
1

1

Eliminating Stack Overflow
by Abstract Interpretation

Paper by John Regehr, Alastair Reid, and Kirk Webb
ACM Transactions on Embedded Computing Systems, Nov 2005

Truong Nghiem
nghiem@seas.upenn.edu

2

Outline

 Introduction
 Static Analysis Approach
 Dataflow Analysis
 Stack Depth Analysis
 Evaluation
 Reducing Stack Depth
 Conclusion

2

3

Introduction: Static Analysis
 Embedded software on inexpensive

microprocessors:
 Used in safety critical applications, hard to upgrade
 Undesirable to overprovision resources due to strict

constraints on cost, size, power
 Static analysis of software is important!
 Worst-case resource requirements (e.g. memory)

should be determined statically & accurately!
 Why statically (but not dynamically)? Lack of

resources and power on inexpensive
microprocessors; real-time requirements

4

Introduction: Stack Safety
 Stack safety = not run out of stack memory at

runtime
 Why is stack safety important? Stack overflow

causes memory corruption

 Dynamic stack checking/expansion/sharing (see
Wei’s presentation) is infeasible on small real-time
embedded systems.

system crash / incorrect behavior
+

safety critical
applications= disaster 

3

5

Introduction: Testing-based Approach
 Offline testing using as many cases as possible
 Typical procedure:

 Set sufficiently large stack size
 Run many tests. If stack overflow occurs, increase stack

size.
 Finally, use larger stack size for safety (hopefully)

 Disadvantages:
 Some executable paths are missed (esp. in interrupt-

driven systems)  possibility of stack overflow not
eliminated

 Programmers usually use larger stack size than needed
 waste of limited, valuable memory resources

 Little feedback to help optimize memory usage

6

Introduction: Static Analysis Approach
 Statically analyze the software to find stack bound

 Never underestimate the true worst-case stack depth 
ensure stack safety

 Sufficiently precise: try to be as close to the true worst-case
stack depth as possible, but …

 Fast enough
 Informative: to help improve memory usage

 Current: experimental tool for Atmel AVR microcontrollers.

4

7

Static Analysis Approach
 Stack requirement analysis:

 Sequential code: rather straightforward
 Interrupt-driven code: challenging

 An interrupt can fire at virtually any time, when:
 The event (interrupt source) occurs
 Typically: the master interrupt enable bit is set
 The interrupt is enabled
 Processor has just finished executing an instruction

 Finding stack depth bound: with n interrupts
 Only one interrupt at a time  underestimate, not practical

 All interrupts at a time  overestimate since not all interrupts
are enabled at a time (consider interrupt masks)

8

Static Analysis Approach
Two-part analysis:

 Context-sensitive dataflow analysis: identify unexecutable
branches, compute state of interrupt mask at each point,
compute worst-case stack depth of sequential code (main
code, interrupt handlers)

 Compute interrupt preemption graph (IPG)

 compute stack depth bound by searching through the IPG

main

int 2 int 3 int 4int 1

int 3 int 2 int 4

2
0

7
1
2

2
0

1
5

2
0

1
2

1
5

IPG: weighted, directed graph of
possible interrupt preemptions

 Edges: potential preemptions
 Weights: stack memory

requirements

5

9

Static Analysis Approach
 Analyze object code instead of source code:

 Separated from compilers: we can use any compiler
 Independent of languages (Asm, C, Pascal, ADA,…)
 Don’t need source code of libraries

10

Dataflow Analysis
 Two challenges:

 Compute the stack requirement of each interrupt handler
and the main code: call-graph can be constructed
because indirect calls and recursion are uncommon in
embedded systems [Engblom]

 Compute the interrupt masks (master and individual) at
each program point  to construct the IPG

 Tracking the interrupt masks:
 Model the effects of arithmetic and logical operations
 Model partially unknown data
 Follow the control-flow: conditional instructions
 The more precise the interrupt mask tracking is, the

better the computed stack bound is

6

11

Dataflow Analysis
 Main idea: Abstracting the machine state

 Abstract necessary part of the machine state (registers,
memory,…)

 Interpret the object code to approximate the machine
state with sufficient precision in reasonable time

 Abstract interpreter – design questions:
 What should be modeled? Program counter, general-

purpose registers, several SFRs, probably values on the
stack (experimental). Main memory and most SFRs are
not modeled.

 How to model? Model at the bit-level to capture bitwise
operations on interrupt masks and condition code
register.

12

Dataflow Analysis
Bit-level modeling of machine state

 Model each bit by set of three values
 0: bit is 0
 1: bit is 1
 ⊥: unknown value

 Unknown values
 External input, e.g. sensor reading
 Data from unmodeled part, e.g. main

memory
 Mergence of control flow paths, e.g. if-

then-else

7

13

Dataflow Analysis
Operations in the bit-wise domain

 Results of abstract operators should be as precise as
possible, considering the unknown value of bits.

 Two special cases:
 Add-with-carry instruction: consider carry bit, if applied to

same register then it is “rotate left through carry”
adc r24, r24 ; MSB of r24 to carry bit

 Exclusive OR (XOR): if applied to same register then it
clears the register.

Example: {1,1,0,1,⊥,0,1,0} AND {0, ⊥, ⊥,1,1,0, ⊥, ⊥} = {0, ⊥,0,1, ⊥,0, ⊥,0}

14

Dataflow Analysis
Managing abstract machine state
 Create a copy of abstract state at points of conditional

instructions (if unable to determine)
 Question: when to merge two abstract states?

 Too infrequently  resource & time consuming
 Too frequently  imprecise results
 Trade-off between resource & accuracy

 Criteria for merging states:
 Context-sensitive & -insensitive: each invocation of same

function is analyzed separately or not
 Path-sensitive & -insensitive: each control-flow path is

analyzed separately or not (always merge at joint points)
 Authors’ tool: path- and context-sensitive (more precise

interrupt masks leading to more precise results)

8

15

Dataflow Analysis
Assumptions

 Indirect stores to memory do not modify return addresses and
registers mapped into memory space.

 No self-modifying code (discouraged in embedded systems). If
found, raise error.

 Explicit stack pointer modification: recognized by macro
instructions (with observation that instructions changing SP
come in several patterns). If not recognized, raise error.

 Indirect branches: indirect call, changing return address, e.g. in
preemptive RTOS, is currently not considered. However, it is
analogous to the case of interrupt handlers.

 Recursion: developers must explicitly specify maximum
iteration count. Treated to maximum depth in analysis.

 Modeling stack frames: model the values on stack to improve
accuracy (experimental)

16

Stack Depth Analysis
 Assumptions

 Acyclic IPG: usually interrupt handlers are not re-entrant (i.e.
at most one instance of it at one time), leading to acyclic IPG.
If cyclic, max number of re-entrances must be specified.

 Machine state before interrupt is saved and is restored
properly on return

 Compute stack depth: traverse the (acyclic) IPG
 depth(i): stack depth bound of interrupt handler i
 depth(i,j): max stack depth of interrupt handler i at program

points where interrupt handler j is enabled, or -∞ if j is never
enabled by i.

 Worst-case stack depth (wcsd) of interrupt handler i
wcsd(i) = max{depth(i),maxj=1..n{depth(i,j)+wcsd(j)}}

 Global stack depth bound is wcsd(0) of reset interrupt vector.

9

17

Evaluation of Technique & Tool
 Used simulator to validate the abstract interpreter
 Validating stack bounds: it must be true that

worst-observed (testing-based) ≤ true worst ≤ estimated worst
Good stack bound result (from a TinyOS example):

The tool also provides bounds for interrupts not
supported by the simulator (testing-based approach)

Int 21 = 30Int 21 = 30

Int 20 = 23(not supported)

Int 18 = 21(not supported)

Int 17 = 29Int 17 = 29

Int 15 = 19Int 15 = 19

Int 1 = 2(not supported)

Int 0 = 29Int 0 = 27

Stack bound resultsObserved worst-case depths

18

Evaluation of Technique & Tool
 The global analysis

 Analyzed 75 embedded applications: TinyOS applications (old
version with C, new version with nesC), several control
programs (self-balancing scooter, autonomous helicopter)

 Some results (figure)

 Quite fast:
 On Pen4, 3 GHz
 Only 13 required

more than 1s
 Worst: 9s

10

19

Reducing Stack Depth
 Useful to free memory, allow to use cheaper CPU.
 Utilize feedback information from the analysis tool.
 Way #1: reduce stack requirement of each edge in IPG

 Currently implement function inlining
 Use cost-function to balance between stack depth & code size
 Rather effective but quite slow (80 minutes for an example!!!)
 More advanced algorithms and support from compilation

techniques may help

 Way #2: eliminating unnecessary preemption
 Simplify the shape of the IPG by removing unnecessary edges
 Developers explicitly specify edges to be removed (based on

understanding of the system with the help of the tool).

20

Reducing Stack Depth
 Example

of way #1

 Example of way #2 (TinyOS’s RfmToLeds example)

Stack depth bound reduces from 128 bytes to 92 bytes

11

21

Conclusion
 Stack safety is important in embedded systems, but

hard to verify by testing.
 Authors have developed techniques and experimental

tools for static analysis of embedded software to find
stack depth bound.

 Two novel methods have been developed for reducing
stack memory requirement, utilizing the analysis tool.

 Design of the analyzer is more of an art than a science,
with various tradeoffs.

 Source code:
 Analyzer: http://www.cs.utah.edu/~regehr/stacktool/
 Global inliner for GCC:

http://www.cs.utah.edu/flux/knit/cmi.html

22

References
 J. Regehr, A. Reid, K. Webb. Eliminating stack overflow by abstract

interpretation. ACM Trans. Emb. Comp. Sys., Nov 2005.
 J. Engblom. Static properties of commercial embedded real-time

programs, and their implication for worst-case execution time analysis.
IEEE Real-time Technology and Application Symp., 1999.

 D. Brylow, N. Damgaard, J. Palsberg. Static checking of interrupt-driven
software. Intl. Conf. on Software Engineering, 2001.

