
1

Introduction to Real-Time
Operating Systems

Mahesh Balasubramaniam

What is an RTOS?
• An RTOS is a class of operating systems

that are intended for real time-applications
• What is a real time application?
• A real time application is an application

that guarantees both correctness of result
and the added constraint of meeting a
deadline

So what is an RTOS?
• An operating system which follows the

Real Time criteria.
• ² Efficiency, Predictability and Timeliness –

important
• – All components of an RTOS must have

these properties.
• Some tasks which may delay things:
• – Interrupt Processing, Context Switching,

Inter-task communication,

So what is an RTOS ?(contd)
• IO
• To cut back on (variable) overhead for

these tasks:
• – Multiprogramming, Memory

Management, File (and other) IO, IPC,
• etc.

So what makes an RTOS special?
• An RTOS will provide facilities to

guarantee deadlines will be met
• An RTOS will provide scheduling

algorithms in order to enable deterministic
behavior in the system

• An RTOS is valued more for predictability
than throughput

Design Philosophies
• Some of the design philosophies of an

RTOS are with respect to:
• Scheduling
• Memory allocation
• Inter task communication
• Interrupt handlers

2

Tasks
• Task States:

– Running
– Ready (possibly: suspended, pended)
– Blocked (possibly: waiting, dormant, delayed)

– Scheduler – schedules/shuffles tasks between
Running and Ready states

– Blocking is self-blocking by tasks, and moved to
Running state via other tasks’ interrupt signaling
(when block-factor is removed/satisfied)

– When a task is unblocked with a higher priority over
the ‘running’ task, the scheduler ‘switches’ context
immediately

Scheduling
• The data structure of the ready list in the

scheduler is designed so as to minimize the
worst-case length of time spent in the
scheduler's critical section

• The critical response time, sometimes called the
flyback time, is the time it takes to queue a new
ready task and restore the state of the highest
priority task. In a well-designed RTOS, readying
a new task will take 3-20 instructions per ready
queue entry, and restoration of the highest-
priority ready task will take 5-30 instructions.

Intertask Comm. & resource sharing
• It is "unsafe" for two tasks to access the

same specific data or hardware resource
simultaneously.

• 3 Ways to resolve this:
• Temporarily masking/disabling interrupts
• Binary Semaphores
• Message passing

Memory Allocation
• Speed of allocation

• Memory can become fragmented

Interrupt Handling
• Interrupts usually block the highest priority

tasks
• Need to minimize the unpredictability

caused

3

Linux as an RTOS
• Is Linux an RTOS?
• Linux provides a few basic features to

support real-time applications
• Provides soft-real time guarantees
• SCHED_FF and SCHED_RR are 2

scheduling policies provided

Problems with Linux
• Use of Virtual Memory

• Use of shared memory

• Does not support priority inheritance

RTLinux and RTAI
• Variants of Linux with support for real-time

applications
• They both use a real-time kernel which

interacts with the main Kernel
• They treat the Linux OS as the lowest

running task

RTLinux : Mechanics behind the Kernel

Sudhanshu Sharma

RTLinuxOutline

 Build Up

 Real time Linux – The various forms

 RTLinux – Architecture

 RTLinux - Internals

 Examples

RTLinuxBuild Up

Kernel (Wikipedia) : “As a basic component of an operating system, a
kernel provides the lowest level of abstraction layer for the resources
(especially memory, processors and I/O devices) that applications must
control to perform their function”

-Process Management

-Memory Management

-Device Management

-System Calls

4

RTLinuxBuild Up

Why Real Time
Linux ?

Reuse !!!

Most of the
standard problems
in Systems already
solvable through
Linux

RTLinuxBuild Up

Any RT system application can be divided into 2 parts

-Real Time task/process (Temporal properties Imp.)

-Non Real Time task/process (Temporal properties not as Imp.)

Ideology behind RTLinux :

Extend the existing source to provide the standard functionalities at the
same time provide a framework that can guarantee Hard Real Time
requirements to be fulfilled.

Linux an obvious choice ---

 - Open source

 - Vast User/Developer base of Linux

RTLinuxOutline

 Build Up

 Real Time Linux Approaches

 RTLinux – Architecture

 RTLinux - Internals

 Examples

RTLinuxReal Time Linux Approaches

3 broader paradigms to solve RTOS problem :

1) Providing Non real time Services to the basic real time kernel (eg.
VxWorks)

2) Preemption Improvement in Standard kernel (preempt patch for Linux
kernel)

3) Virtual Machine Layer to make standard kernel Pre-emptable

 (RTLinux /RTAI)

RTLinuxReal Time Linux Approaches

RTAI & RTLinux comparisons

-In essence both RTAI and RTLinux execute Real Time tasks in the kernel
memory space preventing RT threads to be swapped out

- Dynamic Memory allocation in RTAI while RTlinux still uses static allocation

- Shared Memory (Linux <-> RTLinux) provided by both

- IPC functions in RTAI are more extensive FIFO , Mailboxes, Messg. Q’s,net_rpc

- POSIX Mutex , Conditional Variables, Semaphores provided in both

- User space real time (Protection) – Provided only in RTAI called LXRT services

-RTLinux only provides user space real time signals.

No interaction with RTservices or Linux System Calls possible in those
handlers.

RTLinuxOutline

 Build Up

 Real time Linux – The various forms

 RTLinux – Architecture

 RTLinux - Internals

 Examples

5

RTLinuxArchitecture

Hardware

SchedulerRTLinux Kernel

System Calls

Drivers
Linux kernel

RT task

RT task

Interrupts

Interrupt

Bash Emacs gcc

I / O

I / O

RTLinuxArchitecture

- Standard time sharing OS and hard real time executive running on
same machine

- Kernel provided with the emulation of Interrupt control H/W

-RT tasks run at kernel privilege level to provide direct H/W access

- RTLinux runs Linux kernel for booting , device drivers ,networking,
FS, process control and loadable kernel modules

- Linux kernel runs as a low priority task on the RT kernel hence
making sure it cannot preempt any RT task

RTLinuxArchitecture

-RT task allocated fixed memory for data and code (Pain Sounds
Familiar !!!!)

-RT tasks cannot use Linux system calls , directly call routines or
access ordinary data structures in Linux Kernel

-RTProcesses without memory protection features (RTLinux Pro has
some PSDD now)

- The RT kernel is actually patched over the Linux kernel and then
recompiled to work as a RTLinux system

- Completely configurable RTLinux kernel

RTLinuxArchitecture

VM layer only emulates the Interrupt Control

The 0 level OS does not provide any basic services that can be
provided by Linux

- Only RT services

- No primitives for process creation, switching or MM

Uses software stack for switching and not the expensive H/W switching

RT KERNEL IS NOT PREEMPTABLE

RTLinuxOutline

 Build Up

 Real time Linux – The various forms

 RTLinux – Architecture

 RTLinux - Internals

 Examples

RTLinuxInternals

Here comes the nuts and bolts of implementation …

We will cover 4 important aspects of the RTLinux internals

1) Interrupt Handling

2) IPC toolsets – RT- FIFO & Shared Memory

3) Clock and Timers

4) Scheduling

6

RTLinuxInternals

Interrupt Handling

- Traditional calls (PSW) of sti() and cli() are modified to use the
Software interrupts

- Wrapper routines written to save and restore state at return from
software Interrupt

- Interrupt Handlers in RT executive perform whatever functions are
required and passes interrupts to Linux

- In Most I/O , RT device interrupts simply notify Linux

RTLinuxInternals

Interrupt Handling

- Timer interrupt increments timer variable and determines whether
RT task needs to run and passes interrupts to Linux at appropriate
intervals

- All Linux “wrappers” modified to fix stacks to cheat Linux to believe
H/W interrupt and hence kernel mode execution ensured

- S_IRET is used to save minimal state and look for pending
interrupts (call other wrappers) otherwise restore registers and
return from Interrupt

RTLinuxInternals

Interrupt Handling – APIs

 rtl_request_irq() - Add RT Interrupt Handler

 rtl_free_irq () – Remove RT Interrupt Handler

 rtl_get_soft_irq ()- Install Software interrupt Handler

 rtl_free_soft_irq ()- Remove Software interrupt Handler

 rtl_global_pend_irq ()- Schedule a Linux Interrupt

RTLinuxInternals

RT- FIFO

This provides the primary mechanism through which the RT
processes interact with the Linux processes

RT tasks should pre allocate the default size of FIFO and the number

RTKernel Config has options for–>

 - Pre Allocated FIFO Buffer

 - Max number of FIFO

RTLinuxInternals

RT- FIFO - Asynchronous I/O

Example – Linux process producing data and RT process is the consumer tht
writes nothing back

 void fifo_handler (int sig,rtl_siginfo_t *sig,void *v){

char msg[64];

read(sig->si_fd,&msg,64);

}

 void fifo(void)

{

int fd; struct rtl_sigaction sigaction;

RTLinuxInternals

RT- FIFO - Asynchronous I/O

... //create FIFO
 mkfifo(“/myfifo”,0755); //if 2 arg. 0 then Linux cant see it

 // open FIFO for read
 fd = open(“/myfifo”,0_RDONLY|0_NONBLOCK);

// register a SIGPOLL handler for FIFO

sigaction.sa_sigaction = fifo_handler;

//file that we want signal for

sigaction .sa_fd =fd;

//write event notification

sigaction.sa_flags = RTL_SA_RDONLY | RTL_SA_SIGINFO;

//install handlers

rtl_sigaction(SIGPOLL,&sigaction,NULL);

unlink(“/myfifo”);

}

7

RTLinuxInternals

RT- FIFO

Only one SIGPOLL handler installed at a given time

Many fd share the same FIFO but only one SIGPOLL handler

RTLinuxInternals

Shared Memory

Almost the same principle it uses POSIX RT extensions

- shm_open(“file”,0_CREATE,0) // 0755 to allow Linux to use it

- shm_unlink()

- mmap() //Area created needs to be mapped

Reference Count

- Maintained so that shm_unlink() / unlink() don’t wipe out the
resource in use across Linux or RTLinux processes

RTLinuxInternals

Clocks & Timers

- Clocks used to manage time in computers –Clocks control API’s

- Timers is H/w or S/w allow functions to be evoked at specified
time in future

- Multi task systems need timers for each one of them hence S/w
timers used

- Timer Interrupt will trigger task schedule at specified moments (One
shit timers) – Timer management API support

RTLinuxInternals
Schedulers

RM Scheduler provided

EDF Scheduler provided

Also the Scheduler can be loaded at run time hence more complex
extensions are possible

RTLinuxExamples

// Program in Linux writing to FIFO //rtf3 for
Sound

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

#define DELAY 30000

void make_tone1(int fd)
{
 static char buf = 0;
 write (fd, &buf, 1);
}
void make_tone2(int fd)
{
 static char buf = 0xff;
 write (fd, &buf, 1);
}
…..

…..

main()
{
 int i, fd = open ("/dev/rtf3", O_WRONLY);
 while (1)
 {
 for (i=0;i<DELAY;i++);
 make_tone1(fd);
 for (i=0;i<DELAY;i++);
 make_tone2(fd);
 }
}

RTLinuxExamples
// RT process doing the same work

#include <rtl.h>
#include <pthread.h>
#include <rtl_fifo.h>
#include <time.h>

#define FIFO_NO 3
#define DELAY 30000
pthread_t thread;
void * sound_thread(int fd)
{
 int i;
 static char buf = 0;
 while (1)
 {
 for(i=0; i<DELAY; i++);

 buf = 0xff;
 rtf_put(FIFO_NO, &buf, 1);
 for(i=0;i<DELAY;i++);
 buf = 0x0;
 rtf_put(FIFO_NO, &buf, 1);
 }
 return 0;
}

int init_module(void)
{
 return pthread_create(&thread, NULL, sound_thread,
NULL);
}

void cleanup_module(void)
{
 pthread_delete_np(thread);
}

// Finally a kernel module that will be a RT thread and
// will read the char device //rtf3 to produce sound

8

RTLinuxReferences
Yodaiken, Victor . An Introduction to RTLinux [www]
<http://www.linuxdevices.com/articles/AT3694406595.html>

Dougan,Court and Matt Sherer. RTLinux POSIX API for IO on Real Time FIFOs and Shared
Memory

Yodaiken, Victor and Barabanov, Michael .A Real-Time Linux

V. Esteve, I. Ripoll and A. Crespo. Stand-Alone RTLinux-GPL

She Kairui, Bai Shuwei, Zhou Qingguo, Nicholas Mc Guire, and Li Lian.
Analyzing RTLinux/GPL Source Code for Education

Ismael Ripoll (2002). RTLinux versus RTAI

Yodaiken, Victor and Barabanov, Michael .FSMLabs RTLinux PSDD: Hard Realtime with
Memory Protection

Michael Pettersson,Markus Svensson .Memory Management in VxWorks compared to
RTLinux

