CSE 380
Computer Operating Systems

Instructor: Insup Lee and Dianna Xu

University of Pennsylvania
Fall 2003
Lecture Note: Security



Preface

A Early (unix systems) security
"  Security by obscurity

"  Those that know enough to break the system also know enough
not to

d RTM
* The Great Internet Worm of 1988
= Devastating watershed event in hacker history
*  First awareness of internet security
d Legendary literatures:
"  Hackers — Steven Levy
»  Cyberpunk — Hafner and Markoff
"  The Cuckoo’s Egg — Clifford Stoll
" TheJargon File



Hackers vs Crackers

A The word hack doesn’t have 69 different meanings
" an appropriate application of ingenuity
= a creative/brilliant practical joke

 Legendary hacks are revered as urban folklores
* The element of cleverness

= A flare for classic hacker’s humor and style, which includes
references to Adams, Tolkien as well as jargons

* Mostly harmless

= Caltech/MIT football pranks
» Robin Hood/Friar Tuck against Xerox



Robin Hood/Friar Tuck

X id1

Id1: Friar Tuck... | am under attack! Pray save me!
id1: Off (aborted)

id2: Fear not, friend Robin! | shall rout the Sheriff
of Nottingham's men!

id1: Thank you, my good fellow!



Terminology

O Vulnerability (weakness/defects that can be exploited)
= [ll-chosen passwords
"  Software bugs
= Communication without encryption
= Incorrect set-ups
O Attack (ways of exploiting vulnerability)
=  Password crackers
"  Viruses and worms
=  Denial of service
A Intruders (adversaries that try to attack)
= Terrorists
= Espionage
=  Hackers



Security Goals

d Data Confidentiality

» Keep data and communication secret

* Privacy of personal financial/health records etc

= Military and commercial relevance
d Data Integrity

" Protect reliability of data against tampering

* (Can we be sure of the source and content of information?
d System Availability

= Data/resources should be accessible when needed

" Protection against denial of service attacks



Sample Tools

d Cryptography

Can ensure confidentiality and integrity

Typically used for authentication

d Firewalls, passwords, access control

Authorization mechanisms

d Operating systems

Resource allocation

Monitoring and logging for audits

4 Java bytecode verifier

Memory safety against malicious/defective code

We do not have adequate technology today!



Terminology

Basics

Authentication: Verifying identity of sender and/or
message integrity

Integrity:

Plaintext:

Ciphertext:

Key:

Encryption.
Decryption.

Message tampering detection
Original message
Encrypted message

Input for en- and decryption algorithm
Plaintext + Key — Ciphertext

Ciphertext + Key — Plaintext



Basic Set-up of Cryptography

. — Encryption key

" Decryption key

l PID
C =E(P, Kp) P =D(C, Kp)
P—— E D > P
Ciphertext
Plaintext in , - Plaintext out
Encryption Decryption
algorithm algorithm
J L
k' a g
Encryption Decryption

Relationship between the plaintext and the ciphertext



Encryption Algorithms

Symmetric
* Encryption and decryption use the same key
» Key must be secret (secret key)

= Best known: DES, AES, IDEA, Blowfish, RC5
Asymmetric

* Also known as Public Key Encryption
* Encryption and decryption keys different

DES — Data Encryption Standard, IDEA — International Data Encryption Algorithm, AES — Advanced Encryption System

10



Symmetric Encryption

¥

l

Out of band key exchange

Shared Shared
D o D

e ———— —
-— ~—
S~

N\
A

Confidentiality l

$I Encryption :

>I Decryption F

Bob

11



Monoalphabetic Ciphers

1 Classical way of encoding text strings (Caesar Cipher)
O Permutation of the alphabet (rot13)

 The key for decoding is the inverse permutation
 Encoding and decoding are efficient

O Theoretically sound: the number of permutations of ASCII alphabet is
VERY large (128!), and an intruder cannot possibly try out all
possible permutations to decipher

 Main problem: Any human language has distinct frequent letter (e.g.
vowels) combos

= E.g. e 1s the most common letter in English text, th 1s the most common
sequence of adjacent symbols

= Given enough cipher text, one doesn’t need to be Shelock Holmes to
break the code

12



Secret-Key Cryptography

1 Sender and receiver share the secret key
[ This is also called symmetric key cryptography

A A popular scheme for many years: DES (Data Encryption
Standard) promoted by NSA

= Key 1s 56 bits (extended to 64 bits using 8 parity bits)

* Input data is processed in chunks of 64-bit blocks, by subjecting
to a series of transformations using the key

A Distribution of keys is a problem

13



Asymmetric Encryption

U Two complementary keys
" Private key (kept secret)
= Public key (published)
4 Private key VERY difficult to compute from public key

U Encryption with one key can only be reversed with
the other key

d Used in PGP (Pretty Good Privacy) &
PKI (Public Key Infrastructure)

O Best known RSA & ECC, DSA for signatures

RSA Rivest Shami Adleman, ECC — Eliptic Curve Cryptography, DSA — Digital Signature Algorithm

14



One-Way Functions

A Function such that given formula for f(x)

" casy to evaluate y = {(X) given x
 But giveny

» computationally infeasible to find x
 There is a rich theory of one-way functions

* Many candidates proposed

* None of them “proved” to be one way

» Existence of one-way functions linked to encryption, random

number generators, (and other crypto concepts) in a precise
sense

15



Asymmetric Encryption cont'd

Alice Bob

S S ) E ﬁ Puble brivare ﬁ

A
*I Encryption : >I Decryption F

Confidentiality

Authentication & Integrit
—>I Encryption : g_y>| Decryption I

3 Alice Alice 3
m Private Public m




Public-Key Cryptography

1 All users pick a public key/private key pair
= publish the public key
= private key not published
 Public key is the encryption key
* To send a message to user Alice, encrypt the message with
Alice’s public key
4 Private key is the decryption key
= Alice decrypts the ciphertext with its private key

A Popular schemes (1970s): Diffie-Hellman, RSA

17



U OO

More on RSA

Introduced by Rivest, Shamir, and Adleman in 1979
Foundations in number theory and computational difficulty of factoring

Not mathematically proven to be unbreakable, but has withstood attacks
and analysis

= Ideally, we would like to prove a theorem saying “if intruder does not know
the key, then 1t cannot construct plaintext from the ciphertext by executing a
polynomial-time algorithm”

Public and private keys are derived from secretly chosen large prime
numbers (512 bits)

Plaintext is viewed as a large binary number and encryption is
exponentiation in modulo arithmetic

Intruder will have to factor large numbers (and there are no known
polynomial-time algorithms for this)

= 2002’s major result: polynomial-time test to check if a number 1s prime

18



Hash Functions

O Produce hash values for data access or security
L Hash value: Number generated from a string of text
1 Hash is substantially smaller than the text itself

O Unlikely that other text produces the same hash
value (collision resistance)

O Unidirectional (cannot calculate text from hash)
U Provides: Integrity & Authentication
d Best known: SHA-1 & MD5

SHA — Secure Hash Algorithm, MD5 — Message Digest

19



Digital Signatures

1 How can Alice sign a digital document ?
d Let S(A,M) be the message M tagged with Alice’s signature

 No forgery possible: If Alice signs M then nobody else can
generate S(A,M)

O Authenticity check: If you get the message S(A,M) you
should be able to verify that this is really created by Alice

O No alteration: Once Alice sends S(A,M), nobody (including
Alice) can tamper this message

O No reuse: Alice cannot duplicate S(A,M) at a later time

20



Digital Sighatures with Public Keys

O Suppose Kis public key and k is private key for Alice, and
encryption/decryption is commutative:

D(E(M,K), k) = E(D(M,k),K)=M
O To sign a message M, Alice simply sends D(M,k)

 Receiver uses Alice’s public key to compute E(D(M,k),K), to
retrieve M

= Authenticity of signature because only Alice knows the private key k
1 RSA encryption does satisfy the required commutativity

O To ensure “no reuse” and “no alteration” the message must include
a timestamp

 The scheme is made more efficient by computing D(H(M),k), where
H(M) is the secure hash of M

= Hashing gives a constant size output
* Hard to mvert

21



Hash Functions cont'd

Provides signhatures with

Alice shared secret Bob
Ry«
| Messag | Secret | | Messag | Secret |
. c ~ J J

G C
~
(] + o] (] & [

C

22



Hash Functions cont'd

Provides signhatures with
public key

Bob

A 4

$
>I Decryption I ?= i

| Messag |

T Hash
Alice 3
Public %@@‘

23



PKT in a Nutshell

PKI (Public Key Infrastructure) based on
= Certificates (X.509)

* Chain of trust (usually hierarchy)
Certificates

= Public keys signed by a trusted 3 party
CA = Certificate Authority

= Certificate 1s public as well

» Different types for people, web server, ...

24



Certificate creation

Alice D CA

-
- A

Certificate m
\/mﬁﬁcate

Identity Verification

Certificate Signing Request (CSR)

b

25



User Authentication

Authentication is the process of determining which user is
making a request

Basic Principles. Authentication must identify:
1.  Something the user knows (e.g. password)
2. Something the user has (e.g. ID card)

3. Something user is (e.g. retina scan)

Humans are the weakest link

26



Passwords

1 The most commonly used way of authentication
d Vulnerabilities

= Stealing passwords

» Poorly chosen passwords that are easy to guess

= Attacks that search through password directories

4 If you were to guess passwords, how would you go about
doing that?

 Survey of passwords by Morris&Thomson: could guess 86%
of all passwords

= 15 single ASCII letters
= 72 two ASCII letters
= 464 three ASCII letters

* Words from dictionary, names of people/streets ....

27



Systems are easy to crackl

L BL> telnet elxsi

ELXSI AT LBL

LOGIN: root

PASSWORD: root

INCORRECT PASSWORD, TRY AGAIN
LOGIN: guest

PASSWORD: guest

INCORRECT PASSWORD, TRY AGAIN
LOGIN: uucp

PASSWORD: uucp

WELCOME TO THE ELXSI COMPUTER AT LBL

J How a cracker broke into LBL

* a U.S. Dept. of Energy research lab

28



Password Attacks

 Deadly combo:
» War dialers / password guessing
 Once entrance to a system is gained:
= password file
= packet sniffer

» rsh/rlogin into other machines with known usr/passwd
combo

d Social Engineering

29



Unix: /etc/passwd

1 Passwords stored in a file system are vulnerable to
automated attacks

= At first Unix was implemented with a password file holding
the actual passwords of users, but with only root permissions.

d This had many vulnerabilities
= Copies were made by privileged users

= Copies were made by bugs: classic example posted password
file on daily message file

30



Improvements to First Approach

1 Enforce password rules
= Makes the passwords harder to guess or crack with dictionaries
= Problems?

1 Hashing and encryption: use password to create a key, then
hash based on the DES algorithm for encryption

= Speed OK for legitimate users
* Takes longer to do automatic search
1 Password files contains these encrypted entries

O Intruder cannot figure out the passwords just by gaining
access to password file, but can keep guessing passwords,
apply hash/encryption and compare the results to entries In
password file

31



Add Salt

[ “Salt” the passwords by adding random bits.
» Makes dictionary attacks more expensive.

» Decreases the likelithood that two 1dentical passwords
will appear as 1dentical entries 1n the password file.

12 bit salt results in 4,096 versions of each password.
 /etc/passwd entry:

user id

. Hash(salt + passwd)
d How d i

Qw

g Q
D=




Hash-based 1-time Passwords

 Goal: Can the password be different in every session?
= code books

1 Scheme used for remote logins based on one-way hash
functions

 One-time setup.
= User chooses a password w

= Fixes a constant t for the number of times the authentication
can be done using password w

= User declares the password HY(w) to the system the first time
HHH...(H(w))...))

33



One time passwords

4 Initially, the computer stores, with user’s login-id, password
p=Ht(w) and session number s=0

 After i sessions the computer has p=H"(w) and s=i
1 At the time of login, computer sends i to the user

 User computes new password g=H""1(w) and sends it to the
computer

d The computer checks that H(q)=p, and if so, allows the login
(and updates local entries to g and i+1)

O Important property: given q, it is easy to compute H(q), but if
Intruder had stolen p in the last session, it cannot produce g

= H is a one-way hash function, hard to invert

34



Operating System Security

 Trojan horses
* Free programs available to be downloaded and executed

* Common trick: place altered versions of utility programs in
user directories

4 Login Spoofing
» Simulate the login session to acquire passwords
 Logic Bomb
 Trap Doors
" System programmer writes code to bypass normal checks

* Insider knowledge to exploit these intentional vulnerabilities

35



Buffer Overflow Attacks

0 > 50% of security incidents reported at CERT (see
cert.org) are due to buffer overflow attacks

d C and C++ programming languages don’t do array
bounds checks

» In particular, widely used library functions such as strcpy,
gets

4 Exploited in many famous attacks (read your Windows
Service Pack notes)

36



C's Control

£() {

}

g (char *args) ({

g (parameter) ;

int x;
// more local
// variables

Larger Addresses

v

Before calling g

Stack

e

frame

37



C's Control Stack

£0) o SP
g (parameter) ;

}

g (char *args) {
int x;
// more local
// variables

Larger Addresses

<

After calling g

base pointer

return address

frame

38



Buffer Overflow Example

g (char *text) ({

char buffer[128];

strcpy (buffer,
}

text) ;

text <

base pointer

return address

Attack code
128 bytes

ADDR

frame

—TSSIECK |«

39



Buffer Overflow Example

AD D R e

g (char *text) ({
char buffer[128];
strcpy (buffer, text);

text <

Upon return from g, attack code gets executed !

base.pointer

.
.

retuADIDRress

Attack code
128 bytes

ADDR
— 1S SlaCK
frame

40



Solutions

 Don’t write code in C
» Use a safe language instead (Java, C#, ...)
" Not always possible (low level programming)
" Doesn’t solve legacy code problem
A Link C code against safe version of libc
* May degrade performance unacceptably
4 Software fault isolation
* [nstrument executable code to insert checks
1 Program analysis techniques

* Examine program to see whether “tainted” data 1s used
as argument to strcpy

41



U

Avoiding Titanics

Unix

= Jpr

= link core to /etc/passwd

Microsoft

= code red (buffer overflow in IIS Indexing Service)

Weathering actual attacks is the best way to make
an OS safe

" tiger teams
System design should be public

Keep the design simple

42



Network Security

4 External threat
» code transmitted to target machine
" code executed there, doing damage
d Goals of virus writer
" quickly spreading virus
= difficult to detect
" hard to get rid of
 Virus = program can reproduce itself
" by attaching i1ts code to another program
» additionally, do harm

d Worm
= self-replicating

43



The Morris Internet Worm

grappling
hook

worm

ot

rsh attack

finger attack

-

o

sendmail attack

%

worm sent

target system

worm

infected system

44



Virus Attachment: Append

Virus

O Simplest case: insert copy at the end of an
executable file

L Runs before other code of the program (by changing
start address in header)

L Most common program virus

45



Kinds of Viruses

 Overwriting Viruses
= Companion Viruses
= Executable Viruses
4 Parasitic Viruses
= Cavity Viruses
d Memory-resident Viruses
= System-call-trap Viruses
= Software Viruses (Windows manager, explorer, etc)
4 Boot Sector Viruses
4 Device Driver Viruses
d Macro Viruses

46



Bootstrap Viruses

U Bootstrap Process:

* Firmware (ROM) copies MBR (master boot record) to
memory, jumps to that program

O MBR (or Boot Sector)
* Fixed position on disk

= “Chained” boot sectors permit longer Bootstrap
Loaders

47



Bootstrap Viruses

VIrus

1 Virus breaks the chain
O Inserts virus code
(J Reconnects chain afterwards

48



Why the Boot Sector?

O Automatically executed before OS is running
= Also before detection tools are running

O OS hides boot sector information from users
» Hard to discover that the virus is there
= Harder to fix

1 Any good virus scanning software scans the boot
sectors

49



Macro Viruses

U Macros are just programs
O Word processors & Spreadsheets
= Startup macro

*= Macros turned on by default

4 Visual Basic Script (VBScript)

50



Melissa Virus

1 Transmission Rate

» The first confirmed reports of Melissa were received on
Friday, March 26, 1999.

* By Monday, March 29, it had reached more than
100,000 computers.

" One site got 32,000 infected messages in 45 minutes.

 Damage
* Denial of service: mail systems off-line.

= Could have been much worse

51



Melissa Macro Virus

d Implementation

= VBA (Visual Basic for Applications) code associated with
the "document.open" method of Word

[ Strategy

* Email message containing an infected Word document as an
attachment

* Opening Word document triggers virus i1f macros are
enabled

 Propagation

* Sends email message to first 50 entries 1n every Outlook
address book readable by the user executing the macro

52



"T Love You" Virus/Worm

L Infection Rate

= At 5:00 pm EDT May 8, 2000, CERT had received reports from more than
650 sites

= > 500,000 individual systems
O VBScript
O Propagation

= Email, Windows file sharing, IRC, USENET news
Q Signature

=  An attachment named
"LOVE-LETTER-FOR-YOU.TXT.VBS"

= A subject of "ILOVEYOU"

= Message body: "kindly check the attached LOVELETTER coming from
me."

53



Love Bug Behavior

1 Replaced certain files with copies of itself
= Based on file extension (e.g. .vbs, .js, .hta, etc)

0 Changed Internet Explorer start page
= Pointed the browser to infected web pages

1 Mailed copies of itself

O Changed reqistry keys

54



Antivirus and Anti-Antivirus Techniques

 Scanning the disk for certain executables
" hard to deal with polymorphic viruses
4 Integrity checkers using checksums
 Behavioral checkers
4 Virus avoidance
= good OS
* 1nstall only shrink-wrapped software
» do not click on attachments to email
" use antivirus software
» frequent backups
1 Recovery from virus attack
* halt computer, reboot from safe disk, run antivirus

55



