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Abstract— In this work, we address the autonomous flight
of a small quadrotor, enabling tracking of a moving object.
The 15 cm diameter, 250 g robot relies only on onboard
sensors (a single camera and an inertial measurement unit)
and computers, and can detect, localize, and track moving
objects. Our key contributions include the relative pose esti-
mate of a spherical target as well as the planning algorithm,
which considers the dynamics of the underactuated robot, the
actuator limitations, and the field of view constraints. We show
simulation and experimental results to demonstrate feasibility
and performance, as well as robustness to abrupt variations in
target motion.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) equipped with on-board
sensors are becoming ideal platforms for autonomous nav-
igation in complex, confined environments for applications
such as exploration [1], inspection [2], [3], mapping [4], in-
teraction with the environment [5], and search and rescue [6].
For truly autonomous systems, in addition to autonomous
navigation, it is necessary to provide MAVs with the ability
to maneuver with respect to objects, which opens the door
for additional applications. Most previous works leveraging
aerial robots for observation of another object assume that
the object of interest is static in the world frame. However,
a static object is often not a valid assumption, such as
when intercepting malicious aerial vehicles, tracking moving
ground-based targets, or landing on a moving vehicle. Since
localization methods such as GPS do not provide information
about positioning relative to an object, researchers typically
consider sensors such as cameras but often overlook the
limited field-of-view (FOV) constraint. The FOV constraint
has been mitigated by using creative methods such as an
upward-facing camera [5] or by leveraging an omnidirec-
tional camera [7], however, aerial robots are more likely to be
equipped with downward-facing sensors than upward-facing
ones, and omnidirectional cameras typically require cum-
bersome optics, which reduces agility and payload capacity.
Further, most of these works do not model the dynamics of
the target or even predict its path, limiting them to quasi-
static scenarios.

Thus, the goal of this work is to relax the typical assump-
tions of a fixed target and an unconstrained field of view,
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Fig. 1. A quadrotor accelerates to track a target moving at 1.5 m/s.
The motion is planned in real time and considers the estimated trajectory
of the target, the dynamics of the robot, the actuator limitations, and the
camera’s field of view. All sensing and computation occurs onboard the
robot and leverages only one downward-facing camera and an onboard
inertial measurement unit.

enabling a quadrotor to track a moving target. The example
we will explore is that of a robot tracking a moving sphere.

Visual odometry methods focus on determining the robot’s
pose relative to a starting location, not relative to a specific
object, making them not directly applicable to our scenario.
On the other hand, visual servoing solutions focus on motion
relative to a specific object, but they typically require one or
more of the following assumptions:
A1) The dynamics of the robot are first-order.
A2) The robot is fully actuated.
A3) The image features are static features on the object.
A4) The object is stationary in the inertial frame.
A5) The object does not leave the field of view.
In this work, we overcome these assumptions as they relate
to maneuvering a quadrotor relative to a moving target. To
accomplish this, we extend our previous planning methods
for high-speed grasping and perching [8], [9].

The closest works regarding visual servoing relative
to spheres develop the control for a first-order robotic
arm (A1 and A2) and assume the sphere is station-
ary (A4) [10], [11]. Circular markers have also been consid-
ered for visual servoing [12]. Our previous work considered
servoing using a higher order underactuated system and
did not require the image features to correspond to fixed
locations on the target, an issue that arises when the object
of interest has curvature [5]. While innovative design assisted
in keeping the object in the field of view, there wasn’t an
explicit consideration for the field of view constraints, and



there was no way to recover if the object left the image.

Our problem is also related to Proportional Navigation
(PN), which was traditionally considered to control the final
stages of an interceptor missle [13], [14]. However, PN-
guidance systems assume that a gimballed seeker is available
in the interceptor to ensure the target is continuously tracked.
Further, such approaches are control strategies which do not
directly address underaction and field of view constraints.

There have also been more general approaches for landing
or maneuvering multirotors relative to a moving target (A4).
Landing on a small carrier vehicle was accomplished by
leveraging an onboard IR camera (from a Wii Remote) and
IR markers on the landing pad [15]. The very limited field of
view (45◦) was mitigated with a pan-tilt unit. Landing on a
moving target using a downward-facing camera was explored
in [16], but there was no explicit consideration for the field
of view. Angular dynamics were ignored but enabled landing
on a vertically moving target similar to a ship deck [17].
Conveniently, this approach only relied on optical flow of
the surface, making the field of view constraint less of an
issue. However, the normal of the surface was assumed to
be known.

The most relevant work considers tracking a moving
target with a quadrotor while avoiding obstacles [18]. The
trajectory of the target is estimated, and trajectories are
planned to minimize the position error. In this work, we
consider a similar approach with some novel extensions.
Specifically, we will consider a modified objective function
which is more appropriate for aggressive scenarios, and we
will incorporate the field of view constraints in the robot’s
trajectory planner.

This work makes multiple contributions. First, we provide
a solution to identify a spherical object’s position with re-
spect to the aerial platform using monocular vision. Second, a
trajectory planning method enables a robot to track a moving
object in real time using the single downward-facing, body-
fixed camera while explicitly considering the field of view.
To the best of our knowledge, this is the first time that
onboard navigation techniques based on a single camera and
inertial measurement unit (IMU) are used both to navigate
in the world and track a moving target without the need
of an external motion capture system or additional onboard
sensors.

The high-level goal to enable a robot to track or acquire
a moving target will be broken down into a number of
sub-tasks. First, the robot must be able to determine a
relative pose, which will be discussed in Section II. Since
the object may be moving, we also need to estimate its
motion and propagate its dyanmics in order to increase
robustness to occlusions and potential failure when an object
may temporarily leave the field of vew. Thus, we model the
object’s and robot’s dynamics as well as discuss the robot’s
controller in Section III. The planning strategy is proposed
in Section IV. Finally, results are presented in Section V,
and we conclude in Section VI.

II. RELATIVE POSE

In this section, we present an approach to determine the
relative pose of a sphere from a single image and knowledge
of its radius. The strategy is resiliant to partial occlusions
which are likely to occur during close or aggressive ma-
neuvers when the target may not fully appear in the image.
The proposed method considers fitting a cone to a set of 3D
points, making the solution agnostic to the camera model
and requiring only undistortion of the target’s boundary in the
image. Related works include fitting of ellipses and circles to
points in a plane [19], [20]. Unless otherwise noted, vectors
in this section will be expressed in the camera frame C. Let
a sphere be represented in the camera frame by

‖X−C‖2 − r2 = 0 (1)

where C ∈ R3 is the center, r is the radius, ‖·‖ is the
Euclidean norm, and X ∈ R3 represents any point on the
surface of the sphere.

We define the projection operator π which maps a point X
in the camera frame to a point x ∈ R3 on the image surface

x = π(X) ≡ 1

λ(X)
X (2)

where the choice of λ : R3 7→ R is dependent on the
camera model. For example, we would choose λ ≡ ‖X‖
for a spherical camera model or λ ≡ eT

3 X, where eT
3 =[

0 0 1
]
, for a pinhole model. In any case, we can

express X = λx, allowing us to write (1) as

‖λx−C‖2 − r2 = 0 (3)

which is quadratic in λ. Considering that points on the
contour of the projection represent rays which are tangent
to the sphere, we require λ to be unique, which means that,
for the contour, the discriminant of (3) must vanish so that

xT
[
CCT +

(
r2 −CTC

)
I
]
x = 0, (4)

where I is the identity matrix, and we observe that (4) is a
conic. The set of non-trivial solutions x satisfying (4) and
the camera model (e.g., eT

3 x = 1 or ‖x‖ = 1) describe
the contour of the sphere in the image and is known as the
tangent cone to the sphere from the camera origin [21]. In
this case, however, x represents an observed point, making
this form not ideal for the rest of our formulation where we
wish to determine C.

A. A Geometric Solution

If we assume a spherical camera model for x so that
xTx = 1, then (4) simplifies to(

xTC
)2

+ r2 −CTC = 0. (5)

Then, if we let C = γc with ‖c‖ = 1 so that c represents
the bearing to the center of the target, we have(

γxT c
)2

+ r2 − γ2 = 0, (6)

which is simply the Pythagorean constraint as discussed in
Fig. 2. Squared errors from this constraint can be captured



r

�
�

Camera

Target

Fig. 2. The geometry for a cross section of a vector X = λx with ‖x‖ = 1
in the tangent cone. The center of the sphere is given by C = γc with
‖c‖ = 1. The top hemisphere represents the spherical camera model, and
the circle is the cross section through a hemisphere of the sphere. Note that
the Pythagorean theorem holds such that λ2 + r2 = γ2 when a spherical
camera model is used for both X and C.

in a non-linear minimization problem to estimate C

arg min
C

n∑
i=1

[(
xT
i C
)2

+ r2 −CTC
]2

(7)

given n observed bearings in the tangent cone. This mini-
mization can be seeded with the centroid as an initial guess,
and a gradient descent can be used to determine the solution.
With this formulation, the geometric error is minimized,
however, the computational demands may be higher than is
realistic for real-time implementation.

B. An Algebraic Solution

The conic fitting problem can also be approached alge-
braically, analogous to algorithms used for ellipse fitting [20].
For ease of comparison, we will use similar notation.

1) Fitting a Cone to a Set of Observations: Let a conic
be defined by

xTAx = 0 (8)

with A ∈ R3×3, A = AT , and x =
[
x y z

]T
. Note

that A can be arbitrarily scaled and represent the same conic.
The constraints for n observations xi can be written as

x2
1 y2

1 z2
1 2x1y1 2x1z1 2y1z1

x2
2 y2

2 z2
2 2x2y2 2x2z2 2y2z2

...
...

...
...

...
...

x2
n y2

n z2
n 2xnyn 2xnzn 2ynzn


︸ ︷︷ ︸

D


A11

A22

A33

A12

A13

A23

 = 0

(9)
so that the linear system can be solved using a singular value
decomposition (SVD) of D. From this, we can construct A,
which represents the best algebraic-fit conic.

2) Extracting the Relative Pose from a Conic: In a frame
defined such that the z axis is parallel with the bearing to
the target’s center, our observations of the sphere boundary
form a cone which can be written as

xT

 λ1 0 0
0 λ2 0
0 0 λ3

x ≡ xT Λx = 0. (10)

A change of basis can be applied to express the cone in
camera frame coordinates with A ∈ R3×3, A = AT

xTQΛQ−1x ≡ xTAx = 0. (11)

Fig. 3. A sample image of a sphere comparing various bearing estimation
algorithms. The purple frame indicates a simulated image boundary. Cyan
dots denote detected boundary points of the sphere. In this case, points
outside the simulated image boundary are discarded to simulate a partial
occlusion. The centroid of the detected region is denoted by the the yellow
triangle, and the centroid of the boundary points is represented by the red
pentagram. The computed bearing to the center of the sphere using the
geometric solution is indicated by the blue diamond, and the computed
bearing to the center of the sphere using the algebraic solution is denoted
by the green square. We observe that the centroid methods do not accurately
determine the bearing to the center of the sphere.

Thus, we see that for a general conic defined by A,
we can use an eigenvalue decomposition to deter-
mine Q, λ1, λ2, and λ3. The axis of the cone in the
camera frame is given by the eigenvector associated with the
eigenvalue whose sign is the least common, which, without
loss of generality, we can assume is λ3. This is also the axis
along which the bearing to the target’s centroid will lie. For a
circular cone, the other two eigenvalues would be equal and
have a sign opposing λ3. However, in practice, they will not
be identical and can be approximated by their average, λ̄12.
Then, using similar triangles, the distance to the centroid of
the target can be determined to be γ = r

√∣∣λ̄12/λ3

∣∣+ 1.

C. Discussion

A comparison of these approaches is given in Fig. 3.
We first note that the geometric method should provide
the best fit but at the cost of the most computation
time (about 23 ms). On the other hand, the algebraic ap-
proach is much faster (about 4 ms on the same machine)
and provides a sufficiently accurate solution. In general, both
solutions are superior to centroid methods, especially when
only part of the target is observed.

If we assume a pinhole camera model, we could re-
cover the information needed from an ellipse in the im-
age plane. In many cases, this may be the preferred ap-
proach as there are readily available ellipse trackers such
as vpMeEllipse from [22] and since most image process-
ing would occur in a flat image.

With these approaches, determining the relative pose from
a single image requires knowledge of the sphere’s radius. A
scale has been estimated online using a Structure from Mo-
tion (SfM) approach, but the relative velocity was assumed



to be known [23]. In our case, the target is not stationary and
the magnitude of its velocity is unknown, so determining the
scale online is a more difficult problem which will be left
for future work.

III. DYNAMICS AND CONTROL

A. Dynamics of the Object

One of the unique differences between this work and other
visual-servoing works is that we no longer require the target
to be fixed in the world. We simply require that the object’s
path can be approximated and predicted over some horizon
using an nth order polynomial in each Cartesian dimension.

B. Dynamics of the Robot

The dynamics of the robot are given by

mẍ = −mge3 + fRe3 (12)

Ṙ = RΩ̂ (13)

IΩ̇ = M−Ω× IΩ (14)

where m is the mass of the robot, x ∈ R3 is the position,
g is gravity, e3 is the 3rd standard basis vector, f ∈ R and
M ∈ R3 are the thrust and moment control inputs to the
system, R ∈ SO(3) is the orientation of the vehicle, and
·̂ : R3 7→ so(3) is the hat map defined such that, for any two
vectors, âb = a × b. Also, I is the inertial matrix, and Ω
is the robot’s angular velocity expressed in the robot frame.

C. Control

We leverage a position-based visual servoing (PBVS)
control strategy, which allows the use of a common nonlinear
controller [24], [25]. The position and velocity errors are

ex = x− xdes and ėx = ẋ− ẋdes, (15)

respectively, and the thrust is computed as

f = (−kxex − kvėx +mge3 +mẍdes) ·Re3 (16)

where kx and kv are positive gains and the subscript “des”
denotes a desired value. The attitude and angular velocity
errors are defined as

eR =
1

2

(
RT

desR−RTRdes
)∨
, eΩ = Ω−RTRdesΩdes (17)

where ·∨ : so(3) 7→ R3 is the opposite of the hat map. The
control moments are computed as

M = −kReR − kΩeΩ + Ω× IΩ, (18)

where kR and kΩ are positive gains. Then, the zero-
equillibrium is exponentially stable and, in general, the
controller provides “almost global exponential attractive-
ness” [25].

IV. PLANNING

Since we are interested in aggressive maneuvers so that
the quadrotor can commence tracking a quickly moving
target, it is important to not only consider dynamic feasiblity
(considering the relative degree of the robot), but also to
ensure that actuator and sensor constraints, including the
field of view, are not violated. The incorporation of some

actuator and sensor constraints was demonstrated, enabling
a robot to perform aggressive maneuvers to perch on vertical
surfaces, but with no need to consider vision constraints [9],
[26]. An extension to plan trajectories for image features was
presented, but there were no guarantees that the trajectories
would satisfy the sensor and actuator constraints [5]. The ap-
proach here will allow for the consideration of the dynamic,
sensor, and actuator constraints, including the field of view.

A. Representation of Trajectories

We express trajectories using an nth order polynomial
basis with terms bk(t) so a trajectory p(t) can be represented
by

p(t) =

n∑
k=0

ckbk(t) (19)

or with a vector of coefficients ci ∈ Rn+1 for dimension i
and a basis vector b(t) : R 7→ Rn+1

pi(t) = cTi b(t). (20)

We could allow b(t) to be a standard power basis,

b(t) =
[

1 t t2 · · · tn
]T
, (21)

a Legendre Polynomial basis,

b(t) =
[

1 t 1
2

(
3t2 − 1

)
1
2

(
5t3 − 3t

)
· · ·

]T
,
(22)

or any basis of the user’s choice. The rth derivative can be
computed as

p
(r)
i (t) = cTi b(r)(t) (23)

since ci is independent of time.
Now, let B(t) : R 7→ Rd(n+1)×d and c ∈ Rd(n+1) be

B(t) =

 b(t)
. . .

b(t)

 , c =

 c1

...
cd

 (24)

for d dimensions. That is, c is a stack of the coefficient
vectors. Then, we can write the trajectory as p(r)(t) : R 7→
Rd where

p(r)(t) =
(
B(r)(t)

)T
c. (25)

For clarity, we note that this is equivalent to

p(r)(t) =


cT1
cT2
...

cTd

b(r)(t), (26)

however, the previous formulation will be useful later.

B. Trajectory of the Target and Robot

The estimated trajectory of the target in dimension i is
defined by coefficients hi ∈ Rn+1 so that the trajectory for
all dimensions is

g(r)(t) =
(
B(r)(t)

)T
h (27)

where h =
[

hT
1 . . . hT

d

]T
. This allows us to fit a

polynomial to the dynamic model over some horizon to



Fig. 4. A one-dimensional example motivating the minimization of
velocity error between the robot and the target. In both scenarios pictured
above, the robot is assumed to start from rest as the object enters the field
of view. On the left hand side, we see a possible trajectory if the position
error is minimized, and on the right-hand side, we see a result if the velocity
error is minimized. In the position-error case (LHS), it is obvious that the
motion is not ideal for larger target velocities. Thus, we are motivated, at
least during the initial transient, to minimize the velocity error. Observe that
this also could aid in mitigating the field of view constraints.

predict the motion of the target [18]. Next, we define the
planned trajectory of the robot using the convention in (25).
The trajectories are specified in the space of flat outputs of
the vehicle using the three Cartesian coordinates x, y, and z
in an inertial frame. Then, dynamic feasibility is guaranteed
simply by enforcing inter-segment continunity on position,
velocity, acceleration, jerk (r = 3), and snap (r = 4) in each
dimension [24], [26].

C. General Planning Strategy

One strategy is to minimize the position error between
the target and the robot’s trajectories with the inclusion of
smoothing on higher derivatives [18]. However, this approach
is not ideal in some scenarios (see discussion in Fig. 4)
because it can produce initial transients that are counterpro-
ductive to achieving tracking as quickly as possible.

Instead, we propose minimizing the velocity error during
the initial transient. Interestingly, this results in a strategy
similar to the ones taken by dragonflies [27], falcons [28],
and human outfielders [29]. In these cases, the target is
regulated to remain at a constant bearing in the field of
view, and the range gap is closed using a strategy that may
be captured by τ (“tau”) theory [30], which doesn’t require
knowledge of a distance to the target. For now, we assume
that the scale of our target is known a priori, allowing for
the direct estimation of the range, and we leave the online
range estimation, if necessary at all, for future work.

Minimizing velocity error alone, however, cannot capture
the desired relative pose. Thus, we consider the planning and
tracking problem as having two phases. First, there must
be a phase where the robot is accelerating to match the
velocity of the target. This transient phase is when the field of
view constraints are most likely to be active constraints. The
objective of this phase can be expressed as a minimization
of the velocity error between the robot and the target. The
second phase incorporates the position error and enables
planning to intercept the target or track the target from a
desired relative pose.

D. A Multi-Objective Cost Function

We are motivated to use a multi-objective cost function to
penalize both velocity errors and, when appropriate, position

errors. Interestingly, a similar approach was used to smoothly
change formation shapes of an aerial robot team [31]. We
define the error as

e(t) = g(t)− p(t) (28)

over the x, y, and z coordinates of the appropriate frame
such that g(t),p(t), e(t) : R 7→ R3. Since we’re interested
in minimizing specific derivatives, we write a general objec-
tive function which computes the integrated square of the
Euclidean error of the rth derivative

Jr =

tf∫
to

∥∥∥e(r)(t)
∥∥∥2

dt (29)

where ‖·‖ represents the Euclidean norm. Expanding,

Jr =

tf∫
to

(
e(r)

)T (
e(r)

)
dt (30)

= cTQr c− 2hTQr c + hTQr h (31)

where

Qr =

tf∫
to

(
B(r)(t)

)(
B(r)(t)

)T
dt, (32)

so that Jr can be expressed in quadratic form as

Jr = cTQrc + fT c + α, f = −2QT
r h, α = hTQrh. (33)

Note that a translation could be included in the object’s
coefficients, h, to specify a desired relative pose. Further,
we could nondimensionalize t so that to = 0 and tf = 1,
which would allow precomputation of Qr for each derivative.

E. Actuator and Sensor Constraints

The field of view of a lens could be modeled as a cone in
the camera (or body) frame

mTAm ≤ 0 (34)

where A = AT and the solutions m ∈ R3 are rays lying
within the field of view. Unfortunately, this results in a non
positive semidefinite constraint, which means that we can
not include it as a quadratic constraint in a Quadratically
Constrained Quadratic Program (QCQP). Alternatively, we
could model the constraint with an inscribed pyramid similar
to the approximation of a coulomb friction cone (see Fig. 5
or [32]). Further, because of the rectangular sensor design
of most cameras, the cone model may not be best. Thus, we
can inscribe a convex pyramid in the field of view, which
provides a set of linear constraints representing the effective
field of view.

Next, we incorporate bounds to prevent actuator saturation
using the approach in [9]. However, we also want to consider
the field of view constraints so the object does not leave the
image. The simplest way to solve this problem is to pre-
scribe a maximum attitude angle (e.g., arccos (e3 ·Re3) ≤
βmax), and reduce the effective field of view accordingly.
A trajectory could then be planned simultaneously using the
maximum attitude constraint and the reduced field of view



Fig. 5. The field of view of a lens. The cone’s representation is not
positive semidefinite, which means we cannot use it directly in a QCQP.
However, the cone can be approximated with an inscribed pyramid.
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Fig. 6. A visualization of the acceleration constraints in the x− z plane.
The large circle represents the maximum thrust bound, and is similar to
the illustration in [33]. The half plane bound keeps the quadrotor from
inverting and avoids the singularity resulting when there is no thrust. Given
the expected bearing between the target and the robot (inclined, dashed
line), a conic (or pyramid) section represents the acceleration constraint to
keep the object in the field of view.

to constrain the relative positions. However, this approach is
more conservative than desired, especially when aggressive
maneuvers are necessary. Certainly, we do not want to restrict
the maximum attitude.

Instead, we directly incorporate the field of view as
constraints in the optimization by using the relative position
to rotate the field of view and prescribe constraints on the
acceleration (effectively on the attitude). We first determine
a set of acceleration constraints when the object would be
directly beneath the robot. Then, we rotate the axis to be
coincident with the expected bearing from the object to
the robot. A schematic of sample acceleration constraints
at one instant is given in Fig. 6. It is possible that the
vision constraints can dominate the solution causing the
robot to move away from the target. In such cases, the
vision constraints could be relaxed, allowing the target to
temporarily leave the field of view.

F. The Planner

In this subsection, we describe the proposed planning
algorithm. We leverage a receding horizon planning strat-
egy to continuously update the planned trajectory based
on the target’s actions. We first set the default objective

function to minimize the velocity error, and we include a
slight weighting to penalize jerk, which helps to reduce the
angular velocity and has been used previously to provide
smoothing [18]. Note that we could also penalize the next
derivative, snap, which would most directly help to reduce
the angular acceleration. Dynamic, actuator, gyro, and vision
constraints are incorporated as nonlinear constraints on the
coefficients of the trajectory. Then, the problem can be solved
using a Sequential Quadratic Program (SQP) solver (e.g.,
[34]). In our case, there is the benefit that instead of the QP
subproblem being an approximation of a general nonlinear
cost function, it is identical to our cost function. Most
convergence arguments for SQP problems require that an
initial solution or “warm start” is sufficiently close to the
actual solution and that the active inequality constraints at
the optimal solution are the same ones that are active at
the local solution. For more details, we refer the reader to
the “Sequential Quadratic Programming Methods” chapter
in [35].

When the relative bearing and relative velocity have a pos-
itive inner product, then there is no harm in also minimizing
position error (see the example in Fig. 4). Additionally, there
may be situations where the velocity is matched before the
previous condition is satisfied. In such cases, we can also
incorporate the position term in the objective function once
the relative velocity falls below a predefined threshold. While
this planning approach does not guarantee completeness
since it is dependent on a non-linear optimization, it is viable
for real-time applications, and it works well in practice. The
algorithm is presented in Algorithm 1, where the weighting
for derivative r is given by λr, and Jr is defined by (33).

Algorithm 1 The Planning Algorithm
1: J ← λ1J1 + λ3J3

2: for Each Horizon do
3: update(g(t))
4: repeat
5: p(t)← iterateSQP(J , g(t), p(t))
6: until Out of Time
7: e(t)← g(t)− p(t)
8: if (e · ė ≥ 0 or ‖ė‖ ≤ thresh) then
9: J ← λ0J0 + λ1J1 + λ3J3

10: end if
11: end for

V. RESULTS

In this section, we present our simulation and experimental
results. We first present a sample simulation assuming a
constant-velocity target with an initial state of

x =

 −2.5
1
0

 , ẋ =

 5
−1
0


and the robot’s initial state given by

x =

 0
0
3

 , ẋ =

 0
0
0

 , R = I, Ω =

 0
0
0

 .
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Fig. 7. The nominal positions from the proposed planning strategy.
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Fig. 8. The planned velocities resulting from the receding horizion planner.
All planned trajectories are shown as dash-dotted lines, but only the first
0.1 s of any trajectory is executed before the next one is planned. The
planning horizon is 1 s. We observe interesting results like the initial positive
velocity in z, which is possibly a result of the field of view constraint. At
t = 0.6 s (represented by the partial vertical line), the position error is
included in the cost function.

The planning horizion is 1 second with a trajectory update
frequency of 10 Hz. The desired relative pose is defined such
that the robot is 1 m above the target, and the horizontal
and vertical fields of view are both assumed to be 90◦. The
resultant trajectory is plotted in Fig. 7. Each new planned
trajectory’s velocity is plotted in Fig. 8. The resultant path
of the object in the image is plotted in Fig. 9. We see
some very exciting results. For example, despite the fact
that there is no initial velocity error in the z direction, the
robot accelerates upward, helping to keep the object in the
field of view (Fig. 8). With the same initial conditions and
minimizing the position error from the start, the motion is
quickly dominated by the visual constraints and results in an
infeasible problem.

Next we present our experimental results, which were
executed in the GRASP (General Robotics Automation Sens-
ing and Perception) lab at the University of Pennsylvania.
The total flying area has a volume of 20 × 6 × 4 m3.
We implemented the entire estimation, planning, and control
pipeline, including the robot state estimator, the target’s state
estimator, a target trajectory predictor, and the trajectory
planning algorithm on a Qualcomm Snapdragon™ board,
featuring a Qualcomm Hexagon™ DSP and 802.11n Wi-
Fi, all packed onto a (58 × 40 mm) board based on the
Snapdragon™ 801 processor. A Kalman filter is used for
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Fig. 9. The path of the bearing to the target in the image, starting on
the left and ending up centered. The image boundary is given by the solid
boundaries. We observe that the field of view constraints are not violated.
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Fig. 10. Experimental results of a robot tracking a rolling sphere. The
vehicle quickly locks onto the target and maintains the desired relative pose
despite erratic motion in the target’s path.

the robot’s state estimation at 500 Hz with respect to a fixed
reference frame. The estimation is obtained combining IMU
data in the prediction phase and distinguishable environment
landmarks in the measurement update step. For more details,
we refer the reader to our previous work, where reliable
flights with speeds up to 5 m/s and angular rates of 800 deg/s
are achieved [36]. The quadrotor is only 250 g, and a
single downward-facing camera and onboard IMU are used
to perform the state estimation of the robot and the target.

The target is a 7.6 cm diameter Sphero SPRK+ spherical
robot, controllable using a smartphone via Bluetooth®. Our
estimator fits a polynomial trajectory to the 10 latest target
pose measurements (at 30 Hz). For these experiments, the
estimator uses a constant model in the z direction since
the target is rolling on a flat surface. The robot replans
frequently enough that a first order regression model in the
horizontal directions is sufficient to estimate the motion.
Then, the estimated trajectory is sampled over the next
planning horizon to determine the coefficients h for the next
segment.

With this platform, we demonstrate successful results
such as the tracking in Fig. 10 and the acceleration to
track a quickly moving target entering the field of view in
Fig. 1. In both cases, the object does not leave the field
of view, and the quadrotor successfully tracks the target.
For more results, including simulations of the approach
applied to objects moving in 3D, we refer the reader to
the attached video or to the higher-resolution video at
http://www.jtwebs.net/2017-ra-l/.



VI. CONCLUSION

This work presented a relative pose estimation and tra-
jectory planning strategy to track a moving sphere with
an underactuated micro aerial vehicle while considering
the dynamic, actuator, and field of view constraints. We
validated that all perception and computation can occur
onboard a 250 g robot equipped with only one downward-
facing camera and an inertial measurement unit. Simulation
and experimental results demonstrate successful tracking of
a moving target while keeping the object in the field of view.

There are many exciting research opportunities stemming
from this work. For example, an online scale or range esti-
mate is needed, which could be inspired from the strategies
used by dragonflies. Optical flow (considering the parallax)
between the target and background could also help improve
the estimate of the relative velocities. Finally, a better strat-
egy is needed to select the cost function weightings.
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