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Abstract

In an immersive tele-presence environment a 3D remote
real scene is projected from the viewpoint of the local user.
This 3D world is acquired through stereo reconstruction at
the remote site. In this paper, we start a performance anal-
ysis of stereo algorithms with respect to the task of immer-
sive visualization. As opposed to usual monocular image
based rendering, we are also interested in the depth error in
novel views because our rendering is stereoscopic. We de-
scribe an evaluation test-bed which provides a world-wide
first available set of registered dense “ground-truth” laser
data and image data from multiple views. We establish met-
rics for novel depth views that reflect discrepancies both in
the image and in 3D-space. It is well known that stereo per-
formance is affected by both erroneous matching as well as
incorrect depth triangulation. We experimentally study the
effects of occlusion and low texture on the distributions of
the error metrics. Then, we algebraically predict the be-
havior of depth and novel projection error as a function of
the camera set-up and the error in the disparity. These are
first steps towards building a laboratory for psychophysical
judgement of depth estimates which is the ultimate perfor-
mance test of tele-presence stereo.

1 Introduction

In a tele-presence environment, a user receives sufficient
information about the task environment so that s/he feels
physically present at the remote location. The key feature of
a visually compelling tele-presence environment is that the
scene is displayed stereoscopically and the rendered view
changes according to the viewpoint of the user’s head. An
example of a tele-presence system [17] illustrated in Fig. 1
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brings two users from remote places to the “same” table. A
real-time multiple view stereo reconstruction of a remote
person is transmitted to the local site, combined with a
stored off-line 3D-background and projected with stereo-
scopic projectors. The user wears polarized glasses and a
6-DOF head-tracker. The remote scene is always projected
from the viewpoint of the local user as if the he is looking
through a window into the remote scene.

Figure 1. A local user on the left shares the same en-
vironment with a remote user on the right. A 3D
description of the remote environment is projected
stereoscopically on the screen from the viewpoint of
the local user.

First attempts to realize immersive tele-presence in-
volved slave stereo cameras that moved according to the
local master’s head and obtained a stereo-pair from the cor-
rect viewpoint. Thisview-dependentsolution is impossi-
ble in a multi-user networked environment subject to la-
tencies. View synthesis methods such as [4, 15] are also
view-dependent and less suitable for tele-presence appli-
cations because they hinder close interaction with virtual
3D-objects. In this paper, we addressview-independentre-
construction from stereo in the context of tele-presence as
described above.

What does performance analysis mean in the context of
tele-presence and how does it differ from error analysis in
classical stereo? In the related work section we will summa-
rize multiple results on the evaluation of stereo algorithms.
Most of these are based on the comparison between the es-
timated depth and ground-truth measurements. In an im-



mersive tele-presence environment ideally –and this is our
future research plan– we would first study the human per-
ception of depth with stereoscopic projection. Since this is
a long-term project and we need an evaluation now, we have
set out to establish metrics which we are going to study ana-
lytically, experimentally, and with a new ground-truth data-
set.

The first metric is still the classical view-independent
world-centered depth difference, which might seem irrele-
vant in the sense of image based rendering, but will still af-
fect performance of tele-collaboration systems where users
interact with virtual 3D-objects whose visibility and colli-
sions with the “real” scene must be monitored.

The second metric refers to novel virtual views (as per-
ceived by the local user) and is the discrepancy between
projected ground-truth and projected reconstructed points,
referred to as residual flow in [23]. It captures error in
rendered scenes resulting from depth error in reconstructed
points.

The third metric also refers to novel views but is related
to the fact that rendering in our system is stereoscopic. Even
if the depth errors are along the viewing rays the user will
still perceive the depth error with her polarized glasses. For
example, when the user happens to view from the refer-
ence camera viewpoints the second metric is minimal but
the third metric is significant.

To perform the experiments we established an experi-
mental set-up by integrating a laser scanner and a cluster of
cameras. Cameras are calibrated and registered with respect
to the reference frame of the laser scanner. The range mea-
surements obtained from the laser scanner serve as ground-
truth data. To our knowledge, together with the University
of Tsukuba manually measured ground-truth, our set-up is
the firstdenseground-truth data-setregisteredwith respect
to the camera cluster. The data used in this experiment are
from multiple views of the face of a mannequin.

The above metrics are affected by all possible sources of
error in stereo which we briefly discuss here. During the
correspondenceprocess, false disparities are due to noise
in the images as well as due to errors in calibration which af-
fect the rectification. Correspondence is not a well-defined
problem since imaged world features may not be visible to
be matched in all images, and because insufficient inten-
sity variation results in infinite solutions. Depending on the
choice of thresholds, we can include or exclude matched
image points giving different output densities (numbers of
matched points). We will vary this threshold-dependentout-
put disparity density as a means of analyzing the proposed
error metrics.

During depth triangulation , the error in the disparity
can be amplified by the error in the projection matrices due
to calibration. In our study we analytically and experimen-
tally analyze the effect of varying depth, vergence, and com-

bined vergence and baseline. We provide algebraic predic-
tions for the first and second metrics, and verify their be-
haviour under simulation. The analytic error formulae are
based on classical covariance propagation [26, 7].

We compare two algorithms for the matching step: The
first algorithm is a near-real time trinocular stereo algo-
rithm based on a modified normalized cross-correlation
measure [16, 17]. The second is a publicly available C-
implementation of the Roy and Cox algorithm [21].

In all comparisons, we show the histogram of an error
metric. Error in stereo differs significantly from a Gaussian
distribution regarding both shape of the probability density
around the mode as well as outliers at the tail of the distri-
bution. We strongly believe that neither RMS or median can
give a fair representation of the error distribution.

In the next section we review the related work on eval-
uation of stereo-algorithms. In Section 3 we characterize
the possible errors due to matching. In Section 4 we calcu-
late the relative depth error as well as the discrepancy in a
predicted view as a function of the camera poses and ver-
ify our formulae with synthetic simulations. Section 5 de-
tails the experimental set-up and the stereo algorithm used
in the evaluation. Finally we apply the quality metrics on
an extensive real data-set and compare the results with the
theoretical prediction.

2. Related Evaluation Work

Since this is a paper on evaluation and not stereo algo-
rithms per se we will refer only to standard textbooks [25, 6]
and to the closest system to the description above (virtual-
ized reality [18] and multi-baseline stereo [19]).

The closest evaluation approach is by Szeliski in [23, 24]
and is based on the discrepancy in predicted intensities.
This evaluation involves mainly motion sequences where
the novel view is a real image. In our case the novel views
are arbitrary and for this reason we need the ground truth to
predict the reference appearance.

Our image-based metric intentionally does not measure
the difference in intensities because this is really a percep-
tual question. We understand that the errors in low-textured
areas are not as easily perceived as depth errors in textured
neighborhoods, but modeling the perceivable intensity or
the relation of a test image to the latter is still a matter of
research.

The next closest approach is by Leclerc et al. [11] who
introduced the notion of self-consistency. Again, the views
checked for consistency are from the set used for computa-
tion and they can definitely not cover the viewing volume of
a user in a tele-presence environment. However, like [23] it
is a truthful measure if we do not have access to any ground-
truth.

Analytical studies of the error in stereo have a long his-



tory [14, 9] and researchers have established the probabil-
ity distribution function for a reconstructed point in space
[2, 20]. The capability of controlling the relative pose on
active binocular heads gave rise to very interesting studies
[22, 5, 8, 13] on the role of fixation, vergence angle, and
baseline length. Fundamentals on error propagation and
modeling can be found in [26, 10, 7].

3 Correspondence Errors

As mentioned in the introduction, errors during thecor-
respondence steparise because of insufficient information
in the image intensity (or inability of an algorithm to deal
with it) as well as because of noise in the intensities and the
calibration-dependent rectification.

A unique solution for matching is impossible:

• if regions in one image do not correspond to any re-
gion in another image due to occlusion. This is a dis-
crete optimization problem optimally solved with en-
ergy minimization or maximum flow - as is done in one
of the algorithms we use for comparison [21].

• if the assumption about the same intensity or same fil-
tered intensity response is not valid due to illumination
changes or specular reflections.

• if the assumption about constant disparity in the con-
sidered local window is violated because of a depth
discontinuity (for example at occlusion boundaries) or
extreme perspective foreshortening or uncorrected ra-
dial distortion.

Matching is locally ambiguous with a “finite” ambiguity in
case of periodic patterns and an “infinite” ambiguity in case
of textureless areas. The latter is the most severe problem
in stereo and cannot be tackled by any algorithm unless a
global model or regularization assumptions are made.

The error classification above is data-driven and given
the input images for a stereo algorithm, image areas can be
pre-classified and results can be evaluated in separate ar-
eas as in the JISCT experiment [3] and in [12]. All of the
above cases appear in our data and reflect in all three er-
ror metrics we use. We perform a boolean classification of
image areas regarding occlusions and a continuous classifi-
cation of image areas regarding intensity variation based on
an image-gradient threshold.

4 Depth triangulation errors

In this section we investigate the error in depth produced
during the triangulation step. As correctly pointed out by
the reviewers, we study here the binocular case though our
algorithm tested is trinocular. This is not a conflict be-
cause the trinocular algorithm yields only one correlation

profile combined over all three images and one disparity
value. This value can be mapped and used with any of the
views. We use two views (central-right pair or left-right
pair) and this difference is reflected in our study by the vari-
ation in the baseline. Given two viewpoints any additional
viewpoint between the two can not constrain the error in the
depth.

Consider the stereo setup in Figure 2 where two cameras
(left and right) are verging with anglesαl andαr. The ori-
gin of the world coincides with the image center of the right
camera. The positive X axis of the world is the ray~OrOl.
We assume that the vertical disparity is exactly zero and
given by the calibration parameters used for the image rec-
tification. This assumption is only approximate and we plan
to investigate this issue in the future. For now, we constrain
ourselves to the “flatland” (X −Z plane) and consider only
variations in vergence and baseline. Given a world point P,
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Figure 2. Stereo set-up for depth triangulation given
matches

our measurement of depth can be expressed as a function
of baseline b, vergence anglesαl, αr, focal length f and the
world coordinates (X,Z):

xr =
f (X tanαr − Z)

X + Z tanαr

xl =
f (Z + (b − x) tanαl)

b − X − Z tanαl

The actual triangulation algorithm uses the projection ma-
trices from calibration but since the vertical disparity is as-
sumed to be zero we can solve the system above instead.

If we replacexl with f tanβl andxr with f tanβr the
triangulated point reads

X =
b(sin(βr − βl + αl − αr) − sin(βr + βl − αl − αr)

sin(−βl + βr − αr + αl)

Z =
b(cos(βr − βl + αl − αr) − cos(βr + βl − αl − αr)

sin(−βl + βr − αr + αl)

In dense area based approaches we can assume thatxl is
exact and that matching errors reflect only in the disparity
d = xr − xl. The variance of the pixel disparity can be ap-
proximately propagated into the depth variance as follows:

σ2
Z = (

∂Z

∂d
σd)2. (1)
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Figure 3.Left: Error at X=12.5cm and Z=125cm as a function of vergence angleα (b = 25, σd = 14.8µ, f = 0.6cm).
Cameras verge at this point whenα = 84.2894o. Middle-left: Error at X=12.5, Z=125 when cameras are verging at
this point with changing baseline.αl = 180 − tan−1[ Z

b−X ], αr = tan−1[ Z
X ], σd = 14.8µ, f = 0.6cm, b ∈ [30, 100].

Middle-right: Prediction Error for the point X=12.5cm and Z=125cm. Left camera is centered at X=25cm, Z=0cm.
The predicted view is at X=baseline, Z=0cm. All cameras verge at the point X=12.5 Z=125cm.σd = 14.8µ, f =
0.6cm. Right: Prediction error along the line X=12.5cm as a function of Z.α = 84.289o, b = 25, σd = 14.8µ, f =
0.6cm, Z ∈ [60, 200]. Cameras verge at Z=125. Each point in the synthetic plot represents 1000 trials.

According to Cramer-Rao if our estimator is unbiased the
above expression gives the lower bound on the Z-variance.
Throughout this section we are going to vary the ground
truth depth, the vergence angles, and the baseline. For
the non-varying parameters each time we assume values
equal to the calibration parameters of our set-up. The fo-
cal length is 6 mm and consequently the pixel size is 15µm.
The average depth point for a typical scene is Z=125cm.
We consider only the cases where the cameras are verging
symmetrically(αr = α, αl = 180o − α). All angles are
shown in degrees.

We compute(∂Z
∂d )2 and plot the algebraically predicted

relative depth errorσ2
Z/Z2 which we call the theoretical

error. To verify our formulae we also run a synthetic exper-
iment 1000 times adding Gaussian noiseN (0, σd) and tak-
ing the ensemble average for the relative error for the same
depth pointE[‖∆Z‖2]/Z2 which we call synthetic error.

In the first experiment we study the error in reconstruct-
ing a fixed world point when the fixation point of the cam-
eras changes. This means we ask the question, given a per-
son fixed at a position, should the cameras verge in front or
behind the person. Regarding correspondence we know that
the cameras should fixate on the person so that the dispar-
ity range is limited. However, regarding the triangulation
step we observe both theoretically and synthetically that the
error in depth is maximized when the cameras verge to the
point of interest (Figure 3-left). Basu [22] showed that we
could obtain the opposite effect if the resolution were not
constant over the image but foveating.

In the second experiment, we keep the cameras fixating
at the same point but increase the base-line. As intuitively
expected (Fig. 3-middle-left), the relative depth error at the
fixated point decreases with increasing baseline.

In the third experiment, we assume that the stereo set-
up is fixed and we just let the considered point in the scene

move along the symmetry axisX = b
2 . As expected (Fig. 3-

middle-right) the relative depth error increases as we move
away from the cameras.

For the algebraic prediction of the second error metric,
we assume that the novel view is in the planeXZ with
center at the point(X = bv, Z = cv) and vergence an-
gle αv. We compute the projectionxv of the ground-truth
point (X, Z) on the new image plane and the projectionx̂v

of the reconstructed point(X̂, Ẑ). We then take the deriva-
tive of the differencexv − x̂v with respect to the disparity.
The variance of this error metric is then

E[|xv − x̂v|2] = (
∂(xv − x̂v)

∂d
σd)2

To study the discrepancy in the novel view at a point on
the symmetry axis (Fig. 3-right), we let the virtual camera
move along the baseline and we observe that the minimum
of the error metric for the novel views occurs when the vir-
tual camera lies in the middle of the baseline.

5 Experimental Setup

It is difficult to make any metric statement about the
quality of a stereo reconstruction, or the camera con-
figuration from which it was generated without ground
truth data to use for comparison. True ground truth
is almost impossible to acquire, but we have devised a
method to acquire registered dense depth data of the same
scenes we reconstruct by using a CyberWare Laser Scanner
(http://cyberware.com/). The experimental setup is pictured
in Figure 4. We chose to use a mannequin as the subject of
all of our dataset images, in part because we are particularly
interested in reconstructing humans for communication in
the context of tele-immersion. Since the capture process re-
quires a completely static scene through one or two image
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Figure 4. Experimental Setup. a) mannequin, scanner
head and camera cluster. b) 3D target for coordinate
frame registration.

grab cycles and a laser scan (about 1 minute) no live subject
was suitable. We have also removed the mannequin’s wig,
because neither the laser nor the stereo setup can extract re-
liable depth from hair. Unfortunately, although meeting the
above conditions, the mannequin’s face turned out to have
non-negligible highlights which affect the matching quality.

The Cyberware Head and Face 3D Color Scanner
(Model 3030) has a motorized scanner head which trav-
els around the subject to be scanned in a360◦ circle. It
captures a cylinder of range values about 30 cm in height
and 40-50 cm in diameter (sampling pitchθ ∼ 1 mm, y∼
700 um, z∼ 100 um). We have therefore been limited to
ground truth for the head of the mannequin only, although
our camera images have a much larger field of view.

Our stereo rig is a heavy duty tripod with a 36×4 in alu-
minum base plate mounted on it. Images were captured us-
ing Sony DFW-V500 Firewire cameras connected to a Ma-
trox Meteor II/1394 capture card. The limited size of the
camera platform allowed 5 camera clusters for the5◦ and
10◦ camera separations, but only 3 cameras for15◦ and20◦

configurations. The Meteor has 3 firewire ports and thus
only 3 images could be captured at a time, requiring a ca-
bling switch for 5 camera configurations.

Typically our tele-cubicle camera configurations “sur-
round” the user on the arc of a circle about 1.3 metres in
diameter. We use a trinocular stereo method to reduce am-
biguities in hypothesized matches, and therefore outliers,
with the trinocular epipolar constraint. Due to the surround
configuration the camera triples are non-parallel and require
some extra effort to calculate depth maps [16]: We treat the
cameras as 2 independent pairs, left and centre, and centre
and right. Correlation values from the two pairs are com-
bined by precomputing correlation images for ranges of dis-
parity in the left camera pair, then the computed correlation
for each tested[uR, vR, dR] is added to that precomputed
for the corresponding[uL, vL, dL]. This results in large cor-
relation lookup tables for the left image pair.

The second algorithm we use for comparison is Roy and
Cox’s [21]. Their publicly available implementation sup-

ports only binocular stereo. This algorithm transforms the
correspondence problem into a maximum flow graph prob-
lem. The nodes of the graph are all possible (x,y,disparity)
triples thus requiring full inter- and intra-scanline optimiza-
tion. The algorithm uses a local coherence constraint.

We have run both algorithms on the same original res-
olution 640x480, however Roy and Cox’s algorithm ran
only on the portion including mannequin data which was
180x180. The trinocular algorithm ran with a disparity
range of 64 pixels and Roy and Cox’s with a disparity range
of 120. The discrete subpixel disparity step for Roy and
Cox’s algorithm is 0.25 pixels. In our trinocular algorithm
we vary the thresholds on correlation score and image gra-
dient to select ‘good’ matches. There was no correspond-
ing threshold in Roy and Cox’s algorithm. The disparity
smoothness parameter in Roy and Cox’s algorithm was set
to 2 (it was the only value from a range from 1-10 giving at
least visually appealing results).

We measured the exact runtime for matching after recti-
fication and before triangulation for both algorithms on one
of the ES67 Alpha processors of an ES40 Alpha node of
the TSC-1 at PSC. We normalized the measured time of the
trinocular algorithm to the dimensions and disparity range
of the settings we ran Roy and Cox’s algorithm. Our algo-
rithm took on the average 0.490 seconds versus 308 seconds
of Roy and Cox’s algorithm. Our algorithm is 600 times
faster but it does not perform any global optimization.

Data was collected for a number of conditions of interest
in telepresence configuration design. We varied the base-
line of the stereo rig by changing the angular separation of
the cameras on our nominal 1.3 m circle from5◦ to 10◦,
15◦, and20◦ (baseline approximately 11, 23, 34 and 45 cm
respectively). We had no precise way to set the vergence
points. We attempted to centre a calibration object in each
image, and align the object in various views 3 at a time,
by superimposing their luminance images as a single colour
display. We positioned the calibration object at approxi-
mately 75 cm, 100 cm, 125 cm and 150 cm distance in front
of the centre camera. Finally for each angular separation
and vergence we positioned our mannequin at 5 rotations
(−45◦, −15◦, 0◦, 15◦, and45◦) with the 0◦ position di-
rectly face on to the centre camera.

To achieve registration of the laser and stereo coordinate
frames we developed a 3D target with 3 planar surfaces (il-
lustrated in Figure 4b). Calibration patterns with distinct
coded targets are attached to each plane. The planes are
not orthogonal because our calibration algorithm cannot ex-
tract the visible targets if they are too distorted. For each
vergence and separation the 3D target was placed in the
workspace and a laser scan performed. Without moving the
target, a set of images was captured. A separate calibra-
tion process was performed for the intrinsics and extrinsics
of the cameras only. To register the 3D frames the visi-



ble targets were extracted for all camera views. The cor-
responding target points were reconstructed in the stereo
frame from all pairs of cameras. The target points asso-
ciated with each 3D target plane were used to estimate the
equation of the plane in camera spacenCi~x − dCi = 0.
Similarly a subset of points belonging to each plane was
extracted (by hand) from the scanner data, and the plane
equations estimated (nSi~x − dSi = 0). We compose the
matricesNC = (nC1nC2nC3) andNS = [nS1nS2nS3).
We can then calculate the laser to camera transformation
TSC = [RSC tSC ] by estimating the closest rotation ma-
trix RSC satisfyingNC = RSCNS . This is given byUV T

whereU, V are the left and right singular vector matrices
of NCN−1

S . The translation can then be computedtSC =
(nC1nC2nC3)−1(dC1 − dS1, dC2 − dS2, dC3 − dS3)T .

The data set acquisition proceeded as follows:

• the camera rig was configured for a particular angular
separation and vergence.

• a sequence of camera calibration images was captured

• the 3D calibration images and laser scan were captured

• for each of 5 rotations:

– the mannequin was positioned in the workspace

– the images were captured

– the laser scan was captured.

5.1 Comparisons with Ground Truth

To illustrate the effects of various paramaters and thresh-
olds on the performance of algorithms with respect to
ground truth error, we evaluate error at various levels of out-
put density as proposed by Barron and Beauchemin [1]. By
n% disparity density we denote the highest n% of image
points sorted according to a figure of merit. Such a figure
of merit can be the goodness of matching or the uncertainty
in matching. Goodness of matching is given by the value
of the normalized cross-correlation. Matching uncertainty
is given by the the image gradient. The image gradient is
proportional to the curvature of the local correlation profile
except for positions of intensity maxima.

Throughout this section we will be showing histograms
of errors instead of RMS or median of the error distribution.
In the first group of plots we include only areas of the man-
nequin’s face which are visible in all images. We study three
error metrics as explained in the introduction and two se-
lection criteria (correlation and image gradient) which give
the output disparity density. The three error metrics are:
1. The 3D-discrepancy DIFF3D between reconstructed and
closest ground-truth points; 2. The pixel discrepancy DIFF-
PIXNOV between reconstructed and ground-truth data pro-
jected on novel views; 3. The 3D discrepancy DIFF3DNOV

between the reconstructed and the ground truth surface
along rays in novel views.

We start with a comparison of 3D-discrepancies between
our trinocular and Roy and Cox’s algorithm in Fig. 5. We
observe that the trinocular algorithm produces a higher
number of outliers. However, the contribution of low er-
ror levels to the distribution is much higher in the trinocular
algorithm which except the outliers resembles an one-sided
gaussian with small standard deviation.
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Figure 5. Histograms of the 3D-discrepancy for the
trinocular algorithm (top) and Roy and Cox’s algo-
rithm (bottom).

We continue with a figure showing how the trinocular
algorithm performs in areas we know from the ground-truth
that they are occluded in one of the images and visible in the
other. In Fig. 6 (left) we see that for densities up to 90% at
least 80% of the occluded points are detected as occluded.
However, we see a negative jump when we do not apply
any thresholding where we expect that all points filling the
occlusion area have wrong depth values. The same is true
for Cox and Roy’s algorithm for which we just present the
histogram of 3D-discrepancies and see how erroneous they
are.

We next show histograms of the first error metric (3D-
discrepancy) produced for output densities from 50% to
100% - meaning that 50% (100% respectively) are left af-
ter thresholding with a correlation threshold (Fig. 6-middle)
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Figure 6. Left: Number of detected occlusion points inside the veridical occlusion area as a function of the output
density deduced from a correlation threshold. Histograms of 3D-discrepancy (DIFF3D-metric) for several output
densities (see legend) deduced from a correlation threshold (middle) and image gradient threshold (right).

and image gradient (Fig. 6-right). We consistently see that
the higher is the output density the higher are contributions
in the significant error levels. Throughout all comparisons
we apply an image gradient threshold of 0.5 when we run
over correlation thresholds and a threshold of 1.0 on the cor-
relation (max=2.0) when we run over image gradient thresh-
olds.

Last, we study the performance of the trinocular algo-
rithm in novel views (Fig. 7). The three figure columns
correspond to viewpoints at 100, 200, and 300mm, respec-
tively. In all three columns we observe a shift of the concen-
tration to the higher error levels. This shift is most promi-
nent for the pixel discrepancy (first row) than for the 3D-
discrepancies along rays (second row). There is not signifi-
cant difference between correlation and gradient dependent
densities, so due to space limitations we omit the histograms
with the gradient dependent densities.

6 Conclusion

We have contributed to the evaluation of stereo algo-
rithms by

• building a unique experimental set-up with fully regis-
tered ground-truth laser data and image data,

• defining three quality metrics relevant to tele-presence,

• and showing experimentally and in comparison with
another algorithm the performance of our trinocular al-
gorithm with respect to several output disparity densi-
ties.

We plan an extensive psychophysical study how humans
perceive distortions in depth using stereoscopic projection.
As opposed to simpler psychology experiments we can pro-
vide controllable real dynamic data. We hope that such a

study will result to metrics that reflect tele-presence per-
formance and help in designing stereo algorithms for such
tasks.
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Figure 7. First row: Histograms of the pixel discrepancy (DIFFPIXNOV-metric) in three novel views for several out-
put densities (see legend) deduced from a correlation threshold. Second row: Histograms of the pixel discrepancy
(DIFF3DNOV-metric) three novel views for several output densities (see legend) deduced from a correlation threshold.
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