Eliminating Stack Overflow
by Abstract Interpretation

Paper by John Regehr, Alastair Reid, and Kirk Webb
ACM Transactions on Embedded Computing Systems, Nov 2005

Truong Nghiem
nghiem@seas.upenn.edu

Outline

Introduction

Static Analysis Approach
Dataflow Analysis

Stack Depth Analysis
Evaluation

Reducing Stack Depth
Conclusion

Introduction: Static Analysis

Embedded software on inexpensive
MiCroprocessors:
Used in safety critical applications, hard to upgrade

Undesirable to overprovision resources due to strict
constraints on cost, size, power

o Static analysis of software is important!
> Worst-case resource requirements (e.g. memory)
should be determined statically & accurately!
Why statically (but not dynamically)? Lack of
resources and power on inexpensive
microprocessors; real-time requirements

Introduction: Stack Safety

Stack safety = not run out of stack memory at
runtime

Why is stack safety important? Stack overflow
causes memory corruption

system crash / incorrect behavior
+

safety critical
. _applicatipnsgy: oo
= dis3ter 6@ 6"

Dynamic stack checking/expansion/sharing (see
Wei’s presentation) is infeasible on small real-time
embedded systems.

Introduction: Testing-based Approach

Offline testing using as many cases as possible

Typical procedure:
Set sufficiently large stack size

Run many tests. If stack overflow occurs, increase stack
size.

Finally, use larger stack size for safety (hopefully)
Disadvantages:

Some executable paths are missed (esp. in interrupt-
driven systems) = possibility of stack overflow not
eliminated

Programmers usually use larger stack size than needed
- waste of limited, valuable memory resources

Little feedback to help optimize memory usage

Introduction: Static Analysis Approach

Statically analyze the software to find stack bound

Never underestimate the true worst-case stack depth >
ensure stack safety

Sufficiently precise: try to be as close to the true worst-case
stack depth as possible, but ...

Fast enough
Informative: to help improve memory usage
Current: experimental tool for Atmel AVR microcontrollers.

Without stack bounding With static stack bounding
4 KB 4 KB
stack stack
L K< worst observed depth L
N
| tue worst‘ upper bound
heap [: case depth? on stack depth heap
g true worst case
depth must lie
data, BSS within this range data, BSS

0KB 0KB

Static Analysis Approach

Stack requirement analysis:
Sequential code: rather straightforward
Interrupt-driven code: challenging
An interrupt can fire at virtually any time, when:
The event (interrupt source) occurs
Typically: the master interrupt enable bit is set
The interrupt is enabled
Processor has just finished executing an instruction
Finding stack depth bound: with n interrupts
Only one interrupt at a time = underestimate, not practical
stack bound = depth(main) + }Ei}fdepth(interrupti»
All interrupts at a time - overestimate since not all interrupts
are enabled at a time (consider interrupt masks)

stack bound = depth(main) + Z depth(interrupt;)

i=l.n

Static Analysis Approach

Two-part analysis:
Context-sensitive dataflow analysis: identify unexecutable
branches, compute state of interrupt mask at each point,
compute worst-case stack depth of sequential code (main
code, interrupt handlers)

Compute interrupt preemption graph (IPG)

IPG: weighted, directed graph of
possible interrupt preemptions

« Edges: potential preemptions
« Weights: stack memory
requirements

= compute stack depth bound by searching through the IPG

8

Static Analysis Approach

Analyze object code instead of source code:
Separated from compilers: we can use any compiler
Independent of languages (Asm, C, Pascal, ADA,...)
Don’t need source code of libraries

Dataflow Analysis

Two challenges:

Compute the stack requirement of each interrupt handler
and the main code: call-graph can be constructed
because indirect calls and recursion are uncommon in
embedded systems [Engblom]

Compute the interrupt masks (master and individual) at
each program point - to construct the IPG

Tracking the interrupt masks:
Model the effects of arithmetic and logical operations
Model partially unknown data
Follow the control-flow: conditional instructions

< The more precise the interrupt mask tracking is, the
better the computed stack bound is

Dataflow Analysis

Main idea: Abstracting the machine state

Abstract necessary part of the machine state (registers,
memory,...)

Interpret the object code to approximate the machine
state with sufficient precision in reasonable time

Abstract interpreter — design questions:

What should be modeled? Program counter, general-
purpose registers, several SFRs, probably values on the
stack (experimental). Main memory and most SFRs are
not modeled.

How to model? Model at the bit-level to capture bitwise
operations on interrupt masks and condition code
register.

Dataflow Analysis

Bit-level modeling of machine state
Model each bit by set of three values 0 1
0: bitis 0 \/
1: bitis 1 il
L: unknown value

Unknown values
External input, e.g. sensor reading

. 00 01 10 11

Data from unmodeled part, e.g. main

memry DX
oL 10 4 1.l

Mergence of control flow paths, e.g. if-

then-else \\l // /

(b) Two bits

(a) One bit

Dataflow Analysis

Operations in the bit-wise domain
Results of abstract operators should be as precise as
possible, considering the unknown value of bits.
Two special cases:

Add-with-carry instruction: consider carry bit, if applied to
same register then it is “rotate left through carry”

adc r24, r24 ; MSB of r24 to carry bit
Exclusive OR (XOR): if applied to same register then it
clears the register.

merge and or

N
1 0 1 |1 o 41 |1 o 1 [1 o 1L
1 1 L L 1 1 0 4L 1 1 1 1 1 0 1 i
0 AL 0 B 0 0 0 0 0 1 0 A 0 1 0 i
ke b A b | ke O L I e AL e || b & <k
Example: {1,1,0,1,1,0,1,0} AND {0, L, 1,1,1,0, L, 1} = {0, 1,0,1, L,0, 1,0}

13

Dataflow Analysis

Managing abstract machine state

Create a copy of abstract state at points of conditional
instructions (if unable to determine)

Question: when to merge two abstract states?
Too infrequently - resource & time consuming
Too frequently = imprecise results

2 Trade-off between resource & accuracy

Criteria for merging states:

Context-sensitive & -insensitive: each invocation of same
function is analyzed separately or not

Path-sensitive & -insensitive: each control-flow path is

analyzed separately or not (always merge at joint points)
Authors’ tool: path- and context-sensitive (more precise
interrupt masks leading to more precise results)

Dataflow Analysis

Assumptions

Indirect stores to memory do not modify return addresses and
registers mapped into memory space.

No self-modifying code (discouraged in embedded systems). If
found, raise error.

Explicit stack pointer modification: recognized by macro
instructions (with observation that instructions changing SP
come in several patterns). If not recognized, raise error.
Indirect branches: indirect call, changing return address, e.g. in
preemptive RTOS, is currently not considered. However, it is
analogous to the case of interrupt handlers.

Recursion: developers must explicitly specify maximum
iteration count. Treated to maximum depth in analysis.
Modeling stack frames: model the values on stack to improve
accuracy (experimental)

Stack Depth Analysis

Assumptions

Acyclic IPG: usually interrupt handlers are not re-entrant (i.e.
at most one instance of it at one time), leading to acyclic IPG.
If cyclic, max number of re-entrances must be specified.

Machine state before interrupt is saved and is restored
properly on return

Compute stack depth: traverse the (acyclic) IPG
depth (i) : stack depth bound of interrupt handler i
depth (i, j): max stack depth of interrupt handler i at program
points where interrupt handler 7 is enabled, or -« if j is never
enabled by i.
Worst-case stack depth (wcsd) of interrupt handler i

wcsd (i) = max{depth(i),max;; . {depth(i,j)+wcsd(j)}}
Global stack depth bound is wcsd(0) of reset interrupt vector.

Evaluation of Technique & Tool

Used simulator to validate the abstract interpreter

Validating stack bounds: it must be true that
worst-observed (testing-based) < true worst < estimated worst

Good stack bound result (from a TinyOS example):

Observed worst-case depths Stack bound results

Int0 =27 Int0 =29

(not supported) Int1=2

Int 15 =19 Int 15 =19

Int 17 = 29 Int 17 = 29

(not supported) Int 18 =21

(not supported) Int 20 = 23

Int 21 =30 Int 21 =30

The tool also provides bounds for interrupts not
supported by the simulator (testing-based approach)

Evaluation of Technique & Tool

The global analysis
Analyzed 75 embedded applications: TinyOS applications (old
version with C, new version with nesC), several control
programs (self-balancing scooter, autonomous helicopter)

Some results (figure)

i . 3004 ©S ation of interrupts
Quite fast: 300§ Whole program analysis
On Pen4, 3 GHz

Only 13 required
more than 1s

Worst: 9s

200 4

|I| 1Ml || I

Stack Depth Bound

Misc

E TinyOS 0.6.1 TinyOS 1.1.5

— Hight

©

Reducing Stack Depth

Useful to free memory, allow to use cheaper CPU.
Utilize feedback information from the analysis tool.

Way #1: reduce stack requirement of each edge in IPG
Currently implement function inlining
Use cost-function to balance between stack depth & code size
Rather effective but quite slow (80 minutes for an example!!!)
More advanced algorithms and support from compilation
techniques may help

Way #2: eliminating unnecessary preemption
Simplify the shape of the IPG by removing unnecessary edges

Developers explicitly specify edges to be removed (based on
understanding of the system with the help of the tool).

Reducing Stack Depth

20000

Example ey :
of way #1 g o ' o

12500

)

10000

/ £ 1 | I
g H |
© 5000 different tradeoffs in jointly %
minimizing stack size and code size z [l rL Fl
2500 L o LA

e size (byte:

d
g
8

0 25 50 75 100 125 150 175 200 225 250
upper bound on stack size (bytes)

(a) Different tradeoffs for RfmTolLeds

b) Results for some TinyOS 1.1.5 kernels

Example of way #2 (TinyOS’s RfmToLeds example)

(a) Original (b) Restricted

Stack depth bound reduces from 128 bytes to 92 bytes

20

10

Conclusion

Stack safety is important in embedded systems, but
hard to verify by testing.

Authors have developed techniques and experimental
tools for static analysis of embedded software to find
stack depth bound.

Two novel methods have been developed for reducing
stack memory requirement, utilizing the analysis tool.
Design of the analyzer is more of an art than a science,
with various tradeoffs.

Source code:

Analyzer: http://www.cs.utah.edu/~regehr/stacktool/

Global inliner for GCC:
http://www.cs.utah.edu/flux/knit/cmi.html

21

References

J. Regehr, A. Reid, K. Webb. Eliminating stack overflow by abstract
interpretation. ACM Trans. Emb. Comp. Sys., Nov 2005.

J. Engblom. Static properties of commercial embedded real-time
programs, and their implication for worst-case execution time analysis.
IEEE Real-time Technology and Application Symp., 1999.

D. Brylow, N. Damgaard, J. Palsberg. Static checking of interrupt-driven
software. Intl. Conf. on Software Engineering, 2001.

22

