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The Space of Essential Matrices as a Riemannian Quotient Manifold∗

Roberto Tron† and Kostas Daniilidis‡

Abstract. The essential matrix, which encodes the epipolar constraint between points in two projective views,
is a cornerstone of modern computer vision. Previous works have proposed different characterizations
of the space of essential matrices as a Riemannian manifold. However, they either do not consider the
symmetric role played by the two views or do not fully take into account the geometric peculiarities of
the epipolar constraint. We address these limitations with a characterization as a quotient manifold
that can be easily interpreted in terms of camera poses. While our main focus is on theoretical
aspects, we include applications to optimization problems in computer vision.
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1. Introduction. The essential matrix and the epipolar constraint, introduced by [16],
have been a major mainstay of compute vision for the last 30 years and are the basic building
block in any Structure from Motion (SfM) system. Its robust estimation from image data
is now standard course material (see the textbooks from [13] and [17]). In practical terms,
an essential matrix encodes an epipolar configuration (i.e., an Euclidean motion between two
camera views) as a matrix in R3×3. The space of essential matrices is a subset of R3×3, but
the algebraic relations imposed by the epipolar constraint render its geometry and its relation
with the space of epipolar configurations far from trivial.

There have been a few attempts to characterize the space of essential matrices as a
Riemannian manifold. The earliest works in this aspect are from [22] and [18], with a follow-up
from [7]; in these works, one of the two views is chosen as the global reference frame, and
essential matrices are parametrized using the (normalized) relative poses between cameras (unit
vectors for the translations and rotation matrices). This parametrization implies a preferential
treatment of one of the two cameras and breaks the natural symmetry of the constraint. A
different representation, based on the Singular Value Decomposition (SVD) of the essential
matrix, has been used in several papers [9, 14, 24, 25]. While this representation has a natural
symmetry, previous works do not provide an intuitive geometric interpretation of its parameters.
In addition, they do not completely take into account the well-known twisted-pair ambiguity,
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i.e., the fact that four different epipolar configurations correspond to the same essential matrix
(with an arbitrary choice of sign). Moreover, when considered, the algorithm used for the
computation of the logarithm map (which is related to the notion of geodesics in this space) is
neither efficient nor rigorously motivated.

In this work, we propose characterizations of the spaces of essential matrices and epipolar
configurations as Riemannian quotient manifolds. We make the following contributions:

1. Our representation is related to the aforementioned SVD formulation, but we derive
our results from a particular choice of the global reference frame, leading to a clear
geometric interpretation of the parameters.

2. We clarify the relation between the chirality constraint (i.e., the constraint that all the
points lie in front of both cameras), the space of essential matrices, and the space of
epipolar configurations.

3. We use the theory of quotient manifold to endow the space of essential matrices and the
space of epipolar configurations with a Riemannian manifold structure. This procedure
leads to a natural characterization of geodesics, distance, and curvature from those
defined in the space of rotations.

4. We provide expressions for the curvature of the manifolds, showing that it is nonnegative.
This is an important fact for some optimization algorithms.

5. Our treatment includes procedures to efficiently and correctly compute the logarithm
map and distance function between points on the manifolds.

6. We apply the theory to problems in two-view SfM, showing that the proposed represen-
tation provides an effective way to parametrize optimization problems and a meaningful
notion of distance between epipolar configurations.

Some material in this paper might appear quite basic for any reader versed in computer
vision. However, it is necessary to revisit it and place it in the context of our parametrization.

Paper outline. The paper is organized as follows. We first introduce our notation and
review basic concepts in Riemannian geometry and group theory (section 2). We then
derive a canonical decomposition of essential matrices that is given by a particular choice
of the global reference frame (subsection 4.1), use it to characterize the space of essential
matrices as a quotient space (subsection 4.2), and show its interpretation in terms of image
vectors (subsection 4.3). Using the chirality constraint, we derive the signed normalized
essential space from the space of essential matrices and show that it is a quotient manifold
(subsection 5.3); we derive expressions and algorithms for computing geodesics, distances,
and curvature of this manifold (subsections 5.4 to 5.6). We use these results to then go
back to the space of essential matrices and show that it is also a manifold (section 6).
Finally, we show an application of the theory to optimization problems in computer vision
(section 7).

2. Definitions and notation. In this section, we define the notation used in this paper
and review several notions from Riemannian geometry and group theory. For the most part,
these are well-established results, and we include here just the minimum necessary to follow the
paper while referring the reader to the literature for complete and rigorous definitions [6, 21].
Nonetheless, subsection 2.7 includes results for SO(3)× SO(3) as a Lie group that, although
simple, have never been explicitly presented before.
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2.1. General notation. We denote as I ∈ R3×3 the identity matrix and as Pz = diag(1, 1, 0)
the standard projector on the xy-plane. As customary, we use so(3) to indicate the space of
3× 3 skew-symmetric matrices. For standard vectors a ∈ R3, [a]× : R3 → so(3) denotes the
matrix representation of the cross-product operator, i.e., [a]×b = a× b for all a, b ∈ R3. We use
[a]inv
× : so(3)→ R3 to denote the inverse of this linear mapping. We use sym(A) and skew(A)

to denote, respectively, the symmetric and antisymmetric part of a square matrix A ∈ Rd×d,
that is,

sym(A) =
1
2
(
A+AT) , skew(A) =

1
2
(
A−AT) .(1)

2.2. Riemannian geometry. At a high level, a manifold M is defined by a topological
space that is Hausdorff1 and that is equipped with a set of overlapping local coordinate charts.
These charts locally parametrize the space, and it is possible to transition smoothly from one
chart to the other. The tangent space at a point x ∈M, denoted as TxM, can be defined as
the linear space containing all the tangent vectors corresponding to the curves passing through
x. We use the notation v∨ to denote the vector of coordinates of v in some basis for TxM. A
vector field V assigns a tangent vector v = V |x to each x in M or a subset of it. We denote
as X (M) the set of smooth vector fields on M. Given V,W ∈ X (M), the Lie bracket of two
vector fields is denoted as [V,W ] ∈ X (M). Intuitively, [V,W ] represents the “derivative” of
a field with respect to another and assumes a simple expression for the manifolds and fields
considered in this paper (as we will see in subsection 2.7).

A Riemannian manifold (M, 〈·, ·〉) is a manifold endowed with a Riemannian metric, a
collection of inner products 〈·, ·〉x over TxM that varies smoothly with x. The metric is used to
define the length of a curve γ : R ⊃ [a, b]→M. A curve is a geodesic if the covariant derivative
of its tangent is zero, i.e., ∇γ̇ γ̇ ≡ 0, where ∇ is the Levi-Civita connection. The exponential
map expx : TxM→M maps each tangent vector v to the endpoint of the unit-speed geodesic
starting at x with tangent v. The logarithm map logx is the inverse of the expx and is defined
(in general) only on a neighborhood of x. We use the shorthand notation Log = log∨ to denote
the logarithm map expressed in local tangent space coordinates. For any point x and any
curve γ(t) in M sufficiently close together, the logarithm is related to the distance function by
the relations

d
(
x, γ(t)

)
= ‖Logx

(
γ(t)

)
‖, d

dt
1
2
d2(x, γ(t)

)
= −Logx

(
γ(t)

)T
γ̇(t)∨.(2)

Given the Levi-Civita connection, one can define an intrinsic notion of curvature of the
space. There are different ways to rigorously capture this quantity. One of the simplest
ones is the sectional curvature Kσ(v,w)(x), which denotes the curvature of M at a point x
when restricted to a subspace σ(v, w) ⊂ TxM spanned by two linearly independent vectors
v, w ∈ TxM. The exact definition of Kσ(v,w)(x) is not needed in this paper; however, intuitively
one can think of this quantity as a way to measure how fast two geodesics starting at x in
the directions u and v either spread (negative curvature) or converge (positive curvature)

1A space is Hausdorff if, for any two distinct points x, y ∈M, x 6= y, there exists two disjoint open subsets,
U, V ⊂M, such that x ∈ U and y ∈ V .



THE SPACE OF ESSENTIAL MATRICES 1419

with respect to similar geodesics in Euclidean space (which has zero curvature). In practice,
knowing bounds on the curvature of the space allows one to derive convergence guarantees for
optimization algorithms such as those described in [2, 27] and the Weiszfeld algorithm, which
we will use in subsection 7.2.

2.3. Differentials, gradients, and Hessians. Let f :M→ M̃ be a map between manifolds.
The map is said to be proper if f−1(Ũ) is compact in M for every compact subset Ũ in M̃.

We define Df as the differential of the map, i.e., the linear operator (the Jacobian matrix,
in local coordinates) that maps TxM to Tf(x)M̃ for any x ∈M and satisfies, for any locally
defined curve γ(t) ∈M, the expression

d
dt
f
(
γ(t)

)
= Df

(
γ(t)

)
[γ̇].(3)

(To clarify, the left-hand side is the tangent of the curve f
(
γ(t)

)
, and the right-hand side is

the differential Df computed at γ(t) applied to the vector γ̇.)
When f is a scalar function f :M→ R, the Riemannian gradient of f at x ∈M is defined

as the unique tangent vector grad f(x) such that, for all v ∈ TxM,

〈grad f(x), v〉 =
d
dt
f(γ(t))

∣∣∣
t=0

,(4)

where γ is a smooth curve passing through γ(0) = x with tangent γ̇(0) = v. Similarly, the
Riemannian Hessian at x can be defined as the self-adjoint operator Hess f : TxM→ TxM
satisfying

〈v,Hess f(x)[v]〉 =
d2

dt2
f(γ(t))

∣∣∣
t=0

.(5)

Intuitively, as in the Euclidean case, the gradient indicates the direction along which f increases
the most, while the Hessian indicates its local quadratic behavior.

2.4. Lie groups. A group is a set G together with an operation ◦ : G×G→ G that satisfy
the usual four axioms of closure, associativity, identity, and inverse.

Given an element g ∈ G, the left (respectively, right) translation of G, Lg (respectively, Rg)
is defined as Lg : h 7→ g ◦ h (respectively, Rg : h 7→ h ◦ g); i.e., it is the mapping that multiplies
each elements in G by a common element g on the left (respectively, right).

A Lie group is a group that is also a smooth manifold and for which the group and inverse
operations are smooth mappings. In this case, the differentials DLg and DRg of left and right
translations are well defined. A Riemannian metric on G is left invariant if, for all g, h ∈ G
and v, w ∈ ThG,

〈v, w〉h = 〈DLg(h)[v],DLg(h)[w]〉Lg(h);(6)

i.e., Lg(h) is a local isometry for all h. A similar definition holds for a right-invariant metric.
A metric is bi-invariant if it is both left and right invariant.

A field V ∈ X (G) is left invariant if DLg[V ] = V for all g ∈ G. In particular, this means
that

V |g = DLg[V |e],(7)
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and we can identify any left-invariant field V ∈ X (G) with a vector in the tangent space at the
identity, v = V |e ∈ TeG. It turns out that left-invariant vector fields are closed under the Lie
bracket operation; i.e., if V,W ∈ X (G) are left invariant, then also [V,W ] is left invariant. The
identification (7) then turns TeG into the so-called Lie algebra, where the bracket operation is
given by [V |e,W |e] = [V,W ]|e. For the manifolds considered in this paper, this will provide a
simple expression for computing the Lie bracket of vector fields (see subsection 2.7).

In addition, if the metric is bi-invariant, the expression for the sectional curvature also
assumes a particularly simple form:

Kσ(v,w)(g) =
1
4
‖[V,W ]|g‖2,(8)

where V,W ∈ X (G) are the left-invariant extensions of v, w ∈ TxG.

2.5. Quotient spaces. A group action “·” on a set M is a mapping · : G×M→M that
satisfies the properties g · (h · x) = (g ◦ h) · x and e · x = x for all g, h ∈ G, x ∈M. The action
is said to be free if g · x = x for at least one x ∈ M implies that g = e. As an important
particular case, if G is discrete and its action is free and proper (this is sometimes referred to
as a properly discontinuous action [15]), then we have the property that different elements of g
map the same neighborhood U of an arbitrary point x to disjoint sets, i.e.,

(g1 · U) ∩ (g2 · U) 6= ∅ =⇒ g1 6= g2(9)

for any g1, g2 ∈ G. The group action induces an equivalence relation between the points in
M, and we say that x is equivalent to y, i.e., x ∼ y, if there exist g ∈ G such that g · x = y.
We denote all the elements equivalent to x ∈ M as the equivalence class (also called orbit)
[x]. The quotient space M/G is the space of all equivalence classes. The canonical projection
π :M→M/G maps each point x ∈M to [x].

2.6. Riemannian submersions. A map f :M→ M̃, where dim(M) > dim(M̃), is said
to be a submersion if Df is injective (i.e., as a matrix, it has full rank) on the entire domainM.
An example of submersion is the canonical projection π from a manifold M to the quotient
M̃ =M/G when the action of the group G is proper and free.

If f is a submersion, then the differential of f , Df : TxM→ Tf(x)M has full rank, and
TxM admits the following orthogonal decomposition:

TxM = TV xM⊕ THxM,(10)

where the vertical space TV xM is equal to ker(Df), the kernel of Df , and the horizontal space
THxM is its orthogonal complement ker⊥(Df). Intuitively, for the canonical projection π,
TV xM contains the vectors tangent to the equivalence class [x] = π(x), while THxM contains
vectors pointing between different classes. We denote the orthogonal projection of a vector
v ∈ TxM on the horizontal and vertical spaces as, respectively, Hv and Vv. Note that, from
the properties of orthogonal projections, it follows that, for horizontal vectors vH ∈ THxM,

〈vH , v〉 = 〈vH ,Hv〉,(11)
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with an analogous expression for vertical vectors. With the decomposition (10), we can
associate any vector v ∈ Tf(x)M̃ to a unique vector v̄ ∈ THxM, called the horizontal lift of v.

An important fact about submersions is that we can relate the Riemannian connections
of the ambient space to that in the submerged manifold (see [19, 20]). This, in turn, gives
relations between the respective geodesics and curvatures.

Proposition 2.1. Let γ(t) : R →M be a geodesic curve such that γ̇(t) ∈ THγM for all t.
Then γ̃ = f(γ) is a geodesic curve in M̃.

Proof. Denote as ∇M and ∇M̃ the Levi-Civita connections for M and M̃, respectively.
From [19, 20], we have that H(∇MX Y ) is the horizontal lift of ∇M̃

X̃
Ỹ , where X̃, Ỹ are vector

fields on M̃ and V,W are their horizontal lifts on M. The defining property of the geodesic
γ(t) is that ∇Mγ̇ γ̇ = 0. However, since γ̇(t) is always horizontal, and given the isometry between

THγM and Tγ̇M̃, we have that γ̇ is the horizontal lift of ˙̃γ. Then we have ∇M̃˙̃γ
˙̃γ = 0 because

H∇Mγ̇ γ̇ = ∇Mγ̇ γ̇ = 0. Hence, γ̃ is a geodesic in M̃.

Let Kσ(v,w) and K̃σ(ṽ,w̃) denote the sectional curvatures in M and M/G. Then the two
are related by the formula [21]

K̃σ(ṽ,w̃)(x) = Kσ(v,w)(x) +
3
4
‖V[V,W ]|x‖2,(12)

where v, w ∈ THxM are the horizontal lifts of ṽ, w̃ ∈ T[x]M and V,W ∈ X are any smooth
horizontal extensions of v, w to a neighborhood of x. For the adept reader, we remark that the
quantity V [V,W ] can be shown to be tensorial for V,W horizontal [21]; hence, it depends only
on the point-wise values v, w and not on their particular extensions V,W .

2.7. The Lie groups of rotations SO(3) and SO(3) × SO(3). In this paper, we will
heavily use the space of 3-D rotations SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1} and, to
a lesser extent, the space of rigid body transformations SE(3) = SO(3) n R3. We will also
use SO(3)× SO(3), the Cartesian product of SO(3) with itself. The spaces SO(3) and SE(3)
are Lie groups. For SO(3), the group operation corresponds to matrix multiplication with I
as the identity element. For SE(3), the group operation is the semidirect product given by
(R1, T1) ◦ (R2, T2) = (R1R2, R1T2 + T1). The space SO(3) × SO(3) can also be interpreted
as a Lie group with the group operation acting component-wise; i.e., for (R1, R2), (S1, S2) ∈
SO(3)×SO(3), we have (R1, R2)◦ (S1, S2) = (R1S1, R2S2). The identity element of this group
is simply (I, I). For convenience, one can also represent SO(3)× SO(3) as a subset of R6×6

with the embedding

(R1, R2) 7→ diag(R1, R2).(13)

The group operation is then the same as matrix multiplication.
The tangent space at R ∈ SO(3) is TRSO(3) = {RV : V ∈ so(n)}. The Lie algebra of

SO(3) is then TISO(3) = so(3), with the bracket operation in the Lie algebra given by the
matrix commutator (this comes from the fact that SO(3) is a subset of the space of 3-by-3
matrices; see, e.g., [21, Lemma 70, page 378]):

[V,W ] = VW −WV, V,W ∈ so(3).(14)
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For SO(3) × SO(3), the Lie algebra is simply so(3) × so(3), and the bracket is defined
component-wise, i.e.,

[(V1, V2), (W1,W2)] = ([V1,W1], [V2,W2]), (V1, V2), (W1,W2) ∈ so(3)2.(15)

The easiest way to see this is to use [21, Lemma 70, page 378] on the embedding (13).
We can identify a tangent vector v ∈ TRSO(3) with a vector of local coordinates w ∈ R3

using the hat (·)∧ and vee (·)∨ operators, given by the relations

v =

v1v2
v3

 ∈ R3
(·)∧
�
(·)∨

V = R

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 ∈ TRSO(3).(16)

This notation can be easily extended to SO(3)×SO(3) with local coordinates w ∈ R6 given by

v = stack(v1, v2) = stack(V ∨1 , V
∨
2 ).(17)

From the identifications (7) and (16), we can associate a left-invariant vector field V to any
coordinate vector v ∈ R3. In fact, one can check with a direct computation that the bracket
operation (14) becomes, in coordinate vectors,

[(v)∧, (w)∧]∨ = [v]×w.(18)

Note that, from the fact that [v]×2 = vTv − ‖v‖2I, we have

‖[v]×w‖2 = ‖v‖2‖w‖2 − (vTw)2;(19)

hence,

0 ≤ ‖[v]×w‖2 ≤ ‖v‖2‖w‖2.(20)

The standard metric for SO(3), with V,W ∈ TRSO(3), is given by

〈V,W 〉 =
1
2

tr(V TW ) = (V ∨)TW∨,(21)

where we used again the identification (16). A similar expression holds for SO(3)× SO(3). It
can be easily shown that this metric is bi-invariant.

The exponential map and logarithm maps for SO(3) are given by

expR(V ) = R expm(RTV )(22)

logR(S) = R logm(RTS)(23)

where R,S ∈ SO(3), V ∈ TSO(3)R, expm is the matrix exponential defined as

expm(A) =
∞∑
i=1

1
k!
Ak(24)
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and logm is its inverse (which is well defined in a neighborhood of the identity matrix). These
last two maps applied on skew-symmetric matrices and rotations as in (22) and (23) can be
computed in closed form using Rodrigues’ formula (see [17]).

We denote as Rx(θ), Ry(θ), and Rz(θ) the rotations around the x, y, and z axes, respectively,
with angle θ ∈ [−π, π), and as ez the unit vector aligned with the z axis.

With the standard metric, we can substitute (18) into (8); from (19) and the fact that v, w
must be orthonormal, this leads to the well-known fact that, for SO(3),

K
SO(3)
σ(v,w)(x) =

1
4
‖[v]×w‖2 =

1
4

;(25)

i.e., SO(3) has constant positive curvature.
Similarly, for SO(3)× SO(3),

K
SO(3)
σ(v,w)(x) =

1
4
(
‖[v1]×w1‖2 + ‖[v2]×w2‖2

)
.(26)

Hence, from (20) and the fact that ‖v1‖, ‖v2‖, ‖w1‖‖w2‖ ≤ 1 (since ‖v‖ = ‖w‖ = 1), we obtain
that

0 ≤ KSO(3)×SO(3)
σ(v,w) (x) ≤ 1

2
;(27)

i.e., SO(3)× SO(3) has nonnegative curvature.

3. Derivation of the essential matrix. As customary, we model the pose of the ith camera,
i ∈ {1, 2}, as gi = (R′i, T

′
i ) ∈ SE(3), where gi represents the transformation from camera to

world coordinates. Given an image xi in homogeneous coordinates and the corresponding
depth λi, the 3-D point in world coordinates is given by

X = λiR
′
ixi + T ′i .(28)

Note that a change of world coordinates represented by g = (R0, T0), i.e., X 7→ R0X + T0,
induces a transformation of the camera representation equivalent to multiplying gi by g on the
left, i.e., (R′i, T

′
i ) 7→ (R0R

′
i, R0T

′
i + T0).

We now derive the essential matrix from an epipolar configuration, i.e., two camera poses
(R′i, T

′
i ), and the two images (x1, x2), of a same 3-D point X. We follow a general approach [4]

as opposed to the traditional one, which uses one camera as the global reference frame. From
(28) and using the properties [a]×a = 0 and bT[a]×b = 0 for all a, b ∈ R3, we have

λ1R
′
1x1 + T ′1 = λ2R

′
2x2 + T ′2(29)

λ1R
′
1x1 = λ2R

′
2x2 + (T ′2 − T ′1)(30)

λ1[T ′2 − T ′1]×R′1x1 = λ2[T ′2 − T ′1]×R′2x2(31)

xT
1R
′
1
T[T ′2 − T ′1]×R′2x2 = 0.(32)

The essential matrix is then defined as

E = R′1
T[T ′2 − T ′1]×R′2.(33)
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Algebraic and geometric interpretations of the essential matrix. It is possible to interpret an
essential matrix E ∈ R3×3 in two ways: as a matrix of coefficients in the epipolar constraint
(32) or as a way to encode the relative pose of two cameras. Due to the cancellations performed
during the derivation of (32), these two views are similar but not exactly equivalent. If we
limit ourselves to the first interpretation, we cannot resolve the twisted-pair ambiguity, where
four different epipolar configurations produce the same essential matrix. However, to consider
the second interpretation, we need to use additional information (pairs of corresponding image
points (x1, x2)) to solve the same ambiguity. In this paper, we consider both interpretations.
The two interpretations will, respectively, give rise to what we call the normalized essential
manifold (sections 4 and 6) and the signed normalized essential manifold (section 5). We
will show that the difference between the two geometries is exactly given by the twisted-pair
ambiguity, that the latter is a Riemannian covering of the former, and that we can pass from
one to the other using data from corresponding image points.

4. The normalized essential space. In this section, we define a canonical decomposition
of the essential matrix in terms of two rotations by choosing a global reference frame aligned
with the baseline between the two cameras. Then we define the normalized essential space
and analyze its structure as a quotient space and its relation with epipolar configurations, the
twisted-pair ambiguity, and transformations of image vectors.

4.1. The normalized canonical decomposition. Since (32) is a homogeneous equation,
we cannot determine the scale and sign of E from image data alone. Also, while E does not
depend on the choice of global reference frame, this is not true for its decomposition (33). To
remove most of the degrees of freedom, we define Q = (R1, R2) ∈ SO(3)× SO(3) and use the
following.

Proposition 4.1. Any essential matrix E admits, up to scale, the following normalized
canonical decomposition:

E(Q) = RT
1 [ez]×R2.(34)

Proof. Starting from (33), choose a global scale such that ‖T ′2−T ′1‖ = 1 and let R0 ∈ SO(3)
be such that R0(T ′2 − T ′1) = ez. There are infinite candidates for such rotation (we pick one
using Householder transformations). Then, by applying the transformation g0 = (R0, 0) and
using the property R[a]×RT = [Ra]× for all R ∈ SO(3), we have

E = (R0R
′
1)T[R0(T ′2 − T ′1)]×R0R

′
2,(35)

which is of the form (34) with Ri = R0R
′
i, i = 1, 2.

Intuitively, the change of world coordinates performed in the proof above aligns the vector
T ′2 − T ′1 with the z-axis. In this way, the translation direction is known, and we are left with
only the information about the two rotations.

Remark 4.2. Notice that [ez]×Rz
(
π
2

)
= Pz = diag(1, 1, 0). Hence, E = RT

1 Pz(Rz
(
π
2

)
R2) is

a valid SVD of E with factors R1, Pz, and Rz
(
π
2

)
R2.

The value of Remark 4.2 is twofold. First, it provides a practical way to compute the
decomposition (34). Second, it relates our representation with the one of [24], giving a
geometric meaning to the SVD of E.
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Note that (34) defines a map Q 7→ E(Q) from SO(3) × SO(3) to R3×3. We define the
normalized essential space ME as the image of such map. Since, according to Proposition 4.1,
(34) is surjective, ME corresponds to the space of all the essential matrices.

4.2. Ambiguities of the canonical form. While the map (34) is surjective, it cannot be
also injective because it is known that the space of essential matrices is five-dimensional, while
SO(3)× SO(3) is six-dimensional. The extra degree of freedom corresponds to a rotation of
the global reference frame around the baseline (i.e., to a particular choice of R0 in the proof
of Proposition 4.1). However, it turns out that this is not the only ambiguity. To be more
precise, consider any two points Qa, Qb ∈ SO(3) × SO(3), which, through (34), correspond
to the essential matrices Ea, Eb. We define an equivalence relation “∼” between points in
SO(3)× SO(3) as

Qa ∼ Qb ⇐⇒ Ea = Eb,(36)

where, again, equality is intended up to scale (since Ea and Eb are normalized, this reduces to
“up to a sign flip”).

Proposition 4.3. Define the groups

Hz = {
(
Rz(θ), Rz(θ)

)
: θ ∈ [−π, π)},(37)

Hπ =
{

(I, I),
(
Ry(π), Ry(π)

)(
I,Rz(π)

)
,
(
Ry(π), Rx(π)

)}
(38)

acting on the left on SO(3)× SO(3) by simple component-wise left multiplication. Then the
equivalence class of a point Q with respect to “∼” is exactly given by2

[[Q]] = {SπSzQ : Sπ ∈ Hπ, Sz ∈ Hz}.(39)

The proof involves first showing that Hz and Hπ are subgroup of SO(3)× SO(3), and then
showing, with an exhaustive case-by-case argument, that the only matrices satisfying (39) are
those in the equivalence class [[Q]].3 Since the proof is quite long and mostly mechanical, it has
been moved to Appendix A. In the following, we will use Sz = (Sz1, Sz2) and Sπ = (Sπ1, Sπ2)
to denote points in Hz and in Hπ, respectively.

Remark 4.4. One can easily verify by direct computation that the group Hπ can be
decomposed as Hπ = Hyπ ×Hzπ, where

Hyπ =
{

(I, I
)
,
(
Ry(π), Ry(π)

)}
(40)

Hzπ =
{(
I, I
)
,
(
I,Rz(π)

)}
(41)

which are both isomorphic to the cyclic group Z2 = {1,−1}. This shows that Hπ is isomorphic
to the Klein four-group, also known as the symmetry group of the 2-D plane produced by 180◦

rotations and reflection across one of the axes.
2The definition of Hπ and the order of Sπ, Sz are different with respect to [28]. This does not change the

equivalence class [[Q]], but it facilitate the derivations for the (unsigned) essential manifold in section 6.
3The use of double brackets [[·]] is due to the fact that we consider two groups, Hz and Hπ, instead of one.

This will become clear after section 6.



1426 ROBERTO TRON AND KOSTAS DANIILIDIS

x

y

z

(a) Sπ = (I, I), case 1.

x

y

z

(b) Sπ = (Ry(π), Ry(π)), case 8.

x

y

z

(c) Sπ = (I, Rz(π)), case 2.

x

y

z

(d) Sπ = (Ry(π), Rx(π)), case 7.

Figure 1. Diagram depicting the geometric twisted-pair ambiguity given by the four elements of Hπ. The
case numbers refer to the choices of signs in the proof of Proposition 4.3 in Appendix A.

Remark 4.5. The result of Proposition 4.3 is equivalent to the traditional proof that each
essential matrix can be factorized in four epipolar configurations (e.g., [17]), where the poses
are parametrized as (R2, T2), i.e., the rotation and normalized translation of the second
camera with respect to the first. An alternative proof to Proposition 4.3 could then be
formulated by first obtaining (R2, T2) from Q, use the traditional result, and then return
to the quotient representation. The proof in Appendix A shows that this is not necessary
and that one can work directly with the quotient representation. Although the proof is
algebraic in nature, it has also some geometric interpretation (see Figure 1 and subsection 4.3
below).

Intuitively, one can visualize [[Q]] has having four components, where each one of the compo-
nents is isomorphic to SO(2) (i.e., the circle). In view of Proposition 4.3, the space ME can
be identified with the quotient space

ME =
(
SO(3)× SO(3)

)
/(Hπ ×Hz),(42)

where the actions of Hπ and Hz are defined above.
Since SO(3)× SO(3) has dimension 6 and Hz has dimension 1, we get the well-known fact

that the normalized essential space has dimension 5 (being discrete, Hπ does not change the
intrinsic dimension of the space).
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Remark 4.6. The normalized essential space ME is actually a Riemannian manifold. We
will provide this characterization in section 6 after the analysis of the simpler quotient space(
SO(3)× SO(3)

)
/Hz in section 5.

4.3. Geometric interpretation with image vectors. Using the geometric interpretation
given by the proof of Proposition 4.1, we now show that also the epipolar constraint xT

1Ex2 = 0
has a geometrical interpretation in terms of our parametrization. Given an essential matrix
E = RT

1 [ez]×R2, from Proposition 4.3 and the equivalence [ez]×= PT
z Rz

(
π
2

)
Pz, we have

xT
1Ex2 = (PzSπ1SzR1x1)TRz

(π
2

)
(PzSπ2SzR2x2) = 0.(43)

This can be interpreted as the following procedure:
• Take the images xi and rotate them as Rixi, i = 1, 2. This is equivalent to expressing

in global coordinates the vectors corresponding to the images and centering them at
the origin. Notice that, by construction, the transformed vectors and the z-axis ez all
lie in the same plane passing through the origin.
• Apply the action of an element of Hz; i.e., rotate the two vectors around the z-axis by

an arbitrary amount. This is equivalent to a rotation around the baseline and does not
change the coplanarity condition.
• Apply the action of an element of Sπ = Hπ (see Figure 1). If Sπ = (I, I), no changes

are made. Otherwise, the direction of the first, second, or both cameras is reversed
(i.e., the rotated cameras pass from front-facing to rear-facing). Note that the copla-
narity condition of the transformed vectors with ez is preserved.
• Project the transformed vectors onto the xy-plane. In practice, this sets the last

coordinate to zero. Before the projection, the vectors belonged to the same plane, and
this plane contained ez; after the projection, the vectors will have the same direction
(but generally different lengths), and they will be orthogonal to ez.
• Rotate one of the projected vectors by Rz

(
π
2

)
, e.g., Rz

(
π
2

)
(PzR2x2). Since the vectors

were collinear, they are now orthogonal, and the inner product is zero.
In our context, this interpretation of (43) shows that the action of Hπ corresponds exactly

to the well-known twisted-pair ambiguity in the decomposition of the essential matrix. In fact,
the four cases of Figure 1 correspond to the four valid cases in the proof of Proposition 4.3 in
Appendix A.

5. The signed normalized essential manifold. In this section, we review how the chirality
constraint can be used to resolve the twisted-pair ambiguity (i.e., to choose an element
of the group Hπ). This can be used to “unfold” the quotient structure of the normalized
essential space into what we call the signed normalized essential space. Intuitively, this is the
space of geometrically distinct epipolar configurations (e.g., the four configurations in Figure 1
correspond to four different points in the unfolded space). We show that this space is a manifold
and that a metric and the corresponding geodesics can be induced from SO(3)×SO(3). Finally,
we give a Newton-based optimization algorithm for computing the logarithm map and the
Riemannian distance.



1428 ROBERTO TRON AND KOSTAS DANIILIDIS

5.1. Depth triangulation. We can use the simple geometrical interpretation of the canon-
ical form to estimate the depths of the 3-D points and enforce the chirality constraint, i.e., the
fact that all these points need to be in front of both cameras.

From the discussion in subsection 4.2, we have T ′2−T ′1 = ez in the canonical form. Therefore,
taking into account Hz and Hπ and assuming noiseless image points, (30) becomes

λ1Sz1Sπ1R1x1 = λ2Sz1Sπ2R2x2 + ez.(44)

Note that ez = Sz1ez = Sz2ez; hence, we can cancel Sz from (44). We then have the following.

Proposition 5.1. There is only one choice of Sπ for which the solution of (44) is positive,
i.e., λ1, λ2 > 0.

The proof is similar to the one traditionally used to solve the twisted-pair ambiguity [17].

Proof. Let rT13 and rT23 denote the last row of R1 and R2, respectively. Let (λ∗j1, λ
∗
j2),

j ∈ {1, . . . , 4} be the solutions to (44) for each choice of Sπ, in the order given by (38). One
can verify that the last three solutions are related to the first one by

(λ∗21, λ
∗
22) = (−λ∗11,−λ∗12)(45)

(λ∗31, λ
∗
32) = (

λ∗11
a
,−λ

∗
12
a

)(46)

(λ∗41, λ
∗
42) = (−λ

∗
11
a
,
λ∗12
a

)(47)

where a = λ∗11r
T
13x1 +λ∗12r

T
23x2. Notice that, independently from the sign of λ∗11, λ∗12 and a, the

four solutions always cover all the possible sign combinations (+,+), (+,−), (−,+), (−,−).
Hence, only one solution has both λ∗j1 > 0 and λ∗j2 > 0.

As a concrete example, if one imagines intersecting the lines given by the cyan and magenta
image vectors in Figure 1, the resulting triangulated point is in front of both cameras only in
configuration (a).

5.2. The signed normalized essential space. In our context, Proposition 5.1 allows us to
pick one of four components in the equivalent class [[Q]]. Looking at the definition of [[Q]] in
(39), this means that we can dispense with the group Hπ and consider a new quotient space
using Hz alone, which we call the signed essential space. Just for fun, we use the symbol M E

(because it differs from “ME” by a 180-degree rotation). Formally, we have

M E=
(
SO(3)× SO(3)

)
/Hz,(48)

and the equivalent class [Q] ∈M Ecorresponding to a point Q ∈ SO(3)× SO(3) is given by

[Q] = {SzQ : Sz ∈ Hz}.(49)

Intuitively, [Q] contains all the epipolar configurations that are geometrically equivalent, i.e.,
that differ only by a rotation around the baseline (after aligning the baseline with ez). Notice
that [Q] has dimension 1, the same as Hz.
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5.3. A Riemannian quotient manifold structure. In general, a quotient space of a
Riemannian manifold is not a Riemannian manifold itself. This is because the quotient
might not be Hausdorff and hence fail to be a manifold at all; alternatively, the choice of a
metric might not be obvious because it might depend on the choice of the representative in
the equivalence class. However, the action of Hz has some “nice” properties that make M E

into a Riemannian manifold with a natural choice for the metric. In order to show this, the
first step is the following.

Proposition 5.2. The canonical projection πM E: SO(3)× SO(3)→M Eis a submersion,
and M Eis a manifold.

Proof. The action of Sz is proper (which is automatic since SO(3) is a compact manifold)
and free (if RzR = R, then multiply on the right by RT, and this implies Rz = I). Then
Theorem 9.16 from [15] proves the desired claim.

Horizontal and vertical spaces. The fact that πM Eis a submersion implies that TQ
(
SO(3)×

SO(3)
)

admits an orthogonal decomposition in horizontal and vertical spaces (see
subsection 2.5):

TQ
(
SO(3)× SO(3)

)
= TV Q

(
SO(3)× SO(3)

)
⊕ THQ

(
SO(3)× SO(3)

)
.(50)

To obtain a concrete expression for the vertical space, we can differentiate a curve contained
in an equivalence class [Q]. Let γ(t) = (Rz(t)Q1, Rz(t)Q2) be the curve passing through γ(0) =
Q = (Q1, Q2) (by definition, γ(t) ∈ [Q] for all t ∈ R). Defining vV = γ̇(0) ∈ TV Q

(
SO(3) ×

SO(3)
)
, we have

vV = ([ez]×Q1, [ez]×Q2) =
(
Q1[QT

1 ez]×, Q2[QT
2 ez]×

)
.(51)

The last equality in (51) is used to express the tangent vectors in the form of the right-hand
side of (16), so that we can also write vV as a coordinate vector:

(vV )∨ =
[
vV 1
vV 2

]
=

[
QT

1 ez

QT
2 ez

]
.(52)

Since [Q] has dimension 1, we have TV Q
(
SO(3)× SO(3)

)
= span(vV ).

Then, by definition, the horizontal space at Q includes all vectors vH such that vH⊥vV ,
i.e.,

0 = 〈vV , vH〉 =
(
QT

1 ez
)T
vH1 +

(
QT

2 ez
)T
vH2 = eTz (Q1vH1 +Q2vH2),(53)

where (vH)∨ = stack(vH1, vH2). We can take (53) as the condition defining horizontal vectors
at Q. Given a vector v ∈ TQSO(3)× SO(3), let

pQ(v) = eTz (Q1v1 +Q2v2).(54)

Using coordinate vectors, the orthogonal projection of v onto THQ
(
SO(3)× SO(3)

)
is then

(Hv)∨ = v∨ −
pQ(v)

2

[
QT

1 ez

QT
2 ez

]
.(55)

We will not explicitly use (55) in our theoretical derivations below, but we include this
expression nonetheless because it is necessary when implementing the gradient and Hessian
operators (see subsection 7.1).
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Choice of metric. Since we know that M Eis a manifold, the next step is to choose a
Riemannian metric. We use the induced metric on M Eobtained by using horizontal lifts to
“borrow” the metric from SO(3)× SO(3); that is, we define

〈ũ, ṽ〉[Q] = 〈u, v〉Q,(56)

where v, w ∈ TQ
(
SO(3)× SO(3) are the horizontal lifts of ṽ, w̃ ∈ T[Q]M E. The following

proposition shows that (56) is well posed.

Proposition 5.3. The metric 〈, 〉[Q] defined in (56) does not depend on the choice of the
representative Q.

The proof shows and relies on the fact that Hz is a group of global isometries for SO(3)×SO(3).

Proof. We first need to understand how to relate the horizontal lifts va ∈ TQa
(
SO(3)×

SO(3)
)
, vb ∈ TQb

(
SO(3) × SO(3)

)
, Qa ∼ Qb of a same vector ṽ. Let Sz ∈ Hz such that

Qb = SzQa. From the definition of the quotient space, we have

πM E(Qa) = πM E(SzQa).(57)

Define arbitrary smooth curves Qa(t), Sz(t) with Q̇a = va horizontal. Differentiating (57),
we have

DπM E(Qa)[Q̇a] = DπM E(SzQa)[ṠzQa + SzQ̇a].(58)

However, notice that(
ṠzQa

)∨
=
(
Ṡz1Qa1, Ṡz2Qa2

)∨
= (Sz1[ez]×Qa1, Sz2[ez]×Qa2)(59)

= (Sz1Qa1
(
QT
a1S

T
z1ez

)∧
, Sz2Qa2

(
QT
a2S

T
z2ez

)∧
) =

[
QT
a1ez

QT
a2ez

]
,

where we used the fact that ST
z1ez = ST

z2ez = ez. Comparing (59) with (52), we see that
ṠzQa is vertical, and hence DπM E(SzQa)[ṠzQa] = 0, and this term can be canceled from (58).
Moreover, since va is horizontal, using (53) we have

0 =
(
QT
a1ez

)T
va1 +

(
QT
a2ez

)T
va2 =

(
Sz1Q

T
a1ez

)T
Sz1va1 +

(
Sz2Q

T
a2ez

)T
Sz2va2(60)

=
(
QT
b1ez

)T
vb1 +

(
QT
b2ez

)T
vb2,

and vb = SzQ̇a is horizontal. Hence, if va = Q̇a is the horizontal lift at Qa, then vb = SzQ̇a is the
horizontal lift at Qb. Since the standard metric (21) is bi-invariant, we have 〈u, v〉 = 〈Szu, Szv〉
for any Sz ∈ Hz. The claim follows.

5.4. Geodesics and the exponential map. The goal of this section is to show that the
canonical projection of geodesics in SO(3)× SO(3) are geodesics in M E, thus giving a simple
expression for the exponential map. Proposition 2.1 tells us that to find geodesics in M E,
we can focus on finding geodesics in SO(3) × SO(3) for which the tangent vector is always
horizontal. The same idea is repeatedly used in [8] to give expressions for the geodesics in
the Stiefel and Grassmann manifolds. Here we now give a direct proof that if a geodesic
Q(t) ∈ SO(3) × SO(3) has a horizontal initial tangent vector Q̇(0), then the tangent is
horizontal for every t.
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Proposition 5.4. Let V ∈ T
(
SO(3)× SO(3)

)
be a vector field of the form

W (t)∨ = stack
(
R1(t)Tez, R2(t)Tez

)
(61)

defined along a geodesic Q(t) ∈ SO(3)× SO(3). Then we have

〈Q̇(t),W (t)〉 = 〈Q̇(0),W (0)〉.(62)

Proof. Denote the tangent to the geodesic Q(t) as

Q̇(t)∨ = stack(v1, v2)(63)

and let

m(t) = 〈Q̇(t),W (t)〉 = vT
1 R

T
1 ez + vT

2 R
T
2 ez.(64)

Taking the derivative, we have

ṁ(t) = vT
1 [v1]×TRT

1 w1 + vT
2 [v2]×TRT

2 w2 ≡ 0.(65)

Since the first derivative of m(t) is identically zero, m(t) must be constant, which
implies (62).

Combining Propositions 2.1 and 5.4, we get that the exponential map in M E, i.e.,

[Qb] = exp[Qa](va), [Qa] ∈M E, va ∈ T[Qa]M E,(66)

is obtained by projecting the exponential map in SO(3)× SO(3):

Qb = expQa(ṽa), Qa ∈ π−1
M E([Qa]),(67)

where ṽa is the horizontal lift of va, i.e.,

[Qb] = πM E

(
expQa(ṽa)

)
.(68)

5.5. The distance and the logarithm map. Let Qa = (Qa1, Qa2) and Qb = (Qb1, Qb2) be
two points in SO(3)× SO(3). We would like to find the distance between [Qa] and [Qb] and
the logarithm map log[Qa][Qb]. In general, we cannot directly use the distance and logarithm
map in SO(3)× SO(3) because the tangent of the corresponding geodesic is not horizontal.
However, we can “move” Qb to another representative of the equivalence class [Qb], so that
the geodesic between Qa and Qb corresponds to a geodesic between [Qa] and [Qb].

Finding the logarithm as an optimization problem. The following result shows that the correct
way to “move” Qb is by solving a one-dimensional minimization problem.

Proposition 5.5. Define the cost

f(t) = f1(t) + f2(t), fi =
1
2
θ2
i (t), θi(t) = d(Qai, Rz(t)Qbi), i ∈ 1, 2,(69)

and let topt = argmint f(t). Then the logarithm

logQa
(
Sz(topt)Qb

)
= stack

({
Log

(
QT
aiRz(topt)Qbi

)}
i=1,2

)
(70)

is a horizontal vector in THQ
(
SO(3)× SO(3)

)
.
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Using (2) and the isometry given by horizontal lifts, the distance between the two elements
in M Eis then given by

d
(
[Qa], [Qb]

)
= ‖log[Qa][Qb]‖ = ‖logQa

(
Sz(topt)Qb

)
‖.(71)

Intuitively, this distance is the least amount of rotation needed to align two epipolar configura-
tions after aligning their baselines.

Proof. We will need the following result:

d
dt
Rz(t)Qbi = Rz(t)[ez]×Qbi = Rz(t)Qbi[QT

biez]×, i = 1, 2,(72)

which in local coordinates becomes(
d
dt
Rz(t)Qbi

)∨
= QT

biez.(73)

Taking the derivative of each term fi, we have

ḟi(t) = −Log(QT
aiRz(t)Qbi)

TQT
biez = −Log(QT

aiRz(t)Qbi)
TQT

aiRz(t)QbiQ
T
biez(74)

= −eTz Qai Log(QT
aiRz(t)Qbi),

where we used the fact that RT Log(R) = Log(R) and, similarly, Rz(t)ez = ez. For t = topt,
we have ḟ1(topt) + ḟ2(topt) = 0, which, together with (53), implies that the vector (70) is in
the horizontal space at Qa.

Solving the optimization problem. The problem now is to find topt, the minimizer of f . In
general, this is a nonlinear optimization problem with multiple local minima (see Figure 2 for
an example). However, we can exploit its special structure (continuous, periodic, and piecewise
convex) to reliably and efficiently find the global minimizer topt.

First, let us consider each function fi separately. Using (2), the derivative of fi is given by

ḟi(t) = eTz Qai Log(QT
aiRz(t)Qbi) = θi(t)eTz Qaiui,(75)

where (using the closed-form expression of Log from [17])

ui =
1

2 sin θi(t)
[
(QT

aiRz(t)Qbi)− (QT
aiRz(t)Qbi)

T]inv
×(76)

is the normalized version of the logarithm vector. Notice that the derivative of f exists
everywhere except at a point tdi for which sin

(
θi(tdi)

)
= 0. The following proposition gives

a way to compute the location of this point. We use the notation (A)i,j to denote the i, jth
element of a matrix A.

Proposition 5.6. Let θi be defined as in (69) and define

c1i = (QbiQT
ai)1,1 + (QbiQT

ai)2,2, c2i = (QbiQT
ai)1,2 − (QbiQT

ai)2,1(77)

φi = arctan2(c1i, c2i).(78)
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Then the function θi(t) is continuous, 2π-periodic and

sin
(
θi(tdi)

)
= 0 for tdi =

3
2
π − φi.(79)

For the proof of this proposition, we will need the following lemma.

Lemma 5.7. Define c1i, c2i as in (77) and let

c3i = (QbiQT
ai)3,3.(80)

Then the following identity holds:

c21i + c22i = (1 + c3i)2.(81)

Notice that this lemma is valid for any rotation R = QbiQ
T
ai. It can be proved by parametrizing

R with Euler angles, expanding (81), and then simplifying the resulting terms.

Proof of Proposition 5.6. Recall that

θi = arccos
(

tr
(
QT
aiRz(t)Qbi

)
− 1

2

)
.(82)

Since the argument of arccos is a continuous function of cos(t) and sin(t) alone (which are
2π-periodic) and since arccos is continuous on its domain, then θi is continuous and 2π-periodic.

Now let mi =
√
c21i + c22i. Using the standard trigonometric identity

c1i cos t+ c2i sin t = mi sin(t+ φi),(83)

Lemma 5.7 and expanding the definition of Rz(t) in terms of cos t and sin t, one can verify that

tr(QT
aiRz(t)Qbi) = tr(Rz(t)QbiQT

ai) = c1i cos t+ c2i sin t+ c3i = mi sin(t+ φi) +mi − 1.(84)

Note that sin
(
θ(tdi)

)
= 0 such that cos

(
θ(tdi)

)
= −1. From (82), then, we have

mi sin(tdi + φi) +mi − 2 = −2(85)
sin(tdi + φi) = −1(86)

tdi + φi =
3
2
π.(87)

The result follows.

Using the definition of DLog and its closed-form expression from [26], the second derivative
of fi is given by

(88) f̈i(t) = eTz Qai DLog(QT
aiRz(t)Qbi)Q

T
aiez = (eTz Qaiui)

2 +
θ

2
cot
(θ

2

)(
1−

(
eTz Qaiui

)2)
.

Note that (as a simple plot can confirm)

0 ≤ θ

2
cot
(θ

2

)
≤ 1 for θ ∈ [−π, π].(89)

This implies that f̈ ≥ 0 and that f is convex between discontinuity points.
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Algorithm 1. Global minimization of f(t).
1: Compute the points tdi, i = 1, 2 (assume td1 < td2).
2: Define intervals S1=[td1, td2] and S2 =[td2, td1 + 2π].
3: for i ∈ 1, 2 do
4: if sign

(
ḟ+
(
min(Si)

))
6= sign

(
ḟ−
(
max(Si)

))
then

5: Compute topt,i = argmint∈Si f(t) using the projected Newton’s method.
6: end if
7: end for
8: Select topt as the point topt,i for which f is minimum.

−3 −2 −1 0 1 2 3

0

5

10

Figure 2. An example realization of the cost f(t) from (69). Blue and red lines: value of each term fi and
of f , respectively. Black dashed line: location of the discontinuity points {tdi} computed using Proposition 5.6.
Red circles: local minimizers {topt,i} computed in Algorithm 1.

In summary, from the results above, the function f is continuous, 2π-periodic and with
positive second derivative except at {tdi + 2kπ}, k ∈ Z. Assuming (without loss of generality)
the ordering −π

2 ≤ td1 ≤ td2 ≤
π
2 , this suggests an algorithm to find all the global minimizers of

f by considering separately the two intervals [td1, td2] and [td2, td1 + 2π] (on which the function
is convex and differentiable). Since we have a closed-form expression for f̈ , we can use Newton’s
method (with an additional projection of the iterates to the interval). In addition, it is possible
to show (using the intermediate value’s theorem on ḟ) that if ḟ has the same sign at the two
extremum points of an interval, then that interval does not contain a local minimizer, and it can
be skipped. These steps are summarized in Algorithm 1 (see also Figure 2). We use the notation
ḟ+ and ḟ− to denote right and left derivatives, respectively. Note that Algorithm 1 is only a
basic version. A complete version would also consider degenerate cases, where mi = 0 for some
i ∈ {1, 2} or where td1 = td2. In our experiments, we saw that an interval could be skipped about
25% of the time, and that the Newton’s iteration took about five to eight iterations to converge
to the global minimum up to machine’s precision (2 · 10−16). As a comparison, the method
suggested in [24] achieves a precision of only 10−4 after about five iterations, and it does not
guarantee global convergence (i.e., the logarithm might correspond to a nonminimal geodesic).

5.6. Curvature. As already mentioned, the curvature of the manifold plays a special role
in the convergence guarantees for some optimization algorithms. For the sectional curvature
of M E, KM

E

σ(v,w)(x), we can use the fact that signed essential manifold is a submersion in
SO(3)× SO(3). We can then readily obtain a simple expression by combining (27) with (12):

KM

E

σ(v,w)(x) =
1
4
‖[u∨]×v∨‖+

3
4
‖V[u∨]×v∨‖.(90)
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Note that, from the properties of projections, we have that ‖V[V,W ]‖2 ≤ ‖[V,W ]‖2. The
curvature can then be bounded as

0 ≤ KM

E

σ(v,w)(x) ≤ 2.(91)

Hence, M Ehas nonnegative and bounded curvature.

6. The (unsigned) normal essential manifold. In this section, we extend the derivations
performed in section, 5 to show that the original space of essential matrices ME is indeed
a manifold for which M Eis a Riemannian covering. This will then provide us with simple
expressions for the exponential and logarithm maps.

6.1. The signed normal essential manifold as a Riemannian covering. We first prove
that ME is indeed a manifold by seeing ME as a quotient of M E. This proposition is
analogous to Proposition 5.2.

Proposition 6.1. The canonical projection πME
: M E→ME is a smooth covering map,

and ME is a manifold.

Proof. The action of Sπ is smooth (since is just a matrix multiplication) and proper (again,
this is automatic since M Eis compact). It is also free: by way of contradiction, assume
that this was not true and that there exists Sπ ∈ Hπ, Sπ 6= (I, I) such that Sπ[Q] = [Q],
where [Q] ∈ M Eand Sπ acts on [Q] component-wise. Since this is an equality between
equivalence classes, for any representative Q ∈ SO(3)× SO(3) there must exist Sz ∈ Hz such
that SπSzQ = Q. By applying Q−1 on the right, this implies Sπ = S−1

z for some Sz ∈ Hz,
i.e., Sπ ∈ Hz. But one can verify by inspection that Hπ ∩ Hz = (I, I), thus contradicting
Sπ 6= (I, I). Hence, the action is both proper and free. The claim then follows by applying
Theorem 9.19 in [15].

Given a point [[Q]] ∈ME , we define the induced metric on ME similarly to (56), i.e.,

〈ũ, ṽ〉[[Q]] = 〈u, v〉[Q],(92)

where [Q] ∈ π−1
ME
⊂M Eis a representative of [[Q]] and v, w ∈ T[Q]M Eare ṽ, w̃ ∈ T[[Q]]ME .

We then have the following.

Proposition 6.2. The metric 〈, 〉[[Q]] defined in (92) does not depend on the choice of the
representative [Q].

The proof is identical to the one of Proposition 5.3, with the only difference that now we need
to consider representatives of [Q] and not Q. The result, again, rests on the fact that Hπ is a
group of global isometries for SO(3)× SO(3).

Since Hπ is discrete, given any [[Q]] ∈ ME , the vertical space of TV [Q]M Eat a point
[Q] ∈ π−1

ME
([[Q]]) is simply the origin (i.e., the zero vector). Therefore, we can identify

TH[[Q]]ME with T[[Q]]ME and T[Q]M E. In other words, every vector in T[[Q]]ME is horizontal
and can be identified with a vector in T[Q]M E. From Proposition 2.1, it immediately follows
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that geodesics in ME are the projections of geodesics in M E. The exponential map for ME

is then given by

[[Qb]] = exp[[Qa]](va) = πME

(
exp[Qa] ṽa

)
,(93)

where ṽa is the horizontal lift (i.e., the identification) of va.
Since any vector in T[[Q]]ME is horizontal, we have four candidates for the inverse of (93),

that is, the logarithm va = log[[Qa]]
(
[[Qb]]

)
. These are given by

v(i)
a = log[Qa]

(
S(i)
π [Qb]

)
,(94)

where S(i)
π , i ∈ {1, . . . , 4} is an enumeration of the four elements of Hπ. Since we are interested

in minimal geodesics, we pick the closest candidate, that is,

log[[Qa]]
(
[[Qb]]

)
= v

(iopt)
a , iopt = argmin

i∈{1,...,4}
‖v(i)
a ‖.(95)

This means that we need to solve the problem described in subsection 5.5 four times, one for
each candidate, and then pick the one which gives the lower distance.

To conclude, we can again use formula (12) for computing the curvature. However, since
the vertical space is trivial, we have that ME and M Ehave the same curvature, that is

KME

σ(v,w)([[Q]]) = KM

E

σ(ṽ,w̃)([Q]).(96)

6.2. Comparison with previous formulations. Among the papers that use the relative
pose between cameras to parametrize the essential space, the definition of normalized essential
space used in [18] is compatible with ME , while the definition used in [22] (which includes the
chirality constraints explicitly) is compatible with M E. However, since the parametrization is
based on the product S2 × SO(3), the resulting geodesics are not equivalent to those obtained
in subsection 5.4. The more recent paper [7] includes an ad-hoc the definition of a product
operation on the sphere S2; this is to provide an aligment between tangent spaces similar to
the one given by left-invariant vector fields, and to simplify the definition of exponential and
logarithm maps. At a very high level, we follow a similar process through the use of quotient
manifolds. However, the results of [7] do not have an immediate geometrical interpretation
in terms of epipolar configurations, while our results follow the intrinsic ambiguities of the
problem.

For the papers using the parametrization derived from the SVD [9, 10, 14, 24, 25], the
definition used is the same asM E, and also the geodesics curves coincide. However, these papers
do not fully consider the action of the group Hπ and the chirality constraint. In particular,
Proposition 4.3 shows that the claim made in [24] that an essential matrix E corresponds
uniquely to a point inM Eis false (this was already pointed out in [7]). Similarly, [9, 10, 25] only
consider the action of Hz. The paper [14] is the closest to the present formulation. However, it
does not consider as equivalent the essential matrices given by E and −E (although the two
cannot be distinguished without the chirality constraint). Therefore, it obtains a formulation
where the quotient is only taken with respect to Hz and Hxπ (defined in (40)) instead of Hz

and Hπ.
Finally, none of the papers above give expressions for the curvature of the manifold.
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7. Optimization on the essential manifold. In this section, we provide two examples
of how our proposed Riemannian manifold structure can be used for optimization and for
performing statistical operations.

7.1. Minimization of a function of E. We consider the problem of minimizing a function
f : R3×3 → R, which takes as input an essential matrix E. An example of this cost function is
the Sampson error [13], which is defined as

f(E) =
P∑
p=1

(xT
1pEx2p)2∑2

k=1(eTkEx2p)2 + (xT
1pEek)2

,(97)

where {(x1p, x2p}Pp=1 are pairs of noisy image points that correspond to the same 3-D point in
the scene. Equation (97) represents an approximation of the reprojection error, and it is one of
the standard choices in optimal two-view Structure from Motion [13, 18]. We use this function
as a concrete example, but the procedure in this section is general and could be applied to
other functions as well.

In order to minimize the cost function f , we can combine the local parametrization ofM E

given by the exponential map (67) with the trust-region algorithms described in [1], which
represent the state of the art in numerical optimization on manifolds. The only obstacle to this
plan is that we need to consider the function fM E:M E→ R, fM E= f ◦E given by (34) and
compute the Riemannian gradient grad fM Eand the Riemannian Hessian Hess fM Edefined
in (4) and (5) (the latter is necessary in order to use methods with quadratic asymptotic
convergence rate). These quantities are not the same as the gradient gradE f and Hessian
HessE f obtained by considering f as a simple function of R3×3 (which can be computed as a
standard application of multivariate calculus). Nonetheless, we will show in this section how
grad and Hess can be computed from their Euclidean counterparts gradE and HessE .

Consider a geodesic curve

Q(t) = expQ0
(v) = (Q1(t), Q2(t)),(98)

where Q0 is arbitrary and v is horizontal. We denote its image under (34) as E(t) .= E
(
Q(t)

)
.

From the definitions of exponential map in (22) and (24), one can verify that its tangent and
acceleration are

Q̇ = (Q̇1, Q̇2) = (Q1[v1]×, Q2[v2]×)(99)

Q̈ = (Q1[v1]×2, Q2[v2]×2).(100)

The corresponding quantities for E(t) are

Ė = [v1]×TE + E[v2]×= Q̇T
1Q1E + EQT

2 Q̇2(101)

Ë = [v1]×2
T
E + 2[v1]×TE[v2]×+ E[v2]×2.(102)

Considering the function fM E(Q(t)) = f(E(t)), from its first and second derivatives around
t = 0 we obtain

tr(ĖT gradE f) = 〈Q̇, grad fM E〉(103)
tr(ËT gradE f) + tr(ĖT HessE f [Ė]) = 〈Q̇,Hess fM E[Q̇]〉.(104)
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The overall idea for the remainder of the section is to manipulate the left-hand sides
of (103) and (104) to obtain the right-hand sides while keeping in mind that grad fM E

needs to be a vector in THQ
(
SO(3) × SO(3)

)
and Hess fM Eneeds to be a symmetric map

THQ
(
SO(3)× SO(3)

)
→ THQ

(
SO(3)× SO(3)

)
.

For brevity, let G = gradE f and H = HessE f [Ė]. Then, starting from the left-hand side
of (103), we can expand Ė and rearrange terms such that we make Q̇1, Q̇2 appear and obtain
the sum of two inner products of the form (21) for SO(3)× SO(3). More explicitly, we have

tr(ĖTG) = tr(ET[v1]×G) + tr([v2]×TETG) = tr([v1]×GET) + tr([v2]×TETG)(105)

= tr([v1]×TEGT) + tr([v2]×TETG)

= tr
(
[v1]×T skew(EGT)

)
+ tr

(
[v2]×T skew(ETG)

)
= tr

(
[v1]×TQT

1Q1 skew(EGT)
)

+ tr
(
[v2]×TQT

2Q2 skew(ETG)
)

= tr
(
Q̇T

1Q1 skew(EGT)
)

+ tr
(
Q̇T

2Q2 skew(ETG)
)
,

where we used, in sequence, (101), the properties tr(AB) = tr(BA), tr(A) = tr(AT), tr(A[v]×) =
tr(skew(A)[v]×) (since [v]× is antisymmetric), QT

1Q1 = QT
2Q2 = I, and (99). Note that,

alternatively, one can use the second expression of Ė in (101) and the projection on the tangent
spaces at Q1 and Q2 to obtain the same result.

Comparing subsection 7.1 with (21) for SO(3)× SO(3) and using (11), we obtain from
(103) that

grad fM E= H
(
Q1 skew(EGT), Q2 skew(ETG)

)
.(106)

Next, we consider the two terms on the left-hand side of (104) independently. For the first
term, our goal is to rearrange terms to have Q̇1 and Q̇2 appear in a quadratic expression (two
terms with Q̇i, Q̇T

i and two cross-terms with Q̇1, Q̇T
2 and Q̇T

1 , Q̇2). Explicitly, we have

tr(ËTG) = tr(ET[v1]×2G) + 2 tr([v2]×TET[v1]×G) + tr([v2]×2
T
ETG)(107)

= − tr([v1]×TGET[v1]×) + tr([v2]×TET[v1]×G)

+ tr([v1]×TE[v2]×GT)− tr([v2]×TETG[v2]×)

= − tr
(
[v1]×T sym(GET)[v1]×

)
+ tr([v2]×TET[v1]×G)

+ tr([v1]×TE[v2]×GT)− tr
(
[v2]×T sym(ETG)[v2]×

)
= − tr

(
[v1]×TQT

1Q1 sym(GET)QT
1Q1[v1]×

)
+ tr([v2]×TQT

2Q2E
TQT

1Q1[v1]×G)

+ tr([v1]×TQT
1Q1EQ

T
2Q2[v2]×GT)− tr

(
[v2]×TQT

2Q2 sym(ETG)QT
2Q2[v2]×

)
= − tr

(
Q̇T

1Q1 sym(GET)QT
1 Q̇1

)
+ tr(Q̇T

2Q2E
TQT

1 Q̇1G)

+ tr(Q̇T
1Q1EQ

T
2 Q̇2G

T)− tr
(
Q̇T

2Q2 sym(ETG)QT
2 Q̇2

)
,

where we used the same property of the trace operator as above, the property [v]×= −[v]×T,
and the property tr(ATBA) = tr(AT sym(B)A). For the second term in the left-hand side of
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(104), we can use the same computations as in subsection 7.1 with H instead of G. Putting
both terms together, comparing with (21) for SO(3)× SO(3), and using (11), we obtain from
(104) that

Hess fM E[Q̇] = H
(
Q1

(
− sym(GET)QT

1 Q̇1 + EQT
2 Q̇2G

T + skew(EHT)
)
,

Q2

(
− sym(ETG)QT

2 Q̇2 + ETQT
1 Q̇1G+ skew(ETH)

))
.

(108)

One can easily check from subsection 7.1 and from the fact that HessE f is self-adjoint that
Hess fM Eis self-adjoint too.

We have developed Matlab implementations for the computation of the Riemannian
gradient (106) and Hessian (108) from their Euclidean counterparts for arbitrary cost functions.
These routines have been integrated in MANOPT 2.0 [5], a toolbox implementing efficient
trust-region methods on manifolds [1]. Results using this implementation to optimize the
Sampson error (97) are given in subsection 7.2.

7.2. The Weiszfeld algorithm and pose averaging. In this section, we show a proof-
of-concept application of the distance obtained in subsection 5.5 to the two-view Structure
from Motion problem. Rather than achieving state-of-the-art reconstruction, the goal of this
section is to show that distance between epipolar configurations obtained with our approach is
meaningful.

In a standard pipeline, the relative pose (R, T ) between two calibrated views is computed
using RANSAC (see [13]):

• Extract pairs of matching image points {xi1, x
j
2} ∈ R2.

• For i ∈ {1, . . . , N}, select a random subset Si of point pairs {xi1, x
j
2}j∈Si , estimate

the essential matrix Ei, and compute its support (i.e., the number of points that
approximatively satisfy the epipolar constraint).
• Compute the pose (R, T ) from the matrix Ei with the largest support.

In [11] and [3], an alternative approach is suggested where instead of using RANSAC, each
sample Ei is decomposed into a pose estimate (Ri, Ti), and then all the rotations {Ri} are
averaged. Toward this, they propose to minimize the cost

ϕ(R) =
∑
i

d(R,Ri)p,(109)

where p varies from p = 1 (L1 averaging) or p = 2 (L2 averaging) by using the Weiszfeld
algorithm, which we report in Algorithm 2 for points lying in a general Riemannian manifold
M. The authors of [3] show that the algorithm is provably convergent when the curvature of
the manifold is nonnegative. This is the reason why the results of subsection 5.6 (for M E)
and subsection 6.1 (for ME) are important.

Strictly speaking, the traditional Weiszfeld algorithm refers only to the version p = 1, but
it can be defined for any p ≥ 1 [3]. The set I in (111) is used to take into account the fact
that wi becomes ill defined when p = 1 and the iterate x falls on one of the input points.
Intuitively, each iteration of the algorithm maps the input points to the tangent space of the
current iterate x(t), takes the average (with weights given by the relative distances), and uses
the resulting vector to obtain the next iterate x(t+ 1).
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Algorithm 2. The Weiszfeld algorithm.
Require: Points xi ∈M, i ∈ {1, . . . , N}.

1: Initialize x(0)
2: for t ∈ {0, . . . , Nt} do
3: Update x using:

wi(t) = d
(
x(t), xi

)p−2(110)
I(t) =

{
i ∈ {1, . . . , N} : x(t) 6= xi

}
(111)

x(t+ 1) = expx

(∑
i∈I wi(t) logx(xi)∑

i∈I wi(t)

)
(112)

4: end for

In this section, we follow the same approach proposed by [11] and [3], but we average
essential matrices instead of rotations. In practice, the only difference is the use of the
definition of exp, log, and Riemannian distance for M Ein Algorithm 2. Note that the
approach proposed here has the immediate advantage of naturally considering both rotation
and translation components together, while the approach of [11] and [3] considers only rotations.
We compare the two approaches against standard RANSAC on the fountain-P11 data set
from [23], which includes the ground-truth pose for the cameras.

We used SIFT features extraction and matching [29] to find corresponding points between
every possible pair of cameras. We excluded image pairs with fewer than 30 good matches (as
determined using the essential matrix from the ground-truth pose). We then use the five-point
algorithm [12] to generate the RANSAC samples Ei. Similarly to [11], we validate each of the
solutions and keep only those that agree with three (randomly chosen) additional image points
(the threshold used for the decision is the same as the one for RANSAC). We compare two
versions of the Weiszfeld algorithm corresponding to the choice M =M Eand M = SO(3) by
using between 1 and 50 RANSAC samples. We use p = 1, as the case with p = 2 was already
shown to give inferior results in [28]. To initialize the algorithm, we evaluate the cost at every
input sample and use the halfway point between the two samples with lower costs. Also, we set
the number of iterations Nt to 30 (although, during preliminary tests, the algorithms usually
converged in fewer than 15 iterations). As baselines for comparisons, we use the errors of the
RANSAC solution after the same number of samples and after 2000 samples. Additionally,
we test our and the RANSAC-based approaches followed by the optimization of the Sampson
error described in subsection 7.1. In our tests, we found that the algorithm converges in about
five iterations. As a quality measure, we consider the geodesic distance between estimated and
ground-truth rotations. For our approach and the RANSAC-based solutions, we also consider
the angle between the estimated translation direction and the ground truth. All the results
are averaged across all the image pairs and 30 independent sampling realizations.

We report the results in Figure 3. As one can see, the Weiszfeld algorithm using the
proposed distance on M Eoutperforms the corresponding version using the distance on SO(3).
This is in spite of the fact that the error metric considered is actually defined on SO(3), and
we attribute this to the fact that the distance on M Eincludes translations (which also show
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Figure 3. Results for two-view pose estimation. Rotation (top) and translation (bottom) mean angular
errors for the different methods on the fountain-P11 data set.

diminishing errors). As expected, the nonlinear refinement obtained by optimizing the Sampson
error produces better results in all cases (between 0.5 and 1 degree in accuracy gain for both
rotations and translations), thus validating the results of subsection 7.1. This data set also
shows that, while the approach considered here gives results that are slightly better (without
Sampson error optimization) or on par with the RANSAC based approach, the efficiency of the
latter with a well-tuned threshold is quite hard to beat. On this data set, RANSAC reaches a
good solution in fewer than 10 samples, while the Weiszfeld-based algorithm requires around 30
samples. We stress again the fact that the main purpose of this experiment is not to provide a
different way to perform two-view Structure from Motion but rather to show that the distance
provided by our quotient manifold representation is meaningful.

8. Conclusion. In this paper, we considered a Riemannian structure for the essential
manifold and introduced a novel, geometrical interpretation that shed light on the limitations
of previous approaches and on the connections with traditional concepts in computer vision.
We also proposed efficient algorithms for computing the distance and logarithm map and
considered an application to the problem of two-view pose estimation using averages. In our
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future work, we will investigate relations between three views and determine if similar ideas
can be applied to the space of trifocal tensors and other similar objects.

Appendix A. Proof of Proposition 4.2. In this section, we denote as (A)i,j the element
in row i, column j, of a matrix A. To start the proof, we need to check that Hz and Hπ are
indeed groups and that their actions are well defined. The fact that Hz is a group follows
from the fact that rotations around a fixed axis form a group isomorphic to SO(2), and Hz is
simply the Cartesian product of one of these groups with itself. The fact that Hπ is a group
can be checked by direct computation. Since each component of each element of Hz and Hπ is
a rotation, these are actually subgroups of SO(3)× SO(3), and the action defined above is
well defined, mapping SO(3) to itself.

We now arrive to the more involved part of the proof, showing that (39) is true. Let
S1, S3 ∈ SO(3) and assume that Q ∼ (S1Q1, S2Q2), i.e.,

E = QT
1 [ez]×Q2 = sQT

1 S
T
1 [ez]×S2Q2,(113)

for some sign s ∈ {−1, 1}.
We will now use (113) to obtain constraints on S1 and S2. Using the fact that QiQT

i = I3,
we have

[ez]×= sST
1 [ez]×S2.(114)

Substituting (114) into [ez]×T[ez]× and [ez]×[ez]×T to cancel out S1 and S2, respectively, and
since [ez]×T[ez]×= [ez]×[ez]×T = −[ez]×2 = Pz = diag(1, 1, 0), it follows that, for both i ∈ {1, 2},

Pz = ST
i PzSi(115)

=⇒ SiPz = PzSi(116)

i.e., Si and Pz must commute. By expanding the matrix multiplications and comparing the
two sides, we obtain the following constraints:

(Si)3,1 = (Si)3,2 = (Si)1,3 = (Si)2,3 = 0,(117)

which is equivalent to say that Si is of the form

Si =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 = diag(S′i, si).(118)

Since Si ∈ SO(3), we have that si ∈ {1,−1}, S′i ∈ O(2), and si det(Si) = 1. First, consider
the case si = 1. Then det(S′i) = 1 and Si can be parametrized as Si = Rz(θi), i.e.,

Si(θ) =

 cos(θi) sin(θi) 0
− sin(θi) cos(θi) 0

0 0 1

 = Rz(θi).(119)
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Now consider the case si = −1. Then det(S′i) = −1 and Si can be parameterized as

Si =

− cos(θi) − sin(θi) 0
− sin(θi) cos(θi) 0

0 0 −1

 = Ry(π)Rz(θi).(120)

The relations (119) and (120) apply independently to S1 and S2, but there are additional
constraints relating the two. First, notice that (114) implies

S1[ez]×= s[ez]×S2.(121)

By expanding the matrix multiplication and comparing the two sides, we have eight possible
cases, depending on the value of sign s and of the signs s1 = (S1)3,3, s2 = (S2)3,3.

1. s = +1, s1 = +1, s2 = +1: we have

sin(θ1) = sin(θ2), cos(θ1) = cos(θ2)
− cos(θ1) = − cos(θ2), sin(θ1) = sin(θ2)

(122)

which implies θ1 = θ2 = θ. Hence,

S1 = Rz(θ), S2 = Rz(θ).(123)

2. s = −1, s1 = +1, s2 = +1: we have

sin(θ1) = − sin(θ2), cos(θ1) = − cos(θ2)
− cos(θ1) = cos(θ2), sin(θ1) = − sin(θ2)

(124)

which implies θ1 = θ2 + π. Hence,

S1 = Rz(θ), S2 = Rz(π)Rz(θ).(125)

3. s = +1, s1 = −1, s2 = +1: we have

− sin(θ1) = sin(θ2), cos(θ1) = cos(θ2)
cos(θ1) = − cos(θ2), sin(θ1) = sin(θ2)

(126)

which implies sin(θi) = cos(θi) = 0. Hence, this case is impossible.
4. s = −1, s1 = −1, s2 = +1: we have

− sin(θ1) = − sin(θ2), cos(θ1) = − cos(θ2)
cos(θ1) = cos(θ2), sin(θ1) = − sin(θ2)

(127)

which implies sin(θi) = cos(θi) = 0. Hence, this case is impossible.
5. s = +1, s1 = +1, s2 = −1: we have

sin(θ1) = sin(θ2), cos(θ1) = − cos(θ2)
− cos(θ1) = − cos(θ2), sin(θ1) = − sin(θ2)

(128)

which implies sin(θi) = cos(θi) = 0. Hence, this case is impossible.
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6. s = −1, s1 = +1, s2 = −1: we have

sin(θ1) = − sin(θ2), cos(θ1) = cos(θ2)
− cos(θ1) = cos(θ2), sin(θ1) = sin(θ2)

(129)

which implies sin(θi) = cos(θi) = 0. Hence, this case is impossible.
7. s = +1, s1 = −1, s2 = −1: we have

− sin(θ1) = sin(θ2), cos(θ1) = − cos(θ2)
cos(θ1) = − cos(θ2), sin(θ1) = − sin(θ2)

(130)

which implies θ1 = θ2 + π. Hence,

S1 = Ry(π)Rz(θ), S2 = Ry(π)Rz(π)Rz(θ) = Rx(π)Rz(θ).(131)

8. s = −1, s1 = −1, s2 = −1: we have

− sin(θ1) = − sin(θ2), cos(θ1) = cos(θ2)
cos(θ1) = cos(θ2), sin(θ1) = sin(θ2)

(132)

which implies θ1 = θ2 = θ. Hence,

S1 = Ry(π)Rz(θ), S2 = Ry(π)Rz(θ).(133)

Notice that four cases are impossible and that Rz(θ) appears in all the remaining cases. This
represents exactly the action of HzHπ on SO(3), and the four possible cases correspond to the
four epipolar configurations in the twisted-pair ambiguity (see Figure 1).
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