
1

1

Eliminating Stack Overflow
by Abstract Interpretation

Paper by John Regehr, Alastair Reid, and Kirk Webb
ACM Transactions on Embedded Computing Systems, Nov 2005

Truong Nghiem
nghiem@seas.upenn.edu

2

Outline

 Introduction
 Static Analysis Approach
 Dataflow Analysis
 Stack Depth Analysis
 Evaluation
 Reducing Stack Depth
 Conclusion

2

3

Introduction: Static Analysis
 Embedded software on inexpensive

microprocessors:
 Used in safety critical applications, hard to upgrade
 Undesirable to overprovision resources due to strict

constraints on cost, size, power
 Static analysis of software is important!
 Worst-case resource requirements (e.g. memory)

should be determined statically & accurately!
 Why statically (but not dynamically)? Lack of

resources and power on inexpensive
microprocessors; real-time requirements

4

Introduction: Stack Safety
 Stack safety = not run out of stack memory at

runtime
 Why is stack safety important? Stack overflow

causes memory corruption

 Dynamic stack checking/expansion/sharing (see
Wei’s presentation) is infeasible on small real-time
embedded systems.

system crash / incorrect behavior
+

safety critical
applications= disaster

3

5

Introduction: Testing-based Approach
 Offline testing using as many cases as possible
 Typical procedure:

 Set sufficiently large stack size
 Run many tests. If stack overflow occurs, increase stack

size.
 Finally, use larger stack size for safety (hopefully)

 Disadvantages:
 Some executable paths are missed (esp. in interrupt-

driven systems) possibility of stack overflow not
eliminated

 Programmers usually use larger stack size than needed
 waste of limited, valuable memory resources

 Little feedback to help optimize memory usage

6

Introduction: Static Analysis Approach
 Statically analyze the software to find stack bound

 Never underestimate the true worst-case stack depth
ensure stack safety

 Sufficiently precise: try to be as close to the true worst-case
stack depth as possible, but …

 Fast enough
 Informative: to help improve memory usage

 Current: experimental tool for Atmel AVR microcontrollers.

4

7

Static Analysis Approach
 Stack requirement analysis:

 Sequential code: rather straightforward
 Interrupt-driven code: challenging

 An interrupt can fire at virtually any time, when:
 The event (interrupt source) occurs
 Typically: the master interrupt enable bit is set
 The interrupt is enabled
 Processor has just finished executing an instruction

 Finding stack depth bound: with n interrupts
 Only one interrupt at a time underestimate, not practical

 All interrupts at a time overestimate since not all interrupts
are enabled at a time (consider interrupt masks)

8

Static Analysis Approach
Two-part analysis:

 Context-sensitive dataflow analysis: identify unexecutable
branches, compute state of interrupt mask at each point,
compute worst-case stack depth of sequential code (main
code, interrupt handlers)

 Compute interrupt preemption graph (IPG)

 compute stack depth bound by searching through the IPG

main

int 2 int 3 int 4int 1

int 3 int 2 int 4

2
0

7
1
2

2
0

1
5

2
0

1
2

1
5

IPG: weighted, directed graph of
possible interrupt preemptions

 Edges: potential preemptions
 Weights: stack memory

requirements

5

9

Static Analysis Approach
 Analyze object code instead of source code:

 Separated from compilers: we can use any compiler
 Independent of languages (Asm, C, Pascal, ADA,…)
 Don’t need source code of libraries

10

Dataflow Analysis
 Two challenges:

 Compute the stack requirement of each interrupt handler
and the main code: call-graph can be constructed
because indirect calls and recursion are uncommon in
embedded systems [Engblom]

 Compute the interrupt masks (master and individual) at
each program point to construct the IPG

 Tracking the interrupt masks:
 Model the effects of arithmetic and logical operations
 Model partially unknown data
 Follow the control-flow: conditional instructions
 The more precise the interrupt mask tracking is, the

better the computed stack bound is

6

11

Dataflow Analysis
 Main idea: Abstracting the machine state

 Abstract necessary part of the machine state (registers,
memory,…)

 Interpret the object code to approximate the machine
state with sufficient precision in reasonable time

 Abstract interpreter – design questions:
 What should be modeled? Program counter, general-

purpose registers, several SFRs, probably values on the
stack (experimental). Main memory and most SFRs are
not modeled.

 How to model? Model at the bit-level to capture bitwise
operations on interrupt masks and condition code
register.

12

Dataflow Analysis
Bit-level modeling of machine state

 Model each bit by set of three values
 0: bit is 0
 1: bit is 1
 ⊥: unknown value

 Unknown values
 External input, e.g. sensor reading
 Data from unmodeled part, e.g. main

memory
 Mergence of control flow paths, e.g. if-

then-else

7

13

Dataflow Analysis
Operations in the bit-wise domain

 Results of abstract operators should be as precise as
possible, considering the unknown value of bits.

 Two special cases:
 Add-with-carry instruction: consider carry bit, if applied to

same register then it is “rotate left through carry”
adc r24, r24 ; MSB of r24 to carry bit

 Exclusive OR (XOR): if applied to same register then it
clears the register.

Example: {1,1,0,1,⊥,0,1,0} AND {0, ⊥, ⊥,1,1,0, ⊥, ⊥} = {0, ⊥,0,1, ⊥,0, ⊥,0}

14

Dataflow Analysis
Managing abstract machine state
 Create a copy of abstract state at points of conditional

instructions (if unable to determine)
 Question: when to merge two abstract states?

 Too infrequently resource & time consuming
 Too frequently imprecise results
 Trade-off between resource & accuracy

 Criteria for merging states:
 Context-sensitive & -insensitive: each invocation of same

function is analyzed separately or not
 Path-sensitive & -insensitive: each control-flow path is

analyzed separately or not (always merge at joint points)
 Authors’ tool: path- and context-sensitive (more precise

interrupt masks leading to more precise results)

8

15

Dataflow Analysis
Assumptions

 Indirect stores to memory do not modify return addresses and
registers mapped into memory space.

 No self-modifying code (discouraged in embedded systems). If
found, raise error.

 Explicit stack pointer modification: recognized by macro
instructions (with observation that instructions changing SP
come in several patterns). If not recognized, raise error.

 Indirect branches: indirect call, changing return address, e.g. in
preemptive RTOS, is currently not considered. However, it is
analogous to the case of interrupt handlers.

 Recursion: developers must explicitly specify maximum
iteration count. Treated to maximum depth in analysis.

 Modeling stack frames: model the values on stack to improve
accuracy (experimental)

16

Stack Depth Analysis
 Assumptions

 Acyclic IPG: usually interrupt handlers are not re-entrant (i.e.
at most one instance of it at one time), leading to acyclic IPG.
If cyclic, max number of re-entrances must be specified.

 Machine state before interrupt is saved and is restored
properly on return

 Compute stack depth: traverse the (acyclic) IPG
 depth(i): stack depth bound of interrupt handler i
 depth(i,j): max stack depth of interrupt handler i at program

points where interrupt handler j is enabled, or -∞ if j is never
enabled by i.

 Worst-case stack depth (wcsd) of interrupt handler i
wcsd(i) = max{depth(i),maxj=1..n{depth(i,j)+wcsd(j)}}

 Global stack depth bound is wcsd(0) of reset interrupt vector.

9

17

Evaluation of Technique & Tool
 Used simulator to validate the abstract interpreter
 Validating stack bounds: it must be true that

worst-observed (testing-based) ≤ true worst ≤ estimated worst
Good stack bound result (from a TinyOS example):

The tool also provides bounds for interrupts not
supported by the simulator (testing-based approach)

Int 21 = 30Int 21 = 30

Int 20 = 23(not supported)

Int 18 = 21(not supported)

Int 17 = 29Int 17 = 29

Int 15 = 19Int 15 = 19

Int 1 = 2(not supported)

Int 0 = 29Int 0 = 27

Stack bound resultsObserved worst-case depths

18

Evaluation of Technique & Tool
 The global analysis

 Analyzed 75 embedded applications: TinyOS applications (old
version with C, new version with nesC), several control
programs (self-balancing scooter, autonomous helicopter)

 Some results (figure)

 Quite fast:
 On Pen4, 3 GHz
 Only 13 required

more than 1s
 Worst: 9s

10

19

Reducing Stack Depth
 Useful to free memory, allow to use cheaper CPU.
 Utilize feedback information from the analysis tool.
 Way #1: reduce stack requirement of each edge in IPG

 Currently implement function inlining
 Use cost-function to balance between stack depth & code size
 Rather effective but quite slow (80 minutes for an example!!!)
 More advanced algorithms and support from compilation

techniques may help

 Way #2: eliminating unnecessary preemption
 Simplify the shape of the IPG by removing unnecessary edges
 Developers explicitly specify edges to be removed (based on

understanding of the system with the help of the tool).

20

Reducing Stack Depth
 Example

of way #1

 Example of way #2 (TinyOS’s RfmToLeds example)

Stack depth bound reduces from 128 bytes to 92 bytes

11

21

Conclusion
 Stack safety is important in embedded systems, but

hard to verify by testing.
 Authors have developed techniques and experimental

tools for static analysis of embedded software to find
stack depth bound.

 Two novel methods have been developed for reducing
stack memory requirement, utilizing the analysis tool.

 Design of the analyzer is more of an art than a science,
with various tradeoffs.

 Source code:
 Analyzer: http://www.cs.utah.edu/~regehr/stacktool/
 Global inliner for GCC:

http://www.cs.utah.edu/flux/knit/cmi.html

22

References
 J. Regehr, A. Reid, K. Webb. Eliminating stack overflow by abstract

interpretation. ACM Trans. Emb. Comp. Sys., Nov 2005.
 J. Engblom. Static properties of commercial embedded real-time

programs, and their implication for worst-case execution time analysis.
IEEE Real-time Technology and Application Symp., 1999.

 D. Brylow, N. Damgaard, J. Palsberg. Static checking of interrupt-driven
software. Intl. Conf. on Software Engineering, 2001.

