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Abstract—Catadioptric sensors refer to the combination of lens-based devices
and reflective surfaces. These systems are useful because they may have a field
of view which is greater than hemispherical, providing the ability to simultaneously
view in any direction. Configurations which have a unique effective viewpoint are
of primary interest, among these is the case where the reflective surface is a
parabolic mirror and the camera is such that it induces an orthographic projection
and which we call paracatadiotpric. We present an algorithm for the calibration of
such a device using only the images of lines in space. In fact, we show that we
may obtain all of the intrinsic parameters from the images of only three lines and
that this is possible without any metric information. We propose a closed-form
solution for focal length, image center, and aspect ratio for skewless cameras and
a polynomial root solution in the presence of skew. We also give a method for
determining the orientation of a plane containing two sets of parallel lines from one
uncalibrated view. Such an orientation recovery enables a rectification which is
impossible to achieve in the case of a single uncalibrated view taken by a
conventional camera. We study the performance of the algorithm in simulated set-
ups and compare results on real images with an approach based on the image of
the mirror's bounding circle.

Index Terms—Omnidirectional vision, panoramic vision, catadioptric camera,
vanishing points, calibration.
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1 INTRODUCTION

A catadioptric instrument is an optical system combining reflective
(catoptric) and refractive (dioptric) elements [1]. Catadioptric
combinations have been extensively used in telescopes in order
to focus light from the stars onto the eye of the observer. Recently,
they have been introduced in robotics and computer vision to
enable omnidirectional sensing.

We classify the catadioptric systems in two groups, central and
noncentral, based on the uniqueness of an effective viewpoint. The
focal properties of mirrors with a conic profile were discovered by
Diocles [2]. Nayar [3], Baker and Nayar [4] gave the first formal
treatment of catadioptric systems with a single viewpoint in the
context of computer vision and their geometry has been also
studied in [5], [6], [7]. Uniqueness of an effective viewpoint is
desirable because it allows the mapping of any part of the scene to
a perspective plane exactly as if it were taken with a perspective
camera whose focus is the effective viewpoint. In this sense, a
central catadioptric system has the same effect as a camera rotating
about its focus. Furthermore, easily modified multiple view
algorithms can be applied for reconstruction [8], [9]. Central
catadioptric systems are extensively used now for visualization
[10], [11] and navigation [12], [13], [14]. Pyramidal multifaceted
mirrors mounted above clusters of cameras can simultaneously
achieve high-resolution and one effective viewpoint [15]. For a
broad coverage of central, as well as, noncentral omnidirectional
sensors the reader is referred to an extensive review by Yagi [16] as
well as to the proceedings of the Workshop for Omnidirectional
vision [17] and to the collection in [18].
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This paper deals with central catadioptric sensors of paraboloid
reflective and orthographic refractive components. We call these
sensors, paracatadioptric. Our contribution is an algorithm for
calibrating a paracatadioptric camera using a single view of three
lines. By calibration, we mean the estimation of the mirror center,
the combined focal length of the lens and the mirror, and the
aspect ratio and skew of the CCD-chip. No metric assumptions are
made about the scene or the construction and the image of the
mirror. Aspect ratio, effective focal length, and mirror center can be
found in closed form from the images of N > 3 lines in space if the
camera skew is zero. In the presence of skew, the solutions for
aspect ratio and skew are polynomial roots. After solving for them,
focal length and mirror center can be found in closed form. We
remark that perspective cameras can not be calibrated from a
single frame without metric information.

Knowledge of the calibration parameters enables the mapping
from pixels to rays through the unique effective viewpoint. This
mapping can be used for unwarping a portion of the original
image or for any stereo or motion algorithm.

We further show that by adding affine information—two sets of
parallel lines—we can estimate the attitude of the plane spanned
by the directions of the two parallel lines. This is also possible in
calibrated perspective cameras, however, our solution provides a
geometric illustration of the line at infinity and the vanishing
points in paracatadioptric projection. Knowledge of the attitude of
a plane enables the rectification of the plane from one view with
only affine information.

Without knowledge of the projective properties of parabolic
projection, one might consider two possible calibration algorithms.
The most obvious would be to fit a circle to the image of the
boundary of the mirror [19], [20]. Typically, these devices are
designed so that the mirror’s boundary is a circle visible within the
image. Then, assuming that the mirror is constructed properly and
that the field of view is known, it is a simple matter of calculating
the focal length, for then the center of the circle is the mirror center.
This approach has some shortcomings: it assumes the mirror
boundary accurately encodes the intrinsics and that the field of
view is known or previously calibrated, and it requires the
visibility of the mirror boundary. However, it is advantageous in
that it can be easily automated and does not require the use of line
images which our algorithm does. We compare this possible
algorithm with the one proposed in this article.

The outline of the paper is as follows: We describe the geometric
properties of paracatadioptric cameras in Section 2. In Section 3, we
describe the algorithms for calibration and rectification, and in
Section 4 we present results in real images as well as in simulations.

2 PROJECTIVE PROPERTIES

In this section, we develop projective and invariant properties which
we will later find useful in developing our calibration algorithm.

We assume that we have a mirror in the shape of a paraboloid
with focal length f; (cm) whose axis of symmetry is parallel to the
direction of an orthographic imaging device with scale s (pixels/cm)
and aspect ratio of one. If f = sf;, then, centimeters cancel and we
have a measurement of combined focal length in pixels. For
calibration, it is not necessary to estimate either s or fy and, in fact,
it is impossible to determine one without knowledge of the other,
even with metric information in the scene. Thus, we only estimate f.
Since an orthographic projection is used, the distance from the
paraboloid to the image plane and any translation perpendicular to
the plane is irrelevant (the latter only inducing a translation in the
image plane). We assume without loss of generality that the image
plane is the plane of the directrix of the paraboloid. Recall that the
directrix defines the plane: a point on the paraboloid is equidistant
to the plane of the directrix and the paraboloid’s focus.
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Fig. 1. A cross-section of the paraboloid. The parabolic projection of a point P in
space is obtained by orthographically projecting to the directrix the intersection of
F P with the parabola.

directrix

Definition 1. The parabolic projection P’ of a point P is the orthographic
projection of the intersection Q' of the ray F' P with the paraboloid to the
plane of the directrix. Here, F is the focus of the paraboloid. (See Fig. 1.)
It can be shown, by intersecting a parameterized ray with the

implicit equation of a paraboloid, then orthographically projecting

to the image plane, that the image of a point (z,y, z) is given by

2fx
u) | 2
vl = 2y ) (1)

Vol ty 22—z

except when z =y =0 and z > 0 in which case the projection is
undefined. When measured from a CCD chip, the point may be

transformed by
()=6 2)(0) ¢ ®

It will be our aim to find & = (§l..,§,,)T (mirror center), f, a = o?
(aspect ratio), and 3 (skew).

In the following proposition, we determine the images of lines
and their invariants. That images of lines are circles is mentioned

by Nene and Nayar [21].

Proposition 1. A line in space is mapped to an arc of a circle, unless it
intersects the optical axis, in which case it is mapped to a line; such a
projection is called a line image. When the image is a part of a circle,
the circle’s radius r and the distance d from its center to the mirror
center satisfy

412 =1 — & (3)

Proof. The implicit equation of a parabola with focal length f is

1
@(x2+y2)*f=2- (4)

Let Pbe the plane containing the focus F'and the line in space.
The orthographic projection of the intersection of the plane and
the parabola contains the image of the line. Assume that the
plane has a normal equal to 7 = (n,,n,,n.), where ||n|| = 1.

If n, = 0, then the plane contains the optical axis and is also
perpendicular to the image plane, thus the image of this line is a
line in the image plane through (0,0) and (n,,n,). In this case,
(3) is not satisfied because r and d are undefined.

If, however, n. # 0, then the plane has the implicit equation

n,x +nyy +n.z =0,

since F' is the origin. Solving for z and substituting (4) we find
that the orthographically projected points satisfy,

2 2
Ny + NyY + N, (z 4—;3/ - f) =0.

We multiply this equation by il, substitute n2 +n) =1 —n?,
factor and find that,

o))

which is the equation of a circle.
Now to show that the invariant equation is satisfied,

n? n
F =+ =45 +4f .
i y n? n?
Thus,

1 2 n’
2R :4f2—2—4f2n—;—4f2—g:4f2,
n? n? n?
O

We remark that condition (4) is equivalent to the condition that
a line image intersect the fronto-parallel horizon antipodally. The
fronto-parallel horizon is the projection of the plane parallel to the
image plane (plane of the directrix) and is a circle centered at the
mirror center with radius 2f.

Corollary 1. In a parabolic projection, where the mirror center is at the
origin and the focal length is f, a sphere whose equator is a line image
contains the points (0,0,—2f) and (0,0,2f).

Proof. A sphere whose equator is a line image has an implicit
equation

2 _ 2

(C.L' - 51")2 + (CU - y)2 +z
Substitute (z,y,z) = (0,0,£2f), and one obtains the invar-
iant (3) satisfied by any line image. O

We use without proof the following two facts: First, any affine
transformation (in particular, a change of aspect ratio or skew
transformation) individually transforms a family of one or more
circles to a family of ellipses with parallel axes and identical
eccentricity. Second, there is a single affine transformation, unique
up to scale, translation and rotation, which maps such a family of
ellipses to a family of circles.

3 CALIBRATION AND RECTIFICATION

In this section, we present an algorithm for full calibration of a
parabolic projection. This includes determining the mirror center
&, focal length f, aspect ratio a (the ratio of independent scales in
each axis) and skew (. We show that there are explicit formulas
for all except when skew is unknown, in which case, all but skew
and aspect ratio are explicit.

First, we recall [22], [23] a least-squares method for fitting a
circle to a set of points. We minimize the sum of squares of the
difference of square distances to the circle; we use this algebraic
distance [24] as opposed to the sum of geometric distances because
the geometric distance involves a square root which would require
nonlinear minimization and has been shown in [22] to be more
sensitive to outliers. The residual of a circle with radius r and
center c fitted to a set of points {p; = (z;,y:)};, is

n 2
xien) =Y (e=p) (c—p)— 1), (6)

i=1

We wish to find » which minimizes y so we solve

(Ox/0r)(c,ro) =0

for 7y, obtaining

2
To

1S e p)e ). )
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Then, find the minimum over c¢ by taking the partial with
respect to ¢, but after substituting r = r,

ax
& (C7 TU)

3w
(S

SHem

i,k

n

(e D)~ (e —p) (e~ pj>>

1:1

Pj)T(Pj - pz))

p.)(P; — pi)T> c+ i(pfpi +pp) Py — pi)} :
ik

Thus, the solution to (9x/dc)(cy,r9) =0 is

co = ——A_lb where b = Z pl P — pJ p;)(py — p;) and
.7,k (8)
A= Z(pk -p)p,—p)"
ik

Note that simplifying A and b yields single as opposed to triple
sums, thereby reducing computational cost. Hence, the best fitting
circle, using the metric defined in (6), has radius ry (7) (after
substituting ¢ = ¢y) and is centered at c; (8).

3.1 Calibration Algorithm
We describe in this section a complete method of calibrating a
parabolic catadioptric sensor. We show that there are explicit
formulas for calculation of the mirror center, focal length and
aspect ratio. The only assumption of the data is that the images of
at least three lines have been obtained.

Step 1. Obtain points. Start by obtaining images of points lying
on lines in space. Assume the measured points are grouped into
sets of points:

P= Y ST VAN "
= {qj = (ul 7’Uj>}7_:1 ) 1’
; i

where for each i = 1,...,n the set

™
{qj} j=1
is a collection of measured points lying on the same line image. If
aspect ratio and skew are unknown, then for all 4, m; > 5; if aspect
ratio and skew are known then for all 7, m; > 3. In all cases, n > 3.
We discuss ways to obtain these points in Section 4 and conditions
on the positions of the lines after the algorithm.

Step 2. Estimate aspect ratio and skew. There exists a single
affine transformation (unique up to rotation and scale) which
transforms a set of ellipses whose axes are parallel and aspect
ratios identical into a set of corresponding circles. To find such a
transformation we minimize the sum of residuals of circles fitted to
the ellipses over the set of possible affine transformations. In the
case where there is known to be no skew, then, we only need to
find the aspect ratio. A transformation

T(a) = (8‘ Oﬁl)

induces an aspect ratio of o?, the inverse of this transformation is
just T(a™t). The form of T'(«) is chosen so that det T'(r) = 1.

For a given aspect ratio o?, the centers and radii of the best fitting
circles may be computed using the substitution p}(a) = T(a)q;,
yielding c{(a) and r{(c). Let

VOL. 24, NO.5, MAY 2002 689

fronto-parallel
horizon

Fig. 2. Intersection of three spheres constructed from line images yields a point on
the mirror’s axis a distance 2f above the image plane.

ZXCo

which is the sum of residuals over all circles as a function of the
aspect ratio, and find o such that x(cy) is minimum over all o. We
find x(«) by substituting r{(«), then c)(a),

), ro(a)),

n

m m 2
X(@) =35y (Z (2¢(0) — pi(0) ~ pi(@) (pi(o) ~ pi(a ))

i=1 " =1 \k=1
1
= JA(P) + B(P) + C(P)a*

after a lengthy derivation, where A(-), B(-), and C(-) are scalar
functions of the sets of points P (which can be explicitly obtained).
The equation (9xda)(ap) = 0 is linear in «!/® and, thus, ay can be
found such that x(ap) is a minimum. Then, the aspect ratio is
a=ajd.

If the skew is unknown then we may use

0=y L]

Unfortunately the resulting x(«, §) and its partial derivatives yield
high degree polynomials, but, nevertheless, can be minimized
using gradient descent.

Once o (and possibly ;) has been found, apply the
transformation T(cy) (or T(cw, 3)) to the measured points, i.e.,

p3 = (uJ,v]) = T(Oé[))(UJ ,vj)

Step 3 Fit circles to points. Using the algorithm described at the
beginning of this section, compute the best fitting circles to each set
{pz} of image points. Let ¢; and r;, respectively, be the center and
radius of the ith circle.

Step 4. Find mirror center and focal length. Let £ be the mirror
center and fbe the focal length. We know that asphere constructed at
eachline image contains the point (&;,§,, 2 f ) soif weintersect three
such spheres, we obtain this point. For this reason, it is necessary to
have atleast three line images, see Fig. 2. We wish then to intersect all
of these spheres constructed from line images. However, in the
presence of noise the intersections of more than three of these spheres
in space will almost certainly be empty. Hence, instead of finding the
intersection, we find a point in space which minimizes the distance to
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all of the spheres. We will actually minimize the sum of the squares of
the difference of squared distances from the centers because this is
more convenient for the same reasons we do so when fitting a circle to
a set of points. It is easily verified that the sum of these squared
distances is,

n

2
XD =Y (€= € —c)+af =)
=1
This formula is suspiciously similar to our x in (6). Using
almost exactly the same analysis, we find that

n

R (- - E-c)

and

1 a4 . .
& = —§A’1b with b = z<cf c; — 7"12 - cjl. cj+ 73) (ck — ¢;) and

A= (cr—c)(e;—c),

minimizes x(&, f).

We have thus estimated the mirror center, the focal length,
aspect ratio, and optionally skew. With the exception of the
estimation of skew, this algorithm can be implemented using
explicit formulas, no iterative minimization methods are required.

Before continuing, we examine the conditions under which we
can calibrate from three lines (in the noiseless setting). To estimate
the intrinsics, the intersection of three spheres constructed from
line images must be two points. This does not hold when the
circles’ centers lie on a line and intersect in two points in the plane,
i.e., they are coaxal. The two points of intersection in the plane,
rotated in space about the line through the centers, is a circle equal
to the intersection of all three spheres, not the desired two points.
However, if the circles are not coaxal then the constructed spheres
intersect in two points. That the line images are not coaxal is
equivalent to the condition that the equivalent perspective line
images do not all intersect in a single point.

3.2 Rectification

In this section, it is supposed that we have taken an image of a
planar surface and we wish to reproject to an image plane parallel
to this surface, i.e., perform a rectification. In order to do so, we
must have calibrated the device and we must determine the
orientation of this plane. We assume that on the planar surface are
sets of parallel lines. Each set must contain at least two lines. There
must be at least two sets in which the lines of one set are not
parallel to the lines of the other set. The following algorithm
describes a method of estimating the orientation of the plane from
the horizon of the plane. The horizon is found from the vanishing
points of the parallel lines.

This algorithm is applied in Section 4 and throughout the
explanation of the algorithm we reference Fig. 5 to illustrate the
steps of the algorithm.

Step 1. Obtain points and calibrate. At least two such sets must
be obtained and each set must contain at least two line images.
Assume at least three image points are measured from each line
(five when either aspect ratio or skew are unknown). We group the

points as in:
oY MG T N
Pom =g
{ N Prfia J=1) =1
where P; is a set of line images all of which are images of lines
which are parallel to each other, and 1;; is a set of points of some
line image. Calibrate using the union of all the sets P; of line
images. Let £ and f be the mirror center and focal length

respectively. We assume from now on that all image points have
been translated so that the mirror center is the origin.

See Fig. 5b. We show an example of an image in which pixels
have been chosen lying on two sets of lines which are images of
two sets of parallel lines in space. Circles are fitted to the pixels
lying on the same line and calibration is performed using these
circles.

Step 2. Fit line images to the point sets. The circles fitted to the
points on the same line images before calibration are not
necessarily line images satisfying the invariant (3). Find the best
fitting line image to the set of points. We substitute r2 = cc” + 4 f2
into x from (6), for general points {p;}\_,,

@)=Y (e-p) e -p)—ele-af). ()

i=1

The solution, again from a similar analysis, is

1
Cy =

n n
= §A’1b where b = Z(PTPL — 4f2)p,‘, and A = ;p,p?

i=1 =

Fit a line image to each set of points {p;’},"]. Let c;; be the

center of the jth circle from the ith set.

See Fig. 5c. Line images are fitted to the points using the
intrinsics calculated from calibration. Notice that their centers lie
on two lines and that each set intersects in two points; they are
therefore coaxal.

Step 3. Find the vanishing points. In order to estimate the
horizon of the plane, which will give us its orientation, we need to
find vanishing points on the horizon. In a parabolic projection, a set
of parallel lines is projected to a system of coaxal circles (their centers
lie on a line) which have two intersection points that are the pair of
vanishing points. In a calibrated system, the axis of the coaxal
system uniquely determines these two points; the intersection of any
two line images whose centers lie on this line yields the vanishing
points. The first step then is to determine this axis, we accomplish
this by fitting a line to the centers of the line images in a parallel set.
The mean of the centers lies on this line and the eigenvectors of the
covariance matrix determine the direction. So, if

n; n;

1
éi = — E Ci.j and Cz = E (ci.j — éi)(ci.j — éi)T,
v =1 j=1

and we let d; be the normalized eigenvector corresponding to the
minimum eigenvalue of C;, then the implicit equation of the line is

We choose the line image whose center is closest to the mirror
center, the vanishing points are at the intersection of this line
image and the perpendicular through its center, hence

vi = (ae s afer +ar)a,

are the vanishing points (d/¢; is the distance of the circle to the
mirror center and the square root is the radius of the circle using the
invariant (3)).

See Fig. 5d. The vanishing points are the intersection of the
circles. Estimate the vanishing points by finding the line image
whose center is on the line through the centers and closest to the
image center. The vanishing points then lie on the intersection of
this circle with the line perpendicular to the line through the
centers and through the image center.

Step 4. Estimating the horizon. To find the horizon, which will
give us the orientation of the plane parallel to all of the lines, we fit
a line image (a circle satisfying the invariant equation) to the set of
vanishing points. Use the same procedure described in Step 2 of
this algorithm for fitting a line image to a set of points in a
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calibrated system. Let h be the center of the line image which is the
horizon, and let r be its radius, then from the coefficients in (5), the
orientation of the plane is

. ( he — hy 2f>
n=|-—,——,—|.
r roor

This plane is parallel to all of the lines.

See Fig. 5e. A line image is fitted to the vanishing points; this
circle is the horizon of the plane of the ceiling. The figure shows
how one can estimate the azimuth and altitude of the plane from
the center of the circle.

Again, this algorithm can be implemented without the use of
iterative minimization methods and has completely explicit
formulas. In particular, the eigenvectors of a 2 x 2 matrix are
easily obtained, all other computations involve addition or
inversion of a 2 x 2 matrix.

4 EXPERIMENTS

We have performed a number of experiments to study the
robustness of the calibration algorithms developed in this paper.
In the first experiment, we have run simulations to see what effect
noise, field of view, and number of lines have on the accuracy of
the calibration algorithm. Second, we compare our algorithm with
a mirror-boundary calibration algorithm. Lastly, we demonstrate
rectification of a scene with natural lines.

4.1 Simulations

In the following experiments, we generate a random scene
consisting of measurements from artificially generated lines and
artificially generated intrinsic parameters. We generate the point
measurements in the following manner.

First, in a single run in an experiment, the image center is
uniformly chosen from the square [—240, 240] x [—240,240] and the
focal length is constant at 120 pixels having by default an 180°
field-of-view; this it to model a typical system which uses a CCD
chip which has a dimension of 640 x 480 pixels, within which we
can fit an 180° field-of-view mirror with an 120 pixel focal length.

Second, we generate a fixed number (20 by default) of line
samples (not pixels yet): A plane is chosen with unit normal
randomly and uniformly distributed on the sphere. This plane
represents the projection of the line in space. If the projection of this
line is within the selected field of view of the sensor, then, the line is
accepted, otherwise it is rejected and another line sample is chosen
until it is within the field of view. Next, an angle is randomly chosen
to be the maximum angle subtended by any two rays sampled from
the line. The angle is chosen from a distribution similar to a
histogram of the maximum subtended angle of a pair of rays
(calibrated image points) from the ceiling image (Fig. 5a) and from
the calibration target images (Fig. 4). It is a normal distribution
centered at 90° with standard deviation of 28° and truncated at 45°
(an angle below which line images have too short of an arclength
and which is less than those found in the real images) and 180° (the
maximum possible angle subtended by two points on a line).

Third, from every line sample we choose a fixed number (20 by
default) of point samples: A ray lying in the plane of the line is
picked randomly and uniformly from within the field of view. This
is the central ray about which points will be sampled on the line
image. Rays are picked to have a uniform distribution of angle
with the central ray up to half the maximum subtending angle
chosen above; if a sampled ray does not lie within the field of view
it is rejected and another is chosen. The rays are then projected to
image coordinates using formula (1) and transformed using (2)
with the chosen intrinsic parameters. Gaussian noise is added to
pixel measurements; though this is not necessarily the best noise
model, we are not at the moment aware of a more appropriate one.

Fig. 3e shows an example of a simulated scene with lines; in this
case ten lines each with twenty points are randomly generated and
perturbed with Gaussian noise having standard deviation of one.

Experiment 1. We wish in this experiment to determine the
effect that pixel noise has on calibration. We create artificial image
points as described above where the aspect ratio is 1, skew is 0 and
both are assumed to be known. An independent, zero-mean, zero-
correlated, two-dimensional, normal distribution of variable
standard deviation is added to each pixel measurement. Then,
we apply the calibration algorithm, using the assumed unit aspect
ratio and skew (thus, without estimating aspect ratio or skew), to
the simulated scene. The known parameters are compared with the
parameters determined using the algorithm; an RMS error is
computed over multiple runs of the experiment.

Fig. 3a and 3b shows the results of this experiment for a varying
number of lines. Each curve shows the RMS error in the calibration
results over 1,000 experiments as a function of noise; the number
labeling each curve indicates how many lines were used to
perform the calibration. We vary the standard deviation of the
Gaussian noise in increments of 1/2 pixel starting at 1/2 pixel.

As we would expect, a greater amount of noise decreases the
accuracy of the measurements. The question then is, by increasing
the number of lines used to calibrate, can we increase the accuracy?
For it may be easier to increase the number of lines used than to
decrease the noise in our measurements. The fact that the curves
with greater number of lines lie below those with fewer indicates
that a greater number of lines does increase accuracy. Accuracy of
focal length estimation is not increased greatly by additional lines.
The error in image center, however, is much more affected by the
number of lines. Consider that the image center is contained in a
two-dimensional disk constructed from every line image in the
image plane. It may therefore be estimated by intersecting all disks
constructed from line images, and as the number of line images
increases, the region of intersection becomes smaller, lowering the
uncertainty of the location of the image center; the sphere
intersection algorithm appears to share this property.

Experiment 2. In the final simulation, we show the effects that
the field of view has on calibration. Though field of view is not
something we may adjust once we have a sensor, it may be useful
to know how it affects the performance. Again, we create artificial
image points as described previously. We assume that the skew is
0, and thus we do not estimate it.

Fig. 3c and 3d shows the results of calibration while varying the
field of view in increments of 45° starting at 90° up to 270°. The two
curves show the RMS error in the calibration results over
1,000 experiments as a function of the field of view. The dashed
curve shows the errors when the aspect ratio is estimated prior to
image center and focal length calibration. The solid curve shows the
errors when only image center and focal length are calibrated. In the
case where the aspect ratio is estimated, points have been
transformed beforehand so that the aspect ratio is 1.1.

Interestingly, when aspect ratio is known, we see that variation
in the field of view has relatively little effect on the accuracy of
image center estimation, i.e., the image center error curves are
relatively flat. The image center can be localized from the
intersection of two line images which happen to be lines, so the
closer a line image is to a line, the better a localization we can
obtain of the image center. By decreasing the field of view, we do
not exclude these lines and, so, the image center estimation is not
affected by variation in the field of view.

However, the lines closer to the fronto-parallel horizon are
excluded with low field of view. These happen to be the lines
which localize the focal length well, for the height of the spheres
they generate determines the focal length. For this reason, as the
field of view increases, the accuracy of focal length estimates
increases.
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Fig. 3. (a) and (b) RMS errors for image center and focal length under varying noise. Different curves are for different numbers of lines. In the graph of focal length error,
the curves are too close to label; a curve lying above another has a greater number of lines. (c) and (d) RMS errors under varying field of view. Full lines are for known
aspect ratio, dashed lines unknown aspect ratio. (€) An example of a simulated scene with 10 lines, 20 points each, field of view 180°. Gaussian noise of 1 pixel standard

deviation added.

There is negligible difference in error of the estimation of focal
length between the known and unknown aspect ratio cases. This
could be because the spheres constructed using the estimated aspect
ratio will have little variation in their total diameter (giving the focal
length). However, for the image center there is much greater error
because error in calibrating the aspect ratio—which is directly
related to the the average arclength of the line images—causes
greater error in extrapolating the trajectories of the line images
beyond the support of the measurements (i.e., with greater arclength
it is easier to estimate the circle that an arc is part of), greatly

affecting the positioning of the sphere and as a consequence having
a greater effect on the estimation of the image center.

4.2 Comparison

In this section, we compare the performance of our algorithm with a
mirror boundary algorithm which comes with the software
delivered with the mirror. We will examine the figures listed in
Table 1. Six images were taken using a a folded catadioptric camera
prototype (S360m) made by RemoteReality which has a resolution of
640 x 480 and a field of view of 180°. Fig. 4 shows one of the six
images; each image is of a calibration target viewed from different
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Fig. 4. (a) One of six images taken with the S360m. (b) Virtually projected grid superimposed onto image using two calibrated parameters, our algorithm (black points)
and the mirror boundary algorithm (white points). The circles are centered at the calibrated image centers and have radius twice the calibrated focal length, colors

correspond as above.

orientations. In each image, the points on the grid have been
manually obtained and put into correspondence with six virtual
lattices. From the points on the lattice we can construct all possible
sets of points which lie on the same line on the grid. We do so in the
vertical, horizontal and diagonal directions for each grid. For each
image this gives us a set of points lying on the same line.

We apply the mirror boundary algorithm three times to each of
the six frames (for a total of 18 measurements). The first row of the
first column shows the averaged results of the calibration with
standard deviation; the next row shows the average error in fitting
line images (using (9) but divided by the number of points and
summed over all line images and divided by the number of line
images) to the lines on the grid. This is a measure of how well the
projection, with intrinsics found using the mirror boundary
calibration algorithm, projects lines in space to circles satisfying the
invariant (3). The third row will be explained at the end of this
section.

Then, we apply the sphere intersection algorithm (where we
assume the aspect ratio is 1 and skew is 0) but nof to the lines on
the grid. We first locate points by applying a Laplacian filter to the
image, threshold, and then group into blobs. The positions of the
blobs are then given to a random sample consensus [25] algorithm
to find circles from random samples of triples. From each image
the 20 circles with the greatest support are taken. Of these 120, (20
from the six frames), a random subset of 50 are chosen and used to
calibrate the sensor. This entire procedure is performed 50 times
and the results are shown with standard deviation in the first row
of the second column of Table 1. The second column shows the
RMS error of fitting line images to the lines of the grid which is less
than the same RMS error for the mirror boundary algorithm.

Because of lack of ground-truth and in order to enable a
comparison between the two methods we devised an additional
algorithm. This evaluation algorithm minimizes using gradient
descent the point distance between the image points and the
projection of points of a virtual grid obtained from the lattice. The
minimization is performed over the six virtual grids’ pose
orientation and the intrinsics. The intrinsics which minimize the
residual defined in this way are shown in the first row of the third
column. The second row shows the average line residual using these
intrinsics. The third row shows the average point distance over all
the points of all six grids; this is the quantity which was minimized.

This evaluation metric searches for the intrinsic and pose
parameters which project points of a virtual grid closest to image
points that are projections of the points of a real grid in space. The

intrinsics so found are not a ground truth, however what are found
are values which model the sensor with the least amount of error. It
therefore gives us intrinsic parameters against which we may
compare the intrinsic parameters obtained from both the mirror
boundary algorithm and the sphere intersection algorithm. In the
image plane, the image center calculated using sphere intersection is
closer to the one obtained by the evaluation algorithm. The difference
in focal lengths is also less for the sphere intersection algorithm.

We end with one more comparison. We take the evaluation
algorithm above and we perform the same minimization of point
distances except that we do not minimize over the intrinsics, just
over the six grids’ pose orientations. We hold the intrinsics
constant at the values obtained from the two algorithms. We
therefore have a measure of how well the two intrinsics model the
sensor. In the third row of the first column, we show the minimum
average error in modeling the sensor using the intrinsic parameters
obtained from the mirror boundary algorithm. In the third row of
the second column, we show the minimum average error in
modeling the sensor using the intrinsic parameters obtained from
the sphere intersection algorithm. The RMS of projected point error
is less using the intrinsics calculated from the intersection of
spheres than from the mirror boundary.

According to the two metrics, RMS of fitted line images and
RMS of point projection error of the virtual grid, the algorithm
introduced in this paper models this device with less error than a
mirror boundary algorithm. Also, the intrinsic parameters ob-
tained with the evaluation algorithm are closer to that obtained by
the sphere intersection algorithm.

4.3 Redctification

In this last experiment, we demonstrate rectification of a “natural”
image—not a calibration target—a picture taken of the ceiling of
our laboratory. On the ceiling of our lab is a steel structure for
holding wires, etc. which has parallel metal bars in two directions.
We wish to reproject the image onto a virtual image plane which is
parallel to the surface of the ceiling. Fig. 5a shows the original
image and Fig. 5f shows the rectified image. Figs. 5b, 5¢, 5d, and 5e
illustrate the steps of the rectification algorithm. Notice that in the
rectified image, even though we did not use the assumption that
the bars of the grid were perpendicular (which they actually are)
the lines of the grid in the reprojection are at 90° angles.
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(e) ()

Fig. 5. (a) Original image of ceiling, (b) circles fitted to seven line images and used to calibrate, (c) line images fitted to pixels and lines fit to circles’ centers, (d) vanishing
points calculated; (e) horizon determined from four vanishing points and orientation (azimuth and elevation) estimated from the position of the horizon’s center, and
(e) rectified image produced by projecting to the plane parallel to the ceiling.
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TABLE 1
Results of Applying the Different Algorithms to the Six Images
Mirror Sphere Projection
Algorithm Boundary intersection error
{averaged) (averaged) minimization
Image center (§) & std. dev. | (327.6,236.7) = 3.5 | (323.7,238.2) £ 3.0 | (317.3,238.1)
Focal length (f) =+ std. dev. 123.0 £ 2.2 115.7+£ 0.5 116.1
RMS of geometric distance _
. ) L 0.519 0.383 0.3980
of points to fitted line images
RMS of projected
) 2.791 2.200 2.193
point error

See text for details. All figures are in units of pixels.

5 CONCLUSION

In this paper, we have presented novel geometric properties of the
projection induced by an optical system consisting of a parabolic
mirror and an orthographic camera. We have shown that lines in
three-dimensional space, including those lines at infinity, project to
a particular family of circles. An invariant of this family of circles, a
quantity changed only by the focal length and the mirror center,
enables us to estimate these intrinsic parameters from a subset of
the family. We have provided a novel single algorithm which can
calibrate all of the intrinsic parameters of a parabolic projection,
including aspect ratio and skew, from at least three input lines in
general position. The algorithm requires absolutely no metric
information. In addition, we present a rectification algorithm to
estimate the unknown normal of a plane from one uncalibrated
view using only the image of the line at infinity. It is known that no
rectification of a plane is possible from one uncalibrated view
taken by a conventional camera without metric information.

We have tested each of the algorithms and in particular
compared the calibration to another algorithm based on the image
of the mirror’s boundary. We show that it yields an estimate of the
intrinsic parameters which models the true projection induced by
the sensor quantitatively better.

In our ongoing work, we study the geometric properties of all
catadioptric systems with unique viewpoints, our first results have
appeared in [7].
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