Online Testing of Real-time Systems Using UPPAAL

Kim G. Larsen, Marius Mikučionis, Brian Nielsen

{ kgl, marius, bnielsen } @cs.aau.dk

Outline

Center for Embedded Software Systems Basic Research in Computer Science Aalborg University

CISS TIRRICS A http://www.cs.aau.dk/~marius/tron

Sentember 12 2005 UPenn - n 1/24

Classical Model-based Testing Framework

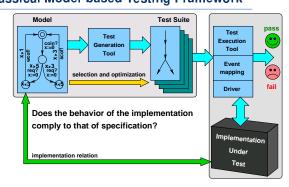
Online testing using UPPAAL: NWPT'03, FATES'04, EMSOFT'05. Formal framework of timed conformance testing of black-box:

Test setup: from system and specification to testing. Relativized timed input/output conformance relation.

Ordering of environments by discriminating power.

Evaluation: performance, industrial study, light controller demo.

Classical model-based black-box testing.


Online Real-time Test Generation Symbolic techniques from UPPAAL.

Conclusions and future work.

CISS #BRICS @ http://www.cs.aau.dk/~marius/tron

Online testing algorithm animated.

Real-time mapping to model and back.

- ModeFbased, black-box, conformance testing.
- Timed, online (on-the-fly generation and execution in real-time).
- CISS #BRICS A http://www.cs.aau.dk/~marius/tron

September 12, 2005. UPenn - p. 4/24

Sentember 12 2005 UPenn - n 2/24

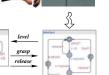
Motivation for Automated Testing

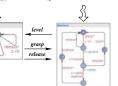
- What is testing?
 - checking the quality (functionality, reliability, ...) of an object
 - by performing experiments
 - in a controlled (and systematic) way.
- Testing is the main validation technique used by industry:
 - 10-20 errors per 1000 lines of code.
 - 30-50% of development time and cost in embedded software.
 - Testing is still ad-hoc, based on heuristics, and error prone.
- "Testing is routine, tedious and boring work" let machines do it.
- But! Testing requires most of development skills.
- Verification vs. testing: abstract models vs. real world.
- Conformance testing is undecidable.

CISS #BRICS @ http://www.cs.aau.dk/~marius/tron

Related Work

This work is based on the following ideas:

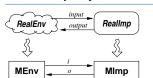

- UPPAAL model-checking algorithms for timed systems (1994).
- Jan Tretmans' testing theory (un-timed, quiescence) (1999).
- TORX testing tool framework (un-timed, w/o environment) (2000).
- Digitization techniques, T.A.Henzinger, Z.Manna, A.Pnueli (1992), J.Ouaknine, J.Worrell (2003).


Other close works:

- Time-optimal test cases for RTS, A.Hessel, K.G.Larsen, B.Nielsen, P.Pettersson, A.Skou (2003).
- Black-box conformance testing for RTS, M.Krichen, S.Tripakis (2004).
- Test generation framework for quiescent RTS, L.B.Briones, E.Brinksma (2004).

Modelling and Testing with UPPAAL TRON

- Modelling a (closed) system:
 - Selected aspects.
 - Use abstraction.
 - Formal notations: UPPAAL TA.
 - Automatically analyze and test.
- Tester acts as environment where:
 - Specification: Env || IUT,
 - IUT model acts as oracle,
 - Load/guiding model is Env,
 - Generate only relevant inputs,
 - Modular and flexible.

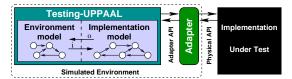

CISS ■BRICS

http://www.cs.aau.dk/~marius/tron

Sentember 12 2005 UPenn - n 6/24

September 12, 2005, UPenn - p. 8/24

Test Setup: System ⇒ Model ⇒ Online Testing



CISS #BRICS @ http://www.cs.aau.dk/~marius/tron

- Imp is (weakly) input enabled.
- Clear and explicit Env assumptions.

Sentember 12 2005 UPenn - n 5/24

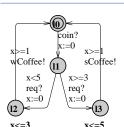
- Imp||Env forms a closed system.
- Observable input/output actions.
- Testing with general Env is expensive and often unnecessary.
- Flexible: only relevant behavior (Env change, guiding, debug).

Online generation allows long and otherwise exhaustive tests.

September 12, 2005. UPenn – p. 7/24 CISS TIBRICS A http://www.cs.aau.dk/~marius/ron.

Relativized Timed Input/Output Conformance

- Idea: extend ioco (J.Tretmans) from TORX with time and env.
- Timed trace e.g.: $\sigma = coin? \cdot 5 \cdot req? \cdot 2 \cdot weakCoffee! \cdot 9 \cdot coin?$
- $\mathsf{TTr}(s)$ set of *timed traces* from state $s: \{ \sigma \in (A \cup \mathbb{R}_{\geq 0})^* \mid s \stackrel{\sigma}{\Rightarrow} \}$
- Timed trace *inclusion* as conf. relation: $TTr(i) \subseteq TTr(s)$
- No illegal output and legal output is observed at right time. $\mathsf{Out}(P) \stackrel{def}{=} \bigcup \{ \alpha \in (A_{out} \cup \mathbb{R}_{\geq 0}) \mid p \in P. \ p \stackrel{\alpha}{\Rightarrow} \}$
- Relativized Timed Input/Output Conformance: $s \text{ rtioco}_e t \stackrel{def}{=} \forall \sigma \in \mathsf{TTr}(e).\mathsf{Out}((e,s) \mathsf{ After } \sigma) \subseteq \mathsf{Out}((e,t) \mathsf{ After } \sigma)$


 $s \operatorname{rtioco}_e t \iff \operatorname{TTr}(s) \cap \operatorname{TTr}(e) \subseteq \operatorname{TTr}(t) \cap \operatorname{TTr}(e)$

Environment ordering. f is more discriminating than e:

 $e \sqsubseteq f \stackrel{def}{=} \mathsf{rtioco}_f \subseteq \mathsf{rtioco}_e$

CISS TIBRICS A http://www.cs.aau.dk/~marius/tron

Test Specification: Timed Automata Networks

Timed automaton over A is $\langle L, l_0, X, D, E, I \rangle$:

- L set of locations
- $l_0 \in L$ the *initial* location,
- X set of real-valued clocks
- D bounded integer variables,
- $I:l\mapsto G(X)$ location *invariant* mapping,
- $E \subseteq L \times G(X) \times A \times 2^{R(X)} \times L$ is a superset of directed edges: $l \xrightarrow{g,a,r} l' \text{ iff } \langle l,g,a,r,l' \rangle \in E$.
- Has Labeled Transition System (LTS) semantics.

Discriminating Power of Environments

(b) Least

(c) Most

Consider trace: $0 \cdot \text{Med}! \cdot 0 \cdot \text{High}! \cdot 0 \cdot \text{Med}! \cdot 0 \cdot \text{Low}? \cdot r \cdot \dots$

- I/O, internal and timing non-determinism allow modelling parallelism, abstraction and possible time slacks.
- Test Spec: $\langle (\mathcal{E}_1 || \mathcal{E}_2 || \dots || \mathcal{E}_n) || (\mathcal{I}_1 || \mathcal{I}_2 || \dots || \mathcal{I}_n), A_{in}, A_{out}, T \rangle$

CISS #BRICS @ http://www.cs.aau.dk/~marius/tron

Sentember 12 2005 UPenn - n 9/24

On?

(e) Responsive

// offer an input

Symbolic Techniques from UPPAAL

 $Out(s \text{ After } \sigma)$

 $\mathbb{R}_{>0}$

 $\{wCoffee, sCoffee\} \cup [0, 4]$

 $\{wCoffee, sCoffee\} \cup [0, 3]$

 $\{sCoffee\} \cup [0,2]$

 $\{sCoffee, 0\}$

http://www.cs.aau.dk/~marius/tron

Coffee! (II)

Trace. σ

 $c \cdot 5 \cdot r \cdot 5$

CISS HBRICS &

 $c \cdot 2$

- **■** Action transition: $\langle \bar{l}, z \rangle \xrightarrow{a} \langle \bar{l}', (z \wedge g)_r \wedge I(\bar{l}') \rangle$ iff: $l \xrightarrow{g,a,r} l' \text{ is } a\text{-action transition and } z \wedge g \neq \emptyset, (z \wedge g)_r \wedge I(\bar{l'}) \neq \emptyset.$
- **●** Delay transition: $\langle \bar{l}, z \rangle \xrightarrow{\delta} \langle \bar{l}, z^{+\delta} \wedge I(\bar{l}) \rangle$ iff $z^{+\delta} \wedge I(\bar{l}) \neq \emptyset$.

Timed I/O Conformance Relation Example

Implementation i_1

 $\mathsf{Out}(i_1 \; \mathsf{After} \; \sigma)$

 $\mathbb{R}_{>0}$

[0, 1]

 $\{wCoffee, 0\}$

 $\{sCoffee, 0\}$

v<=2

Implementation i_2

sCoffee!

Coffee! (II

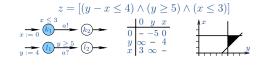
(12)

 $\mathsf{Out}(i_2 \; \mathsf{After} \; \sigma)$

 $\mathbb{R}_{>0}$

[0, 2]

 $\{wCoffee\} \cup [0, 1]$


[0, 4]

[0, 2]

September 12, 2005. UPenn - p. 10/24

Sentember 12 2005 UPenn - n 12/24

- Zone is a conjunction of clock constraints of the form: $\{x_i - x_j \prec c_{ij}\} \cup \{a_i \prec x_i\} \cup \{x_j \prec b_j\} \text{ where } \prec \in \{<, \leq\}$
- Difference bound matrix compact representation.
- Symbolic state set $\mathcal{Z} = \{\langle \bar{l}_1, z_1 \rangle, \dots, \langle \bar{l}_n, z_n \rangle\}$

CISS TBRICS A http://www.cs.aau.dk/~marius/tron Sentember 12 2005 UPenn - n 11/24

Randomized Test Generation and Execution Online

Off?

On?

y>=d Med! y:=0

(d) Inertial

while $\mathcal{Z} \neq \emptyset \land \sharp iterations \leq T$ do choose randomly:

1. **if** EnvOutput(\mathcal{Z}) $\neq \emptyset$ randomly choose $a \in EnvOutput(\mathcal{Z})$

 $Most \supseteq Inertial \supseteq Responsive \supseteq Least$

send a to IUT

(a) Cooling controller.

 $\mathcal{Z} := \mathcal{Z} \text{ After } a$

2. randomly choose $\delta \in \mathsf{Delays}(\mathcal{Z})$

// wait for an output sleep for δ time units and wake up on output ϕ sound and complete in limit

if o occurs at $\delta' < \delta$ then

 $\mathcal{Z} := \mathcal{Z} \text{ After } \delta'$

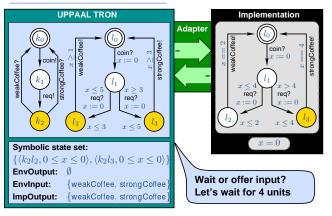
if $o \notin ImpOutput(\mathcal{Z})$ then return fail

else $\mathcal{Z} := \mathcal{Z}$ After o

else $\mathcal{Z}:=\mathcal{Z}$ After δ

// no output within δ delay 3. $\mathcal{Z} := \{(s_0, e_0)\}, \text{ reset IUT }$ //reset and restart

if $\mathcal{Z} = \emptyset$ then return fail else return pass


CISS ■BRICS

http://www.cs.aau.dk/~marius/tron

September 12, 2005. UPenn - p. 13/24

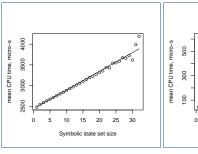
Testing Online in Action

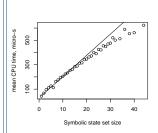
CISS #BRICS @ http://www.cs.aau.dk/~marius/tron

CISS #BRICS http://www.cs.aau.dk/~marius/tron

September 12, 2005. UPenn - p. 14/24

Error Detection Capability: Mutant Experiment


- Specification: train-gate example of 9 timed automata.
- Implementation: 4 threads with a shared queue in C++.
- 7 mutants: M1-M6 with seeded error, M0 correct.


Mu-	Numb	er of inpu	Duration, <i>mtu</i>			
tant	Min	Avg	Max	Min	Avg	Max
М1	2	4.8	16	0	68.8	318
M2	2	4.6	13	1	66.4	389
М3	2	4.7	14	0	66.4	398
М4	6	8.5	18	28	165.0	532
М5	4	5.6	12	14	89.8	364
М6	2	14.1	92	0	299.6	2077
MO	3565	3751.4	3966	10^{5}	10^{5}	10^{5}

Computing Performance (means)

after delay

after action

CISS TIBRICS A http://www.cs.aau.dk/~marius/tron

Sentember 12 2005 UPenn - n 16/24

CISS TIBRICS A http://www.cs.aau.dk/~marius/tron

Sentember 12 2005 UPenn = n 15/24

Benchmark Data: Summary

Executed on Sun SPARC, 8x900MHz, 32GB RAM, Sun Solaris 9.

	Number of states in ${\mathcal Z}$				CPU execution time, μs			
Mu-	After (delay)		After (action)		After (delay)		After (action)	
tant	Avg	Max	Avg	Max	Avg	Max	Avg	Max
M1	2.3	18	2.7	28	1113	3128	141	787
M2	2.3	22	2.8	30	1118	3311	147	791
М3	2.2	22	2.7	30	1112	3392	141	834
М4	2.8	24	3.1	48	1113	3469	125	936
M5	2.8	24	3.3	48	1131	3222	146	919
М6	2.7	27	2.9	36	1098	3531	110	861
MO	2.7	31	2.9	46	1085	3591	101	950

CISS #BRICS A http://www.cs.aau.dk/~marius/tron

September 12, 2005. UPenn - p. 17/24

Danfoss Case Study: EKC - Refrigeration Controller

CISS ■BRICS

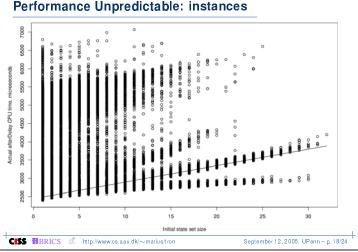
http://www.cs.aau.dk/~marius/tron

September 12 2005 UPenn - n 19/24

Concluding Remarks

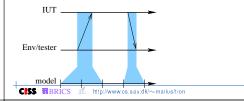
- Online real-time testing theoretically sound and complete in limit.
- Environment assumptions should be known and explicit.
- Relativized conformance allows to minimize cost of testing.
- Implemented in TRON using efficient algorithms from UPPAAL.
- Encouraging error detection capability and performance.
- TRON allows abstract and non-deterministic specifications.
- Extreme non-determinism may degrade performance.
- Testable environments are limited by CPU and comm. latency.
- IUT models just need to be deadlock free and input-enabled.

CISS #BRICS A http://www.cs.aau.dk/~marius/tron

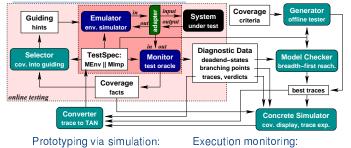

Sentember 12 2 005 UPenn - n 21/24

Sentember 12 2005 UPenn - n 23/24

Future Work


- Research tasks:
 - Clock synchronization, latency, jitter.
 - Coverage estimation, use coverage in guiding.
 - Diagnostics, fault location.
 - Model learning during experiment.
 - Relativized conformance in interface compatibility: unit testing.
- Engineering tasks:
 - New UPPAAL features (broadcast, committed, U-Code).
 - Termination of testing (specify property expressions?).
 - TRON in monitoring, testing via simulation and monitoring.
 - Relativized conformance in practice: specialized applications of generalized controllers, test-case guiding, debugging.
- Industrial case studies. CISS TIBRICS A http://www.cs.aau.dk/~marius/tron

Performance Unpredictable: instances



Time Mapping to the Model and Back

- Reachability algorithms for afterDelay and afterAction: $\mathsf{Closure}_{\delta\tau}(\mathcal{Z},d) = \bigcup_{0 \leq \delta \leq d} \left\{ \langle \bar{\ell}',z' \rangle \; \middle| \; \langle \bar{\ell},z \rangle \in \mathcal{Z}, \, \langle \bar{\ell},z \rangle \stackrel{\delta}{\Longrightarrow} \langle \bar{\ell}',z' \rangle \right\}$ \mathcal{Z} After $d = \left\{ \langle \bar{\ell}, z' \rangle \mid \langle \bar{l}, z \rangle \in \mathsf{Closure}_{\delta \tau}(\mathcal{Z}, d), \ z' = (z \land (t == d))_{t = 0} \right\}$
- Everything above works well in controlled-time.
- But in real world, communication doesn't happen instantaneously.
- Clocks at Env/tester and IUT may drift.
- Models of queues and drifts contain non-determinism.

Summary and Future Work

Sys.Spec:

CISS TBRICS A http://www.cs.aau.dk/~marius/tron

September 12, 2005. UPenn - p. 22/24

Sentember 12 2005 UPenn - n 24/24

Download...

UPPAAL TRON is available for research and non-commercial use at:

http://www.cs.aau.dk/~marius/tron Thank You!