 1,, E2,2 = 2, E3,1 = 3

(12, [1,2])

(4, [2,3]) (12, [1,3])

(4, [1,2])
(4, [1,2])

J2,2

J3,1 J2,1

J1,1 J1,2

CPU1 CPU2 CPU3

So with the priority assignment of J1,1 > J2,1 and J2,2 > J3,1,

jobs cannot be scheduled and scheduling problems are in general NP-hard

J1,1

J3,1

4 8 12

4 8 12

J2,1 J1,1 J1,1

J2,2

CPU2

CPU1

J3,1 missed its deadline

6

3 October 2003 ESSES 2003 11

End-to-end Design Problem
• Given a task set with end-to-end constraints on inputs and

outputs
– Freshness from input X to output Y (F(Y|X)) constraints:

bound time from input X to output Y
– Correlation between input X1 and X2 (C(Y|X1,X2))

constraints: max time-skew between inputs to output
– Separation between output Y (u(Y) and l(Y)) constraints:

separation between consecutive values on a single output Y
• Derive scheduling for every task

– Periods, offsets, deadlines
– priorities

• Meet the end-to-end requirements
• Subject to

– Resource limitations, e.g., memory, power, weight, bandwidth

3 October 2003 ESSES 2003 12

Job1

s1 s1+e1

Job2

s2 s2+e2

[5,7] [3,4]

≤ 25

≥ 14

≤ 10≤ 12

Start-time Assignment Problem with Inter-job Temporal Constraints

Goal is to statically determine the range of start times for each job
so that jobs are schedulable and all inter-job temporal constraints
are satisfied.

Example: Start-time Problem

7

3 October 2003 ESSES 2003 13

Example: power-aware RT scheduling

• Dynamic Voltage Scaling allows tradeoffs between
performance and power consumption

• Problem is how to minimize power consumption while
meeting timing constraints.

• Example: three tasks with probabilistic execution
time distribution

1423

1032

831

PeriodWorst-case execution timeTask

3 October 2003 ESSES 2003 14

Our approach and objectives
• Design formalisms for real-time and embedded

systems
– Resource-bound real-time process algebras
– Executable specifications
– Logic for specifying properties

• Design analysis techniques
– Automated verification techniques
– Parameterized end-to-end schedulability analysis

• Toolset implementation

8

3 October 2003 ESSES 2003 15

Resource-bound computation
• Computational systems are always constrained in their

behaviors
• Resources capture physical constraints
• Resources should be supported as a first-class notion

in modeling and analysis
• Resource-bound computation is a general framework

of wide applicability

3 October 2003 ESSES 2003 16

Resources
• Resources capture constraints on executions
• Resources can be

– Serially reusable:
• processors, memory, communication channels

– Consumable
• power

• Resource capacities
– Single-capacity resources
– Multiple-capacity resources
– Time-sliced, etc.

9

3 October 2003 ESSES 2003 17

Process Algebras
• Process algebras are abstract and compositional

methodologies for concurrent-system specification
and analysis.

• “Design methodology which systematically allows to
build complex systems from smaller ones” [Milner]

3 October 2003 ESSES 2003 18

Process Algebras
• A process algebra consists of

– a set of operators and syntactic rules for constructing
processes

– a semantic mapping which assigns meaning or
interpretation to every process

– a notion of equivalence or partial order between
processes

– a set of algebraic laws that allow syntactic manipulation
of processes.

• Ancestors
– CCS, CSP, ACP,…
– focus on communication and concurrency

10

3 October 2003 ESSES 2003 19

Advantages of Process Algebra

 A large system can be broken into simpler subsystems and then
proved correct in a modular fashion.

1 A hiding or restriction operator allows one to abstract away
unnecessary details.

2 Equality for the process algebra is also a congruence relation;
and thus, allows the substitution of one component with another
equal component in large systems.

3 October 2003 ESSES 2003 20

ACSR

11

3 October 2003 ESSES 2003 21

ACSR
• ACSR (Algebra of Communicating Shared Resource)

– A real-time process algebra which features discrete
time, resources, and priorities

– Timeouts, interrupts, and exception handling
– Two types of actions:

• Instantaneous events
• Timed actions

3 October 2003 ESSES 2003 22

Events
• Events represent non-time consuming activities

– events are instantaneous: crash

– point-to-point synchronization

12

3 October 2003 ESSES 2003 23

Events
• Events

– have priorities:

– have input and output capabilities

 or

)p?,e(
1

)p,!e(
2

)10,job(
10

)p,e(
1)p,e(

2

3 October 2003 ESSES 2003 24

Actions
• Actions represent activities that

– take time
– require access to resources
– each resource usage has priority of access

– each resource can be used at most once
– resources of action A:
– idling action:

• Examples:
{(cpu,2}}, {(cpu1,3),(cpu2,4)},
{(semaphore,5)}

() (){ }
2211

,,, prprA =

!
()A!

13

3 October 2003 ESSES 2003 25

Syntax for ACSR processes
• Process terms

• Process names

C

Pb

FP

P

SRQP

PP

PP

Pna

PA

NILP

I

a

t

|

|

\|

][|

),,(|

|||

|

).,(|

:|

::

!

"

+

=

PC
def

=

3 October 2003 ESSES 2003 26

Constant and Nil

PC
def

= C is a constant that
represents the process
algebra expression P

P = NIL
P does nothing

14

3 October 2003 ESSES 2003 27

Prefix Operators
P performs timed
action A and then

behaves as Q

P = A:Q

P = (a,n).Q P performs event
(a,n) and then
behaves as Q

EXAMPLE

Operator).1,hangup(:)}2,phone{(=Talk

Talk).1,pickup).(1,ring(=Operator
def

3 October 2003 ESSES 2003 28

Choice
P can choose

nondeterministically
to behave like Q or R

P = Q+R

EXAMPLE

'').1,(

').1,(

CARgoright

CARgoleftCAR
def

+

=

15

3 October 2003 ESSES 2003 29

Parallel Composition
P is composed by Q and R
that may synchronize on

events and must synchronize
on timed actions

P = Q || R

EXAMPLE

CallerOperatorConverse

Callerhangup

phoneringCaller

Operatorhangup

phoneringOperator

def

def

def

||

).1,!(:

)}3,').{(2,!(

).1?,(:

)}2,).{(1?,(

=

=

=

3 October 2003 ESSES 2003 30

Scope
Q may execute for at most t
time units. If message a is

produced, control is delegated
to R, else control is delegated to
S. At any time T may interrupt.

)T,S,R(Q=P a

t

def

!

EXAMPLE

NIL!.finish+Run:)}1,run{(=Run

)rkBeepedToWo

GoToWork,

,eGoForCoffe(Run=Runner

def

finish

10

def

!

16

3 October 2003 ESSES 2003 31

Hiding/Restriction
P behaves just as Q but

resources in I are no longer
visible to the environment

P = [Q]I

EXAMPLE

phone]Home[||PayPhone||Caller

P = Q\F P behaves just as Q but
labels in F are no longer

visible to the environment

3 October 2003 ESSES 2003 32

ACSR semantics
• Gives an unambiguous meaning to language expressions.

• Semantics is operational, given by a set of semantic
rules.

• Example of a labeled transition system:

P P P P P
IC

0 1 2 3 4

!
" #" " #" " #""" " #""" " #"

N C gate, train gate, train
 ...

{ } { }

ACSR

specification

Semantic

rules

Labeled
transition
system

17

3 October 2003 ESSES 2003 33

ACSR semantics
• Two-level semantics:

– A collection of inference rules gives the unprioritized
transition relation

– A preemption relation on actions and events disables
some of the transitions, giving a prioritized transition
relation

PP !"#"
$

PP !"#" $
%

3 October 2003 ESSES 2003 34

Unprioritized transition relation

() ()
PPpa

pa
!! "!

#
,

:,
 ActI

PPA
A
!"!

#

:
 ActT

• Prefix operators

PQP

PP

!"#"+

!"#"
$

$

 ChoiceL

• Choice

()

()
QPQP

PP
pa

pa

|||| ,

,

!"" #"

!"" #"
 ParIL

• Parallel

18

3 October 2003 ESSES 2003 35

Unprioritized transition relation (II)

() () !="
##$$ %$

#$%$#$%$
& 21

||||

21

21

AA
QPQP

QQPP
AA

AA

'' ParT

• Resource-constrained execution

() ()

()
QPQP

QQPP
pp

papa

!!""" #"

!"" #"!"" #"
+ ||||

21

21

,

,!?,

$
 ParCom

• Priority-based communication

(){ }12 |0,
][][21

1

AIrrA
PP

PP

I

AA

I

A

!"=
#$$ %$

#$%$
&

 CloseT

• Resource closure

3 October 2003 ESSES 2003 36

Examples
• Resource conflict

• Processes must provide for preemption

• Unprioritized transitions:

QrQ != :)}2,{(NILQP ~||PrP != :)}1,{(

PPrP ::)}1,{(!+"= QQrQ ::)}2,{(!+"=

QP ||

QP ||! QP !||

!

)}1,{(r)}2,{(r

19

3 October 2003 ESSES 2003 37

Unprioritized transition relation (III)

)0(
),,(),,(1

>
!"#$#!

"#$#

%

t
SRQPSRQP

PP
a

t

Aa

t

A

 ScopeCT

)0(
),,(),(

),(

>
!!"!#

$!! "!
t

QSRQP

PP
na

t

na

%
 ScopeE

)0,)((
),,(),,(

>!
"#$%$"

#$%$
tael

SRQPSRQP

PP
a

t

ea

t

e

 ScopeCI

)0(
),,(

=
!"#"$

!"#"
t

RSRQP

RR
a

t

%

%

 ScopeT

)0(
),,(

>
!"#"$

!"#"
t

SSRQP

SS
a

t

%

%

 ScopeI

3 October 2003 ESSES 2003 38

Example
• A Scheduler

SchedSched :!=

).,.,().1,(

max
SchedrcSchedkillNILtc y

t!+
"#

(...): . . . (...):(...): 0

(tc,1)

1maxmax

yy

t

y

tSched !""!"!" ###

$
%%%

%%%

∅ Sched

rc

Sched

rc kill

Sched

20

3 October 2003 ESSES 2003 39

Preemption relation

!" p

• To take priorities into account in the semantics we
define the relation α is preempted by β :

)()(),(!"#"#$
rr

r %&'

)()(),(!"#"!$
rr

r <%&

)}5,(),7,{()}5,(),3,{(2121 rrrr p

)()(!"#" $

• An action α preempts action β iff
– no lower priorities:
– some higher priorities:
– it contains fewer resources
e.g.

)1,()}4,{(!pr

• An event preempts an action iff
– τ with non-zero priority preempts all

actions e.g.

)3,!()1,!(aa p

• An event preempts another event iff
– same label, higher priority e.g.

3 October 2003 ESSES 2003 40

Prioritized transition relation
• We define

 when
– there is an unprioritized transition

– there is no such that

• Compositional

PP !"#" $
%

PP !"#"
$

PP !!"#"$!" p

21

3 October 2003 ESSES 2003 41

Example

• Unprioritized and prioritized transitions:

PPrP ::)}1,{(!+"= QQrQ ::)}2,{(!+"=

QP ||

QP ||! QP !||

!

)}1,{(r)}2,{(r
p

QP ||

QP !||

!

)}2,{(r

π

π

3 October 2003 ESSES 2003 42

Example (cont.)
• Resource closure enforces progress

[]
}{||
r

QP

[]
}{||
r

QP! []
}{||
r

QP !

)}1,{(r)}2,{(rp
)}2,{(r

π

)}0,{(r

p

[]
}{||
r

QP

[]
}{||
r

QP !

22

3 October 2003 ESSES 2003 43

Compositionality of preemption relation
• Given

12

211

212

211

12

211

).2,(

).1,().2,(

).2,().3,(

).5,().3,(

).2,(

).1,().2,(

SaR

SaSaR

TbTaQ

TbTaQ

SaP

SbSaP

=

+=

+=

+=

=

+=

• Given P1 and P2, can they be treated as equivalent?
 That is, for all Q, P1 || Q = P2 || Q?

• How about R1 and R2?

3 October 2003 ESSES 2003 44

• This requirement was captured formally through
 the notion of bisimulation, a binary relation on
 the states of systems.

• Observational equivalence is based on the idea
 that two equivalent systems exhibit the same
 behavior at their interfaces with the environment.

• Two states are bisimilar if for each single
 computational step of the one there exists an
 appropriate matching (multiple) step of the other,
 leading to bisimilar states.

A
a

B

A

C

ED

C D

B

a

b c

cb

a

∼

Bisimulation

23

3 October 2003 ESSES 2003 45

Prioritized strong equivalence

• An equivalence relation is congruence when it is
preserved by all the operators of the language.

• This implies that replacement of equivalent
components in any complex system leads to equivalent
behavior.

• Strong bisimulation over is a
congruence relation with respect to the ACSR
operators.

PP !"#" $
%

!~

3 October 2003 ESSES 2003 46

Equational Laws

• Equational laws are a set of axioms on the syntactic
level of the language that characterize the
equivalence relation.

• They may be used for manipulating complex systems
at the level of their syntactic (ACSR) description.

• There is a set of laws that is complete for finite state
ACSR processes:

...

)||(||||)||(

RQPRQPPQQP

PPPPNILP

=+=+

=+=+

24

3 October 2003 ESSES 2003 47

Equational Laws

• ACSR-specific laws for scope and resource closure:

()
()

()()

[] { }
[] []II

I

a

a

t

a

t

a

t

a

t

a

t

PePe

AIrrAPAAPA

RSRQP

aeltSQeSRQPe

aeltSSRQPeSRQPe

tSSRQPASRQPA

..

)(|)0,(:)(:

),,(

)(0 if.,),,(.

)(0 if),,(.),,(.

0 if),,(:),,(:

12211

0

1

=
!"=#=

=$

=%>+=$

&%>+$=$

>+$=$!

'

()

3 October 2003 ESSES 2003 48

Laws (1)

!
!
!
!
!
!
!
!
!
!

"

#

+

$+$+

$+$+

=

++

=

=

=+

++=++

+=+

=+

=+

%

% % %

% % %

%

%%%%

=

&&

& & &

& & &

/='
&&

&&&&

)()(

,,

0)()(
,,

)||)).(()(,(

)||):((

)):(||(

)||(:):(

)::(||).:(

)||(||||)||(

||||

 if

)()(

NIL

lj

ki

flel

LlJj

ljlj

Ll Ii

l

Jj

jjiil

Jj Kk Ll

llkkjj

BA
KkIi

kiki

Ll

ll

Kk

kk

Jj

jj

Ii

ii

SQfe

SQePAf

SfRBQe

RPBA

SfRBQePA

RQPRQP

PQQP

QQP

RQPRQP

PQQP

PPP

PP

(()

*+**+

,,

p

Par(3)

Par(2)

Par(1)

Choice(5)

Choice(4)

Choice(3)

Choice(2)

Choice(1)

25

3 October 2003 ESSES 2003 49

Laws (2)

PP

FEPFEP

FaaFPna

FaaFPnaFPna

FPAFPA

FQFPFQP

F

tSSRQ

SRQPSRQPSRQPP

RSRQP

beltSQeSRQPe

beltSSRQPeSRQPe

tSSRQPASRQPA

b

t

b

t

b

t

b

t

b

b

t

b

t

b

t

b

t

b

t

=/

!=

"=

#=

=

+=+

=

>=$

$+$=$+

=$

=%>+=$

&%>+$=$

>+$=$

'

'

0\

\\\

, if NIL\)).,((

, if)\).(,(\)).,((

)\(:\):(

)\()\(\)(

NIL\NIL

0 if),,(NIL

),,(),,(),,()(

),,(

)(0 if)).(,(),,(.

)(0 if)),,(.(),,(.

0 if)),,((:),,(:

2121

0

1

1

()

Scope(6)

Scope(5)

Scope(4)

Scope(3)

Scope(2)

Scope(1)

Res(7)

Res(6)

Res(5)

Res(4)

Res(3)

Res(2)

Res(1)

3 October 2003 ESSES 2003 50

Laws (3)

PXIUUEE

EPXrecEXPXrec

QXrecPQXXPQP

XPXrecPPXrec

EPEP

PP

PP

PePe

AIrrAPAAPA

QPQP

Ji

iJ

Ji

iJ

IJ

UJ

Ji

Ui

II

JIJI

II

III

III

I

Ji

in guarded is and finite is , , where

)]\[.()]\[.(

. then in guarded is and]/[If

]/. [.

\][]\[

][

][]][[

].[].[

)}(|)0,{(where][:)(]:[

][][][

NIL]NIL[

0

2211

UU
!!

"!

/

#

==

=+

==

=

=

=

=

=

$!=#=

+=+

=

%%

&

Rec(3)

Rec(2)

Rec(1)

Close(7)

Close(6)

Close(5)

Close(4)

Close(3)

Close(2)

Close(1)

26

3 October 2003 ESSES 2003 51

Soundness of the laws
• Theorem:

if P=Q then

• Proof approach:
– Construct the set of prioritized derivations for

each P
– Prove that if P=Q, then the sets of derivations

are the same

QP !~

3 October 2003 ESSES 2003 52

Completeness of the laws
• Theorem:

if P and Q are finite-state processes and
then P=Q

QP !~

27

3 October 2003 ESSES 2003 53

Schedulability Analysis

3 October 2003 ESSES 2003 54

Schedulability Analysis
• Can all real-time tasks meet their deadlines?

• Factors include
– Delay caused by synchronization between tasks
– Delay caused by precedence between tasks
– Delay caused by resource constraints
– Scheduling disciplines and synchronization protocols

28

3 October 2003 ESSES 2003 55

Outline
• ACSR-VP: ACSR with value-passing and dynamic

priorities
• Specifying real-time systems using ACSR-VP

– Specifying task models
– Specifying scheduling disciplines

• Analyzing real-time systems using bisimulation
– Specification correctness
– Schedulability analysis

• Schedulability analysis using VERSA (ACSR Toolkit)

3 October 2003 ESSES 2003 56

ACSR (Algebra of Communicating Shared Resources)

• A timed process algebra based on CCS with notions of time,
resources and priorities

• Discrete time and dense time
• Static priorities
• Actions: Instantaneous Events + Timed Actions

– Timed action: a set of (resource, priority) pairs
{(cpu, 4),(data, 3)}, {(cpu1, 2),(cpu2, 3)}, ∅

– Instantaneous event: (event, priority) pair
(signal, 2), (chan, 2) (τ, 3)

• Real-time operators for timeout, interrupt, exception
• Graphical specification language (GCSR)
• Toolkit (VERSA)
• No value passing communication, no variables for priorities

29

3 October 2003 ESSES 2003 57

ACSR-VP (ACSR with Value Passing)

• Extends ACSR with variables and value passing
communications

• Values can be specifies using expressions
– Timed Actions:

{(cpu, x), (data, y + 1)}
– Instantaneous events:

(signal !8, x) – output
(chan?y, 2) – input

• Dynamic priorities
• Exchange priority information without global variables

3 October 2003 ESSES 2003 58

ACSR-VP Syntax

PxC
xC

IP

FP

P

PP

PP

be
Pbe

Pe

PA

NILP

I

=

+

!

=

)(
 process a be todefined name process

)(|

hiding resource\\|

nrestrictioevent \|

close resource][|

ncompositio parallel|||

choice|

)expressionboolean :(
process lconditiona

|

prefixevent ousinstantane.|

prefixaction timed:|

nothing does that process::

21

21

30

3 October 2003 ESSES 2003 59

ACSR-VP Example
Preemptable and Non-preemptable Jobs
• Both jobs execute c time units on cpu with priority π
• Non-preemptable job: once it acquires cpu, it

executes to completion

• Preemptable job: its execution can be preempted by
actions on cpu of other jobs with higher priorities

)1(Exec:)},{()()(Exec

)0(ExecJob:Job

11

111

+!<

+"

=

=
scpucss

def

def

#

)(Exec:
)1(Exec:)},{()()(Exec

)0(ExecJob:Job

2

22

222

s
scpucss

def

def

!+
+"<

+!

=

=
#

3 October 2003 ESSES 2003 60

Unprioritized Operational Semantics

[] []

[] []

[]

() ''

','
ParC2

)()((
''

','
ParT

).,(ActI3

).,!(ActI2

/).,?(ActI1

P:AAct

,

),?(),!(

21

),(

),!(

12

),?(

A

21

21

12

QPQP

QQPP

AA
QPQP

QQPP

PPe

PPeel

xnPPexl

P

nm

nklmkl

AA

AA

e

eel

enl

!! "!

!!! "!!!! "!

#=$
!! "!

!"!!"!

!! "!

!!!! "!

!!! "!

!"!

+

%

&

'&

''

'

((

'&

''

'

31

3 October 2003 ESSES 2003 61

Unprioritized Operational Semantics

[] []

[] []

IPIP

PP

IrApr
IPIP

PP

PP

PP

AIrrA
PP

PP

e

e

A

A
I

e

I

e
I

AA

I

A

\\\\

'
HideI

})|),({(
\\\\

'
HideT

'

'
CloseI

)})(|)0,{((
'

'
CloseT

'

12
21

1

!"!

!"!

#$
!"!

!"!

!"!

!"!

%$=
!! "!

!"!
&

'

3 October 2003 ESSES 2003 62

Preemption
A preemption relation is defined for two any actions α

and β, denoted read β preempts α .
Examples:

,!" p

)2,()}5,(),2,{(
)2,(,1)(
)2,(a,1)(
)5,(a,2)(

)}7,{()}1,(),2,{(
)}7,{()}0,(),2,{(

)}3,(),7,{()}5,(),2,{(
)}5,(),7,{()}5,(),2,{(

21

121

121

2121

2121

!
!!

p

p

p

p

p

p

p

p

rr

b

a

rrr

rrr

rrrr

rrrr

•
•

/•
•

/•
•

/•
•

32

3 October 2003 ESSES 2003 63

Prioritized Operational Semantics
The operational semantics of ACSR-VP, the prioritized

transition relation is defined as follows:
!

"
 #$#

2

3

2

3

1

2

21

:n transitiodPrioritize

:n transitiotized Unpriori

:)}3,{(:)}2,{(:Example

such that " no is there(2)
' (1) iff '

PP

PP

PP

PcpuPcpuP

PP
PPPP

)}{(cpu,

)}{(cpu,

)}{(cpu,

def

!

"

#
!

#

"#

$$$ %$•

&
'
(

$$$ %$

$$$ %$
•

+=

$%$
$%$$%$

p

3 October 2003 ESSES 2003 64

Modeling a Real-Time System
• A real-time system consists of a set of tasks running in parallel

under a specific scheduling discipline
• A task is a process composed of a sequence of jobs executed

serially
• A task can be

– Independent or dependent
– Preemptable or non-preemptable
– Periodic or aperiodic

• Possible timing constraints of a task are:

 taskaperiodicfor

 timesarrival-inter maximum and Minimump ,p

 taskperiodicfor Periodp
deadline and timeExecution d c,

 timeStartingb

21

33

3 October 2003 ESSES 2003 65

Specification of a real-Time System
A real-time system is specified by the process RTS:

Tasks are specified by the processes Ti :

• Process Jobi : internal characteristics, e.g.,:
– resource requirements
– synchronization

• Process Activatori : external timing attributes, e.g.,
– periodic or aperiodic
– period and deadline

• Events start, end are synchronization events:
– start: activate jobs
– end: mark deadlines of jobs – deadlock if unsuccessful

[]
R

def

n21
T T T RTS L=

},{\)Activator Job(T endstartii

def

i =

3 October 2003 ESSES 2003 66

Sample Activators

nmm
def

nm

def
n

d

def

def

def

def

n

where

endstart

endstart

!++!+!=!

!!=!

!

!=

!=

!

!=

!=

+

"

L

L

K

1..

pd-p

d

b

21

d-p

d

b

units) timefor (idling ::

Activator' :

).2,!(:).1,!(Activator'

Activator' :Activator

)p ,p d, (b, task withaperiodicAn 2.Activator

Activator' :

).2,!(:).1,!(Activator'

Activator' :Activator

p) d, (b, task withperiodicA 1.Activator

21

34

3 October 2003 ESSES 2003 67

Sample Jobs
Job 1
• preemptable, independent jobs

running on cpu
priority π and execution time c:

• s for accumulated execution time
• t for the elapsed time
• Job can response to end event only when its current execution is

finished

Job).1?,(Wait:it Wa

Wait)(
))1,(Exec:

)1,1(Exec:)},({)(),(Exec

)0,0(Exec).1?,(Job: Job

end

cs
ts

tscpucsts

start

def

def

def

+!=

"=+
+!+

++"<=

+!=

#

3 October 2003 ESSES 2003 68

Sample Jobs
Job 2
• nonpreemptable, independent jobs

on multiprocessors cpu1, … , cpuk
with priorities π1, …, πk and execution time c:

• A job can be executed on any of the processors
• Once a processor is assigned to a job, the job

executes on that processor until completion

.Job)1?,(Wait : Wait

 Wait):)},({(Exec

Exec.)1?,(Job: Job

1

end

cpu

start

def

c

i

ki

i

def

def

+!=

=

+!=

"
##

$

35

3 October 2003 ESSES 2003 69

Sample Jobs
Job 3
• dependent jobs on processor cpu with priority π and execution time c

a single preemptable critical section of length cs on resource data (with priority π
’) after at c’ time units execution:

• P and V operations are modeled by the processes P and V with events (p?,0) and
(v?,0)

• When s equals c’, Exec waits for (p?,0) to enter the critical section CS(s,t)

V : P0V

P : V0P

),(Exec).0,!()'(

))1,(CS:

)1,1(CS:)},({()'(),(CS

.Job)1?,(Wait : Wait

Wait)(

))1,(Exec:

),(CS).0,!(()'(

))1,(Exec:

)1,1(Exec:)}({(cpu,)c'sc(sExec

Exec(0,0).)1?,(Job: Job

!+=

!+=

"+=+

+!+

++"+<=

+!=

"=+

+!+

"=+

+!+

++"=/#<=

+!=

).(v?,

).(p?,

tsvcscs

ts

tscpucscsts

end

cs

ts

tspcs

ts

ts

start

def

def

def

def

def

def

$

$

3 October 2003 ESSES 2003 70

Scheduling Disciplines

[]

i

def

i

ii

def

i

i

i

imaxi

def

i

ii

def

i

ii

def

i

cpu
n

def

n

def

max

imaxi

def

i

endstart

end

c)(s

ts

ts

tcpucsts

start

endstart

t

i Activator:).2,!(:).1,!(Activator

Job).1?,(Wait:Wait

 Wait

)1,(Exec:

)1,(Exec:

))}d(d,{()(),(Exec

)0,0(Exec).1?,(Job:Job

 },{\)Activator Job(T

T T TEDFSys

})d ,,max{d (1 d where

)d(d Priority

1Activator 1 Job T Tasks

First DeadlineEarliest

d-pd

}{
21

1

!!=

+!=

"=+

+!+

+

##"<=

+!=

=

=

+=

##=•

+=•

L

L

$

36

3 October 2003 ESSES 2003 71

Other Time-Driven Scheduling Disciplines

})c,,cmax{1(c where

)c()d(dFirstLaxity Least

)c(cFirst Time RemainingShortest

ddMonotonic Deadline

1 n

def

max

iimax

def

i

imax

def

i

imax

def

i

st

s

L+=

!!!!=

!!=

!=

"

"

"

3 October 2003 ESSES 2003 72

The Priority Inversion Problem

37

3 October 2003 ESSES 2003 73

Task parameters

4:prioritymax

123:priority

10c'2c'2c':CS oflength

1cs5cs3cs:CS of start time:Constants

30d30d30d:deadline

13c8c6c: timecomp.

0r10r5r:ready time

processor:Resources

321

321

321

321

321

321

=

===

===

===

===

===

===

max

cpu

!

!!!

3 October 2003 ESSES 2003 74

Priority Inheritance Protocol
()[]
()

section criticalin timeExecution cs

section critical enetringfor Timec'

job a of timeExecution c

PriorityptyT of Parameters

V()(

)V(

V(:P).1,!(V(

P:)(V).1,?).(,?()(.V1P

).2,!(:).1,!(:Activator

)(Exec).1?,()csc'(

),(CS:

),(CS).1,?(

),1(CS:)},({)csc'(),(CS

)(Req:),(CS).,!()(Req

Job).1?,(Wait:Wait

Wait)c(

))(Exec:)(Req).,!(()cs(

))(Exec:

)1(Exec:)},({)csc()(Exec

)0,0(Exec).1?,(Job:Job

},{\Activator JobT

},,,{\P T T TPIPSys

Events Passing-Priority 1Activator 3 Job T

dr

}{
321

i

i

i

ii

def
max

def

def

i

iii

i

i

iii

def

i

iiiii

def

i

ii

def

i

i

iiiii

i

iiii

def

i

ii

def

i

ii

def

i

cpu

def

def

i

max))maxx

xx,1).(chan!max)((x(req?x,1).

max)vmax)

xxpxreqx)(p?x,

endstart

svs

s

newsnewchan

scpuss

ssps

end

s

ssreqs

s

scpusss

start

endstart

vpchanreq

ii

!"+
!>+

#+=

#++=

###=

!+=+

#+

+

+!+<=

#+=

+#=

!=+

#+!=+

#+

+!=/$<=

+#=

=

=

++=

%

&

&

&&&

&&&

&&

&

38

3 October 2003 ESSES 2003 75

Traces of tasks

section) criticalin :(

P)}1,{({}{}26

P)}1,{({}{}25

P{})}2,{({}24

P!{} ?)},2,{({}23

V(2),2?,2?{})}2,{(,2!,2!{}22

P{})}2,{({}21

P{})}2,{({}20

P{})}2,{({}19

P{})}2,{({}18

P{})}2,{({}17

P{}{})}3,{(16

P{}{})}3,{(15

P,!{}{} 314

V(3),3?{}{})}3,{(,3!13

P,! ?)},3,{({}{}12

V(3))}3,{({}{}11

V(3))}3,{({}?,{}10

V(3))}3,{({}{}9

V(3))}3,{({}{}8

V(3),3!,3?)}3,{(,3?{}{},3!7

V(1){}{})}3,{(6

V(1){}{}35

V(1))}1,{({}{}4

V(1))}1,{({}{}3

V(1))}1,{({}{}2

V(1),1?,1?)}1,{(,1!,1!{}{}1

P)}1,{(?,{}{}0

P processT processT processT processTime 321

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cpu

cpu

cpu

vvcpu

preqcpupreq

cpu

cpu

cpu

cpu

cpu

cpu

cpu

v)},v?{(cpu,

pcpup

vvcpu

cpu

cpustart

cpu

cpu

chanreqcpuchanreq

cpu

)}pu,start?,{(c

cpu

cpu

cpu

preqcpupreq

cpustart

3 October 2003 ESSES 2003 76

Weak Bisimulation

ACSR.for)congruence anot (though relation eequivalenc

an isIt "."over on bisimulatiak largest we theis Def.

.)','(and ',' somefor then,, ' if 2.

and ,)','(and ',' somefor then,, ' if 1.

,action any for and),(for if,on bisimulati weak a is

relation binary any , "" systemsition given tran aFor Def.

integer.arbitrary represents _),(in _"" where

,')()()()(

if ' then , If Def.

. from of soccurrence all deletingby

 derived sequence theis}){(ˆ then , If Def.

*__),(*__),(*__),(*__),(

*

n1

**

1

!!

"
"

"
"

#"##"#

"

#

""

!

#

$%

&'($(

&'($(

&&

$

(($(($((($((($(($((($(

'&=

)&&

rQPPPPQQ

rQPQQQPP

DrQP

r

PP

EEDt

t

DtDt

n

t

L

K

39

3 October 2003 ESSES 2003 77

Analyzing Real-Time Systems in ACSR-VP

• Two types of analyses
– Validation
– Schedulability analysis

• Basic idea
– Checking weak bisimulation ≈π
– Searching deadlocked states

• Practical Issues
– Ensure that the EDFSys and PIPSys processes are

finite state
– Translate ACSR-VP processes to ACSR processes and

use VERSA, the toolkit for ACSR

3 October 2003 ESSES 2003 78

Validating the EDFSys Specification
Construct a correctness specification, EDFSpec, that is sequential

and easy to inspect
Verify that EDFSys ≈π EDFSpec

!
""

++##

++##

++##

$
$
$
$
$

%

$$
$
$
$

&

'

++++

##(
<)<+

+++*(
<)=+

(
=)<+

(
=)=

=

=

ni

iiiiii

imax

iiii

iiiiii

iiii

iiii

iiii

iiii

def

nn

cpu

tststs

tcpu

ts

tststs

ts

ts

tsts

ts

tsts

1

1111

1111

1111

11

}{

def

),1,,1,1,1,,(S:

))}d(d,{(

)dc(

),1,,1,,1,,(S:

)pc(

NIL).1,(

)dc(

),,,0,0,,,(S).1,(

)pc(

),,,S(

)]0,0,,0(S[EDFSpec

LL

LL

LL

L

L

+

+

40

3 October 2003 ESSES 2003 79

Schedulability Analysis
Lemma 1 If EDFSys is deadlock free, then it is

schedulable.
Lemma 2 If

then EDFSys is deadlock free.
Lemma 3 If PIPSysis deadlock free, then it is

schedulable.
Lemma 4 If

then PIPSys is deadlock free

,}\{\EDFSys !
"#$cpu

,}\{\PIPSys !
"#$cpu

3 October 2003 ESSES 2003 80

Example 1
• Consider an instance EDFSys1 of EDFSys where:

Task T1: c1 = 1, d1 = 2, p1 = 3
Task T2: c2 = 2, d2 = 3, p2 = 3

• The following sufficient condition for schedulability from [Liu
and Lay 73] is not satisfied:

• The following equation

is satisfied, i.e., the task system is schedulable.
More specifically, we have

1
d

c

d

c

2

2

1

1 !+

,}\{\EDFSys !
"#$cpu

EDFSys1

 EDFSys1
,3)({(cpu,3)}

,3)({(cpu,3)}{(cpu,2)},2)(,2)(

!
"

!

!
"

!!!
"

!
"

##$#### $#

##$#### $#### $###$###$#

41

3 October 2003 ESSES 2003 81

Example 2
• Consider another instance EDFSys2 of EDFSys where:

Task T1: c1 = 2, d1 = 2, p1 = 3
Task T2: c2 = 2, d2 = 3, p2 = 3

• The equivalence

is false and the task system is therefore not schedulable.

• More specifically, we have

,}\{\EDFSys2
!

"#$cpu

NIL

 EDFSys2
{(cpu,3)}

,3)({(cpu,2)}{(cpu,2)},2)(,2)(

!

!
"

!!!
"

!
"

$#

##$#### $#### $###$###$#

3 October 2003 ESSES 2003 82

Summary
• The ACSR paradigm:

– Formalism for modular specification of real-time
systems along with scheduling disciplines

– Formal characterization of the schedulability analysis in
process algebra

• Automated schedulability analysis
– Provide techniques for detecting timing anomalies

before an implementation is developed
– Integrate into a methodology for engineering reliable

real-time systems
• Tools:

– GCSR (Graphical ACSR)
– XVERSA: VERSA and GCSR

42

3 October 2003 ESSES 2003 83

Probabilistic ACSR
for soft real-time scheduling

analysis

3 October 2003 ESSES 2003 84

PACSR (Probabilistic ACSR)
• ACSR extension for probabilistic behaviors.

• Objective :
– formally describe behavioral variations in systems that

arise due to failures in physical devices.

• Since failing devices are modeled by resources we
associate a failure probability p(r) with every
resource r
– at any time unit, r is down with probability p(r) or up

with probability 1-p(r)
– failures are assumed to be independent

43

3 October 2003 ESSES 2003 85

Syntax for PACSR processes
• Similar to ACSR

• Process terms

• Process names

• Distinction: For all resources r we write for the
failed occurrence of resource r. Thus, an action can
specify access to failed resources.

CPbFPPSRQP

PPPPPnaPANILP

I

a

t
 | | \ |][|),,(|

 || | |).,(| : | ::

!"

+=

PC
def

=

r

3 October 2003 ESSES 2003 86

EXAMPLE

PlaceCallphone :)}1,{(

Resource failures and recoveries
• An action containing resource r cannot be taken when

r is failed, i.e.,

• Failed resources:

• Recoveries are modeled by using failed resources in
actions

NILPAArr =!" :)(# failed, is

)(1)(, rrr prpr !=

eUsePayPhonphone :)}1,{(+

44

3 October 2003 ESSES 2003 87

PACSR Semantics
• Semantics of a PACSR process is given in terms of

probabilistic transition systems: some transitions are
labeled with probabilities and others with
actions/events.

• Labeled Concurrent Markov Chain (LCMC)

τ

τ

a

c

1/2

1/2

1/3

2/3

b

d

3 October 2003 ESSES 2003 88

PACSR Semantics
• Configurations are pairs of the form (P,W), where

– P is a PACSR process, and
– W is a world capturing the state of resources as follows

• A configuration (P,W) is characterized as
– Probabilistic, if P requires resources whose state is not in W.

Example: ({r1,1}:Q , {r2})

– Nondeterministic, if all resource information required by P is
in W.

Example: ((a,1):NIL , ∅)

WrWrrWrWrr !"#$!"#$, and ,

45

3 October 2003 ESSES 2003 89

PACSR semantics (II)
• The semantics is given via a pair of transition

relations:
– Probabilistic transition relation,

– Nondeterministic transition relation,

• Let imr(P) be resources that can be used in the first
step:

{ })(,'| ArPPr
A !"#$#

)',(),(WPWP p
pr
!"!

),(),(WQWP !"!
#

3 October 2003 ESSES 2003 90

Operational semantics

WA
PWPA

A
!

"#$#

%
)(

),(),:(
 &ActT

• The nondeterministic transition relation is taken from ACSR,
with one exception:

),(),(

)(),()(,

2

)(

121

2 ZWPWP

ZZWWPZSP

p
Zpr

p

!"" #"

$!%=$ Wimr

• The probabilistic transition relation is as follows:

)},(),
__
,(),,

__
(),

__
,

__
{(})

__
,({ 2121212121 rrrrrrrrrrW =

W(Z) is a set of all possible scenarios of resources; e.g.,

46

3 October 2003 ESSES 2003 91

• Let , pr(r1) = ½ and pr(r2) = 1/3.

Then imr(P) = {r1,r2} and W({r1,r2})={{r1,r2}, {r1,r2}, {r1,r2}, {r1,r2} }

• Thus by the probabilistic transition relation

Example

}),{,(),(}),{,(),(

}),{,(),(}),{,(),(

__

2

__

1

3/1
__

21

3/1

2

__

1

6/1

21

6/1

rrPPrrPP

rrPPrrPP

pp

pp

!"!!"!

!"!!"!

##

##

QrrP :)}3,(),2,{(
__

21=

!"!

!!!! "!!"!

!"!

)},{,(

),(}),{,(}),{,(

}),{,(

__

2

__

1

)}3,(),2,{(
__

212

__

1

21

__

21

rrP

QrrPrrP

rrP

rr #

• and by the nondeterministic transition relation

3 October 2003 ESSES 2003 92

Example: A faulty channel
where pr(ch) = 0.99

}ch{\)FCh}.ch{+

FCh.!out:}ch.({in+

FCh:=FCh !

ch

in
out

),(!FCh

out

),(!P

in

}){,(chP }){,(chP

0.99 0.01

),.(

!FChout

!

!

!

47

3 October 2003 ESSES 2003 93

Probabilistic HML with until
• In order to analyze PACSR specifications we may want

to check whether a specification satisfies a property
written as a logical formula.

• We use a probabilistic HML with an ‘until’ operator
• The ‘until’ operator is parameterized with regular

expressions over event names.
• Syntax

 where Φ is a regular expression over actions and ω ∈{≤
,≥}

'|'|'||:: fffffffttf
t

pp !!
""#¬=

3 October 2003 ESSES 2003 94

The until operator

'| ffP
t

q!
"= There is some execution with

probability ≤ q for which f holds
until f’ becomes true within time t
and observable behavior from Φ

EXAMPLE

truehangup}wait,talk{true
20

01.0

*

≡ the probability that within 20 time units

 after any number of talk and wait actions

 action hangup arises is ≤ 0.01

48

3 October 2003 ESSES 2003 95

Semantics for until
•

if there exists a scheduler σ such that the set of
computations that
– start at s
– contain only states (except the last) satisfying f1
– have observable content Φ
– end in a state satisfying f2

have probability greater than π

21| ffs
!>

"=

3 October 2003 ESSES 2003 96

Resolving non-determinism
• Analysis involves computing the probability of reaching a set of

desired states (within a time period) via an acceptable set of
behaviors.

• Example:

• What is the probability that event head takes place?

• Such probability depends on how the nondeterminism of s is
resolved.

τ

τ

head

tail

1/2

1/2

1/3

2/3s

49

3 October 2003 ESSES 2003 97

Model Checking
• Schedulers are used for resolving non-determinism. These are

functions that given a computation ending in a nondeterministic
state choose the next transition to take place.

• Given a scheduler σ of a system P, sets of states A and B, and a
regular expression Φ, we may compute probabilities

• So for example:

'| ffP

t

q!
"= iff there is scheduler σ such that

q ≥ PrA(P → B, Φ, t, σ)
where A = { P’ | P’ |= f },

B = { P’ | P’ |= f’ }

– PrA(P → B, Φ, t, σ), the probability of reaching a state in B,
passing only via states in A, via paths with observable
content in Φ, and within t time units

3 October 2003 ESSES 2003 98

Model checking until
• To check

– Compute the least solution to the set of equations:

– Return true if

21| ffs
!>

"=

!

!

"
"

#

"
"

$

%

&'(=(

=(

()

= '

'

'

* +

otherwise0

0,,|,1

|,)(max

2

1

'

'

'

'

21

21

21

pfsSs

fsSsX

SsX

X

n

n

s

ff
ss

p

ss

s

ff

s

ff

p

,

-

.

-

!>
"

s

ff
X

21

50

3 October 2003 ESSES 2003 99

Equivalence Relations
• New notions of equivalence for the LCMC model taking account

both action types and probabilities.

• In particular two LCMCs are strongly bisimilar if
1. they reach sets of bisimilar states with the same

probability, and
2. for each nondeterministic step of one there exists a step of

the other leading to bisimilar states.

1
s

2
s

1
t

2
t

3
t

4
t

1
u

3
u2

u

2
v

1
v

s u

v½ ½ 1

a b ba

a

a b

b~ ~

3 October 2003 ESSES 2003 100

Equivalence Relations
• There is a set of laws that completely axiomatizes

strong bisimulation for PACSR processes.

• Other equivalence notions include weak bisimulation
which relates systems that have the same observable
behavior, that is, it ignores τ actions.

51

3 October 2003 ESSES 2003 101

Two Examples
• EDF with probabilistic execution time
• Telecommunication application

3 October 2003 ESSES 2003 102

EDF task scheduling

• Periodic process Job: Period pi, computation time ci

– At each step, total time t increases, active time e increases only if
resource cpu is available; complete when e=ci

• Resource cpu: scheduling
– Priority of a task dynamically increases closer to the deadline

• Process Actuator keeps timing deadlines
– Every pi seconds, signal start is sent to the task, which can accept it

only if it has finished execution

i
Job()istart

i
,!

?
i
ce=

0,0 == te

?
i
ce<

!1+= tt

)}0),(,{(
max

tppcpu
i
""1,1 +=+= eett

i
Actuator

)?,(istart

i
p

!

cpu

!

start tei
Exec

,,

52

3 October 2003 ESSES 2003 103

EDF task with probabilistic completion

• The task may decide to become inactive after completing a
computation step

• Resource cont controls probabilistic completion
– failure means “terminate early”

tei
Exec

,,iJob
()istart

i
,!

?ice =

0,0 == te

?
i
ce <

!1+= tt

)}0,1,(),0),(,{(m ax conttppcpu i ""1,1 +=+= eett

)}0,1,(),0),(,{(max conttppcpu i ""

i
Actuator

)?,(istart

ip!

cpu,cont

!

start

3 October 2003 ESSES 2003 104

A Telecommunication Application
• Based on the specification of a switching system

considered in AJK97.

• The system consists of a number of concurrent
processes with real-time constraints.

• Probabilistic behavior is present in the form of
– probabilistic arrival of alarms, and
– uncertain execution times of processes.

53

3 October 2003 ESSES 2003 105

Env

BP

outin

Sched

kill kill
tc tc

rcrc

a AS AH

Example: A Telecommunication Application

3 October 2003 ESSES 2003 106

PACSR Specification

IFBPAH

ASSchedBEnvSys

\\\)||||

||:||||(
0
!= The system in its

initial state: a parallel
composition of all the

components

ii

iiiiii

ini

QNILaQ

QPrPrP

PEnv

::

)||(:}{:}{
__

__
1

!+=

+=

"= ## The environment provides
probabilistic alarms: at

the failure of any of
resources ri an alarm is

sent via channel a

• The System

• The environment

54

3 October 2003 ESSES 2003 107

PACSR Specification
• Background Process

• The Scheduler

}\{\).:}{':}({'

:).,,(').0,(

rBPrcrBPrBP

BPBPkillNILNILBPtcBP
h

+=

+!= " #

).,.,().1,(

max
SchedrcSchedkillNILtc y

t!+
"#

SchedSched :!=

The background process
competes for processor
time managed by the

scheduler. Its duration is
geometrically distributed.

3 October 2003 ESSES 2003 108

• The buffer

• The Alarm Sampler and the Alarm Handler

nnnjnjnin

iiijijjiii

BoutBBdNILoverflowinB

BoutBBdBinB

BBinB

.:...

.:..

:.

1

11

010

++!+=

++!+=

+=

"##

"##+

$

$

$

PACSR Specification

AHrcdAHNILrcASinaAS

AHAHtcAHASAStcAS

AHAHoutAHASASAS

i

iptA

i

i

A

ii

inii

p

..: .:''..''

:).2,(':'').2,('

:.):(||'

)(

)(

!!

!!

!!

=+=

+=+=

+"==

55

3 October 2003 ESSES 2003 109

Two configurations
• Consider two versions of the system:

S1 with
– Possibility of 1 alarm per time unit,
– Buffer size of 3
– Capability of processing 2 alarms per time unit, and

S2 with
– Possibility of 2 alarms per time unit
– Buffer size of 6
– Capability of processing 4 alarms per time unit

• Comparison criterion: What is the probability of
overflow in the alarm buffer?

3 October 2003 ESSES 2003 110

Checking f = tt〈overflow〉
t
≤q tt

3.5x10-93.2x10-5100
3.1x10-92.9x10-590
2.8x10-92.5x10-580
2.4x10-92.2x10-570
2.1x10-91.9x10-560
1.6x10-91.5x10-550
1.3x10-91.2x10-540
1.0x10-99x10-630
6x10-105x10-620
3x10-102x10-610

S2S1T(time units)

The table
shows for

various values
of t, the

probability q
that makes

property f true
for each of the

systems.

56

3 October 2003 ESSES 2003 111

Design of Embedded Systems in
a Resource-oriented Framework

3 October 2003 ESSES 2003 112

Embedded systems design process

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource
modeling

timing
estimation

Schedulability

analysis

resource
tradeoffs

task

allocation

e2e timing

constraints

platform
parameters

57

3 October 2003 ESSES 2003 113

Modeling and code generation
• High-level model captures functionality of the system and

assumptions about the environment
• Code generation breaks the functional behavior into a set of

tasks

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource

modeling

timing
estimation

Schedulability

analysis

resource

tradeoffs

task

allocation

e2e timing
constraints

platform

parameters

3 October 2003 ESSES 2003 114

Timing parameter estimation
• Estimate the execution time for task on a given platform
• Assign task periods based on end-to-end timing constraints

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource

modeling

timing
estimation

Schedulability

analysis

resource

tradeoffs

task

allocation

e2e timing
constraints

platform

parameters

58

3 October 2003 ESSES 2003 115

Resource modeling
• Resource is a critical notion in embedded and real-time system

design, yet lacks systematic formal treatment
• Key idea: resource attributes capture tradeoffs

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource

modeling

timing
estimation

Schedulability

analysis

resource

tradeoffs

task

allocation

e2e timing
constraints

platform

parameters

3 October 2003 ESSES 2003 116

Formal schedulability analysis
• Resource conflicts introduce execution delays
• Violations of timing constraints lead to deadlocks in the model

behavior
• Discovered by state-space exploration

high-level
model

resource-

aware model

task set with
timing

task set
code

generation

resource

modeling

timing
estimation

Schedulability

analysis

resource

tradeoffs

task

allocation

e2e timing
constraints

platform

parameters

59

Modeling and Analysis of
Power-Aware Systems

3 October 2003 ESSES 2003 118

Motivation
• Features of mobile embedded systems:

– Resource constraints
• Limited battery life

– Uncertainty
• changing communication delays, failures

• Solution:
– a unified formal framework for designing and reasoning

about power-constrained, timed systems with
probabilistic behavior

60

3 October 2003 ESSES 2003 119

P2ACSR – A power-aware extension of PACSR

• A unified framework for modeling and analyzing power-aware
real-time systems.

• We associate a further attribute to resource usage, that of
power consumption.

• The syntax remains the same, except that actions are tuples of
the form (r,p,c), where r is the resource, p is the priority level
and c the power consumption of the resource usage.

EXAMPLE

2

1

:)}3,1,{(

+

:)}0,1,{(

Callcellphone

Callphone

3 October 2003 ESSES 2003 120

P2ACSR
• Semantics is given similarly to PACSR, as a LCMC.

• We can use various techniques to perform various
analyses on P2ACSR models including:
– Model checking

We may express temporal logic properties involving
power consumption bounds and check that they are
satisfied by P2ACSR processes.

– Probabilistic bounds on power consumption
We may compute the probability that power
consumption exceeds certain limits.

– Average power consumption
We may compute the average power consumption during
intervals of interest.

61

3 October 2003 ESSES 2003 121

P2ACSR
• P2ACSR is an extension of PACSR, a probabilistic real-

time process algebra.

• In P2ACSR:
– system is a collection of concurrent processes
– communication among processes is instantaneous
– access to serially-reusable resources consumes time and

power

3 October 2003 ESSES 2003 122

Resources
• Resources capture constraints on executions
• Features of resources:

– Serially reusable
• processors, memory, communication channels

– Unreliable
• Fail with a fixed probability in each step

– Require time and power
• May allow different levels of power consumption

62

3 October 2003 ESSES 2003 123

Actions

• Actions represent computation
– actions take one unit of time
– require access to resources

• each resource r has priority of access pr

• each resource r has power use level cr

• each resource can be used at most once

– resources of action A:
– power consumption of action A:

() (){ }
222111

,,,,, cprcprA =

()A!

!
"

=
)(

)(
Ar

rcApc
#

3 October 2003 ESSES 2003 124

Power constraints

• Resource classes R 1,…,R n
– correspond to different power sources

• Attributes of resource class R i:
– capacity Ci – maximum amount of power in one step

– charge Pi – total amount of power

• Valid actions satisfy capacity constraints:
– for each R i , irAr ri

i

cApc C
R

<=! ""),(
)(

#

63

3 October 2003 ESSES 2003 125

Processes

• Event and action steps
• Choice P1+P2

• Parallel composition P1||P2

• Temporal scope, time-outs, exceptions, …

• Structural operational semantic rules build behaviors
of complex processes from behaviors of component
processes

3 October 2003 ESSES 2003 126

P2ACSR semantics
• Before steps of a process can be computed, status of

relevant resources has to be determined

• Resource status is kept in a world

• Non-deterministic configurations Sn

– world has complete knowledge of resources

• Probabilistic configurations Sp
– incomplete knowledge

• Probabilistic steps:
– acquire missing knowledge

np SS !

64

3 October 2003 ESSES 2003 127

Non-deterministic rules
• Action can happen if all resources are available and

power constraints are obeyed:

• Parallel processes can proceed if their actions do not
conflict and the joint step does not violate constraints

• Model: Labeled Concurrent Markov Chains

)(,)(),,(),:(AvalidWAPWPA
A !"#$# %

() ())(,
||||

2121

21

21

AAvalidAA
QPQP

QQPP
AA

AA

!"=#
$$%% &%

$%&%$%&%
!

''

3 October 2003 ESSES 2003 128

Example

in outC

!

C’
)1?,(in

)1,!(out
)}2,1,{(cpu

cpu !,C

!,'C

}{,' cpuC

!,).1,!(Cout

)1,!(out

)1?,(in

1

)}2,1,{(cpu

• C is a process that reliably translates messages from
in to out in 1 time unit using 2 units of power per
message

• π(cpu) = 1

65

3 October 2003 ESSES 2003 129

Example

in outFC

!

FC’
)1?,(in

)1,!(out
)}2,1,{(cpu

cpu
)}1,1,{(cpu

!,FC

!,'FC

}{,' cpuFC

!,).1,!(FCout

)1,!(out

)1?,(in

0.99

)}2,1,{(cpu

}{,' cpuFC

0.01

)}1,1,{(cpu

• FC (fault-tolerant C) accommodates for cpu failures
– π(cpu) = 0.99

• If cpu fails, the message is not delivered, but less power is
consumed

• Message is delivered with probability 1
– What is the expected power consumption per message?

3 October 2003 ESSES 2003 130

A logic for power constraints
• : Power-aware probabilistic HML with until

– Propositional operators
– until operators specify probabilistic bounds on

power consumption along a set of paths

• Basic variant:

• With time constraints:

• With resource class constraints:

21
,, ffftt !¬

21
ff

p!

>
"

#

2,1
ff

p

t

!

>
"

#

2

,

1
ff

p !"

#>
$

pc

PHMLuL

66

3 October 2003 ESSES 2003 131

Semantics for : until
•

if there exists a scheduler σ such that the set of
computations that
– start at s
– contain only states (except the last) satisfying f1
– have observable content Φ
– consume no more power than p
– end in a state satisfying f2

have probability greater than π

21| ffs
p!

>
"=

#

pc

PHMLuL

3 October 2003 ESSES 2003 132

Model checking until
• To check

– Compute the least solution to the set of equations:

– Additional annotation in the variable set
– Return true if

21| ffs
p!

>
"=

#

!

!

"
"

#

"
"

$

%

&'(=(

=(

()

= *+

+

+ '

'

'

,

otherwise0

0,,|,1

|,)(max

2

1

'

'

'

'

2

)(

1

21

21

pfsSs

fsSsX

SsX

X

n

n

s

ffss

p

ss

s

ff

s

ff
powp

p

p

-

.

/
/

.

!>"
#

s

ff
pX

21

p!

67

3 October 2003 ESSES 2003 133

Example
• Power consumption per message:

in outFC

!

FC’
)1?,(in

)1,!(out
)}2,1,{(cpu

cpu
)}1,1,{(cputtoutcpucpuinttFC

2

1
*},{|,

>

!
""=#

ttoutcpucpuinttFC
3

999.0
*},{|,

!

>
""=#

3 October 2003 ESSES 2003 134

Example ttoutcpucpuinttFC
3

999.0
*},{|,

!

>
""=#

{ } { }

{ } { } { }

{ } { }

{ } { }

{ } { } { }

{ } { } { }
01

01.099.0

1

01.099.0

,'

*,

}{,'

*,

}{,'

*,

}{,'

*,

}{,'

*,

,'

*,

,'

*,

}{,'

*,

,,!.

*,

}{,'

*,

}{,'

*,

}{,'

*,

,'

*,

,'

*,

,

*,

122

222

23

133

333

33

===

!+!=

=

===

!+!=

=

"

!!!

!!

"

!

"

!!

""

!!

!!

"

!

"

!

"

!!

###

###

##

###

###

##

FC

ttoutcpucputt

cpuFC

ttoutcpucputt

cpuFC

ttoutcpucputt

cpuFC

ttoutcpucputt

cpuFC

ttoutcpucputt

FC

ttoutcpucputt

FC

ttoutcpucputt

cpuFC

ttoutcpucputt

FC

tttt

FCout

ttoutcpucputt

cpuFC

ttoutcpucputt

cpuFC

ttoutcpucputt

cpuFC

ttoutcpucputt

FC

ttoutcpucputt

FC

ttoutcpucputt

FC

ttoutcpucpuintt

XXX

XXX

XX

XXX

XXX

XX

$

!,FC

!,'FC

}{,' cpuFC

!,).1,!(FCout

)1,!(out

)1?,(in

0.99

)}2,1,{(cpu

}{,' cpuFC

0.01

)}1,1,{(cpu

{ }
9999.0

,

*,
3 =!

""
#

FC

ttoutcpucpuintt
X

68

3 October 2003 ESSES 2003 135

Power-aware scheduling

• Trade-off: power vs. execution time
• CMOS-based processors can operate at reduced

voltage levels
– Power dissipation is proportional to V2

– StrongARM SA2:
• 600 MHz / 500 mJ or 150 MHz / 160 mJ

• Tasks can take less than worst-case time
– Adjust frequency dynamically to utilize “time slack”

3 October 2003 ESSES 2003 136

Dynamic Voltage Scaling

• Dynamic voltage scaling is a technique proposed for
making energy savings by dynamically altering the
power consumed by a processor.

• Lower frequency execution implies longer processing
of tasks.

• This may lead to violation of real-time constraints.

• [Pillai and Shin 01] propose extensions to real-time
scheduling algorithms to make use of dynamic voltage
scaling.

69

3 October 2003 ESSES 2003 137

Case study: two kinds of resources

• Power-aware resources:
– Attributes:

• Priority (dynamic) – schedulability analysis
• Power consumption (dynamic) – power calculations

• “abstract” resources:
– Attributes:

• Availability (static) – probabilistic completion
• No power consumption, same priority

3 October 2003 ESSES 2003 138

Taski = (start?,0) . Execi,0,0 + ∅ : Taski i = {1,…,I}
Execi,e,t = e < ci → (∅ : Execi,e,t+1

 + {(cpu, dmax−(pi−t)) } : Execi,e+1,t+1

 + e = ci → Taski i = {1,…,I}
 e= {0,…, ci}

t = {0,…, ci}

Power-Aware Real-Time Scheduling

• Let I be a set of tasks with periods pi and worst-case execution
times ci, sharing the same CPU.

• In reality tasks often take much less time to execute.

• This probabilistic execution time may be modeled in PACSR as
follows:

potential for early
termination (geometric

distribution)

,(cont,1)
+{(cpu,dmax−(pi−t)),(cont,1))} : Taski)

70

3 October 2003 ESSES 2003 139

Power-Aware Real-Time Scheduling

• The algorithm of [Pillai and Shin] takes advantage of the
possibility of early termination of a task by then executing the
next task at the lowest possible frequency.

• Specifically, on every release or completion of a task it re-
computes the sum

where is the computation time of the last execution of
task i or ci if task i has just been released.

• Based on this value it decides the lowest frequency that is
consistent with the current effective utilization.

n

last

n

last

p

c

p

c
+...+=

1

1

!

last

i
c

3 October 2003 ESSES 2003 140

Taski = (starti?,0) . (releasei!, i). Execi,0,0 + ∅ : Taski i = {1,…,I}
Execi,e,t = e < ci →

 ((fast? , i) (∅ : Execi,e,t+1

 + {(cpu, dmax−(pi−t)),(cont,1)} : Execi,e+1,t+1

 + {(cpu, dmax−(pi−t)), (cont,1)} : (endi,e+1!,i). Taski)
 + (slow? , i) (∅ : Execi,e,t+1

 + {(cpu, dmax−(pi−t)),(cont,1)} :
({(cpu, dmax−(pi−t)),(cont,1)} : Execi,e+1,t+2

 + {(cpu, dmax−(pi−t)), (cont,1)} : (endi,e+1!,i). Taski)
 + e = ci → Taski

Power-Aware Real-Time Scheduling
• First we extend the model of a task with the ability of executing

slower or faster. It responds to messages fast and slow. In the
slow mode a computation step takes twice as long, i.e two time
units. It also signals its release when execution commences and
its completion time when it completes.

71

3 October 2003 ESSES 2003 141

Speed-sensitive task

teiExec ,,iJob

?
i
ce =

0,0 == te

?
i
ce <

!

1+= tt

)}0),(,{(
max

tppcpu
i
""

1,2 +=+= eett

)}0,1,(),0),(,{(
max

conttppcpu
i
""

)?,(istart

1+= tt
!

),!(, iend
ici

),!(1, iend ei +

),!(1, iend ei +

)?,(islow

)?,(ifast

)}0,1,(),0),(,{(
max

conttppcpu
i
""

1,1 +=+= eett

)}0,1,(),0),(,{(
max

conttppcpu
i
""

)}0,1,(),0),(,{(
max

conttppcpu
i
""!

cpu,cont

start

fast

slow

end
i,j

release
j

• If operating frequency is fast, take one time unit per
scheduling step

• If operating frequency is slow, take two time units per
scheduling step

3 October 2003 ESSES 2003 142

Power-Aware Real-Time Scheduling
• The DVS algorithm is represented as the P2ACSR process:

• Scale responds to release and completion signals and triggers the
re-computation of

},{\)Proc||(=
3,2,1 downupfastccc

ffScaleDVS

...+

).0?,(+

).0?,(+

...+

).0?,(+

).0?,(+

).0?,(=

31

32

321

321

321321

,,,2

,,,1

,,3

,,2

,,1,,

ecec

eecc

cee

ece

eeceee

SetNewend

SetNewend

SetNewrelease

SetNewrelease

SetNewreleaseScale

!

72

3 October 2003 ESSES 2003 143

• SetNew decides the lowest frequency to the current effective
utilization and sends the appropriate signal

SetNewe1,e2,e3 = e1/p1 + e2/p2 + e3/p3 < ½ →(fdown!,4). Scalee1,e2,e3

 + e1/p1 + e2/p2 + e3/p3 ≥ ½ →(fup!,4). Scalee1,e2,e3

• DVSfast and DVSslow describe the processor operating in the high
and low frequency, respectively
 DVSfast ={(power,1,pwfast)}:DVSfast + (fast!,1).DVSfast

+(fdown?,0).DVSslow + (fup?,0).DVSfast

DVSslow ={(power,1,pwslow)}:DVSslow + (slow!,1).DVSslow

+(fdown?,0).DVSslow + (fup?,0).DVSfast

Power-Aware Real-Time Scheduling

3 October 2003 ESSES 2003 144

Operating frequency manipulation
)},1,{(fastpwpower)},1,{(

slow
pwpower

)0,(
up
f

)0,(downf

)0,(downf)0,(upf

slowDVSfastDVS

)1,(fast)1,(slow

321 ,, eee
Scale

321 ,, eeeSetNew

f do
w
n

fup

slow

fast

irelease

ji
end

,

power

!

)0,(irelease ii ce =

)0,(
, ji

end jei =

)2,(
up
f

)2,(downf

" # 2/1/
ii
pe

" < 2/1/
ii
pe

• Recompute
frequency each
time a task is
released or
completed

• Consume pwfast
in fast mode
and pwslow in
slow mode

73

3 October 2003 ESSES 2003 145

Analysis of DVS
• We considered the following set of tasks:

• The algorithm guarantees the task set remains schedulable.

• We computed the expected power consumption for one major
frame (t=p1⋅p2⋅p3) for pr(cont)=1/3 and pwfast=2, pwslow=1.

1413
1032
831

PeriodExecution timeTask

– With DVS minimum power consumption = 1906.66
and maximum power consumption = 1922.65

– Without DVS power consumption = 2240
– Thus expected savings between 14% and 14.8%.

3 October 2003 ESSES 2003 146

Conclusions
• We have developed a timed, probabilistic, process

algebra that allows modeling the power consumption of
system resources

• Various techniques for quantitative analysis of power
properties have been developed and implemented in
the PARAGON toolset
– Probabilistic bounds computation
– Model checking

• Research direction:
– Uniform resource attribute model

74

3 October 2003 ESSES 2003 147

ACSR-VP
for design synthesis and

parametric analysis

3 October 2003 ESSES 2003 148

Example: A Start-time Assignment Problem

• Start-time Assignment Problem with Inter-job Temporal
Constraints

• The order of execution of job is not known
• Goal is to statically determine the range of start times for each

job so that jobs are schedulable and all inter-job temporal
constraints are satisfied.

Job1

s1 s1+e1

Job2

s2 s2+e2

[4,7] [3,4]

≤ 25

≥ 14

≤ 10≤ 12

75

3 October 2003 ESSES 2003 149

ACSR-VP (ACSR With Value-passing)

• Extends ACSR with
– variables: (a?x,1).(c!x,1)...
– value passing communications: (c!7,1)… || (c?x,1)...
– parameterized processes: P(x) = (x > 1) → (a!x,1).nil

• Priorities can be specified using expressions
– timed actions: {(data, y+1)}
– instantaneous events: (signal!8, x+3)

• Syntax

P

A
S
C

::=

::=
::=
::=
::=

NIL | a . P | A : P | P + P | P || P
b → P | P \ F | [P] I | C
(τ, e) | (c?x, e) | (c!e1, e2)
∅ | { S }
(r, e) | (r, e), S
X | X(v)

→

a

3 October 2003 ESSES 2003 150

Symbolic Graph With Assignment (SGA)

P(x) = (a!x,1).Q(x)
Q(y) = (y ≤ 0) → (b!y,1).Q(y+1)
 + (y > 0) → (a!y-1,1).Q(y-1)

P(0) ⇒ (a!0,1).(b!0,1).(a!0,1)…
Q(y)P(0)

true
(a!0,1)
y := 0

y ≤ 0
(b!y,1)
y := y+1

y > 0
(a!y-1,1)
y := y-1

SGA is a directed graph with edges labeled with b,α, and θ, where b is
a Boolean condition, α is an action, and θ is an assignment.

We use SGA to capture the semantics of ACSR-VP

76

3 October 2003 ESSES 2003 151

P(x) = (x < 0) → (b!x,1).nil
 + (x ≥ 0) → (a!x+1,1).nil Q(y) = (a!y,1).nil

P(x)
x ≥ 0
(a!x+1,1)
Id

x < 0
(b!x,1)
Id

Q(y)

true
(a!y,1)
Id

Symbolic Bisimulation (Informal Description)

XPQ (x,y) = (x < 0 ⇒ false)
 ∧ (x ≥ 0 ⇒ (true ∧ x+1 = y))
 ∧ (true ⇒ (x ≥ 0 ∧ y = x+1))

∼x ≥ 0 ∧ x+1=y

3 October 2003 ESSES 2003 152

Suppose we have an ACSR-VP term System (0,s1,s2) that model a real-ti
me system or a scheduling problem. We generate the Symbolic Graph
with Assignment for System (0,s1,s2)

SGA of
System (0,s1,s2)

Idle ∅

Schedulability Analysis Using Symbolic
Bisimulation

Given two SGAs, we can apply th
e symbolic weak bisimulation alg
orithm to check the equivalence o
f System (0,s1,s2) and thr idle proc
ess ∅∞, which never deadlocks

That is, finding a condition that
makes a system schedulable is e
quivalent to finding a symbolic
bisimulation relation with a non
-blocking process

≈b

77

3 October 2003 ESSES 2003 153

ACSR-VP approach
• Provides a formal framework for modeling real-time systems, especially

for real-time scheduling problems such as
– Priority Assignment Problem
– Execution Synchronization Problem

• Start-time assignment problem
• Period assignment problem

• Deals with unknown parameters in the problems rather than “yes/no”
answer (i.e., parametric approach)

• Provides a fully automatic method for the analysis of real-time
scheduling problems

• Takes advantages of existing techniques such as integer programming
and BDD

3 October 2003 ESSES 2003 154

Overview of General Approach

Constraint Logic Programming or Theorem Prover

Solution Space (Ranges of Free Variables)

System Described
in ACSR-VP

Non-blocking Process
in ACSR-VP

Symbolic Weak Bisimulation

Predicate Equations with Free Variables

SGA SGA

78

3 October 2003 ESSES 2003 155

Example: Start-time Assignment Problem

• Start-time Assignment Problem with Inter-job Temporal
Constraints

• Goal is to statically determine the range of start times for each
job so that jobs are schedulable and all inter-job temporal
constraints are satisfied.

Job1

s1 s1+e1

Job2

s2 s2+e2

[4,7] [3,4]

≤ 25

≥ 14

≤ 10≤ 12

3 October 2003 ESSES 2003 156

Jobi(t,s) = (t < s) → ∅ : Jobi(t+1,s)
 + (t = s) → (Start!,1).Job’i (0,t,s)

Modeling With ACSR-VP
• The following fragments of ACSR-VP describe the start time assignment

problem with inter-job temporal constraints

Job’i(e,t,s) = (e < ei
-) → {(cpu,1)}: Job’i(e+1,t+1,s)

 + (e = ei
-) → Job’’i (e,t,s)

Job’’i(e,t,s) = (e < ei
+) → {(cpu,1)}: Job’’i(e+1,t+1,s)

 + (e ≤ ei
+) → (Finished!,1).Idle

Constraint(t) = (start?,1).Constraint1(t) + ∅ : Constraint(t+1)
Constraint1(t) = (Finished?,1).Constraint2(t) + ∅ : Constraint1(t+1)

System(s1,…,sn) = (Job1(0,s1)||…|| Jobn(0,sn)||Constraint(0))\{Start,Finished}

Constraint2(t) = (t ≤ 12) → Constraint3(t,0)
Constraint3(t) = …

79

3 October 2003 ESSES 2003 157

X0 (t, s1, s2) = (t ≤ 5 ∧ t < s2) → X1 (t+1, s1, s2)
 ∧ (t ≤ 5 ∧ t = s1) → X2 (0, t+5, s2)
 ∧ ((t ≤ 5 ∧ t < s1 ∧ X1 (t+1, s1, s2))
 ∨ (t < 5 ∧ t = s1 ∧ X2 (0, t+5, s2)))
X1 (t, s1, s2) = … X2 …
X2 (e, s1, s2) = … X1 …

Predicate Equations
• The following fragments of predicate equations are generated

from the symbolic weak bisimulation algorithm with the infinite
idle process

To get the values of s1 and s2, we can ask
a query X0 (0,s1,s2)

3 October 2003 ESSES 2003 158

Solution Space
• The solutions to the predicate equations can be

obtained using linear/integer programming techniques,
constraint logic programming techniques, or a theorem
prover.

• The solutions for the previous example are:

Start time S1

Start time S2

3 4 4 5 5

14 14 15 14 15

5

16

80

3 October 2003 ESSES 2003 159

An Automatic Approach
• The disadvantage of symbolic weak bisimulation is that it requires to add

new τ edges into SGA. This will increase the size of predicate equations
• The disadvantage of CLP is that there is no guarantee that it terminates

• Reachability Analysis: Finding a condition that makes a system
schedulable is equivalent to finding a condition that guarantees there is
always a cycle in an SGA regardless of a path taken
– No need to add new τ edges

• Restricted ACSR-VP
– Give syntactic restriction to identify a decidable subset of ACSR-VP

• Control Variable : in finite range; Values can be changed
• Data Variable : could be in infinite range; Values cannot be changed
• P(x:0..100,y) = (x<0 ∧ x+y>10) → ∅:Q(x+3, y)

– Generate a boolean expression or boolean equations (i.e., no need to use CLP)

3 October 2003 ESSES 2003 160

Conclusions: resources
• We have presented a family of resource-bound

process-algebraic formalisms
– the notion of a resource plays central role

• Abstractions of physical resources
• Resource sharing: coordination and synchronization
• Resource consumption takes time: real-time behavior
• Resource failures: probabilistic behavior

• Sample application domain: analysis of scheduling
problems
– Other domains: protocol analysis, rapid prototyping

81

3 October 2003 ESSES 2003 161

Conclusions: analysis techniques
• Analysis of safety properties by means of deadlock

detection
• Conformance analysis by means of equivalence and

preorder checking
• Probabilistic analysis techniques:

– Model checking
– Resource utilization

• Parametric analysis in ACSR-VP

3 October 2003 ESSES 2003 162

Extensions
• Presented: serially reusable resources with access

constraints
• Other types of resources:

– Consumable resources: each resource use depletes
resource stock

– Multi-capacity resources: allow simultaneous access by a
limited number of processes

• Other kinds of resource constraints:
– non-functional constraints such as memory, power

consumption, weight, etc.

82

3 October 2003 ESSES 2003 163

References
• "A Process Algebraic Approach to the Specification and Analysis of Resource-Bound Real-

Time Systems,“ Insup Lee, Patrice Br\'emond-Gr\'egoire and Richard Gerber, Proceedings of
the IEEE, Jan 1994, pp. 158-171.

• "A Complete Axiomatization of Finite-state ACSR Processes,“ Patrice Br\'emond-Gr\'egoire,
Jin-Young Choi and Insup Lee, Information and Computation, 138 (2), Nov 1997, pp. 124-159.

• " Process Algebra of Communicating Shared Resources with Dense Time and Priorities," by
Patrice Br\'emond-Gr\'egoire and Insup Lee, Theoretical Computer Science, 189, 1997, pp.
179-219.

• "A Process Algebraic Approach to the Schedulability Analysis of Real-Time Systems,"
Han\^ene Ben-Abdallah, Jin-Young Choi, Duncan Clarke, Young Si Kim, Insup Lee and Hong-
Liang Xie, Real-time Systems, 15, 1998, pp. 189-219.

• "Probabilistic Resource Failure in Real-Time Process Algebra,“ Anna Philippou, Oleg Sokolsky,
Insup Lee, Rance Cleaveland, and Scott Smolka, CONCUR '98, Sept 1998.

• "Specification and Analysis of Real-Time Systems with PARAGON,“ Oleg Sokolsky, Insup Lee,
and Han\^ene Ben-Abdallah, Annals of Software Engineering, 7, 1999, pp. 211-234.

• "Modeling and Analysis of Power-Aware Systems," Oleg Sokolsky, Anna Philippou, Insup Lee,
and Kyriakos Christou, TACAS 2003, April 2003.

• These papers are also available on-line from www.cis.upenn.edu/~rtg/papers.php3.

3 October 2003 ESSES 2003 164

Thanks
• … for invitation to ESSES 2003
• … for fundamental work done by my former Ph.D.

students:
– Amy Zwarico
– Rich Gerber
– Patrice Bremond-Gregoire
– Hanene Ben-Abdallah
– Duncan Clark
– Hee Hwan Kwak

• … for support from ARO, NSF, ONR over a number of
years

83

3 October 2003 ESSES 2003 165

Q & A

