
MaC
Monitoring and Checking at Runtime
(Continue)

Presented By

Usa Sammapun
CIS 700 Oct 12, 2005

Recap: MaC

► Runtime verification technique
– Ensures the current program execution follows its

formal requirements at run-time

MaC Verifier and Language

Instrumented
Program Event

Recognizer Checker Injector

MaC Verifier

Execution info

variable update
method call/return

Events

Conditions

Violations

Feedback

Program

MaC Compiler

PEDL MEDL

MaC Specification

SADL

Where/when
to steer

System Properties using
EVENTS and CONDITIONS

Map
variable update, method call/return to

EVENTS and CONDITIONS

Events
► e - variable update, start/end method
► e1 || e2 - or
► e1 && e2 - and
► start(c) - instant when condition c becomes true
► end(c) - instant when condition c becomes false
► e when c - e occurs when condition c is true

► Alarms: events that must never occur

Conditions
► Conditions interpreted over 3 values: true, false and undefined.

► c - boolean expression
► !c - not c
► c1 || c2 - or
► c1 && c2 - and
► c1 -> c2 - imply
► defined(c) - true when c is defined
► [e1, e2) - interval

► Safety Properties: conditions that must always hold true

Current Work

► Timing properties:

► Regular expressions

► Probabilistic properties

► Dynamic MaC

d}{21)e,[e ≤ d}{21)e,[e < d}{21)e,[e =

Regular Expressions in MEDL

► MEDL is based on temporal logic

► Regular expressions (RE) may be better
– Engineers understand them
– More concise than TL for temporal ordering

► RE ranges over MaC events
– event a,b,c
– a.b*.c

Challenges

► When to accept several possible inputs (ab*c*)
– Shortest input
– Longest input
– All input

► Identify which events are relevant
► Overlapping RE
► Simultaneous events

Identify which events are relevant

► An unexpected event fails the RE check
► Trace may contain “irrelevant” events, which

should not make RE fail

Example: no sends after read

open.send*.read*.close
► Which traces should be accepted or rejected?

– open.send.read.close accept
– open.send.read.send.close reject
– open.send.send.read continue
– open.send.delete ?reject
– open.send.chdir.close ?accept

RE fileaccess{open,send,close,delete} =
open.send*.read*.close

MaC with Regular Expressions

► Regular expression over events
– Statement: RE R {Ē} = < R >,
– Grammar of R: R ::= e | R.R | R+R | R*
– Relevant set {Ē}: contribute to RE failure

► RE are neither events nor conditions
– Events associated with RE R:
startR(R), success(R), fail(R)

► alarm badAccess = fail(fileaccess)

Overlapping RE

►Property: open.send*.read*.close
►Trace:

– Actual: open open send read send read
– We see: open open send read send read

►Cannot distinguish between two
overlapping instances; events miss
attribution
– What is the right way to index events?

Simultaneous Events
► Checker operates on a stream of observations

– Observations are primitive events that reflect change of system
state

► One primitive event can trigger
different other events

► What if those events are in the
the same RE
– a . (a || b) . b
– at state i, a occurs, then (a || b) also

occurs
– How do we order a and (a || b)

Probabilistic Properties

► Probability calculation
– Numerical technique

– Statistical technique
1. Simulate
2. Collect several samples
3. Estimate probabilities

task start

finish in 80

0.25

0.75
finish in 100

not finish in 100

not finish in 80

0.2

0.8

Statistical Technique

► usually, we 1) execute for X times, 2) use them as
samples, and 3) estimate probabilities

task start finish in 100

not finish in 100task start

task start finish in 100

task start finish in 100

task start finish in 100

…

1. Simulate and 2. Collect Sample
► runtime verification – only one execution path

task start finish in 100

not finish in 100task start

task start finish in 100

task start finish in 100

task start finish in 100

server start update v

client request

update v

…

…task start finish in 100

not finish in 100task start

task start finish in 100

task start finish in 100 task start finish in 100

MaC Probabilistic Properties

► Experiment
– An element that indicates a sub-path

• eexp (previous example: task start)
• cexp

► Probabilistic event ◉ = {<, >, ≤, ≥, =, ≠}
– e prob(◉p, eexp)

► Probabilistic condition
– c prob(◉p, cexp)

Example

► A soft real-time task must not miss a deadline of
100 time units with probability ≥ 0.2

event missDeadline = end([startT,endT){≤100})
alarm soft_rt_task = missDeadline prob(≥ 0.2, startT)

► A car velocity must be < 50mph with prob ≥ 0.9
in work zones

property speed = (v < 50) prob(≥ 0.9, work_zone)

3. Estimating Probability
► Estimate probability from program execution

– compute experimental probability p’condition and p’event

– Condition: c prob(< p, cexp) Event: e prob(< p, eexp)

► A car velocity must be < 50mph with prob ≥ 0.9 in work zones
(v < 50) prob(≥ 0.9, work_zone)

|e of soccurrence|
|e of soccurrence|p'

exp
event =|truec s.t. S|

|truec s.t. S|p'
expi

i
condition

=
=

=

true e work_zon:states#
true 50) (v :states #p'condition
=

=<
=

Example

events start task #
events deadline miss #p' event =

► task must not miss a deadline of 100 time units with probability ≥ 0.2
alarm soft_rt_task = missDeadline prob(≥ 0.2, startT)

miss deadline events = 40
startT (task start events) = 150
p’ = 40 / 150 = 0.267

0 1p=0.2

p’=0.267

Statistical Hypothesis Testing

► Given
– Probability estimation
– Confidence interval (CI) e.g. CI = 95%

► Statistical Hypothesis Testing
– Satisfied
– Not satisfied
– Need more sample

Probability Estimation: Z-Score
► Use z-score to calculate how far apart p and p’ are

n
p)p(1

p- p'z
−

=

For event, n = |occurrences of eexp|
For condition, n = |Si s.t. cexp = true|

• Sign of z says which direction
+ z says p’ > p
- z says p’ < p

• Value of z says how far apart p’ and p

► task must not miss a deadline of 100 time units with probability ≥ 0.2
p = 0.2 p’ = 0.267
zp’ = + 2.05

zp = 0
p = 0.2

zp’ = 2.05
p’ = 0.267

Continue…
► Given confidence interval (CI)

– We calculate z-score z* for CI
(e.g. CI = 95% has z* = 1.96)

► Decide: alarm soft_rt_task = missDeadline prob(≥ 0.2, startT)
– no alarm: zp’ < -z* [means p’ < p with confidence CI]
– raise alarm: zp’ > z* [means p’ > p with confidence CI]
– more sample: -z* < zp’ < z* [means p’ ≈ p, either action wouldn’t

cause serious error]

zp = 0
p = 0.2

Raise alarmNo alarm

-z* = -1.96 z* = 1.96

more sample

zp’ = 2.05
p’ = 0.267

Dynamic MaC
► From fixed to dynamic object sets

► What if tasks can be added dynamically?
– The set of events and conditions changes dynamically

• Events and conditions are parameterized

► Example: Client

event clientReq(ID i) = startM(Client.request()) { clientReq.i = Client.id; }
condition clientValid(ID i) = [clientReq(i), clientDropped(i));

► Special event that add or remove an object in the object
set

	MaCMonitoring and Checking at Runtime(Continue)
	Recap: MaC
	MaC Verifier and Language
	Events
	Conditions
	Current Work
	Regular Expressions in MEDL
	Challenges
	Identify which events are relevant
	Example: no sends after read
	MaC with Regular Expressions
	Overlapping RE
	Simultaneous Events
	Probabilistic Properties
	Statistical Technique
	1. Simulate and 2. Collect Sample
	MaC Probabilistic Properties
	Example
	3. Estimating Probability
	Example
	Statistical Hypothesis Testing
	Probability Estimation: Z-Score
	Continue…
	Dynamic MaC

