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1. INTRODUCTION

Out-of-memory errors can be a serious problem in computing, but to 
different extents in desktop and embedded systems. 

In desktop systems, virtual memory reduces the ill-effects of running 
out of memory in two ways.

First, when a workload does run out of physical main memory (DRAM), virtual 
memory makes available additional space on the hard disk called swap space, 
allowing the workload to continue making progress. 

Second, when either the stack or heap segment of a single application exceeds 
the space available to it, hardware-assisted segment-level protection provided by 
virtual memory prevents the overflowing segment from overwriting useful data in 
other applications. 
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Embedded systems typically do not have hard disks, and often have 
no virtual memory support. 

Requires an accurate compile-time estimation of the maximum memory 
requirement of each task across all input data sets. 

For a concurrent task set, the physical memory must be larger than the 
sum of the memory requirements of all tasks that can be simultaneously 
live.

1. INTRODUCTION

Accurately estimating the maximum memory requirement of an 
application at compile-time is difficult, 

Consider that data in applications is typically 
sub-divided into three segments

– global, stack and heap data. 

The global segment has fixed size at compile time
Easy to estimate

The stack and heap grow and shrink at run-time
Hard to estimate
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Estimating the stack size at compile-time

Stack grows with each procedure and library call, and shrinks upon returning 
from them. 

the maximum memory requirement of the stack can be accurately estimated by 
the compiler as the longest path in the call graph of the program from main() to 
any leaf procedure. 

Fails for at least the following
(i)   Recursive functions
(ii)  Virtual functions
(iii) First-order functions in imperative languages like C

• First-order functions are those that are assigned to function variables, and called 
indirectly through those variables, so that the compiler may not know which 
function is actually called when a function variable is called.

(iv) Languages, such as GNU C, which allow stack arrays to be of runtime     
dependent size
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the stack may run out of memory even when its size is 
predictable.

The size of the heap is unpredictable, since the stack and the 
heap typically grow towards each other. 

Even when both its stack and heap requirements are 
predictable. This can happen in pre-emptive multi-tasking 
workloads, common in many embedded systems. 
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Estimating the Heap size at compile-time

more difficult. The heap is typically used for dynamic 
data structures such as linked lists, trees and graphs. 

-unknowable at compile-time.
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The usual industrial approach:

run the program on different input data sets and observe the 
maximum sizes of stack and heap.

Memory requirement estimate is multiplied by a safety factor to 
reduce the chance of memory errors,
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This paper proposes a scheme for software-only memory protection and 
memory reuse in embedded systems that takes a three-fold approach to 
improving system reliability.

Safety run-time checks
checking for stack or heap overflow requires a run-time check for 
overflow at each procedure call and each malloc() call

Reusing dead space
(i) when the overflowing stack and heap are allowed to grow into 
dead global variables, especially arrays.
(ii) when the stack is allowed to grow into free holes in the heap 
segment. 

Compressing live data
compresses live data.The compressed data is later de-compressed 
before it is accessed.
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Heap checks:
If the malloc() finds that no free chunks of adequate size are available 
then an out-of-memory error is reported. It exists by default in most 
versions of malloc().

Stack checks:
Inserted at each procedure call. These are new and add run-time 
overhead. 
The compiler inserts code at the entry into each function, which 
compares the values of the new, updated stack pointer and the current
allowable boundary for the stack. 

2. RUNTIME CHECKS

The boundary for the stack:
(i) the heap pointer, if the heap adjoins the growing direction of the stack.

(ii) the base of the adjoining stack, if another task’s stack adjoins the growing   
direction of stack. –Multiple Tasking

(iii) the end of memory, if the stack ends at the end of memory.

2. RUNTIME CHECKS

Reduce the overheads 
-rolling checks optimization.

enough to check once at the start of the parent that there is enough space for the 
stack frames of both parent and child procedures together. 

The check for the child is ‘rolled’ into the check for the parent, eliminating the
overhead for the child.

2. RUNTIME CHECKS

Issues for rolling checks optimization

A child procedure’s check cannot be rolled into its parent if heap data is 
allocated inside the parent before the child procedure is called. 

In object-oriented languages if the call to the child from the parent is an 
unresolved virtual function call, then the child’s check cannot be rolled to the 
parent 

Since a call-graph represents potential calls and not actual calls, it is 
possible that for a certain data set a parent may not call a child procedure at 
all. 

Limit the rolling checks optimization such that the rolled stack frame size does not 
exceed 10% of the maximum observed stack + heap size in the profile data.

Rolling checks can be permitted inside of recursive cycles in the application
program, but not out of recursive cycles.

3. REUSING GLOBALS FOR STACK

First, the compiler performs liveness analysis to detect dead global arrays.
Second, selects one of the global arrays that is dead, and grows the stack 
into it.

Identifying dead globals:
First, the compiler divides the program up into several regions, and for each 
region, builds a list (called Reuse Candidate List) of global arrays that are dead
throughout that region and also dead in all functions that are called directly or 
indirectly from that region. 

Second, the Reuse Candidate List is sorted at compile-time in decreasing order 
of size to give preference to large arrays for reuse. 

Third, at run-time, when the program is out of memory it looks up the Reuse 
Candidate List for that region and selects the global variable at the head of the 
list to extend the stack into. 

3. REUSING GLOBALS FOR STACK

Data-Program Relationship Graph (DPRG)

3. REUSING GLOBALS FOR STACK

Region-merging optimization: 
merging regions whenever possible to 
reduce the overhead. In particular, if two 
regions that are executed consecutively
at run-time are such that they have the 
exact same Reuse Candidate Lists, they 
are merged into a single region.

Growing stack into globals

4. REUSING GLOBALS FOR HEAP

Implementation:

First, the Reuse Candidate Lists are sorted at compile-time by next 
time- of-access and size.

Second, the malloc() library function is modified to make a call to a 
special Out-of-Heap Function when there is no available free chunk to 
satisfy the allocation request. 

Malloc() is modified such that, instead of returning -1, when it is 
unable to find any chunk on the free-list capable of satisfying the 
current allocation request, it makes a call to the Out-of-Heap 
Function,

Third, the compiler inserts the Out-of-Heap Function in the code;



5. REUSING HEAP FOR STACK

Steps:
When the stack is out-of-memory

First tries to grow the stack into dead globals.

Second grown into free holes in the heap. 

To grow into the heap, a special malloc() call is made to allocate a chunk in the 
heap among its free holes, and thereafter the stack is grown into the returned 
chunk. 

This method of growing into free holes in the heap is unnecessary when these 
holes are periodically eliminated using heap compaction. Heap compaction is 
usually possible only in systems that do garbage collection.

6. COMPRESSING GLOBALS FOR STACK

scheme differs from the scheme for growing the stack into dead globals in 
the following three ways.

The reuse candidates are extended to include live global arrays.

At run-time, when the stack is about to grow into a particular candidate in the 
global segment, if the candidate chosen is live at that point, it is compressed and 
saved so that it can be restored when the array is accessed later. 

The code inserted by the compiler at the start of every region is augmented to 
ensure that if reuse has started, then all compressed global arrays accessed in
the following region are de-compressed in their original locations.

7.COMPRESSING GLOBALS FOR HEAP

First, it uses the same Reuse Candidate Lists that are sorted 
according to the next-time-of-access and size of the global array. 

Second, once the system has run out of heap space, it makes a call 
to the Out-of-Heap Function, which is now slightly modified to 
support compression. 

It first compresses the global array.
Including maintaining book-keeping information in the Compression 
Table.
Finally, makes a call to the free library function with a pointer to the 
space freed up by compression. 

Third, before every region a check is made to see if reuse has 
started. If it has, all compressed globals are de-compressed as in 
that section. 

8. COMPRESSION ALGORITHM

It should compress program data to a high degree.
It should have a very low or zero persistent memory overhead.
Since compression is done at run-time, the sum of the compression and de-
compression times should be small.

(i) LZO
<David Solomon. Data Compression: The Complete Reference. Springer-Verlag Inc., New 
York, 2000.>

(ii) WKdm
<Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis. The case for compressed 
caching in virtual memory systems. In Proceedings of the USENIX Annual Technical 
Conference, Monterey, CA, June 1999.>

(iii) WKS
<Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis. The case for compressed 
caching in virtual memory systems. In Proceedings of the USENIX Annual Technical 
Conference, Monterey, CA, June 1999.>

9. SPACE OVERHEADS OF ROUTINES

First source is calls are made to certain functions such as the Out-of-Heap 
Function, the compression and de-compression.

Second source of memory overhead is to store the Reuse Candidate Lists 
for every region in the same memory device where program code is stored, 
which is usually readonly memory (ROM) in embedded systems. 

Do not change at run-time. 

10. LIVENESS ANALYSIS

First, in object-oriented languages when a virtual function is called, the 
compiler does not usually know which real function is actually called at run-
time. 

Second, in imperative languages such as C, first-order functions may 
prevent knowledge of the call-graph at compile-time. 

Liveness analysis in such situations may not be precise, but is always 
conservative in that it never declares a live variable to be dead. 

For object-oriented languages, liveness analysis at compile-time has been 
investigated in the paper listed below. Restricting the set of functions a 
virtual function may call.

< Patrik Persson. Live memory analysis for garbage collection in embedded systems. In 
Proceedings of the ACM SIGPLAN 1999 workshop on Languages, compilers, and tools for 
embedded systems, pages 45–54. ACM Press, 1999.>

11. RESULTS

The proposed techniques have been implemented in the public-domain 
GCC cross-compiler targeting the Motorola MCore embedded processor.

11. RESULTS 11. RESULTS



MTSS: Multi Task Stack Sharing for Embedded 
Systems

By:
Surupa Biswas
Matthew Simpson
Rajeev Barua

Department of Electrical & Computer Engineering
University of Maryland

12. MTSS

MTSS: a multi-task stack sharing technique, that grows the stack of a particular task
into other tasks in the system after it has overflow its bounds.

Cactus stack memory layout

The stacks for all tasks that can be simultaneously active (running or pre-empted) are 
non-overlapping in memory. The heap is allocated from a free list shared across 
tasks. 

12. MTSS

Cactus stack memory layout

12. MTSS

First, run-time checks are inserted by the compiler to detect stack overflow 
in each task. And The set of stack pointers for inactive (swapped out) tasks 
is stored as an array in memory. 

Second, each overflow pointer is assigned to the base of a particular task’s 
stack.

Third, overflow pointers are always grown in the direction opposite to that of 
the growth of the stack pointer, that is from lower memory addresses to 
higher memory addresses. 

Fourth, each time a page is allocated for an overflowing stack in a task, the 
overflow pointer for that task is incremented by the size of the page. 

12. MTSS

Holes:
classifying every page in a task stack as either free or filled. This 
information is maintained in an array data structure for each task. 

12. MTSS

Re-using heap for stack on Cactus stack 
memory layout

Previous method can be easily extended to 
allow for reuse of the heap when a stack frame 
overflows, and there is no space available 
across all the tasks in the system. Since in a 
multi-tasking system the heap is shared by all 
the tasks.

12. MTSS

Using ARM GCC v3.4.3 cross compiler targeting the ARM7TDMI embedded 
processor.
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Maximum Satisfiable Overflow (MSO) 
defined as the maximum amount of stack space that can be recovered for each task 
expressed as a percentage of the total stack allocated to the task.
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Proportional Reduction Satisfiability (PRS) 
An alternate use of MTSS is to decrease the physical memory required by an embedded 
system while maintaining the same reliability.


