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Strictness analysis is critical to efficient implementation of languages with non-strict evaluation, mitigating

much of the performance overhead of laziness. However, reasoning about strictness at the source level can

be challenging and unintuitive. We propose a new definition of strictness that refines the traditional one

by describing variable usage more precisely. We lay type-theoretic foundations for this definition in both

call-by-name and call-by-push-value settings, drawing inspiration from the literature on type systems tracking

effects and coeffects. We prove via a logical relation that the strictness attributes computed by our type systems

accurately describe the use of variables at runtime, and we offer a strictness-annotation-preserving translation

from the call-by-name system to the call-by-push-value one. All our results are mechanized in Rocq.

1 Introduction
Non-strict evaluation offers benefits over both fully lazy and fully strict evaluation strategies by

allowing expressions to be evaluated at any point between when they are first encountered and

when their value is needed. Unlike strict strategies, whichmust evaluate expressions as soon as they

are encountered, non-strict strategies may delay evaluation arbitrarily, improving performance (e.g.,

by skipping unnecessary computation) and making it easier to work with codata like infinite lists.

Unlike lazy strategies, which must wait until an expression is used before evaluating it, non-strict

strategies may evaluate earlier to avoid creating thunks.

These benefits have led a number of languages to support non-strict evaluation, either as the

default strategy, like Haskell [25] or R [19], or optionally via special annotations, like OCaml [44].

Non-strict evaluation is also critical for the performance of streaming libraries like fs2 in Scala [69]

and code patterns like iterators in Rust [38], and it is a useful tool for automatic parallelization [7]

and for opportunistic execution in scripting languages [55].

Non-strict evaluation also comes with a number of caveats. Overly lazy strategies suffer from

drawbacks such as increased memory usage [23], unpredictable behavior [17] and space complexity

[12, 13, 26], and security vulnerabilities [78]. To circumvent these issues, compilers like GHC [24]

perform strictness analysis [58, 82], allowing them to reorder code to evaluate eagerly when they

can prove that doing so will not change observable behavior. In pure settings, this analysis enables

performance optimizations that can massively reorder evaluation, but such improvements are not

limited only to pure languages like Haskell; strictness analysis can still unlock speedups in impure

languages when the compiler is able to ensure that it will not reorder any side effects [55].

Strictness analysis, however, comes with its own set of wrinkles. Allowing the compiler to

reorder evaluation can result in unpredictable behavior, where modifying the usage of values in one

place can change the performance [57] and even correctness [32] of code elsewhere. Additionally,

the inherent imprecision of strictness analysis can result in expressions that seem as though they

should evaluate strictly but do not, requiring the programmer to tweak their code to coax the

analyzer into triggering the desired optimization [29]. Exacerbating these issues is the fact that the

analysis’ model of strictness is specialized to compilation and awkward as a reasoning tool: as we

explain in Section 2, this model is overly extensional and can misrepresent how variables are used.
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To clarify the traditional model’s murkiness regarding variable usage, we propose a new, static

notion of strictness, dubbed intensional strictness, that enables more direct reasoning about how

programs use variables; any given occurrence of a variable can be either strict, lazy, or statically

unknown. We present intensional strictness type-theoretically via a type-and-effect system [50],

taking additional inspiration from the literature on coeffects [63]. Effect and coeffect annotations

extend type systems to describe how programs interact with the world; the standard intuition is that

effects describe what a program does to the world, while coeffects describe what a program requires
from the world. The interplay between effects and coeffects is an active research area [11, 20, 53, 76],

and we adopt mechanisms from these works to characterize the way that strict usage both imposes

a demand on a program’s environment (by requiring that a value be successfully produced), and

modifies that environment (by triggering the evaluation of suspended computations).

Our new definition of strictness, while syntactic in nature like any type system, captures se-

mantic notions of strict and lazy usage that should be intuitively familiar to users of Haskell and

similar languages. Furthermore, it refines the extensional characterization of strictness offered

by conventional strictness analysis, describing variable usage more precisely and decoupling the

definition from questions of “demand” or observable behavior.

We formalize our new notion of strictness via CBN
𝛾
, a call-by-name (CBN) calculus with strictness

effects, and CBPV
𝛾
, an extension of call-by-push-value (CBPV) [45] with similar annotations.

CBPV is a convenient foundation for the study of strictness because it specifies explicitly where

computation occurs by separating computations from values and including explicit constructs that

suspend and resume execution. Furthermore, a canonical translation exists from CBN into CBPV

[48], allowing us to use CBPV
𝛾
as a tool to understand strictness in CBN languages. As we argue in

Section 5, this understanding further extends to call-by-need evaluation [42, 58, 84] as well.

Our primary motivation, throughout, is conceptual: our proposed definition is intended as

a tool for better understanding and reasoning about strictness, not yet as a basis for practical

implementation or surface-level design of non-strictly evaluated languages. All of our proofs are

mechanized in Rocq [75] and are included in the supplemental material.

Concretely, our contributions are:

● We propose a new notion of intensional strictness and argue that it refines the extensional

definition used by traditional strictness analysis (Section 2).

● We present CBN
𝛾
, a type-and-effect system for a call-by-name language that embodies this

new form of strictness (Section 3).

● We present CBPV
𝛾
, a variant of CBPV that also embodies intensional strictness. We instru-

ment a big-step operational semantics with strictness attributes and prove the soundness of

CBPV
𝛾
typing with respect to this semantics, thus providing a sound semantics for CBN

𝛾

via a translation to CBPV
𝛾
that preserves strictness annotations (Section 4). CBPV

𝛾
allows

us to factor our proofs about CBN
𝛾
through a lower-level intermediary, simplifying the

proofs themselves and potentially offering a setting for reasoning about strictness in other

languages with translations into CBPV
𝛾
.

● We prove that the strictness attributes computed by CBPV
𝛾
truly reflect strict and lazy usage:

a well-typed program can be run in an environment without a binding for any lazily-used

variable and cannot be run in an environment lacking any strictly-used variable. These

proofs show that intensional strictness, as modeled by CBN
𝛾
and CBPV

𝛾
, refines the original

extensional definition (Section 5). The proofs make use of a pair of logical relations and

involve a rather delicate treatment of variables and scoping.
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● We enrich CBPV
𝛾
and CBN

𝛾
with unused variable tracking, an extension that is surprisingly

simple in the former language and surprisingly complex in the latter. All the previously

proven theorems hold for this extension (Section 6).

Section 7 discusses related work. Section 8 concludes and outlines possible future work.

2 What is Intensional Strictness?
In this section, we offer a new, intensional definition of strictness and examine how it differs from

the extensional version used by strictness analysis. We build an intuition for how intensional

strictness works and explain why it is natural to model it type-theoretically.

We describe each syntactic occurrence of a variable as either a strict or a lazy usage of that

variable. A strict variable usage scrutinizes the value stored in that variable (e.g., it pattern matches

on a pair or applies a function), while a lazy usage does not (e.g., it places the variable into a cons

cell of a lazy list). A helpful analogy compares variables to boxes: a strict use opens the box to

observe its contents, while a lazy use passes the box along unopened.

We might try to lift this terminology to call-by-name functions—“a strict function is one that

scrutinizes its argument”—but this naïve definition is ambiguous about how the return values of

functions are used. It is unclear from this definition what the strictness of the the identity function

𝜆𝑥.𝑥 should be, for example: it does not directly scrutinize its argument, but scrutinizing the result

of a call to the identity would scrutinize the argument as well. Instead of considering functions in

isolation, we need a more precise definition that allows us to reason about the contexts in which

functions are called and the demands made on their results.

The strictness-analysis literature [58, 82] attempts to provide this precision by defining strict

functions as those that fail to evaluate whenever their arguments fail to evaluate and lazy ones as

those that (might) succeed even if their argument fails. This definition posits a hypothetical � term,

intuitively representing the result of an erroring or non-terminating computation, and says that

a function 𝑓 is strict if 𝑓 � = �; that is, a strict function preserves failure. Because it is defined in

terms of observable behavior, we refer to this notion of strictness as extensional strictness.
Strictness-analysis algorithms based on extensional strictness can mitigate much of the perfor-

mance overhead of laziness [39, 71]. Compilers perform strictness analysis in an optimization pass,

wherein they try to determine if it is safe to evaluate an expression eagerly and potentially save

space by not allocating a thunk. By “safe,” we mean that eager evaluation would not change the

observable behavior of the program, compared to evaluating that same expression lazily. This use

case shows why the strictness-analysis literature uses the definition it does: if 𝑓 � = �, then 𝑓 ’s

argument can be evaluated eagerly, since, if the argument fails to evaluate, the call will too.

As an example of how strictness analysis can improve performance, consider an implementation

of sum for lists using a tail-recursive fold in a Haskell-like language: sum lst = foldl (+) 0 lst.
A programmer familiar with tail recursion might expect this function to use constant stack space,

but, when evaluated lazily, it uses space linear in the length of the input.

foldl (+) 0 [1 .. n] − −>
foldl (+) (0 + 1) [2 .. n] − −>
foldl (+) ((0 + 1) + 2) [3 .. n] − −>
foldl (+) ((((0 + 1) + 2) + ...) + n) []

Fig. 1. Lazy evaluation of list sum using foldl

To see why, let’s step through a lazy eval-

uation of sum in Figure 1. Evaluation begins

by applying + to the accumulator and the first

element of [1 .. n], the input to the foldl.
However, rather than completing that applica-

tion and yielding an integer value as the new

accumulator, evaluation instead yields a thunk

referencing both the old accumulator and the list element, resulting in an ever-growing chain of
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−− x is strict, a is indeterminate −− z is strict −− u is lazy −− y is lazy
f1 x a = if x then a + 1 else 2 f2 z = z f3 u = loop f4 y = Just y

Fig. 2. Simple examples of variable usage

nested thunks. This chain is only forced once evaluation reaches the end of the list and the result of

the call to sum is used; in the meantime, the entire contents of the list will be materialized within it.

If we recognize that the whole contents of the list will eventually be scrutinized by the + operator,
we can instead eagerly evaluate the application to a value and maintain constant space without

changing observable behavior; if computation of any element of the list fails, we could never have

computed the list’s sum, regardless of when that computation occurred. Compilers like GHC use

strictness analysis to improve performance by exploiting this realization to reorder evaluation [28].

However, despite its usefulness to compilers, extensional strictness is otherwise unsatisfying

as a tool for human reasoning about programs. In particular, it does not directly say anything

about how values are used! A function that always fails (i.e., always returns �), for example, is

considered strict even if it never mentions its input, despite the fact that strictly evaluating a call to

such a function can in fact change program behavior. This characterization is counterintuitive; to

better understand strict and lazy usage, we would like a model of strictness that does not conflate a

function’s observable behavior with the way that it uses its argument.

To capture this additional nuance, we propose a definition of intensional strictness that directly
describes how variables are used within the bodies of functions. We assume that the results of

function calls are scrutinized; if the result of a call is used lazily, then the call will not be evaluated at

all. Intensional strictness is presented informally here in terms of functions; later we will formalize

it and generalize to open terms via the type systems in Sections 3 and 4.

Definition 2.1 (Intensional Strictness). Functions can exhibit one of three kinds of strictness:

(1) A strict function is one that, on all possible execution paths through its body, scrutinizes its

argument whenever its return value is scrutinized.

(2) A lazy function is one that does not scrutinize its argument, regardless of how its return

value is used.

(3) An indeterminate function may or may not scrutinize its argument; the argument’s usage is

either statically unknown or varies depending on which execution path is taken when the

function is called.

To get a feel for this definition, let’s consider the code snippets in Figure 2. What is the strictness

of each of the parameters of these four functions, assuming that their results are used strictly?

Scrutiny of f1’s result means we must know its value, and thus we must evaluate x to choose the
correct arm of the conditional. Hence, f1 is strict in x. Similarly, f2 is strict in z because it returns

its argument: if the result of a call to f2 is scrutinized, then its argument is too. The extensional

definition agrees with these labels: f1’s argument x can be evaluated eagerly without changing the

program’s observable behavior, since its value will always be needed by f1’s body. Similarly, the

identity function f2 is extensionally strict: given � as its argument, its result will also be �.
The definitions disagree, however, on the strictness of u in f3. The � term used by the extensional

definition represents the result of a failing or non-terminating computation, and, according to

this model, f3 always returns �, as it will never terminate. Accordingly, the extensional definition

of strictness would describe f3 as strict in its argument: if f3 u = � for all u, then f3 � = �
trivially. However, f3 does not actually mention u anywhere in its body, let alone use it strictly, so

the intensional definition would describe it as lazy, more accurately describing how the function

interacts with its argument. This difference can matter in practice: consider an application of f3
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strictness attributes 𝛼 ∶∶= S ⋃︀ L ⋃︀ ?
strictness effects 𝛾 ∶∶= ⋅ ⋃︀𝛾, 𝑥 ∶ 𝛼
types 𝜏 ∶∶= unit ⋃︀ 𝜏𝛾1

1
× 𝜏𝛾2

2
⋃︀ 𝜏𝛾1

1
+ 𝜏𝛾2

2
⋃︀ (𝑥 ∶𝛼 𝜏𝛾1)

𝛾2Ð→ 𝜏

contexts Γ ∶∶= ⋅ ⋃︀ Γ, 𝑥 ∶ 𝜏𝛾

expressions 𝑒 ∶∶= () ⋃︀ 𝑥 ⋃︀ inl 𝑒 ⋃︀ inr 𝑒 ⋃︀ (𝑒, 𝑒) ⋃︀ 𝜆𝑥.𝑒 ⋃︀ 𝑒1 𝑒2 ⋃︀ let 𝑥 = 𝑒 in 𝑒 ⋃︀ sub 𝑒

⋃︀ 𝑒 ;𝑒 ⋃︀ let (𝑥1, 𝑥2) = 𝑒 in 𝑒 ⋃︀ case 𝑒 of inl 𝑥1 → 𝑒, inr 𝑥2 → 𝑒

Fig. 3. Types and Syntax of CBN𝛾

to an argument that throws an exception. Eagerly evaluating that argument would change the

behavior of the function call, causing an error where the call would otherwise run forever. The

extensional definition does not capture this nuance, and the additional precision afforded to us in

this case by reasoning syntactically exemplifies the intensional nature of our new definition.

Our new definition of strictness also provides an opportunity to be more precise about what lazy

usage means by splitting the “lazy” label into two separate characterizations. We describe f4 as lazy
in y, since constructors in non-strictly-evaluated languages do not scrutinize their arguments, and

scrutiny of f4’s return value only requires evaluating to the top-level constructor (in Haskell and

similar languages, strict usage requires evaluation to weak head normal form [27]). The traditional

definition would also describe f4 as lazy, but laziness in the traditional sense only means that

f4’s argument might not be scrutinized and hence cannot be pre-evaluated. Definition 2.1, by

comparison, provides more clarity by telling us that f4’s argument is definitely not scrutinized,

and thus that a call to f4 will still succeed even if its argument fails to produce a value.

In f1, on the other hand, the argument a is scrutinized by +, but only in the success branch of the

conditional; in the failure branch, it is not used at all. Definition 2.1 tells us that f1 is not strict in a,
as a is not used strictly on all possible execution paths. However, f1 is not lazy in a either, since a
may be scrutinized if f1’s return value is. Traditional strictness analysis would label f1 as lazy in a,
since eagerly evaluating a might change the function’s behavior. But this is misleading; some calls

to f1 may actually scrutinize a. It is more precise to say that f1’s strictness is indeterminate with
respect to a, reflecting the fact that a may be used differently by different calls to f1. In general,

the “indeterminate” classification used by intensional strictness provides the same information as

the traditional “lazy” label, while the intensional “lazy” label provides additional precision.

These examples illustrate the ways in which intensional strictness refines the extensional defi-

nition embodied in existing strictness-analysis algorithms: it more precisely characterizes cases

that the traditional definition would label lazy, splitting the usual notion of lazy usage into “in-

determinate” use and “definitely lazy” use. Furthermore, it decouples reasoning about strictness

from orthogonal questions of extensional behavior, describing variable use intensionally and

distinguishing between the different ways that computation can fail.

Definition 2.1 is informal, however: we still need a rigorous and formal model to undergird it.

To generalize our reasoning about variables and functions to arbitrary terms and positions, the

model must be compositional and syntactic, so a type-theoretic approach is naturally suited for this

task. However, existing type systems like usage typing [22, 64, 77, 85, 86] and information-flow

typing [14, 62, 79, 88, 89] are not capable of modeling intensional strictness (for reasons detailed in

Section 7), so we will need to develop a type system of our own.

3 A Type System for Strictness

?

SL

Fig. 4. Strictness semilattice

We present a call-by-name language, CBN
𝛾
, that tracks intensional

strictness in its type system using effects. The types and syntax
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are given in Figure 3. As a visual aid, we typeset the parts of CBN
𝛾

that are specific to strictness in orange, since these are the novel

aspects of the system. Parts in black are standard. Along with the

usual type introduction and elimination forms, the language includes a sequencing operation 𝑒1; 𝑒2,

which strictly uses the unit-typed result of 𝑒1 before continuing with 𝑒2.

CBN
𝛾
assigns every variable one of three strictness attributes to track its usage, ordered according

to the semilattice depicted in Figure 4. The metavariable 𝛼 ranges over strictness attributes. The S

attribute asserts that a variable is definitely used strictly at least once on every execution path. The

L attribute asserts the opposite: that a variable is used only lazily (or not at all) on every execution

path.
1
The ? attribute asserts nothing; a variable with this annotation may be used strictly, or lazily,

or sometimes one and sometimes the other (on different execution paths), or not at all. We need

the last of these because static strictness tracking (via types or otherwise) is inherently imprecise;

in the presence of branching it is not always possible to be certain of how a variable will be used.

However, these attributes alone are not sufficient to track strictness. As McDermott and Mycroft

[53] explain, scrutinizing variables in a non-strictly evaluated language can cause other code to

be evaluated, and we must track how this evaluation uses variables as well. Accordingly, besides

the attributes that appear on CBN
𝛾
types and variables to describe their usage, types also include

attribute vectors (denoted with the metavariable 𝛾 ) that describe how all in-scope variables are used

by the suspended computations that inhabit a given type. These vectors 𝛾 are effects modeling

the additional evaluation triggered by variable scrutiny; the type system tracks these effects

by associating types and variables with 𝛾s describing what will happen when their values are

scrutinized. (Further discussion of this terminology can be found in Section 4.6.) We write the

vector that maps all in-scope variables to L as L, and, to reduce clutter, omit 𝛾s in examples when

they are L. Additionally, we freely omit any variables with L attributes from 𝛾s. That is, 𝑥 ∶ S,𝑦 ∶ L
and 𝑥 ∶ S denote the same vector.

3.1 A Few Examples
Before exploring the typing rules of CBN

𝛾
in detail, let’s look at a few examples to build intuition.

For each example term 𝑒 , we’ll describe how CBN
𝛾
types the term using a judgment of the form

Γ ⊢CBN 𝑒 ∶𝛾 𝜏 . The Γ in this judgment is a typing context, 𝜏 is the type of the term, and 𝛾 maps each

free variable in 𝑒 to a strictness attribute describing how it is used.

Addition. As an introductory example, consider the term 𝑥 + 1. This term uses 𝑥 strictly, as addition

requires the value of 𝑥 to be known in order to add to it. CBN
𝛾
checks this term using the judgment

𝑥 ∶ Int ⊢CBN 𝑥 + 1 ∶𝑥 ∶S Int.

The orange 𝑥 ∶ S that appears on the ∶ is where we find the strictness information for the term being

checked; 𝑥 is assigned an S attribute, reflecting its strict usage.

Pairs and 𝜂-Laws. Next, we consider more complex data such as pairs. Because constructors in

CBN
𝛾
do not require their arguments to be values, the types for such data must contain information

about how their components use their free variables. Thus, CBN
𝛾
’s types store separate 𝛾s for each

of their components describing how they would use any in-scope variables if evaluated.

Consider a pair (𝑧, true) in a context where 𝑧 has the type Bool. This term itself uses 𝑧 lazily

(i.e., with effect 𝑧 ∶ L), but we also need to know how the components of this term would use 𝑧, were

we to scrutinize them. CBN
𝛾
assigns this term the type Bool𝑧∶S × Bool𝑧∶L—let’s call it 𝑃 for short.

1
As we explain in Section 6, it is possible to more precise here at the cost of some additional complexity.
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𝑃 describes pairs where each side contains a thunk that, when evaluated, will produce a boolean.

The orange vectors in 𝑃 tell us that the two sides of the product use the in-scope variable 𝑧 differently.

If 𝑃 ’s first element is used strictly, 𝑧 will be used strictly, but if its second element is used strictly, 𝑧

will be used only lazily. CBN
𝛾
types this term with the judgment

𝑧 ∶ Bool ⊢CBN (𝑧, true) ∶𝑧∶L Bool𝑧∶S × Bool𝑧∶L.

In general, the attributes on a judgment’s : describe how a term uses its free variables now, while
those in the term’s type describe how it might use its free variables later as more of it is scrutinized.

Pairs and other structured types in CBN
𝛾
exhibit a crucial difference from other type systems for

CBN calculi. Consider the terms 𝑥 and (fst 𝑥, snd 𝑥) in a context where 𝑥 has type Bool×Bool. In a

pure CBN calculus, these two terms are considered 𝜂-equivalent and have the same type. In effectful

settings like this one, however, the 𝜂-equivalence of these terms breaks down; any effects that

would result from evaluating 𝑥 occur only when scrutinizing the first term. The pair constructor in

the second term suspends the uses of 𝑥 , so 𝑥 would not be evaluated at all if this term’s top-level

constructor were scrutinized. In short, the first term uses 𝑥 strictly, while the second uses it lazily.

CBN
𝛾
reflects this by requiring the two terms to be typed differently: 𝑥 is typed with

𝑥 ∶ Bool × Bool ⊢CBN 𝑥 ∶𝑥 ∶S Bool𝑥 ∶L × Bool𝑥 ∶L,

whereas (fst 𝑥, snd 𝑥) is typed with

𝑥 ∶ Bool × Bool ⊢CBN (fst 𝑥, snd 𝑥) ∶𝑥 ∶L Bool𝑥 ∶S × Bool𝑥 ∶S .

While the first term uses 𝑥 strictly, the second term uses 𝑥 lazily and actually has a different type,

one that also says that it uses 𝑥 strictly in each of its components.

Contexts, Functions, and Latent Effects. So far, we have not considered the fact that, in non-strictly

evaluated languages, accessing a variable may cause a thunk to be evaluated and thus other

variables to be scrutinized. To track this deferred usage, typing contexts Γ map variables to both

types 𝜏 and vectors 𝛾 ; these 𝛾s describe the strictness with which any in-scope variables will be

used if the thunked expression stored in a given variable is strictly used. Consider a program

let 𝑥 = if 𝑦 then true else false in 𝑥 . Assuming 𝑦 is in scope with type Bool, 𝑥 is also a Bool,
but one that uses 𝑦 strictly if evaluated. Zooming in on the let’s body, CBN𝛾

checks

𝑦 ∶ Bool, 𝑥 ∶ Bool𝑦∶S ⊢CBN 𝑥 ∶𝑦∶S,𝑥 ∶S Bool.

In the context, 𝑥 is associated both with its type and with a vector 𝑦 ∶ S, capturing the fact that any

strict use of 𝑥 will cause a strict use of 𝑦. This fact is also reflected in the judgment’s output effect,

which tells us that strict use of the term being checked will cause a strict use of 𝑦.

Extending this principle from open terms to functions, it is apparent that function types in CBN
𝛾

must also describe how their arguments use other variables. Function types in CBN
𝛾
thus have

the shape (𝑥 ∶𝛼 𝜏
𝛾1
1
)

𝛾2Ð→ 𝜏2. The 𝛼 (either S, L or ?) above the ∶ describes how the function uses

its argument 𝑥 , while the vector 𝛾2 describes the “latent effect” that will be produced when the

function is called. The vector 𝛾1, on the other hand, describes the effect that the function’s argument

can have, i.e., how other variables will be used when the argument is evaluated.

So, for example, one possible judgment for the identity function would be

𝑦 ∶ Bool ⊢CBN 𝜆𝑥 . 𝑥 ∶𝑦∶L (𝑥 ∶S Bool𝑦∶S)
𝑦∶S
Ð→ Bool.

This typing allows the identity to accept a boolean argument that uses 𝑦 strictly when evaluated,

and it tells us that the function uses its argument strictly and will use 𝑦 strictly when called. The
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judgment also tells us that the function definition itself uses 𝑦 lazily, since the use of the function’s

argument in the body is not evaluated if the function is not called.
2

Unpacking a Pair. Consider the term let (𝑎,𝑏) = 𝑥 in 𝑏 in a context where 𝑧 has type Bool and 𝑥
has type 𝑃 (that is, Bool𝑧∶S × Bool𝑧∶L). Assume also that 𝑥 does not use 𝑧 strictly when evaluated.

The following term unpacks a pair and returns its second element, and CBN
𝛾
types it with

𝑧 ∶ Bool, 𝑥 ∶ 𝑃 ⊢CBN let (𝑎,𝑏) = 𝑥 in 𝑏 ∶𝑧∶L,𝑥 ∶S Bool.

This judgment tells us that the term uses 𝑥 strictly (since it is destructured by let-binding) but

uses 𝑧 lazily. This latter fact is a result of 𝑥 ’s type 𝑃 , which asserts that strict use of its second

element results in lazy usage of 𝑧. When the term uses 𝑏 (the second element of 𝑥) strictly, that

usage therefore results in a lazy usage of 𝑧. Note that, as the variable 𝑏 itself is local to this term,

we do not need to report 𝑏’s usage in the final typing judgment.

Now consider, instead, a term that returns 𝑥 ’s first element: let (𝑎,𝑏) = 𝑥 in 𝑎. We could not

type this term with the same judgment we previously used. 𝑃 tells us that strict use of 𝑎 causes a

strict use of 𝑧, and therefore this term would have to be typed with the judgment

𝑧 ∶ Bool, 𝑥 ∶ 𝑃 ⊢CBN let (𝑎,𝑏) = 𝑥 in 𝑎 ∶𝑧∶S,𝑥 ∶S Bool.

Indeterminate use. Finally, consider a term that returns either the first or second element of a

𝑃-typed variable 𝑥 , depending on the value of another variable 𝑦:

let (𝑎,𝑏) = 𝑥 in if 𝑦 then 𝑎 else 𝑏.

What type can we give to this term? Clearly it uses both 𝑦 and 𝑥 strictly, but the way it uses 𝑧

depends on which branch of the if statement is taken. The success branch uses 𝑧 strictly, while the

failure branch uses it lazily, so we say that this term is indeterminate in its usage of 𝑧. As written,

we cannot assign it a type, but we can make a small modification and produce another term like so:

let (𝑎,𝑏) = 𝑥 in if 𝑦 then (sub 𝑎) else (sub 𝑏).

The sub annotation makes explicit that we are using subsumption when typing this term; we forget

information about how 𝑧 is used in each branch (moving down the semilattice in Figure 4) to derive

𝑧 ∶ Bool,𝑦 ∶ Bool, 𝑥 ∶ 𝑃 ⊢CBN let (𝑎,𝑏) = 𝑥 in if 𝑦 then (sub 𝑎) else (sub 𝑏) ∶𝑦∶S,𝑥 ∶S,𝑧∶? Bool.

This judgment asserts that the term uses 𝑦 and 𝑥 strictly, but says that the usage of 𝑧 is not known

to be either strict or lazy. The explicit sub syntax is useful for the proof of Lemma 5.4, which

requires inversion of the typing judgment. However, this syntax is included purely for technical

convenience and does not change the expressiveness of the type system.

3.2 CBN𝛾 Overview + S ? L

S S S S

? S ? ?

L S ? L

Table 1. Definition of +

Having worked through some examples to build intuition, we can

begin to discuss the details of how CBN
𝛾
derives typing judgments.

Strictness attributes are elements of a preordered monoid equipped

with a + operator to combine attributes and a ≤ comparator to order

them. The + operator has L as its identity and is defined in Table 1.

2
Note that this typing also would mean that this identity function could not accept an argument that used 𝑦 lazily, as

the function’s type would then be inaccurate about how its body uses 𝑦. Requiring function types to declare the effects

associated with their arguments is restrictive, but prior work [53] has addressed this limitation via effect polymorphism

[50, 68], and, as we discuss in Section 8, the same approach should work here. Polymorphism would be an orthogonal

addition to CBN
𝛾
, however, and we focus on monomorphic type systems here for clarity and simplicity.
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𝑥 ∶ 𝜏𝛾 ∈ Γ
Γ ⊢CBN 𝑥 ∶𝛾+𝑥 ∶S 𝜏

T-CBN-Var

Γ ⊢CBN 𝑒1 ∶𝛾1 𝜏1 Γ ⊢CBN 𝑒2 ∶𝛾2 𝜏2
Γ ⊢CBN (𝑒1, 𝑒2) ∶L 𝜏𝛾11 × 𝜏

𝛾2
2

T-CBN-Pair

Γ ⊢CBN 𝑒 ∶𝛾
′

𝜏 𝛾 ≤ 𝛾 ′

Γ ⊢CBN sub 𝑒 ∶𝛾 𝜏 T-CBN-Sub

Γ ⊢CBN 𝑒1 ∶𝛾1 𝜏1 Γ, 𝑥 ∶ 𝜏𝛾1
1
⊢CBN 𝑒2 ∶𝛾2 𝜏2

Γ ⊢CBN let 𝑥 = 𝑒1 in 𝑒2 ∶(↓𝑥𝛾2) ↓𝑥𝜏2
T-CBN-Let

Γ, 𝑥 ∶𝛾1 𝜏1 ⊢CBN 𝑒 ∶𝛾2,𝑥 ∶𝛼 𝜏2

Γ ⊢CBN 𝜆𝑥 .𝑒 ∶L (𝑥 ∶𝛼 𝜏
𝛾1
1
)

𝛾2Ð→ 𝜏2

T-CBN-Abs

Γ ⊢CBN 𝑒2 ∶𝛾1 𝜏1
Γ ⊢CBN 𝑒1 ∶𝛾3 (𝑥 ∶𝛼 𝜏

𝛾1
1
)

𝛾2Ð→ 𝜏2

Γ ⊢CBN 𝑒1 𝑒2 ∶𝛾2+𝛾3 ↓𝑥𝜏2
T-CBN-App

Γ ⊢CBN 𝑒1 ∶𝛾1 𝜏
𝛾
′

1

1
+ 𝜏𝛾

′

2

2
𝜏 = ↓𝑥1𝜏 ′1 = ↓𝑥2𝜏 ′2

Γ, 𝑥1 ∶ 𝜏
𝛾
′

1

1
,⊢CBN 𝑒2 ∶𝛾2,𝑥1∶𝛼1 𝜏 ′

1
Γ, 𝑥2 ∶ 𝜏

𝛾
′

2

2
,⊢CBN 𝑒3 ∶𝛾2,𝑥2∶𝛼2 𝜏 ′

2

Γ ⊢CBN case 𝑒1 of inl 𝑥1 → 𝑒2, inr 𝑥2 → 𝑒3 ∶𝛾1+𝛾2 𝜏
T-CBN-Case

Fig. 5. Typing rules for CBN𝛾

The ≤ comparator orders attributes according to the semilattice depicted in Figure 4, which is

notably different from the order induced by +. Instead, ≤ orders attributes by information: one

attribute is greater than another when it gives us more certainty about how a variable will be used.

We lift + and ≤ to operate over vectors 𝛾 pointwise, noting that ≤ forms a preorder over 𝛾s, where

a vector 𝛾1 is only considered ≤ a vector 𝛾2 if every variable in 𝛾1 has an attribute that is ≤ the
corresponding attribute in 𝛾2. So, for example, the vectors 𝑥 ∶ ?,𝑦 ∶ L and 𝑥 ∶ L,𝑦 ∶ ? are unrelated.3
CBN

𝛾
’s type system incorporates effects 𝛾 into its typing judgment to track the strictness of each

variable in the context; a selection of the typing rules can be found in Figure 5. We give a named

presentation of these typing rules here, but our Rocq mechanization of this system (included in the

supplemental material) uses a de Bruijn representation of variables.

The simplest rule of interest is T-CBN-Var, which looks up 𝑥 in the context Γ and produces the

effect 𝛾 that was latent there. In addition to this effect, the rule also adds a strict usage of 𝑥 to its

output effect to reflect that the value stored in 𝑥 was strictly used.

Next, since let-binding is lazy, the T-CBN-Let rule does not realize the 𝛾1 effects of the let-bound

expression 𝑒1. Rather, it associates those effects with the bound variable 𝑥 in the context, to be

produced if that variable is strictly used later. The rule realizes only the effects 𝛾2 associated with

𝑒2, as any strict uses of 𝑥 in 𝑒2 will already have produced 𝛾1, which will be included in 𝛾2.

Also of note is how T-CBN-Let handles scoping in its result. During the checking of 𝑒2, we must

have an effect in the context for 𝑥 . However, once 𝑥 goes out of scope, its usage is no longer of

interest, and we drop its attributes from 𝛾2 and 𝜏2 via the ↓𝑥 operator. To understand why this

is reasonable, consider that our goal in modeling Definition 2.1 is to know the strictness of each

function’s argument—that is, whether an argument is used strictly or lazily by a function’s body.

Given this, the strict or lazy usage of a function’s local variable is not of external interest and

can be discarded when that variable goes out of scope. Similarly, once we leave the scope of a let

expression, we no longer care to track the strictness of the variable it binds. A detailed example of

this behavior can be found in Section 4.2.

3
This still endows 𝛾𝑠 with sufficient structure to be elements of a preordered monoid, a requirement for them to behave like

effects [35].
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The function introduction and elimination rules, T-CBN-Abs and T-CBN-App, are where we

achieve the primary desideratum of the system: the ability to annotate arrow types with the

strictness of the functions they classify. In the T-CBN-Abs rule, the body of the function is checked

in a context where the input effect 𝛾1 is associated with the parameter 𝑥 . This will realize effects

for the body, which we can split into the portion 𝛾2 not mentioning 𝑥 plus whatever 𝛼 is associated

with 𝑥 directly, which tells us how 𝑥 is used in the function body.

Note that 𝜏2, the return type of the function produced by this rule, may mention 𝑥 ; this is

necessary to type functions like 𝜆𝑥 . 𝜆𝑦. 𝑥 , where the outer function uses 𝑥 lazily in its body (since 𝑥

appears inside another function), but the inner function uses it strictly. We assign the inner function

the type (𝑦 ∶L 𝜏2)
𝑥 ∶SÐ→ 𝜏1 and the outer function the type (𝑥 ∶L 𝜏1) Ð→ (𝑦 ∶L 𝜏2)

𝑥 ∶SÐ→ 𝜏1, where 𝑥

appears in the return type of the outer function (i.e., the type of the inner function). On the other

hand, 𝑥 does not need to appear on the Ð→ portion of the outer function type, as 𝑥 ’s lazy usage in

the outer function body is already reflected in the L associated with the argument.

The T-CBN-App rule enforces that the effects realized by the argument expression 𝑒2, namely 𝛾1,

match the effects expected by the function. These effects are already included in the latent effects

𝛾2 of the function type, however. Therefore, as in the T-CBN-Let rule, they do not need to be added

to the resulting effects for this rule. Instead, the rule adds together only the effects realized by the

body of the function and the effects realized by the computation of the function 𝑒1.

The T-CBN-App rule also manages its scope similarly to the T-CBN-Let rule by dropping the

abstracted variable from the result of the function’s return type after the call. The 𝛼 on the applied

function type does not appear in the rule’s conclusion for similar reasons: the calling scope does

not need to track how the function body uses its argument.

The last point of note concerns effect subsumption. Some imprecision is unavoidable in CBN
𝛾
as

a result of the branching in the case expression. We could soundly restrict this imprecision to the

T-CBN-Case rule, but we instead allow subsumption to happen anywhere via the T-CBN-Sub rule,

as it allows us to type more programs.

Consider, for example, the standard Church encoding of the booleans, 𝜆𝑥 .𝜆𝑦.𝑥 and 𝜆𝑥.𝜆𝑦.𝑦 [9].

To be a usable encoding of the booleans, both of these functions must inhabit the same type, but

without subsumption we would be forced to assign them the types

𝜆𝑥.𝜆𝑦.𝑥 ∈ (𝑥 ∶L 𝐴) Ð→ (𝑦 ∶L 𝐴) 𝑥 ∶SÐ→ 𝐴 and 𝜆𝑥 .𝜆𝑦.𝑦 ∈ (𝑥 ∶L 𝐴) Ð→ (𝑦 ∶S 𝐴) 𝑥 ∶LÐ→ 𝐴.

The outer function type uses 𝑥 lazily in both cases because the inner function suspends all usages

in its body; if, for example, we were to partially apply the first function, this would not result in a

strict usage of 𝑥 because the result of that partial application would be a function that uses 𝑥 in its

body. But the types disagree on the strictness of 𝑦 and on how the inner function uses 𝑥 in its body.

The difference makes these types unsuitable for a boolean encoding. With subsumption, however,

we can encode the Church booleans as 𝜆𝑥.𝜆𝑦.sub 𝑥 and 𝜆𝑥 .𝜆𝑦.sub 𝑦 and assign both the less exact,

but more useful, type
4

(𝑥 ∶L 𝐴) Ð→ (𝑦 ∶? 𝐴) 𝑥 ∶?Ð→ 𝐴.

The other rules (available in Appendix A in the supplemental material) are straightforward,

keeping in mind that in CBN
𝛾
all constructors are lazy. Hence, all the introduction rules have an L

effect and store any latent effects on the type of the value they produce.

4
An effect-polymorphic extension of CBN

𝛾
could instead type both terms polymorphically.
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strictness attributes 𝛼 ∶∶= S ⋃︀ L ⋃︀ ?
attribute vectors 𝛾 ∶∶= ⋅ ⋃︀𝛾, 𝑥 ∶ 𝛼
value types 𝐴 ∶∶= unit ⋃︀U𝛾𝐵 ⋃︀𝐴1 ×𝐴2 ⋃︀𝐴1 +𝐴2

computation types 𝐵 ∶∶= 𝐴𝛼 → 𝐵 ⋃︀ F𝐴
contexts Γ ∶∶= ⋅ ⋃︀ Γ, 𝑥 ∶ 𝐴

values 𝑉 ∶∶= () ⋃︀ 𝑥 ⋃︀ {𝑀} ⋃︀ inl 𝑉 ⋃︀ inr 𝑉 ⋃︀ (𝑉1,𝑉2)
computations 𝑀 ∶∶= 𝜆𝑥 . 𝑀 ⋃︀𝑀 𝑉 ⋃︀𝑉 ! ⋃︀ 𝑥 ←𝑀1 in𝑀2 ⋃︀ (𝑥1, 𝑥2) ← 𝑉 in𝑀 ⋃︀ sub𝑀

⋃︀ ret 𝑉 ⋃︀𝑉 ;𝑀 ⋃︀ case 𝑉 of inl 𝑥1 →𝑀1, inr 𝑥2 →𝑀2

Fig. 6. Syntax of CBPV𝛾

4 Strictness in Call-By-Push-Value
We would like to prove that the type system of CBN

𝛾
is sound and yields the desired guarantees

about usage. However, carrying out these proofs directly in CBN
𝛾
is awkward: many language

features in call-by-name languages can suspend computation, so proofs about CBN
𝛾
will involve

significant duplicated work. In particular, the logical relations used in Sections 4.4 and 5 must

enforce certain invariants relating types and values whenever a computation is thunked. Instead of

repeating these checks for every type, we would rather carry out our metatheoretic analysis in a

language that isolates the thunking operation in one syntactic construct with a dedicated type to

represent it. We can then translate CBN
𝛾
to this language in a type-preserving way.

Levy’s call-by-push-value (CBPV) [45–49] has precisely the features we need. CBPV makes an

explicit distinction between values and computations, separating the two into different syntactic

classes according to the slogan “a value is, a computation does” [47]. In particular, it features a thunk

value former, written {𝑀}, that suspends a computation 𝑀 as a value, and a forcing operation,

written 𝑉 !, that forces a thunk 𝑉 by running its suspended computation. U𝐵 is the type of thunks

that produce computations of type 𝐵 when forced. The thunking construct allows CBPV, despite

being strictly evaluated, to model lazily evaluated languages like CBN
𝛾
.

This section describes CBPV
𝛾
, an extension of CBPV with strictness tracking, and establishes

the metatheoretic properties that make it a useful model of intensional strictness.

4.1 Syntax of CBPV𝛾

The primary difference between CBPV
𝛾
, given in Figure 6, and standard presentations of CBPV is

the presence of an attribute vector 𝛾 on the U type former, tracking how variables are used when a

thunk is forced. A variable annotated with an L on a U type will be used lazily if a thunk inhabiting

that type is forced, while a variable with an S will be used strictly. Function types also carry an

attribute 𝛼 describing how arguments are used when functions are applied.

Beyond theU type, CBPV
𝛾
features two classes of types to go with its two classes of terms. Positive

types (ranged over by 𝐴) describe values, while negative types (written 𝐵) describe computations.

Value types include U types along with the unit type, sums, and products. Computation types

include function types and F types, which are dual to U types. The returner type F 𝐴 describes

computations returning values of type 𝐴.

4.2 Typing Rules for CBPV𝛾

CBPV
𝛾
has two typing judgments: 𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴 for values and 𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵 for computations. The

shapes of these judgments are somewhat different from the CBN
𝛾
typing judgment; instead of

appearing on the ∶ like an effect, 𝛾 is zipped with the context Γ on the left of the ⊢.5 We can zip

5
Some readers may notice a similarity to coeffect systems in the judgment’s shape; we discuss this similarity in Section 4.6.
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𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴 (Value typing)

L ⋅ Γ1, 𝑥 ∶S 𝐴,L ⋅ Γ2 ⊢ 𝑥 ∶ 𝐴
T-Var

𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵
L ⋅ Γ ⊢ {𝑀} ∶ U𝛾𝐵

T-Thunk

𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵 (Computation typing)

𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴
𝛾 ⋅ Γ ⊢ ret 𝑉 ∶ F𝐴 T-Return

𝛾 ′ ⋅ Γ ⊢𝑀 ∶ 𝐵 𝛾 ≤ 𝛾 ′

𝛾 ⋅ Γ ⊢ sub𝑀 ∶ 𝐵 T-Sub

𝛾1 ⋅ Γ ⊢ 𝑉 ∶ U𝛾2𝐵

𝛾1 +𝛾2 ⋅ Γ ⊢ 𝑉 ! ∶ 𝐵 T-Force

𝛾1 ⋅ Γ ⊢𝑀1 ∶ F𝐴 𝛾2 ⋅ Γ, 𝑥 ∶𝛼 𝐴 ⊢𝑀2 ∶ 𝐵
(𝛾1 +𝛾2) ⋅ Γ ⊢ 𝑥 ←𝑀1 in𝑀2 ∶ ↓𝑥𝐵

T-Let

𝛾1 ⋅ Γ ⊢ 𝑉 ∶ unit 𝛾2 ⋅ Γ ⊢𝑀 ∶ 𝐵
(𝛾1 +𝛾2) ⋅ Γ ⊢ 𝑉 ;𝑀 ∶ 𝐵

T-Seq

𝛾 ⋅ Γ, 𝑥 ∶𝛼 𝐴 ⊢𝑀 ∶ 𝐵
𝛾 ⋅ Γ ⊢ 𝜆𝑥.𝑀 ∶ 𝐴𝛼 → ↓𝑥𝐵

T-Abs

𝛾1 ⋅ Γ ⊢𝑀 ∶ 𝐴𝛼 → 𝐵 𝛾2 ⋅ Γ ⊢ 𝑉 ∶ 𝐴
𝛾1 +𝛾2 ⋅ Γ ⊢𝑀 𝑉 ∶ 𝐵 T-App

Fig. 7. Main typing rules for CBPV𝛾

and unzip 𝛾 ⋅ Γ freely, i.e., we write 𝛾 ⋅ Γ, 𝑥 ∶𝛼 𝐴 interchangeably with (𝛾, 𝑥 ∶ 𝛼) ⋅ (Γ, 𝑥 ∶ 𝐴). This is
different from how CBN

𝛾
contexts work, as those associate variables with both types and 𝛾s. This

difference reflects the fact that CBPV
𝛾
is evaluated strictly, rather than lazily like CBN

𝛾
, so the use

of a variable in CBPV
𝛾
does not itself trigger any evaluation. Instead, this triggering occurs in the

thunking and forcing rules, which suspend and resume computation. Accordingly, variables only

need to track their own strictness, as information about further usages now appears on the U type.

Note also that the definition of contexts requires that variables be bound to value types; binding

a computation to a variable requires it to be explicitly thunked.

As we consider the rules, recall the second example from Section 3.1, where we described how

CBN
𝛾
breaks the usual 𝜂-equivalence between 𝑥 and (fst 𝑥, snd 𝑥). The pair constructor in CBN

𝛾

implicitly thunks its two arguments; this is the reason why 𝑥 is lazy in the latter term but not the

former. To capture this behavior in CBPV
𝛾
, the thunk value must change the attributes associated

with the computation it suspends, breaking the 𝜂-equivalence between 𝑉 and {𝑉 !}. In particular,

we want CBPV
𝛾
to describe the term 𝑥 as using the variable 𝑥 strictly but {𝑥 !} as using it lazily.

To type 𝑥 properly, we must ensure that variable lookup produces an S attribute. This leads

directly to the T-Var rule in Figure 7. The rule requires that only the variable being used has a

strict attribute, isolating any imprecision in CBPV
𝛾
to the T-Sub rule.

To type {𝑥 !}, we need the thunking operation to make the use of 𝑥 inside the thunk lazy.

Accordingly, the T-Thunk rule suspends all the uses of the variables in 𝑀 represented by 𝛾 and

packages them into the U type, to be released later if the thunk is forced. The vector of attributes

on the thunk itself is then set to the lazy L vector, since a thunk value uses nothing strictly. So, for

example, the value {ret 𝑥} has the type U𝑥 ∶S F 𝐴 when 𝑥 ∶L 𝐴 ∈ 𝛾 ⋅ Γ.
The T-Force rule is more complex. Intuitively, the vector of attributes 𝛾1 is used to produce 𝑉 ,

which has the type U𝛾2𝐵. This 𝛾2 represents the usages that will occur when 𝑉 is forced, so those

attributes are “replayed” here into the context by adding them to 𝛾1. So, were we to add an ! to our

example from before to produce the computation {ret 𝑥}!, this new program would have the type
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closed terminal values 𝑊 ∶∶= () ⋃︀ (𝑊,𝑊 ) ⋃︀ inl𝑊 ⋃︀ inr𝑊 ⋃︀ {𝛾, 𝜌,𝑊 }
closed terminal computations 𝑇 ∶∶= ret𝑊 ⋃︀ ⎷𝛾, 𝜌, 𝜆𝑥 .𝑀⌄
environments 𝜌 ∶∶= ⋅ ⋃︀ 𝜌, 𝑥 ↦𝑊

Fig. 8. Closed terminal values, computations and environments in CBPV𝛾

F 𝐴 when 𝑥 ∶S 𝐴 ∈ 𝛾 ⋅ Γ. The attributes from the thunk’s type have been added to those used to

produce it (in this case L).

With these three rules, we can see how CBPV
𝛾
differentiates 𝑥 from {𝑥 !}. Assuming 𝑥 is bound

to a thunk value of type U𝐵, CBPV𝛾
types the two programs with the derivations

𝑥 ∶S U𝐵 ⊢ 𝑥 ∶ U𝑥 ∶L𝐵 and 𝑥 ∶L U𝐵 ⊢ {𝑥 !} ∶ U𝑥 ∶S𝐵

respectively. The strict use of 𝑥 has been moved from the context in the former program onto the

U type in the latter, describing how the use of 𝑥 has been suspended by the thunk.

The T-Abs and T-App rules handle function type introduction and elimination. Lambda abstrac-

tion does not suspend the attributes of the body, so the 𝛾 necessary to check the𝑀 in 𝜆𝑥 .𝑀 “passes

through” the function (e.g., 𝜆𝑥 . ret 𝑦 is considered to use 𝑦 strictly). Instead, since functions need

to be thunked to be bound to variables, their attributes will be suspended by the thunk rule. This

treatment of attributes in functions may appear surprising, but it is common practice in the litera-

ture on effects and coeffects in CPBV [33, 34, 76] and has the benefit of isolating all reasoning about

the suspension and resumption of attributes to the rules for the U type. This behavior also means

that, unlike CBN
𝛾
, CBPV

𝛾
’s arrows do not include their argument in the scope of their return type.

Consider, for example, the function 𝜆𝑥 . 𝜆𝑦. ret 𝑥 . The inner function uses 𝑥 strictly, and, because

this strict usage passes through the inner function to the outer, we can assign the latter the type

𝐴S

1
→ 𝐴L

2
→ F 𝐴1. Accordingly, when producing the result type in the T-Abs rule, we remove 𝑥

from the arrow’s return type 𝐵.

For a more interesting example, a function 𝜆𝑥 .(𝑥 ; ret 𝑦) can be typed as unitS → F 𝐴 in a context

where 𝑦 has the type 𝐴 and attribute S, since it uses its both argument and 𝑦 strictly. Conversely, a

function 𝜆𝑥 . ret {𝑥 ; ret 𝑦} can be assigned type unitL → F U𝑦∶S F𝐴, since it uses its argument and

𝑦 lazily and produces a thunk that will use 𝑦 strictly if forced. As discussed above, the usage of 𝑥 is

not mentioned in the return type of the function; an external caller only cares about how the result

of the function uses the variables that exist in the calling scope.

The T-Let rule has a different structure from its CBN
𝛾
counterpart, since CBPV

𝛾
evaluates strictly

while CBN
𝛾
does not. Unlike T-CBN-Let, the vector 𝛾1 used in the evaluation of𝑀1 is not implicitly

present in the context for the evaluation of𝑀2, so the T-Let rule must explicitly add it to the vector

𝛾2 used by𝑀2 to yield the resulting attributes for the entire term. The rule otherwise behaves like

the T-CBN-Let rule, including in its handling of scoping.

To better understand this scoping, consider the program 𝑧 ← (𝑥 ← ret () in ret {𝑥 ; ret 𝑦}) in 𝑧!,

assuming 𝑦 has type 𝐴. We would like this program to have the type F 𝐴 and assign an S attribute

to 𝑦. At the beginning of the program, the variable 𝑥 is assigned a () value, and hence will type at

unit. Thus, the thunk value {𝑥 ; ret 𝑦} has the type U𝑥 ∶S,𝑦∶S F 𝐴 when 𝑥 and 𝑦 have an L attribute.

However, by the time this thunk is forced, 𝑥 has gone out of scope. Bearing in mind our goal of

assigning S to 𝑦, however, we can see that 𝑥 ’s usage inside the thunk is irrelevant to 𝑦; we can

forget 𝑥 from the type U𝑥 ∶S,𝑦∶S F 𝐴 to yield U𝑦∶S F 𝐴, which has exactly the behavior we want.

The rest of the rules are straightforward; they can be found in Appendix B.
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𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊 (Value semantics)

L ⋅ 𝜌1, 𝑥 ↦S𝑊,L ⋅ 𝜌2 ⊢ 𝑥 ⇓𝑊
E-Var

L ⋅ 𝜌 ⊢ {𝑀} ⇓ {𝛾, 𝜌,𝑀}
E-Thunk

𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 (Computation semantics)

𝛾 ′ ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 𝛾 ≤ 𝛾 ′

𝛾 ⋅ 𝜌 ⊢ sub𝑀 ⇓ 𝑇 E-Sub

𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊
𝛾 ⋅ 𝜌 ⊢ ret 𝑉 ⇓ ret𝑊 E-Return

𝛾1 ⋅ 𝜌 ⊢𝑀1 ⇓ ret𝑊
𝛾2 ⋅ 𝜌, 𝑥 ↦𝛼 𝑊 ⊢𝑀2 ⇓ 𝑇

(𝛾1 +𝛾2) ⋅ 𝜌 ⊢ 𝑥 ←𝑀1 in𝑀2 ∶ 𝑇
E-Let

𝛾1 ⋅ 𝜌 ⊢ 𝑉 ⇓ {𝛾2, 𝜌 ′,𝑀}
𝛾2 ⋅ 𝜌 ′ ⊢𝑀 ⇓ 𝑇

𝛾1 + (𝛾2 ⋃︀dom 𝛾1) ⋅ 𝜌 ⊢ 𝑉 ! ⇓ 𝑇 E-Force

𝛾1 ⋅ 𝜌 ⊢ 𝑉 ⇓ () 𝛾2 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇
(𝛾1 +𝛾2) ⋅ 𝜌 ⊢ 𝑉 ;𝑀 ⇓ 𝑇

E-Seq

𝛾 ⋅ 𝜌 ⊢ 𝜆𝑥 .𝑀 ⇓ ⎷𝛾, 𝜌, 𝜆𝑥 .𝑀⌄ E-Abs

𝛾1 ⋅ 𝜌 ⊢𝑀 ⇓ ⎷𝛾3, 𝜌 ′, 𝜆𝑥 .𝑀 ′⌄ 𝛾2 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊 𝛾3 ⋅ 𝜌 ′, 𝑥 ↦𝛼 𝑊 ⊢𝑀 ′ ⇓ 𝑇
𝛾1 +𝛾2 ⋅ 𝜌 ⊢𝑀 𝑉 ⇓ 𝑇 E-App

Fig. 9. Main semantic rules for CBPV𝛾

4.3 Big-Step Semantics of CBPV𝛾

To prove that evaluation of CBPV
𝛾
reflects the strictness attributes computed by the type system,

we enrich the standard semantics of CBPV
𝛾
with strictness-attribute tracking. We present the

semantics in a big-step style, defining terminal values𝑊 and computations 𝑇 in Figure 8, along

with environments 𝜌 . Like Γs, 𝜌s can freely be zipped and unzipped with 𝛾s.

CBPV
𝛾
’s two evaluation judgments have the form 𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊 for values and 𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 for

computations. The rules of particular relevance to strictness tracking are given in Figure 9.

Most of the complexity in the semantics of CBPV
𝛾
arises from how thunk values handle the

scopes of their captured attribute vectors. In the E-Thunk rule, where thunk values are created,

the existing environment is captured and a 𝛾 is chosen for the result. This rule is unusual in that it

allows the choice to be any 𝛾—to see why, remember that we are adding 𝛾 to the semantics only to

enable metatheoretic reasoning; the semantics here is free to select whichever 𝛾 is necessary to

evaluate this thunk, should it later be forced. However, by the time a thunk is forced, the scope of
the vector it captured may no longer be the same as the scope in which it is being forced.

Concretely, in the E-Force rule, there are two different scopes in play. The outer scope, where 𝛾1
and 𝜌 live, is the same scope in which the typing judgment will view a force computation. The inner

scope, where 𝛾2 and 𝜌 ′ live, is internal to the thunk value and may be arbitrarily different from

the outer scope. Accordingly, the scope of 𝛾2 must be adjusted when adding it to 𝛾1 in the rule’s

conclusion; this adjustment is exactly the restriction of 𝛾2 to the domain of 𝛾1 (written 𝛾2 ⋃︀dom 𝛾1 ).

As an example, recall the program from earlier: 𝑧 ← (𝑥 ← ret () in ret {𝑥 ; ret 𝑦}) in 𝑧!. Assum-

ing 𝜌 maps 𝑦 to some value𝑊 , the bound term {𝑥 ; ret 𝑦} reduces to a thunk value capturing its

environment: {(𝑦 ∶ S, 𝑥 ∶ S), (𝑥 ↦ (),𝑦 ↦𝑊 ), 𝑥 ; ret 𝑦}. When that value is forced, however, only

𝑦 is in scope, so we take the restriction of 𝑦 ∶ S, 𝑥 ∶ S (i.e., 𝑦 ∶ S) and add it to the attributes used
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𝒲JunitK = {()}
𝒲J𝐴1 ×𝐴2K = {(𝑊1,𝑊2) ⋃︀𝑊1 ∈ 𝒲J𝐴1K and𝑊2 ∈ 𝒲J𝐴2K}
𝒲J𝐴1 +𝐴2K = {inl𝑊1 ⋃︀𝑊1 ∈ 𝒲J𝐴1K} ∪ {inr𝑊2 ⋃︀𝑊2 ∈ 𝒲J𝐴2K}
𝒲JU𝛾𝐵K = {{𝛾 ′, 𝜌,𝑀} ⋃︀𝛾 ⋃︀dom 𝛾 ′ = 𝛾 ′ ⋃︀dom 𝛾 and 𝛾 ′ ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 J𝐵K}
𝒯 JF𝐴K = {ret𝑊 ⋃︀𝑊 ∈ 𝒲J𝐴K}

𝒯 J𝐴𝛼 → 𝐵K = {⎷𝛾, 𝜌, 𝜆𝑥 .𝑀⌄ ⋃︀ for all𝑊 ∈ 𝒲J𝐴K,𝛾 ⋅ 𝜌, 𝑥 ↦𝛼 𝑊 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 J𝐵K}

Γ ⊧ 𝜌 ≜ 𝑥 ∶ 𝐴 ∈ Γ Ô⇒ 𝑥 ↦𝑊 ∈ 𝜌 and𝑊 ∈ 𝒲J𝐴K
𝛾 ⋅ Γ ⊧ 𝑉 ∶ 𝐴 ≜ Γ ⊧ 𝜌 Ô⇒ 𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊 and𝑊 ∈ 𝒲J𝐴K
𝛾 ⋅ Γ ⊧𝑀 ∶ 𝐵 ≜ Γ ⊧ 𝜌 Ô⇒ 𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 J𝐵K

Fig. 10. Logical Relation and Semantic Typing for Soundness

to produce the thunk (L) to get the result 𝑦 ∶ S, which agrees with the typing rules, as desired.

Intuitively, 𝑥 is local to the thunk here, so we do not care about its usage when forcing the thunk.

It is also worth pointing out the E-App rule, which mirrors prior work in CBPV but is potentially

confusing nonetheless. As mentioned previously, CBPV
𝛾
functions do not suspend their attributes

(also seen here in the E-Abs rule). Therefore, the application rule does not need to include the

attributes 𝛾3 from the closure in the result of the application, as they will already be included in the

attributes 𝛾1 needed to produce the closure in the first place.

The rest of the rules are straightforward; they can be found in Appendix C.

4.4 Soundness of CBPV𝛾

We can now prove that the attributes carried through the semantics reflect the attributes computed

by the typing judgment. The proofs in this section, along with all those that follow, have been

mechanized in Rocq. These proofs require a surprising amount of scope bookkeeping and are most

tractable with a logical relation. This relation, presented in Figure 10, resembles the one used by

Torczon et al. [76] to prove coeffect soundness, differing only in the thunk and function cases.

In the thunk case, we need to handle the fact that the scopes in the U type and in the thunk

value may have become “misaligned”; that is, variables may have been introduced to (or removed

from) the type that are not present (or are still present) in the thunk value. However, recalling

the earlier examples we used when defining the evaluation rule E-Force, we see that strictness

tracking for values is only concerned with the attributes that exist in the scope using a value, not

the scope that defined it. Thus, for the purposes of semantic typing, we care only to check that the

attributes in the value agree with those in the type, when restricted to the domain that they share.
6

With this logical relation in hand, we can define the usual notion of semantic typing in Figure 10.

We state and prove the fundamental lemma for this relation and derive soundness as a corollary.

Lemma 4.1 (Fundamental Lemma: Soundness). For all 𝛾 and Γ, if 𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴, then 𝛾 ⋅ Γ ⊧ 𝑉 ∶ 𝐴,
and if 𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵, then 𝛾 ⋅ Γ ⊧𝑀 ∶ 𝐵.

Proof. By mutual induction on the typing derivations for values and computations. □
6
The mechanization of this proof uses well-scoped de Bruijn syntax, and as a result needs somewhat more elaborate

bookkeeping in this case, since in a nameless setting it is not possible to determine the overlap between two arbitrary

scopes. Instead, the scopes of values must be tracked explicitly and adjusted as they flow through the program. More details

about this can be found in the proof scripts included in the supplemental material. [CITATION NEEDED]
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JunitK = (F unit,L)

J(𝑥 ∶𝛼 𝜏
𝛾1
1
)

𝛾2Ð→ 𝜏2K = ((U𝛾1+𝛾
′

1

𝐵1)𝛼+𝛾
′

2
(𝑥) → ↓𝑥𝐵2,𝛾2 + ↓𝑥𝛾 ′2) where J𝜏1K = (𝐵1,𝛾

′
1
) and J𝜏2K = (𝐵2,𝛾

′
2
)

J𝜏𝛾1
1
× 𝜏𝛾2

2
K = (F (U𝛾1+𝛾

′

1

𝐵1 ×U𝛾2+𝛾
′

2

𝐵2),L) where J𝜏1K = (𝐵1,𝛾
′
1
) and J𝜏2K = (𝐵2,𝛾

′
2
)

J𝜏𝛾1
1
+ 𝜏𝛾2

2
K = (F (U𝛾1+𝛾

′

1

𝐵1 +U𝛾1+𝛾
′

2

𝐵2),L) where J𝜏1K = (𝐵1,𝛾
′
1
) and J𝜏2K = (𝐵2,𝛾

′
2
)

J⋅K = ⋅ JΓ, 𝑥 ∶𝛾 𝜏K = JΓK, 𝑥 ∶ U𝛾+𝛾 ′𝐵 where J𝜏K = (𝐵,𝛾 ′)

Fig. 11. Translation from CBN𝛾 to CBPV𝛾

Theorem 4.2 (Soundness). Given 𝛾 , Γ, and 𝜌 such that Γ ⊧ 𝜌 ,
(1) if 𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴, then there exists some𝑊 such that 𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊 ;

(2) if 𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵, then there exists some 𝑇 such that 𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 .

Proof. Follows directly from the fundamental lemma. □

We can also show that the 𝛼s we place on arrow types accurately describe the strictness of

function arguments. In other words, if a computation has a function type, then it must evaluate to a

terminal closure. This closure, furthermore, will successfully evaluate in an extended environment

where the 𝛼 on the function type marks the strictness of the argument.

Theorem 4.3 (Function Type Soundness). Given 𝛾 , Γ, 𝐴, 𝐵, 𝛼 , and 𝜌 such that Γ ⊧ 𝜌 , if 𝛾 ⋅ Γ ⊢𝑀 ∶
𝐴𝛼 → 𝐵, then there exists some 𝛾 ′, 𝜌 ′ and𝑀 ′ such that 𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ ⎷𝛾 ′, 𝜌 ′, 𝜆𝑥 .𝑀 ′⌄. Additionally, for
any𝑊 such that𝑊 ∈ 𝒲J𝐴K, there exists some 𝑇 such that 𝛾 ′ ⋅ 𝜌 ′, 𝑥 ↦𝛼 𝑊 ⊢𝑀 ′ ⇓ 𝑇 .

Proof. Follows directly from the fundamental lemma. □

4.5 CBN𝛾 Translation
Having proved the soundness of CBPV

𝛾
, we argue that it can be used as a model of strictness in

CBN
𝛾
, the call-by-name system from Section 3. We give semantics to CBN

𝛾
via Levy’s standard

translation [49] from the CBN lambda calculus to CBPV, which we extend to CBN
𝛾
and CBPV

𝛾
.

The CBN
𝛾
typing rules are related those of CBPV

𝛾
by the translation in Figure 11, which is

identical to Levy’s save for the inclusion of 𝛾s and some additional bookkeeping in the type

translation. Because of the difference in strictness tracking behavior between arrow types in CBN
𝛾

and CBPV
𝛾
, we need to track the attributes suspended by the CBN

𝛾
arrow type separately, so we

place them on any outer U that may occur in the type translation. Therefore, the type translation

is a function 𝜏 → 𝐵 ×𝛾 , where the 𝛾 tracks any effects suspended in the CBN
𝛾
types that become

unsuspended vectors in the resulting CBPV
𝛾
derivation.

The translation for syntax is entirely unchanged from Levy’s translation; it is repeated, for

convenience, in Appendix D in the supplemental material.

We now state and prove our main lemma:

Lemma 4.4 (CBN
𝛾
Translation Correctness). If Γ ⊢CBN 𝑒 ∶𝛾 𝜏 , then 𝛾 +𝛾 ′ ⋅ JΓK ⊢ J𝑒K ∶ 𝐵, where

J𝜏K = (𝐵,𝛾 ′).

Proof. By induction on the CBN
𝛾
typing derivation. □

The difference in the behavior of functions between CBN
𝛾
and CBPV

𝛾
causes a slight discrepancy

in the translation: as seen in the statement of Lemma 4.4, the 𝛾 ′ from the translation of 𝜏 must be
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added to the 𝛾 in the CBN
𝛾
typing derivation to yield the strictness computed by CBPV

𝛾
. However,

inspection of the translation for types in Figure 11 shows that, at returner types, 𝛾 ′ is always L, the

unit of our effect algebra. We thus state our main theorem at F types.

Theorem 4.5 (CBN
𝛾
Translation Preserves Strictness). If Γ ⊢CBN 𝑒 ∶𝛾 𝜏 and J𝜏K = (F 𝐴,𝛾 ′), then

𝛾 ⋅ JΓK ⊢ J𝑒K ∶ F 𝐴.

Proof. Using Lemma 4.4 and case analysis on 𝜏 . □

We can also show that the semantics of CBPV
𝛾
“interpret” CBN

𝛾
in a 𝛾-preserving way.

Theorem 4.6 (CBN
𝛾
Interpretation). If Γ ⊢CBN 𝑒 ∶𝛾 𝜏 and J𝜏K = (F 𝐴,𝛾 ′), then, for any 𝜌 such that

𝜌 ⊧ JΓK, there is some𝑊 such that 𝛾 ⋅ 𝜌 ⊢ J𝑒K ⇓ ret𝑊 .

Proof. Simple composition of Lemma 4.1 and Theorem 4.5. □

With this, we have a strong claim that the type system we have developed for CBPV
𝛾
can model

the CBN
𝛾
type-and-effect system we laid out in Section 3.

4.6 Aside: Are Attribute Vectors Effects?
One unusual facet of the relationship between CBN

𝛾
and CBPV

𝛾
is that 𝛾s behave effects in CBN

𝛾

but lose this flavor when translated to CBPV
𝛾
. This seems strange on its face, and it is worth

discussing why we describe 𝛾s as effects in CBN
𝛾
but not in CBPV

𝛾
.

Effects in CBN𝛾. CBN languages generally prefer to isolate effects via monads to maintain purity,

so effect systems for such languages are relatively uncommon. CBN
𝛾
does, however, resemble

the call-by-name effect system Name described by McDermott and Mycroft [53]. In particular,

while Name is a general effect system, if one were to instantiate that system with the 𝛾 effects

we have described, the result would be strikingly similar to CBN
𝛾
. Much like CBN

𝛾
, Name has

typing contexts that associate variables with both types and effects, produces latent effects in

its variable rule, and has effect annotations on both function parameters and bodies. The main

difference between the systems is that the T-CBN-Var rule marks its variable as strict in the effect

it produces—necessary for the specific effect that CBN
𝛾
is tracking.

Additionally, as noted above, CBN
𝛾
’s𝛾s form a preorderedmonoid, which, according to Katsumata

[35] is necessary for them to be effects. The preorder is required to compare effects, while the

monoid operator is necessary to combine them in function applications.

Coeffects in CBPV𝛾? The rules of CBPV𝛾
, on the other hand, mostly do not resemble effect rules.

The most obvious reason for this is that the typing judgment for values contains 𝛾s; recalling Levy’s

slogan for CBPV—“a value is, a computation does”—it would be quite strange for a value to produce

an effect. On the other hand, the rules for CBPV
𝛾
do resemble the coeffect rules in prior work by

Torczon et al. [76], except that CBPV
𝛾
tracks 𝛾s on the U type rather than the F.

Additionally, coeffect algebras feature a multiplication operator to scale coeffects along with an

addition operator to combine them, but CBPV
𝛾
as presented lacks such a scaling operation. This is

due to the fact that the strictness algebra of CBPV
𝛾
defines + idempotently, and multiplication is

iterated addition. To make CBPV
𝛾
’s rules more closely resemble coeffect rules, we could define a

scaling operation ⋅ with S as its unit and L as its annihilator. However, including explicit scaling

would not change any attributes computed by CBPV
𝛾
, so there does not seem to be much point.

5 Semantic Properties of CBPV𝛾

Our next job is to show that the intensional, type-theoretic characterization of strictness provided

by CBPV
𝛾
refines the commonly understood extensional definition. To do this, we allow programs
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𝒲JunitK𝛾Obs𝑋 = {()}
𝒲J𝐴1 ×𝐴2K

𝛾Obs
𝑋 = {(𝑊1,𝑊2) ⋃︀𝑊1 ∈ 𝒲J𝐴1K

𝛾Obs
𝑋 and𝑊2 ∈ 𝒲J𝐴2K

𝛾Obs
𝑋 }

𝒲J𝐴1 +𝐴2K
𝛾Obs
𝑋 = {inl𝑊1 ⋃︀𝑊1 ∈ 𝒲J𝐴1K

𝛾Obs
𝑋 } ∪ {inr𝑊2 ⋃︀𝑊2 ∈ 𝒲J𝐴2K

𝛾Obs
𝑋 }

𝒲JU𝛾𝐵K𝛾Obs𝑋 = {{𝛾 ′, 𝜌,𝑀} ⋃︀𝛾 ⋃︀dom 𝛾 ′= 𝛾 ′ ⋃︀dom 𝛾 and

(𝛾Obs ⋃︀𝑋 ≤𝑆 𝛾 ⋃︀𝑋 Ô⇒ 𝛾 ′ ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 J𝐵K𝛾Obs𝑋 )}
𝒯 JF𝐴K𝛾Obs𝑋 = {ret𝑊 ⋃︀𝑊 ∈ 𝒲J𝐴K𝛾Obs𝑋 }

𝒯 J𝐴𝛼 → 𝐵K𝛾Obs𝑋 = {⎷𝛾, 𝜌, 𝜆𝑥 .𝑀⌄ ⋃︀ for all𝑊 ∈ 𝒲J𝐴K𝛾Obs𝑋 ,𝛾 ⋅ 𝜌, 𝑥 ↦𝛼 𝑊 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 J𝐵K𝛾Obs𝑋 }

Fig. 12. Lazy Logical Relation

to be evaluated in environments that may not have bindings for every variable in the typing context.

Such missing variables cannot be scrutinized in any valid semantic derivation tree (since the premise

of the E-Var rule cannot be satisfied), so programs cannot use an unbound value strictly. (We

deliberately remain agnostic as to how such variables may end up missing from the environment,

so a variable without a binding can be used to model one given a � value in the extensional model.)

We establish two different properties: lazy soundness and strict failure. First, any well-typed

program can be run in an environment lacking bindings for any variables with an L attribute and

still produce a result. Second, a well-typed program with an F type is guaranteed to fail when run

in an environment lacking a value for any variable with an S attribute.

5.1 Lazy Soundness
To prove lazy soundness—that unbound lazy variables do not prevent successful execution—we use

the logical relation in Figure 12, which is indexed by a set of variables𝑋 and a vector 𝛾Obs. The set𝑋

represents the outermost scope of the program, i.e., the scope of the top-level program declaration.

This is the smallest scope that will ever exist during evaluation, since variables that are free at the

top level can never go out of scope. We define also a relation ≤𝑆 on vectors that compares attributes

pointwise and relates two vectors if the attributes in the lesser vector are “stricter” than those in

the greater. That is, anywhere the greater vector is non-lazy, the lesser must be as well.

The 𝛾Obs functions like an “observer” context, describing how a variable can be used (as opposed

to how it is actually used). This gives rise to the requirement that 𝛾Obs always be stricter than the 𝛾

on the type in the U case of the relation. Thunks in this relation may not evaluate to a value, but,

if they do, they will use variables less strictly than what the 𝛾Obs vector allows. For example, the

thunk {ret 𝑥} ∈ 𝒲JU𝑥 ∶SF𝐴K𝑥 ∶L
{𝑥}

, even if 𝑥 is missing a value. The observer vector in this case tells

us that 𝑥 will not be used strictly at any point, so this thunk is never forced and accordingly is still

“well typed” by this relation because 𝑥 ∶ L ≰𝑆 𝑥 ∶ S.
We define semantic typing for environments, values, and computations in Figure 13. Intuitively,

an environment 𝜌 is semantically well typed—by a vector 𝛾 and context Γ at a scope 𝑋 and observer

𝛾Obs—if all the values associated with variables that have attributes other than L are well typed at

their associated types in Γ at the same scope and observer.

A value or computation is semantically well typed by vector 𝛾 and context Γ if for every observer

𝛾Obs, environment 𝜌 , and scope 𝑋 , the value or computation can be evaluated to a well-typed result

as long as 𝜌 is well typed, 𝛾Obs is stricter than the vector 𝛾 of attributes used by evaluation, and

every variable in 𝛾Obs that is not present in 𝑋 is assigned an attribute of S, allowing it to be used.

This last requirement deserves some additional explanation. As mentioned, 𝑋 describes the

outermost scope of a program, and in the proof of Theorem 5.2 we will choose 𝑋 to be this scope.
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𝛾 ⋅ Γ ⊧𝛾Obs𝑋 𝜌 ≜ 𝑥 ∶𝛼 𝐴 ∈ (𝛾 ⋅ Γ) and 𝛼 ≠ L Ô⇒ 𝑥 ↦𝑊 ∈ 𝜌 and𝑊 ∈ 𝒲J𝐴K𝛾Obs𝑋

𝛾 ⋅ Γ ⊧L 𝜌 ≜ 𝛾 ⋅ Γ ⊧𝛾dom 𝛾
𝜌

𝑋 ⊧S 𝛾Obs ≜ 𝑥 ∉ 𝑋 Ô⇒ 𝑥 ∶ S ∈ 𝛾Obs
𝛾 ⋅ Γ ⊧L 𝑉 ∶ 𝐴 ≜ for all 𝑋 and 𝛾Obs, (𝛾Obs ⋅ Γ ⊧𝛾Obs𝑋 𝜌 and 𝛾Obs ⋃︀𝑋 ≤𝑆 𝛾 ⋃︀𝑋 and 𝑋 ⊧S 𝛾Obs) Ô⇒

𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊 and𝑊 ∈ 𝒲J𝐴K𝛾Obs𝑋

𝛾 ⋅ Γ ⊧L 𝑀 ∶ 𝐵 ≜ for all 𝑋 and 𝛾Obs, (𝛾Obs ⋅ Γ ⊧𝛾Obs𝑋 𝜌 and 𝛾Obs ⋃︀𝑋 ≤𝑆 𝛾 ⋃︀𝑋 and 𝑋 ⊧S 𝛾Obs) Ô⇒
𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 J𝐵K𝛾Obs𝑋

Fig. 13. Lazy Semantic Typing

For the purposes of induction, however, we must generalize to an arbitrary scope that exactly

describes the variables that might be missing values in 𝜌 . Every variable not in 𝑋 must have been

added to 𝜌 during evaluation, and thus cannot be missing and can have an S attribute in 𝛾Obs.

Now we can state and prove the fundamental lemma, from which soundness follows directly.

Lemma 5.1 (Lazy Fundamental Lemma). For all 𝛾 and Γ, if 𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴, then 𝛾 ⋅ Γ ⊧L 𝑉 ∶ 𝐴, and if

𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵, then 𝛾 ⋅ Γ ⊧L 𝑀 ∶ 𝐵.

Proof. By induction on the typing derivation. □

Theorem 5.2 (Lazy Soundness). For all 𝛾 , Γ, and 𝜌 such that 𝛾 ⋅ Γ ⊧L 𝜌 and all 𝑥 such that 𝑥 ∶ L ∈ 𝛾 ,
(1) if 𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴, then there is some𝑊 such that 𝛾 ⋅ (𝜌 − 𝑥) ⊢ 𝑉 ⇓𝑊 ;

(2) if 𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵, then there is some 𝑇 such that 𝛾 ⋅ (𝜌 − 𝑥) ⊢𝑀 ⇓ 𝑇 ,
where 𝜌 − 𝑥 denotes the environment equivalent to 𝜌 with the binding for 𝑥 removed.

Proof. Using the fundamental lemma, choosing 𝛾Obs to be 𝛾 and 𝑋 to be dom 𝛾 . We also rely on

the fact that 𝛾 ⋅ Γ ⊧L 𝜌 − 𝑥 when 𝑥 ∶ L ∈ 𝛾 . □

This theorem tells us that if CBPV
𝛾
assigns a lazy attribute to a variable in some program, we

can still evaluate that program in an environment where that variable is not bound to a value.

5.2 Strict Failure
To show that strictly using a missing value always causes evaluation to fail, we need a different,

more complex logical relation. We also need a precise notion of what it means for evaluation to fail.

In particular, it is possible for a semantic derivation in CBPV
𝛾
to fail because the wrong attributes

were chosen for a non-deterministic rule like E-Thunk or E-Sub, rather than because a value is

absent. This kind of failure is uninteresting, in the sense that evaluation could simply have made

a different choice and produced a valid derivation tree; we want to argue that strict usage of a

variable whose value is missing cannot ever produce a valid semantic derivation, regardless of how

attributes are chosen. We denote this kind of failure with the ☇ symbol.

We formalize a notion of derivations that are equivalent up to their choice of attributes by

defining a relation ≡ that relates two closed terminals if they are equivalent modulo their attributes.

The definition of ≡ is straightforward and can be found in Appendix E in the supplemental material.

It is also simple to lift ≡ to relate environments pointwise.

We can use this notion of equivalence modulo 𝛾s to precisely express what it means for there to

be no possible valid derivation tree for a given expression and environment.
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𝒲JunitK𝑥 = {()}
𝒲J𝐴1 ×𝐴2K𝑥 = {(𝑊1,𝑊2) ⋃︀𝑊1 ∈ 𝒲J𝐴1K𝑥 and𝑊2 ∈ 𝒲J𝐴2K𝑥}
𝒲J𝐴1 +𝐴2K𝑥 = {inl𝑊1 ⋃︀𝑊1 ∈ 𝒲J𝐴1K𝑥} ∪ {inr𝑊2 ⋃︀𝑊2 ∈ 𝒲J𝐴2K𝑥}
𝒲JU𝛾𝐵K𝑥 = {{𝛾 ′, 𝜌,𝑀} ⋃︀𝛾 ⋃︀dom 𝛾 ′= 𝛾 ′ ⋃︀dom 𝛾 and (𝛾 ′, 𝜌,𝑀) ∈ ℳJ𝐵K𝑥}
𝒯 JF𝐴K𝑥 = {ret𝑊 ⋃︀𝑊 ∈ 𝒲J𝐴K𝑥}

𝒯 J𝐴𝛼 → 𝐵K𝑥 = {⎷𝛾, 𝜌, 𝜆𝑥 .𝑀⌄ ⋃︀ for all𝑊 ∈ 𝒲J𝐴K𝑥 ,

𝜌, 𝑥 ↦𝑊 ⊢𝑀☇ or 𝛾 ⋅ 𝜌, 𝑥 ↦𝛼 𝑊 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 J𝐵K𝑥}

ℳJF𝐴K𝑥 = {(𝛾, 𝜌,𝑀) ⋃︀ 𝑥 ∶ S ∈ 𝛾 Ô⇒ 𝜌 ⊢𝑀☇ and
𝑥 ∶ S ∉ 𝛾 Ô⇒ 𝜌 ⊢𝑀☇ or 𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 JF𝐴K𝑥}

ℳJ𝐴𝛼 → 𝐵K𝑥 = {(𝛾, 𝜌,𝑀) ⋃︀ 𝑥 ∶ S ∈ 𝛾 Ô⇒ 𝜌 ⊢𝑀☇ or (𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ ℱJ𝛼,𝐴, 𝐵K𝑥) and
𝑥 ∶ S ∉ 𝛾 Ô⇒ 𝜌 ⊢𝑀☇ or 𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 J𝐴𝛼 → 𝐵K𝑥}

ℱJ(𝛼,𝐴,F𝐴′)K𝑥 = {⎷𝛾, 𝜌, 𝜆𝑥 .𝑀⌄ ⋃︀ for all𝑊 ∈ 𝒲J𝐴K𝑥 , 𝜌, 𝑥 ↦𝑊 ⊢𝑀☇}

ℱJ(𝛼,𝐴,𝐴′𝛼
′

→ 𝐵)K𝑥 = {⎷𝛾, 𝜌, 𝜆𝑥 .𝑀⌄ ⋃︀ for all𝑊 ∈ 𝒲J𝐴K𝑥 , 𝜌, 𝑥 ↦𝑊 ⊢𝑀☇ or
𝛾 ⋅ 𝜌, 𝑥 ↦𝛼 𝑊 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ ℱJ(𝛼 ′,𝐴′, 𝐵)K𝑥}

Fig. 14. Strict Logical Relation

Definition 5.3 (Semantic Failure).

𝜌 ⊢ 𝑉 ☇ ≜ for all 𝛾 and 𝜌 ′, if 𝜌 ≡ 𝜌 ′ then ∄𝑊,𝛾 ⋅ 𝜌 ′ ⊢ 𝑉 ⇓𝑊
𝜌 ⊢𝑀☇ ≜ for all 𝛾 and 𝜌 ′, if 𝜌 ≡ 𝜌 ′ then ∄𝑇,𝛾 ⋅ 𝜌 ′ ⊢𝑀 ⇓ 𝑇

Intuitively, this definition says that a value or computation fails to evaluate in an environment 𝜌

if, for any choice of attributes—both those in the derivation itself and also those appearing in the

environment—there is no closed terminal that can be produced by any derivation. This rules out

trivial failures of evaluation that occur due to an incorrect choice of attributes and instead tells us

about terms that fail to evaluate because they attempt to use a missing or ill-typed value.

We define the logical relation for the proof of strict failure in Figure 14. Unlike the lazy relation,

the strict relation is indexed not by an entire attribute vector but rather by a single variable. We

can understand this logical relation as searching the environment for the site of execution failure:

the 𝑥 variable indexing the relation is the location of the variable missing its value, and the relation

guarantees that thunk values that are in it will necessarily fail when forced, if their attributes use 𝑥

strictly. If a thunk’s attributes are not S for 𝑥 , the relation instead guarantees that forcing the thunk

will either fail or produce a result that itself is in the relation.

Most of the complexity in this relation comes from the fact that attributes “pass through” lambda

abstractions in CBPV
𝛾
. This has precedent elsewhere in the CBPV literature [33, 34, 76], but it comes

with an unfortunate consequence: despite the fact that, say, 𝜆𝑥. ret 𝑦 typechecks with attribute

𝑦 ∶ S, evaluation of this program will not actually fail. Instead, it will produce a closure. In practice,

to bind a function to a variable in CBPV
𝛾
, it must be suspended via a thunk, which will restore

the behavior we want. Therefore, we take the standard approach in the CBPV literature, stating
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𝛾 ⋅ Γ ⊧☇𝑥 𝜌 ≜ 𝑥 ∶ S ∈ 𝛾 and 𝑥 ∉ 𝜌 and (𝑦 ≠ 𝑥 Ô⇒ 𝜌(𝑦) ∈ 𝒲JΓ(𝑦)K𝑥)

𝛾 ⋅ Γ ⊧?𝑥 𝜌 ≜ 𝑥 ∶ S ∉ 𝛾 and 𝑥 ∉ 𝜌 and (𝑦 ≠ 𝑥 Ô⇒ 𝜌(𝑦) ∈ 𝒲JΓ(𝑦)K𝑥)

𝛾 ⋅ Γ ⊧S 𝑉 ∶ 𝐴 ≜ 𝛾 ⋅ Γ ⊧☇𝑥 𝜌 Ô⇒ 𝜌 ⊢ 𝑉 ☇ and

𝛾 ⋅ Γ ⊧?𝑥 𝜌 Ô⇒ 𝜌 ⊢ 𝑉 ☇ or 𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊 and𝑊 ∈ 𝒲J𝐴K𝑥

𝛾 ⋅ Γ ⊧S 𝑀 ∶ F𝐴 ≜ 𝛾 ⋅ Γ ⊧☇𝑥 𝜌 Ô⇒ 𝜌 ⊢𝑀☇ and

𝛾 ⋅ Γ ⊧?𝑥 𝜌 Ô⇒ 𝜌 ⊢𝑀☇ or 𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 JF𝐴K𝑥

𝛾 ⋅ Γ ⊧S 𝑀 ∶ 𝐴𝛼 → 𝐵 ≜ 𝛾 ⋅ Γ ⊧☇𝑥 𝜌 Ô⇒ 𝜌 ⊢𝑀☇ or 𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ ℱJ𝐴𝛼 → 𝐵K𝑥 and

𝛾 ⋅ Γ ⊧?𝑥 𝜌 Ô⇒ 𝜌 ⊢𝑀☇ or 𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 and 𝑇 ∈ 𝒯 J𝐴𝛼 → 𝐵K𝑥

Fig. 15. Strict Semantic Typing

and proving our top-level soundness theorem at returner types F𝐴 only. However, for purposes of

induction the actual relation itself must be fully general.

To achieve this generality, we define two different helper relationsℳJ⋅K𝑥 (for maybe) and
ℱJ⋅, ⋅, ⋅K𝑥 (for failure). The former describes computations that may fail depending on their usage

of 𝑥 , while the latter describes closures that definitely fail due to their usage of 𝑥 . On function

types returning F types, this latter relation guarantees that evaluation of the closed-over function

body actually fails, while on function types returning other functions it instead guarantees that

evaluation of the function body will either fail or produce another closure that is also in ℱJ⋅, ⋅, ⋅K𝑥 .
Figure 15 defines strict semantic typing and formalizes the intuition for the logical relation. An

environment can either be ⊧☇𝑥 (well typed, but missing a strictly-used value at 𝑥 ) or ⊧?𝑥 (well typed,

but missing a possibly-used value at 𝑥) for a given 𝛾 and Γ. A semantically well-typed value or

computation will definitely fail (or be in the failure relation, in the case of functions) if run with an

environment that is missing a strictly-used value at 𝑥 , and it will either fail or produce a well-typed

result if evaluated with an environment that is missing a possibly-used value at 𝑥 .

As in the lazy case, the fundamental lemma derives the main theorem as a corollary.

Lemma 5.4 (Strict Fundamental Lemma). For all 𝛾 and Γ, if 𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴 then 𝛾 ⋅ Γ ⊧S 𝑉 ∶ 𝐴, and if

𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵 then 𝛾 ⋅ Γ ⊧S 𝑀 ∶ 𝐵.

Proof. By induction on the typing derivation. □

Theorem 5.5 (Strict Failure). For all 𝑥,𝛾 , Γ, and 𝜌 such that 𝛾 ⊧☇𝑥 𝜌 ,

(1) if 𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴 then 𝜌 ⊢ 𝑉 ☇;
(2) if 𝛾 ⋅ Γ ⊢𝑀 ∶ F 𝐴 then 𝜌 ⊢𝑀☇.

Proof. Follows directly from the Fundamental Lemma 5.4. □

This gives us the opposite guarantee from Theorem 5.2, telling us that any well-typed program

will fail when run in an environment where one of its strictly-used variables is missing a value.

We can also use this theorem to argue that arguments to strict functions can be evaluated eagerly.

Informally, if some strict function is called with a thunk argument and produces a result, Theorem

5.5 tells us by contraposition that the function necessarily uses the value of its argument—the value

cannot be missing. Hence, forcing the thunked argument must produce a result, and forcing this

argument before applying the function would correspond to a strict function call.
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5.3 A More Precise Characterization of Strictness
Having proved that CBPV

𝛾
’s type-theoretic characterization of intensional strictness also captures

the traditional, extensional notion, we can move on to consider the new insight the intensional

definition affords us: the ability to distinguish between functions that fail when “called on bottom”

because their argument is used strictly and those that fail independently of their argument.

The traditional abstract interpretation [58, 80] and projection-based definitions [82] of extensional

strictness assert that a function 𝑓 is strict if 𝑓 � = �, where � denotes the result of a non-terminating

or aborting computation. Usually no distinction is made between the possible ways � can be

produced; the definition says only that a strict function fails whenever its argument fails.

The properties described by Theorem 5.2 and Theorem 5.5 are clearly related to this definition.

As no � value can ever actually exist, we can represent it with an environment that is missing

a binding for the variable to which the traditional approach would ascribe a � value. Theorem
5.5 then gives us a definition of strictness that implies 𝑓 � = �: a strict function whose argument

is missing its value will fail to evaluate. Likewise, Theorem 5.2 gives us a definition of laziness

that implies that lazy functions do not scrutinize their arguments: a lazy function that is given an

argument whose value is missing will still evaluate.

However, intensional strictness as described by CBPV
𝛾
’s type system has some extra precision

compared to extensional strictness. Consider a hypothetical program𝑦 ← ret {. . . error . . . } in 𝜆𝑥 .𝑦!.

The function produced by this program—call it 𝑓—would be considered strict, extensionally, even

though it does not use its argument at all. This characterization is useful to an optimizing compiler

performing strictness analysis (i.e., it would allow such a compiler to evaluate this function’s

argument eagerly), but it fails to describe how 𝑓 actually uses its argument.

Unlike the extensional definition of strictness, CBPV
𝛾
does distinguish between functions that

fail due to strict use of their arguments and those that fail for other reasons. CBPV
𝛾
would describe

𝑓 as being lazy in its argument, rather than strict, and also tell us that 𝑓 uses 𝑦 strictly. In a situation

where a call to 𝑓 fails, this additional nuance allows us to reason about why it has failed: CBPV
𝛾

tells us that this failure cannot be the result of the function’s use of its argument (due to Theorem

5.2) and instead tells us that it must be the result of its use of 𝑦 (due to Theorem 5.5). This is useful

information for programmers to have; if, say, a call to a lazy function were to throw an exception, a

programmer could be certain that the source of that exception was in the function body, not in the

argument to the call.

This increased precision regarding sources of failure also makes intensional strictness better

suited to reasoning about impure languages where exceptions are not encapsulated in monads as

in Haskell. In such settings, the extensional definition fails to provide a satisfying characterization

of strictness because it conflates aborting and non-terminating programs; it would thus falsely

identify a call to 𝑓 as an opportunity for eager evaluation, when such an optimization may in fact

change observable behavior if the argument does not terminate.

It is also worth noting that we can apply these insights to the call-by-need [42, 84] evaluation

strategy used by languages like Haskell, as call-by-need is equivalent to call-by-name [58]: the

former is a more efficient implementation of the latter that uses values with the same strictness.

6 Tracking Unused Variables

?

SL

U

Fig. 16. Extended semilattice

The L attribute described so far is not as precise as it could be. Unlike

the S attribute, which guarantees that variables are definitely used

strictly, the L attribute describes both variables that are used lazily

and those that are not used at all. It would be more accurate to
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𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵
L(𝛾) ⋅ Γ ⊢ {𝑀} ∶ U𝛾𝐵

T-Thunk-Ext

L(𝛾) ⋅ 𝜌 ⊢ {𝑀} ⇓ {𝛾, 𝜌,𝑀} E-Thunk-Ext

Fig. 17. Static and semantic rules for thunks in CBPV𝛾 with unused variable tracking

describe the L attribute as asserting that a variable is definitely not
used strictly, as opposed to definitely used lazily.

In this section, we show how to add additional precision to the

system by extending CBPV
𝛾
and CBN

𝛾
with a new attribute U to track variables that are known to

be unused. This fourth attribute is related to the notion of absence described by absence analysis
[71]. It extends the existing set to produce a new semilattice, depicted in Figure 16. The L, S, and ?

attributes have the same meaning as before, and the intuition for ≤ remains the same as well: U

tells us strictly more information about a variable’s usage (or lack thereof) than L.

6.1 Extending CBPV𝛾

We present the extension of CBPV
𝛾
first, as it is simple. U, rather than L, becomes the new identity

of the + operator, while the result of adding any two of the previously existing attributes remains

the same as in Table 1. We introduce the shorthand U for the vector mapping all variables to U.

We do, however, need to introduce a new operation on𝛼s and𝛾s.When suspending a computation

in the T-Thunk rule of the original CBPV
𝛾
, it was sufficient to simply use the lazy vector L for the

required attributes, as no variables are used strictly by a thunked computation. If we wish to be

more precise, however, it is inaccurate to say that a thunk that does not use a variable 𝑥 in its body

is lazy in 𝑥 ; we must instead check the thunk construct with a vector that both is lazy with respect

to the thunk body and does not introduce any new usages.

To achieve this, we introduce a new operation L(⋅) (read “lazify”) that makes a usage lazy.

L(𝛼) = L for all 𝛼 except U; instead, L(U) = U because suspending an unused variable does not

introduce a usage of that variable. This new operation lifts pointwise to attribute vectors. We use

this new operation to define new rules for thunks, presented in Figure 17. All the other rules remain

unchanged, save for replacing L with U in the rules for variables and ().
This extension to CBPV

𝛾
enjoys all the metatheoretic properties proven previously, without

significant changes to any proofs or definitions. We therefore elide these proofs for brevity, noting

only that Theorem 5.2 also applies to variables with a U attribute in addition to those with an L.

The simplicity of this extension is a compelling demonstration of the benefits of reasoning about

variable usage and strictness in CBPV, rather than in CBN directly.

6.2 Extending CBN𝛾

Tracking unused variables in CBN
𝛾
requires significantly more effort due to implicit thunking. In

particular, types in the extended CBN
𝛾
must satisfy a certain well-formedness condition: a type

cannot claim that it uses more variables than those used by the derivation that produces it.

Consider the term (𝑥,𝑦). Assuming 𝑥 and 𝑦 both have the type unit, we can assign this term

type unit𝑥 ∶S,𝑦∶U × unit𝑥 ∶U,𝑦∶S, producing effect 𝑥 ∶ L,𝑦 ∶ L. This makes intuitive sense: despite the

fact that each side of the pair only uses one of the two variables, the pair as a whole uses both 𝑥

and 𝑦. It would be impossible, on the other hand, to produce this type while not using either of the

two variables; to create either side of this pair type, we would need an expression that uses one of

the two strictly. In general, typing derivations that look like Γ ⊢ 𝑒 ∶𝑥 ∶U,... 𝜏𝑥 ∶L,...
1

× 𝜏𝛾
2
are not possible:

there is no way to produce a type that uses 𝑥 without using 𝑥 in its derivation.
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Types produced by the CBN
𝛾
typing rules should have this property, but unfortunately there

are a handful of rules where types are chosen without an accompanying subderivation, such as

the rules for inl or inr. In these cases, the rules must enforce that any such types are well formed

and satisfy particular usage conditions to ensure that all derivations permitted by the CBN
𝛾
typing

judgment contain well-formed types. The formal definition of these well-formedness requirements,

along with a selection of the extended rules for CBN
𝛾
, can be found in Appendices F and G.

The translation between CBN
𝛾
and CBPV

𝛾
needs only a small adjustment: the type translation

presented in Figure 11 must lazify all the intermediate effects on each type rather than returning L

for any non-function types. With this modification, the translation enjoys the same correctness

properties described in Section 4.5 for all well-formed CBN
𝛾
derivations.

7 Related Work
Strictness analysis was first presented by Mycroft [58]. His initial work laid the foundations for

strictness analysis using abstract interpretation [10], but it was limited to programs working with

simple data for which it sufficed to use an abstract domain containing just a ⊺ (defined) and a

� (undefined) element. The original formulation was extended to a four-point domain to better

handle list programs [80]. In addition to fully defined and undefined values, the four-point domain

enabled reasoning about data that was itself defined but that might contain subcomponents that

were not (e.g., a fully-defined list whose elements were undefined).

Wadler and Hughes [82] improved upon earlier techniques using projections [31] to handle

significantly more complex programs and bypass the need for abstract interpretation. Projection-

based analysis involves reasoning backwards to determine how defined a program’s inputs need to

be, based on how its outputs are used; it was first implemented in practice by Kubiak et al. [39] and

it now forms the foundation for strictness analysis in GHC [71]. Other approaches have been found

that outperform GHC, such as the “Optimistic Evaluation” strategy [16], but these have proven too

complex for practical adoption.

Demand analysis [43] generalizes strictness analysis by allowing compilers to reason about “how

much” of a value is used (or “demanded”). It has been adapted to provide fine-grained analysis of

performance in non-strictly evaluated languages [5, 87] and to guide compiler optimizations [72].

CBN
𝛾
’s types also describe demand beyond the top-level constructor; the suspended 𝛾s that appear

in types describe how variables get used as more of the result of a term is demanded.

Strictness in Types. Usage type systems [77, 85, 86] such as linear types [3, 22, 51, 81] are used to

track how variables and values are used in programs. Attempting to apply such systems to modeling

strictness, however, breaks down almost immediately when considering variables that appear in

the bodies of functions. For example, such systems would just describe f4 from the examples in

Figure 2 as using its argument 𝑦, failing to capture the fact that y is not strictly used.

Approaches based on information flow [14, 62, 79, 88, 89] have the opposite problem. Unlike

usage typing, which underapproximates strictness, information-flow typing overapproximates it.

While these systems can distinguish the ways in which f1 and f4 in Figure 2 use their arguments,

they also distinguish between variable usages that should be considered equivalent from a strictness

perspective. For example, an information-flow system would say that if y then 1 else 2 leaks

information about y and that y `seq` 1 does not, since the latter produces the same result regardless

of y’s value. It is clear, however, that both of these programs use y strictly, so information flow is

not sufficient for modeling strictness either.

There are, however, three existing source-level approaches to tracking strictness. Kuo and Mishra

[40, 41] describe a constraint-gathering static analysis they call “strictness types.” Schrijvers and

Mycroft [70] describe an effect system for modeling strictness and use it to guide a handful of
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program optimizations. Both of these approaches, however, are limited to analysis of flat data (i.e.,

numbers or other base types) and thus are not sufficiently expressive for our purposes.

Barendsen and Smetsers [2] and Smetsers and van Eekelen [73] outline a type system modeling

strictness using attributes annotated on types. Their system features a two-point lattice containing

a ! attribute for strict usage and a ? attribute for uses lacking strictness information. This approach

allows function types to be annotated with usage information (e.g., a strict function from 𝐴 to 𝐵

would be typed 𝐴! → 𝐵), but it only tells half the story. Guarantees can only be made about strict

usage (i.e., types for which a ! attribute is inferred) whereas CBN
𝛾
and CBPV

𝛾
can make guarantees

about the evaluation of lazy functions as well.

Effects and Coeffects. Type-and-effect systems are well-studied tools for modeling side effects at the

level of type systems [35, 50, 74, 83]. The study of coeffects is relatively newer, having been first

introduced by Petricek et al. [63] in 2013, but it has been an area of active study for the past decade

[6, 8, 21, 61, 64]. Coeffects have been used to track properties like differential privacy [66], error

bounds [37], irrelevance in dependent type theories [1], and resource usage [3, 4, 8, 76]. Previous

work that uses coeffects to track variable and resource usage is imprecise, however, in that it does

not differentiate between resources used in code that is actually evaluated (which CBPV
𝛾
would

describe as strict) and those appearing only in unforced thunks (which CBPV
𝛾
would treat as lazy).

The interaction between effects and coeffects is an active research area [11, 20]. Nanevski [59]

presents a type system that uses modal types to model local and global state in a manner analogous

to effects and coeffects. Of particular relevance to our work is that the ◻ modality behaves like the

U type in CBPV
𝛾
, in the sense that it both suspends computation and tracks local variable usage

within the type, which has the flavor of a coeffect. Gaboardi et al. [20] use graded modal types to

describe a type system in which effects and coeffects can interact with one another according to

distributive laws, while Hirsch and Tate [30] investigate how effects and coeffects interact when

distributive laws between them do not exist. The latter work is especially relevant because their

choice of how to layer effects and coeffects semantically results in either strict or lazy evaluation,

although they do not surface this information statically. Lastly, McDermott and Mycroft [53] blend

coeffects with effects to implement an effect system for a call-by-need language similarly to CBN
𝛾
.

Call-By-Push-Value. Call-by-push-value and its translations from call by name and call by value

are due to Levy [45–49]. It is frequently used as a substrate for studying effects [33, 34, 52, 67] and

their interplay with other systems, including evaluation order [54], dependent types [65], and time

complexity [36]. Torczon et al. [76] extend CBPV with support for both effects and coeffects; their

presentation and mechanization of this system heavily influenced this paper. They, in turn, drew

from Forster et al. [18]’s mechanization of CBPV in Rocq.

8 Conclusion and Future Work
We have presented a new intensional definition of strictness that refines the usual extensional

definition by describing usage more precisely. We introduced CBN
𝛾
and CBPV

𝛾
, type systems that

embody our definition using effects, related these systems via a type-preserving translation, and

proved that they capture appropriate semantic notions of strict and lazy usage.

In the future, we hope to investigate whether CBN
𝛾
could be used in practice to typecheck real

programs in languages like Haskell. In its current presentation, the annotation burden in the CBN
𝛾

type system is quite severe—expecting programmers to annotate types with the usage of every

variable in scope does not seem reasonable! Prior work by Wansbrough [85], however, describes

implementing a type system with a similar annotation burden practically in GHC; we plan to

explore whether the principles guiding that work can be applied to CBN
𝛾
.
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To work for realistic Haskell programs, a few refinements to CBN
𝛾
’s type system would be

needed. As mentioned in Section 3, the requirement that CBN
𝛾
function types declare the effects

that they allow their arguments to produce is quite restrictive. Existing work on systems similar

to CBN
𝛾
[53] addresses this limitation using effect polymorphism [50, 68], and we believe the

same approach would work here. This would involve building out the theory and metatheory of

effect-polymorphic extensions of CBN
𝛾
and CBPV

𝛾
. Rioux and Zdancewic [67] describe CBPV

∀
, a

type-polymorphic extension to CBPV, providing a promising foundation for this endeavor.

Further, our type system would need to support more complex datatypes, such as lists. Indeed, we

believe the main principles should extend relatively straightforwardly. Aside from the usual nil and
cons constructors for introducing lists, we would add a fold 𝑓 𝑙𝑠𝑡 𝑎𝑐𝑐 operation to consume them.

The strictness annotations on the type inferred for 𝑓 would describe how the list and accumulator

are used: if 𝑓 has an S attribute for both arguments, then the list contents are all strictly used (e.g.,

the sum example from Figure 1), whereas an L attribute for the list element argument and an S

attribute for the accumulator would result in only the “spine” of the list being strictly used (e.g.,

the length function). An L attribute for the accumulator would mean that the fold does not even

use the spine of the list strictly (e.g., map).
We would also like to explore whether CBPV

𝛾
can be used to guide compiler optimizations. CBPV

is often used as a reasoning tool for intermediate languages [15, 56, 60], so the groundwork has

already been laid. We plan to build a compiler for a fragment of Haskell into CBPV
𝛾
to investigate

what transformations can be applied based on intensional strictness in this setting.

Beyond strictness, the characterization of 𝛾s in CBN
𝛾
and CBPV

𝛾
deserves further attention: we

would like to study more formally the connection between CBPV
𝛾
’s 𝛾s and coeffects. We have also

noted the potential relationship between these types and the logic of modal necessity, and we are

eager to learn more about the extent and nature of this relationship.
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Kwiatkowska, and David Peleg (Eds.). Springer, 385–397. doi:10.1007/978-3-642-39212-2-35

https://doc.rust-lang.org/book/ch13-02-iterators.html#processing-a-series-of-items-with-iterators
https://doc.rust-lang.org/book/ch13-02-iterators.html#processing-a-series-of-items-with-iterators
https://doi.org/10.1007/978-1-4471-3196-0_17
https://doi.org/10.1145/41625.41638
https://doi.org/10.1145/99370.99390
https://doi.org/10.1145/158511.158618
https://doi.org/10.1017/S0956796800001878
https://ocaml.org/manual/5.3/api/Lazy.html
https://ocaml.org/manual/5.3/api/Lazy.html
https://doi.org/10.1007/3-540-48959-2-17
https://qmro.qmul.ac.uk/xmlui/handle/123456789/4742
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1145/3537668.3537670
https://doi.org/10.1145/73560.73564
https://doi.org/10.1016/S1571-0661(04)00022-2
https://doi.org/10.1016/S1571-0661(04)00022-2
https://doi.org/10.4230/LIPIcs.FSCD.2025.25
https://doi.org/doi:10.1515/comp-2018-0009
https://arxiv.org/abs/2405.11361
https://arxiv.org/abs/2405.11361
https://doi.org/10.48550/arXiv.2203.01835
https://neilmitchell.blogspot.com/2013/08/destroying-performance-with-strictness.html
https://neilmitchell.blogspot.com/2013/08/destroying-performance-with-strictness.html
https://doi.org/10.1145/888251.888271
https://maxsnew.com/docs/mfps2023-slides.pdf
https://doi.org/10.1145/3341714
https://doi.org/10.1145/210184.210187
https://doi.org/10.1007/978-3-642-39212-2-35


Typing Strictness 29

[64] Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014. Coeffects: a calculus of context-dependent computation.

SIGPLAN Not. 49, 9 (Aug. 2014), 123–135. doi:10.1145/2692915.2628160
[65] Pierre-Marie Pédrot and Nicolas Tabareau. 2019. The fire triangle: how to mix substitution, dependent elimination,

and effects. 4 (2019), 1–28. Issue POPL. doi:10.1145/3371126

[66] Jason Reed and Benjamin C. Pierce. 2010. Distance makes the types grow stronger: a calculus for differential privacy.

SIGPLAN Not. 45, 9 (Sept. 2010), 157–168. doi:10.1145/1932681.1863568
[67] Nick Rioux and Steve Zdancewic. 2020. Computation focusing. 4 (2020), 95:1–95:27. Issue ICFP. doi:10.1145/3408977

[68] Lukas Rytz, Martin Odersky, and Philipp Haller. 2012. Lightweight Polymorphic Effects. In ECOOP 2012 – Object-
Oriented Programming (Berlin, Heidelberg, 2012), James Noble (Ed.). Springer, 258–282. doi:10.1007/978-3-642-31057-

7-13

[69] Typelevel Scala. 2013. FS2: Functional, effectful, concurrent streams for Scala. https://fs2.io/#/

[70] Tom Schrijvers and Alan Mycroft. 2010. Strictness Meets Data Flow. In Static Analysis, Radhia Cousot and Matthieu

Martel (Eds.). Springer, Berlin, Heidelberg, 439–454. doi:10.1007/978-3-642-15769-1_27

[71] Ilya Sergey, Simon Peyton Jones, and Dimitrios Vytiniotis. 2014. Theory and practice of demand analysis in Haskell.

(2014). https://www.microsoft.com/en-us/research/publication/theory-practice-demand-analysis-haskell/

[72] Ilya Sergey, Dimitrios Vytiniotis, and Simon Peyton Jones. 2014. Modular, higher-order cardinality analysis in theory

and practice. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’14). Association for Computing Machinery, New York, NY, USA, 335–347. doi:10.1145/2535838.2535861

[73] Sjaak Smetsers and Marko van Eekelen. 2013. Higher-Order Strictness Typing. In Trends in Functional Programming,
Hans-Wolfgang Loidl and Ricardo Peña (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 85–100.

[74] J.-P. Talpin and P. Jouvelot. 1992. The type and effect discipline. In [1992] Proceedings of the Seventh Annual IEEE
Symposium on Logic in Computer Science (1992-06). 162–173. doi:10.1109/LICS.1992.185530

[75] Rocq Team. 2025. The Rocq Prover. https://rocq-prover.org/

[76] Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey Velez-Ginorio, and Stephanie Weirich. 2024. Effects

and Coeffects in Call-by-Push-Value. 8 (2024), 1108–1134. Issue OOPSLA2. doi:10.1145/3689750

[77] David N. Turner, PhilipWadler, and ChristianMossin. 1995. Once upon a type. In Proceedings of the Seventh International
Conference on Functional Programming Languages and Computer Architecture (La Jolla, California, USA) (FPCA ’95).
Association for Computing Machinery, New York, NY, USA, 1–11. doi:10.1145/224164.224168

[78] Marco Vassena, Joachim Breitner, and Alejandro Russo. 2017. Securing Concurrent Lazy Programs Against Information

Leakage. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF). 37–52. doi:10.1109/CSF.2017.39
[79] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. 1996. A sound type system for secure flow analysis. J. Comput.

Secur. 4, 2–3 (Jan. 1996), 167–187.
[80] Philip Wadler. 1987. Strictness analysis on non-flat domains (by abstract interpretation over finite domains). In

Abstract Interpretation of Declarative Languages. Halsted Press.

[81] Philip Wadler. 1993. Linear Types Can Change the World! (10 1993).

[82] PhilipWadler and R. J. M. Hughes. 1987. Projections for strictness analysis. In Proceedings of the Functional Programming
Languages and Computer Architecture. Springer-Verlag, Berlin, Heidelberg, 385–407.

[83] Philip Wadler and Peter Thiemann. 2003. The marriage of effects and monads. ACM Trans. Comput. Logic 4, 1 (Jan.
2003), 1–32. doi:10.1145/601775.601776

[84] C.P. Wadsworth. 1971. Semantics and Pragmatics of the Lambda-calculus. University of Oxford. https://books.google.

com/books?id=kl1QIQAACAAJ

[85] Keith Wansbrough. 2005. Simple polymorphic usage analysis. Technical Report UCAM-CL-TR-623. University of

Cambridge, Computer Laboratory. doi:10.48456/tr-623

[86] Keith Wansbrough and Simon Peyton Jones. 1999. Once upon a polymorphic type. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Antonio, Texas, USA) (POPL ’99). Associa-
tion for Computing Machinery, New York, NY, USA, 15–28. doi:10.1145/292540.292545

[87] Li-yao Xia, Laura Israel, Maite Kramarz, Nicholas Coltharp, Koen Claessen, Stephanie Weirich, and Yao Li. 2024. Story

of Your Lazy Function’s Life: A Bidirectional Demand Semantics for Mechanized Cost Analysis of Lazy Programs.

Proceedings of the ACM on Programming Languages 8, ICFP (Aug. 2024), 30–63. doi:10.1145/3674626

[88] Steve Zdancewic and Andrew C. Myers. 2001. Secure Information Flow and CPS. In Programming Languages and
Systems, David Sands (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 46–61.

[89] Steve Zdancewic and Andrew C. Myers. 2002. Secure Information Flow via Linear Continuations. Higher-Order and
Symbolic Computation 15, 2 (Sept. 2002), 209–234. doi:10.1023/A:1020843229247

https://doi.org/10.1145/2692915.2628160
https://doi.org/10.1145/3371126
https://doi.org/10.1145/1932681.1863568
https://doi.org/10.1145/3408977
https://doi.org/10.1007/978-3-642-31057-7-13
https://doi.org/10.1007/978-3-642-31057-7-13
https://fs2.io/#/
https://doi.org/10.1007/978-3-642-15769-1_27
https://www.microsoft.com/en-us/research/publication/theory-practice-demand-analysis-haskell/
https://doi.org/10.1145/2535838.2535861
https://doi.org/10.1109/LICS.1992.185530
https://rocq-prover.org/
https://doi.org/10.1145/3689750
https://doi.org/10.1145/224164.224168
https://doi.org/10.1109/CSF.2017.39
https://doi.org/10.1145/601775.601776
https://books.google.com/books?id=kl1QIQAACAAJ
https://books.google.com/books?id=kl1QIQAACAAJ
https://doi.org/10.48456/tr-623
https://doi.org/10.1145/292540.292545
https://doi.org/10.1145/3674626
https://doi.org/10.1023/A:1020843229247


A Additional typing rules for CBN𝛾

Γ ⊢CBN 𝑒 ∶𝛾1 𝜏1
Γ ⊢CBN inl 𝑒 ∶L 𝜏𝛾11 + 𝜏

𝛾2
2

T-CBN-Inl

Γ ⊢CBN 𝑒 ∶𝛾2 𝜏2
Γ ⊢CBN inr 𝑒 ∶L 𝜏𝛾11 + 𝜏

𝛾2
2

T-CBN-Inr

Γ ⊢CBN () ∶L unit
T-CBN-Unit

Γ ⊢CBN 𝑒1 ∶𝛾1 unit Γ ⊢CBN 𝑒2 ∶𝛾2 𝜏
Γ ⊢CBN 𝑒1;𝑒2 ∶𝛾1+𝛾2 ∶ 𝜏

T-CBN-Seq

Γ ⊢CBN 𝑒1 ∶𝛾1 𝜏
𝛾
′

1

1
× 𝜏𝛾

′

2

2
Γ, 𝑥1 ∶ 𝜏

𝛾
′

1

1
, 𝑥2 ∶ 𝜏

𝛾
′

2

2
⊢CBN 𝑒2 ∶𝛾2 𝜏

Γ ⊢CBN let (𝑥1, 𝑥2) = 𝑒1 in 𝑒2 ∶𝛾1+(↓𝑥1↓𝑥2𝛾2) ↓𝑥1↓𝑥2𝜏
T-CBN-Split

B Additional typing rules for CBPV𝛾

𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴 (Value typing)

L ⋅ Γ ⊢ () ∶ unit
T-Unit

𝛾1 ⋅ Γ ⊢ 𝑉1 ∶ 𝐴1 𝛾2 ⋅ Γ ⊢ 𝑉2 ∶ 𝐴2

(𝛾1 +𝛾2) ⋅ Γ ⊢ (𝑉1,𝑉2) ∶ 𝐴1 ×𝐴2

T-Pair

𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴1

𝛾 ⋅ Γ ⊢ inl 𝑉 ∶ 𝐴1 +𝐴2

T-Inl

𝛾 ⋅ Γ ⊢ 𝑉 ∶ 𝐴2

𝛾 ⋅ Γ ⊢ inr 𝑉 ∶ 𝐴1 +𝐴2

T-Inr

𝛾 ⋅ Γ ⊢𝑀 ∶ 𝐵 (Computation typing)

𝛾1 ⋅ Γ ⊢ 𝑉 ∶ 𝐴1 ×𝐴2 𝛾2 ⋅ Γ, 𝑥1 ∶𝛼1 𝐴1, 𝑥2 ∶𝛼2 𝐴2 ⊢𝑀 ∶ 𝐵
(𝛾1 +𝛾2) ⋅ Γ ⊢ (𝑥1, 𝑥2) ← 𝑉 in𝑀 ∶ ↓𝑥1↓𝑥2𝐵

T-Split

𝛾1 ⋅ Γ ⊢ 𝑉 ∶ 𝐴1 +𝐴2 𝐵 = ↓𝑥1𝐵1 = ↓𝑥2𝐵2

𝛾2 ⋅ Γ, 𝑥1 ∶𝛼1 𝐴1 ⊢𝑀1 ∶ 𝐵1 𝛾2 ⋅ Γ, 𝑥2 ∶𝛼2 𝐴2 ⊢𝑀2 ∶ 𝐵2

(𝛾1 +𝛾2) ⋅ Γ ⊢ case 𝑉 of inl 𝑥1 →𝑀1, inr 𝑥2 →𝑀2 ∶ 𝐵
T-Case



C Additional semantic rules for CBPV𝛾

𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊 (Value semantics)

L ⋅ 𝜌 ⊢ () ⇓ ()
E-Unit

𝛾1 ⋅ 𝜌 ⊢ 𝑉1 ⇓𝑊1 𝛾2 ⋅ 𝜌 ⊢ 𝑉2 ⇓𝑊2

(𝛾1 +𝛾2) ⋅ 𝜌 ⊢ (𝑉1,𝑉2) ⇓ (𝑊1,𝑊2)
E-Pair

𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊
𝛾 ⋅ 𝜌 ⊢ inl 𝑉 ⇓ inl𝑊 E-Inl

𝛾 ⋅ 𝜌 ⊢ 𝑉 ⇓𝑊
𝛾 ⋅ 𝜌 ⊢ inr 𝑉 ⇓ inr𝑊 E-Inr

𝛾 ⋅ 𝜌 ⊢𝑀 ⇓ 𝑇 (Computation semantics)

𝛾1 ⋅ 𝜌 ⊢ 𝑉 ⇓ (𝑊1,𝑊2) 𝛾2 ⋅ 𝜌, 𝑥1 ↦𝛼1 𝑊1, 𝑥2 ↦𝛼2 𝑊2 ⊢𝑀 ⇓ 𝑇
(𝛾1 +𝛾2) ⋅ 𝜌 ⊢ (𝑥1, 𝑥2) ← 𝑉 in𝑀 ⇓ 𝑇 E-Split

𝛾1 ⋅ 𝜌 ⊢ 𝑉 ⇓ inl𝑊 𝛾2 ⋅ 𝜌, 𝑥1 ↦𝛼 𝑊 ⊢𝑀1 ⇓ 𝑇
𝛾1 +𝛾2 ⋅ 𝜌 ⊢ case 𝑉 of inl 𝑥1 →𝑀1, inr 𝑥2 →𝑀2 ⇓ 𝑇

E-Case-Inl

𝛾1 ⋅ 𝜌 ⊢ 𝑉 ⇓ inr𝑊 𝛾2 ⋅ 𝜌, 𝑥2 ↦𝛼 𝑊 ⊢𝑀2 ⇓ 𝑇
𝛾1 +𝛾2 ⋅ 𝜌 ⊢ case 𝑉 of inl 𝑥1 →𝑀1, inr 𝑥2 →𝑀2 ⇓ 𝑇

E-Case-Inr

D CBN𝛾-to-CBPV𝛾 syntax translation

J()K = ret unit
J𝑥K = 𝑥 !

J𝜆𝑥.𝑒K = 𝜆𝑥.J𝑒K
J𝑒1 𝑒2K = J𝑒1K{J𝑒2K}

Jlet 𝑥 = 𝑒1 in 𝑒2K = 𝑥 ← ret {J𝑒1K} in J𝑒2K
J𝑒1;𝑒2K = 𝑥 ← J𝑒1K in 𝑥 ; J𝑒2K

J(𝑒1, 𝑒2)K = ret ({J𝑒1K}, {J𝑒2K})
Jinl 𝑒K = ret (inl {J𝑒K})
Jinr 𝑒K = ret (inr {J𝑒K})

Jlet (𝑥1, 𝑥2) = 𝑒1 in 𝑒2K = 𝑥 ← J𝑒1K in (𝑥1, 𝑥2) ← 𝑥 in J𝑒2K
Jcase 𝑒1 of inl 𝑥1 → 𝑒2 inr 𝑥2 → 𝑒3K = 𝑥 ← J𝑒1K in case 𝑥 of inl 𝑥1 → J𝑒2K inr 𝑥2 → J𝑒3K

Jsub 𝑒K = sub J𝑒K



E Equivalence modulo 𝛾

() ≡ ()
𝑊 ≡𝑊 ′

inl𝑊 ≡ inl𝑊 ′

𝑊 ≡𝑊 ′

inr𝑊 ≡ inr𝑊 ′

𝑊1 ≡𝑊 ′
1

𝑊2 ≡𝑊 ′
2

(𝑊1,𝑊2) ≡ (𝑊 ′
1
,𝑊 ′

2
)

𝜌 ≡ 𝜌 ′

{𝛾, 𝜌,𝑀} ≡ {𝛾 ′, 𝜌 ′,𝑀}
𝑊 ≡𝑊 ′

ret𝑊 ≡ ret𝑊 ′

𝜌 ≡ 𝜌 ′

⎷𝛾, 𝜌,𝑀⌄ ≡ ⎷𝛾 ′, 𝜌 ′,𝑀⌄
∀𝑥, 𝜌(𝑥) ≡ 𝜌 ′(𝑥)

𝜌 ≡ 𝜌 ′

F Well-formedness requirements for CBN𝛾 types extended with unused variable
tracking

wf 𝜏 L(𝛾) = L(𝛾 + E(𝜏))
𝛾 ⊢WF 𝜏

∀𝑥 ∶ 𝜏𝛾 ∈ Γ,𝛾 ⊢WF 𝜏

wf Γ

E(unit) = U
E(𝜏𝛾1

1
× 𝜏𝛾2

2
) = 𝛾1 +𝛾2 + E(𝜏1) + E(𝜏2)

E(𝜏𝛾1
1
+ 𝜏𝛾2

2
) = 𝛾1 +𝛾2 + E(𝜏1) + E(𝜏2)

E((𝑥 ∶𝛼 𝜏
𝛾1
1
)

𝛾2Ð→ 𝜏2) = 𝛾2 + E(𝜏1) + ↓𝑥E(𝜏2)

wf unit

𝛾1 ⊢WF 𝜏1 𝛾2 ⊢WF 𝜏2

wf 𝜏
𝛾1
1
× 𝜏𝛾2

2

𝛾1 ⊢WF 𝜏1 𝛾2 ⊢WF 𝜏2

wf 𝜏
𝛾1
1
+ 𝜏𝛾2

2

𝛾1 ⊢WF 𝜏1 𝛾2 ⊢WF ↓𝑥𝜏2
wf (𝑥 ∶𝛼 𝜏

𝛾1
1
)

𝛾2Ð→ 𝜏2

G A selection of typing rules for CBN𝛾 extended with unused variable tracking

𝑥 ∶ 𝜏𝛾 ∈ Γ
Γ ⊢CBN 𝑥 ∶𝛾,𝑥 ∶S 𝜏

T-CBN-Var-Ext

L(↓𝑥E(𝜏2)) = L(𝛾1 + ↓𝑥E(𝜏2))
𝛾1 ⊢WF 𝜏1

Γ, 𝑥 ∶𝛾1 𝜏1 ⊢CBN 𝑒 ∶𝛾2,𝑥 ∶𝛼 𝜏2

Γ ⊢CBN 𝜆𝑥.𝑒 ∶L(𝛾1+𝛾2) (𝑥 ∶𝛼 𝜏
𝛾1
1
)

𝛾2Ð→ 𝜏2

T-CBN-Abs-Ext

Γ ⊢CBN 𝑒 ∶𝛾1 𝜏1 L(𝛾1) = L(𝛾2) 𝛾2 ⊢WF 𝜏2

Γ ⊢CBN inl 𝑒 ∶L(𝛾1+𝛾2+E(𝜏2)) 𝜏𝛾11 + 𝜏
𝛾2
2

T-CBN-Inl-Ext

Γ ⊢CBN 𝑒 ∶𝛾2 𝜏2 L(𝛾1) = L(𝛾2) 𝛾1 ⊢WF 𝜏1

Γ ⊢CBN inr 𝑒 ∶L(𝛾1+𝛾2+E(𝜏1)) 𝜏𝛾11 + 𝜏
𝛾2
2

T-CBN-Inr-Ext

Γ ⊢CBN 𝑒1 ∶𝛾1 (𝑥 ∶𝛼 𝜏
𝛾2
1
)

𝛾3Ð→ 𝜏2 Γ ⊢CBN 𝑒2 ∶𝛾2 𝜏1
Γ ⊢CBN 𝑒1 𝑒2 ∶𝛾1+𝛾3+L(𝛾2) ↓𝑥𝜏2

T-CBN-App-Ext

Γ ⊢CBN 𝑒1 ∶𝛾1 𝜏1 Γ, 𝑥 ∶𝛾1 𝜏1 ⊢CBN 𝑒2 ∶𝛾2 𝜏2
Γ ⊢CBN let 𝑥 = 𝑒1 in 𝑒2 ∶L(𝛾1)+(↓𝑥𝛾2) ↓𝑥𝜏2

T-CBN-Let-Ext
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