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Classical watches display time, but can
hardly do anything else. This limitation
is artificial: for instance, several people
confessed to be often in want of
mustard... and what is the point of
knowing time if you cannot get mustard?

Y.J. Ringard [67]
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Abstract

While decades of research into formal verification have brought provable correctness guarantees

closer to being a part of developers’ everyday reality, provable guarantees about algorithmic

complexity are harder to come by. This is not for lack of effort. Algorithmic complexity and

program cost don’t play nicely with abstraction, and so they can prove a difficult target for the

kinds of compositional analysis that formal tools handle best. However, the classical algorithm

analysis technique known as amortized analysis [75] is promising in this regard: it allows one to

selectively break abstraction barriers to precisely and compositionally calculate program costs.

In this thesis, we leverage amortized analysis to make two contributions which make some

progress towards our goal of provable cost guarantees for the masses.

We begin by taking a cue from the interactive theorem proving school of software verification.

We develop a functional language called LambdaAmor, which provides a rich refinement type

system for in-language amortized cost analysis. We begin with a previously-developed core

calculus called λ-Amor [64], transform it to an algorithmic type system which is amenable to

implementation, and subsequently implement the language in OCaml.

Next, we move to considering a more lightweight method of analyzing the cost of programs,

namely the extract-and-solve method of recurrences. This technique is already used (explicitly

or otherwise) by practitioners of functional languages, and regularly included in introductory

CS curricula. However, the technique is informal, error-prone, and not immediately applicable

to amortized cost analysis. Following on work by Danner et al. [19], we formalize the process of

amortized analysis by recurrence extraction as a language-to-language translation, and use this

to prove the technique’s correctness.
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1. INTRODUCTION 2

As the importance of ubiquity of modern software increases, so too does its complexity. The

burden of this complexity blowup lands squarely on the shoulders of software developers, who are

asked to create increasingly intricate systems, with little extra help. In response to this, many

developers have turned to languages and tooling to help ease the burden: this is exemplified

by the rise of Rust, TypeScript, and other and modern strongly-typed languages [78] [77] [52],

along with the explosion of interest in formally-verified software by way of theorem proving or

other formal methods techniques [68]. While these practices go a long way to improve developer

experience and confidence, they are limited in the domains of understanding that they improve.

Notably, there are very few existing tools which help developers reason about the resource usage,

algorithmic complexity, or performance of their software. The days when resource usage could

be easily discerned from source code by eye are long gone, and yet very few techniques have

stepped in to fill the void. Moreover, the techniques that software developers use to analyze

algorithmic complexity in the absence of formal procedures, languages, or tooling are informal,

fragile, and ad-hoc.

The long-term goal of the field of language-based resource analysis is to create languages,

tools, and methods which fill this gap by providing programmers with the capability to statically

reason about the resource cost of the programs they write. In this thesis, we will restrict our focus

along two axes. First, we will only consider a particular resource: run-time cost. Second, we

will only consider typed functional programs: the compositional nature of functional programs

and the structure provided by types lend themselves greatly to the approaches to cost analysis

we consider. Additionally, the techniques will all have the flavor of amortized analysis [75], a

technique which we discuss in depth in Section 1 below.

We begin in Chapter 2 by exploring a project which serves as a tool for engineers to prove

cost properties of their programs. In particular, we consider LambdaAmor, a functional language

for amortized cost analysis with an immensely expressive type system. The original creators of

the core calculus on which LambdaAmor is based [64] considered it primarily as a unifying calculus

for multiple resource-aware type systems. In this chapter, we consider it instead from a language

designer’s perspective and investigate what it takes to implement the language. LambdaAmor fills

a point in the design space of resource aware languages analogous to that of dependently-typed

languages like Agda [56], Idris [8], and F* [74], or refinement-typed languages like Liquid Haskell
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[80] in the space of verification techniques. LambdaAmor’s highly expressive type system allows

for intrinsic verification [43] of program costs, similarly to how dependent or refinement types

allow for intrinsic verification of functional correctness. However, the same expressiveness that

allows interesting amortized bounds to be verified in LambdaAmor makes this implementation

task no easy feat, and so we draw on a plethora of type system algorithmization techniques to

eventually arrive at a calculus which is amenable to implementation. Finally, we present and

evaluate an implementation of LambdaAmor in OCaml.

Then, in Chapter 3, we move to considering a technique that functional programming prac-

titioners already use in analyzing the cost of their programs, namely the method of extracting

and solving recurrences. As taught in computer science courses, the technique is easily un-

derstandable but fraught with potential for error and is entirely informal: there is no proven

connection. Previous work by Danner et al. [18] [19] has put recurrence extraction on on firmer

ground by formalizing the procedure and proving it correct: we refer to this as formal recur-

rence extraction. With our formalization, there is no doubt that the extracted recurrences are

meaningful, and give sound upper bounds on program cost. Formal recurrence extraction has

been considered for a large and growing class of functional languages [40] [16]. In this chapter,

we extend it to handle recurrences for amortized cost.

0.0.1. Attributions and Funding. Chapter 2 is based on work started during the author’s

Summer 2020 internship at The Max Planck Institute for Software Systems, and completed at

Wesleyan University. The project was undertaken under the supervision of Prof. Deepak Garg.

This work is unpublished.

Chapter 3 was published and presented at the ACM SIGPLAN International Conference

of Functional Programming, 2020. The work was conducted at Wesleyan University under the

supervision of Profs. Daniel R. Licata and Norman Danner. This material is based upon work

supported by the National Science Foundation under Grant Number CCF-1618203, the Air Force

Office of Scientific Research under award number FA9550-16-1-0292, and the United States Air

Force Research Laboratory under agreement number FA9550-15-1-0053.
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inc ∶ bit list→ bit list

inc [ ] = [1]

inc (0 ∶∶ bs) = 1 ∶∶ bs

inc (1 ∶∶ bs) = 0 ∶∶ inc bs

set ∶ nat→ bit list

set0 = [ ]

set (S n) = inc(setn)

Figure 1. Binary Counter Data Structure

1. Amortized Analysis Primer

The intuition behind both developments in this thesis is rooted in amortized analysis, the

classical algorithm analysis technique first presented by Tarjan [75]. As such, we will provide a

brief introduction to the technique here, in addition to presenting a few examples of its utility,

one of which we will use as a running example.

Amortized analysis was initially conceived of as a technique for analyzing the worst-case cost

of a sequence of operations on a data structure. Without amortization, such cost analyses can be

very imprecise. Näıvely, the worst-case cost of a sequence of operations is bounded by the sum of

the worst-case cost for each operation. However, this usually fails to take into account internal

data structure invariants which make it impossible (or not always true) that each operation in

the sequence executes with its worst-case complexity. In short, amortized analysis allows us to

peel back some of the abstraction barrier of a datatype in order to more closely analyze the cost

of its operations in context. For a concrete example of this phenomenon, consider the (contrived,

yet pedagogically useful) example of a binary counter shown in Figure 1.

The type bit is either 0 or 1, and bit list represents a binary counter with the least

significant bit at the head. The inc operation increments a counter by one, and the set operation

applies to n iterates inc n times, starting from the zero (empty) counter. To illustrate where

a standard analysis overapproximates the cost, we will näıvely analyze the cost of set. For

simplicity, the only costly operations are cons (::) operations, which cost one unit of time each.

Given a counter of length k, inc performs at most k + 1 cons operations — at worst, the

counter is all ones, and inc must walk down the entire list flipping ones to zeroes, finishing by

cons-ing a one onto the end. It’s easy to see that after i calls to inc, the counter has length

bounded by ⌈log2 i⌉, the number of needed for the binary representation of i. Thus, the total
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. . . si−1 si si+1 . . .
fi fi+1

Figure 2. The Generic Amortized Analysis Setup

cost of set n is

n

∑
i=1

⌈log2 i⌉ + 1 ≤
n

∑
i=1

log2 i + 2

≤ 2n +
n

∑
i=1

log2 i

≤ 2n + log2(n!)

≤ 2n + n log2 n

While it may be useful for some applications, this bound is not tight. To see why, consider

the case where the counter is set to the value of 1510, or 11112. A call to increment on this

counter costs the full 5 cons operations, leaving the counter at 100002. However, a subsequent

call to inc only costs 1 to flip the first bit. Indeed, very few calls to inc traverse the whole

list — the vast majority only flip one or two bits. This example illustrates the tension of doing

these naive analysis, and provides the primary insight for amortized analysis: while one data

structure operation may be expensive, it may also restructure the data structure in such a way

which makes subsequent operations cheaper than the worst case1.

1.1. Physicist’s Method. The most common method for operationalizing this insight is

by the physicist’s method of amortized analysis. This method proceeds by associating a data

structure with a real-valued “potential function” Φ ∶ S → R on its states. The only restriction

on potential functions is that they be nonnegative everywhere. Then, for any sequence of data

structure operations fi with costs ci and intermediate states si (pictured in Figure 2, with s0

initial and si = fi(si−1)), we may define the amortized cost of each operation as:

ai = ci +Φ(si) −Φ(si−1)

1 This is the genesis of the name amortized analysis: expensive function operations effectively pay for

subsequent ones to be cheaper, evoking amortization from accounting.
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The amortized cost of an operation is the actual cost, plus the change in potential across it.

When we sum the amortized cost of all the operations across the sequence, the sum telescopes:

n

∑
i=1

ai =
n

∑
i=1

ci +Φ(si) −Φ(si−1)

= Φ(sn) −Φ(s0) +
n

∑
i=1

ci

Then, if Φ(s0) = 0, we get that the total amortized cost is an upper bound on the total actual

cost.
n

∑
i=1

ai ≥
n

∑
i=1

ci

A good intuition for potential functions Φ is that Φ(s) represents the amount of work that

subsequent operations have to do in order to modify the data structure from state s. In practice,

one usually picks potential functions such that when an expensive operation fi runs, Φ(si−1) is

very large, and Φ(si) is very small so that subsequent operations are cheap.

Returning to the binary counter example, the traditional choice of potential function is to

take Φ(xs) to be the number of 1-bits in xs. For simplicity, we will denote the actual cost of a

call to inc xs by C(xs), and its amortized cost by A(xs) = C(xs) +Φ(inc xs) −Φ(xs).

Theorem 1.1. For all xs:counter, A(xs) = 2

Proof. By a straightforward structural induction on xs.

● (xs = []): inc [] does 1 cons operation, Φ([]) = 0 and Φ([1]) = 1, so the amortized

cost is 2.

● (xs = y::ys): If y = 0, then the inc xs does 1 cons operation. Since Φ(1::ys) −

Φ(y::ys) = (1 +Φ(ys)) −Φ(ys) = 1, we again have that the amortized cost of inc xs

is 2. Now, suppose y = 1. Then inc xs incurs 1 cost from the cons operation, plus the

cost of inc ys. So, we may compute:

A(y::ys) = C(y::ys) +Φ(inc (y::ys)) −Φ(y::ys)

= 1 +C(ys) +Φ(inc ys) − (1 +Φ(ys))

= C(ys) +Φ(inc ys) −Φ(ys)

= A(ys)

But by the inductive hypothesis, A(ys) = 2, which completes the proof.
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�

An immediate corollary of this fact is that the amortized cost of set n is bounded by 2n,

by the same telescoping argument as before. Most importantly, since the binary counter [0]

has potential 0, the amortized cost of set n is an upper bound on the actual cost of set n.

This last step is crucial. A priori, amortized costs give no information about the actual costs of

program execution, and are only a bound on the actual cost if the final potential is greater than

the initial.

1.1.1. Single Function and Gas Tank Analyses. Often, amortized analysis is applied to in-

dividual functions, rather than a sequence. This may be thought of as the length-one case of

amortized analysis. Given a function f:a->b and potential functions Φa ∶ a→ R and Φb ∶ b→ R,

we may define the amortized cost of f as Af(x) = Cf(x) +Φb(f x) −Φa(x), where Cf(x) is the

cost of f.

A common variation on this concept is to pick the potential functions such that the amortized

cost is zero. Then, the actual cost Cf(x) is exactly Φa(x)−Φb(f x). The usual intuition here is

to think of the available potential as a sort of “gas tank” which the function must siphon from

to do work. Then, the total gas used, Φa(x) − Φb(f x), is an upper bound on the amount of

work done by the function.

1.2. Banker’s Method. While the physicist’s method is powerful, some situations call for

a more fine-grained analysis. In this case, we employ the so-called banker’s method of amortized

analysis. The banker’s method works by introducing imaginary “credits” to a data structure,

which may be “attached” to the values in a program. These credits are thought of to interact

with the cost model of the language in a special way: credits can always be created from thin

air at a cost of one unit of time, and then they can subsequently be discarded or “spent” to

decrease execution cost by one unit. In the setting of the banker’s method, this is what we mean

when we refer to “amortized cost” — the real cost of an operation, plus the cost of creating and

spending credits along the way. Crucially, if an operation begins with no credits available, then

the amortized cost must be an upper bound on the actual cost since credits must be created

(incurring a cost of 1) before they can be spent (decreasing the cost by 1). All of this is best

illustrated by returning to the binary counter example.
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We begin by enforcing a credit invariant on values of type counter: every 1 bit must have

a credit attached. It’s worth confirming that the increment function is able to maintain this

invariant: if the counter is empty, we spawn a credit, attach it to a 1 bit, and cons it to the front

of the list. If the least significant bit is 0, we again spawn a credit, flip the bit to 1, and attach

the credit. Finally, if the least significant bit is 1, then we detatch its credit, spend it, recurse

down the tail, and finish by cons-ing a 0 onto the front. Of course, none of this is manifest in

the code 2. Just like with potential in the physicist’s method, these proofs must happen off to

the side on paper.

Finally, we may perform the analysis itself.

Theorem 1.2. For all xs:counter satisfying the credit invariant, the amortized cost of inc

xs is 2.

Proof. We proceed by structural induction on xs.

● (xs = []): inc [] does 1 cons operation and spawns one credit, for an amortized cost

of 2.

● (xs = y::ys): If y = 0, then inc xs does one cons operation and spawns a single credit,

for an amortized cost of 2. Finally, if y = 1, then inc xs makes a single recursive call

inc ys, which has amortized cost 2, by inductive hypothesis. But then, the function

spends the credit attached to y, which cancels out the cost 1 incurred by cons-ing a

0 onto the result of the recursive call. In total, this case has 2 amortized cost, as

required.

�

1.3. Comparisons. The reader may note that the proof of Theorem 1.2 was remarkably

similar to the proof of Theorem 1.1. This is, unsurprisingly, not by coincidence. The reason

for this similarity is that the banker’s method can be thought of as a concretization of the

physicist’s method. Rather than “globally” assigning potential to the states of a data structure,

the banker’s method “localizes” the potential, thought of as discrete credits, on specific values

2 Readers familiar with concurrent separation logic might find this idea familiar: credits are a form of ghost

state.
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in the state. Because of this, analyses with the banker’s method have an “operational” feel to

them, while analyses using the physicist’s method have a more “calculational” flavor.

On the whole, the two methods of amortized analysis are essentially equivalent in power.

Given a banker’s method analysis, we may turn it into a physicist’s method analysis by taking

the potential function to be the total number of credits. Conversely, physicist’s method analyses

can be converted to use the banker’s method by maintaining the invariant that ⌈Φ(s)⌉ credits

be kept on the value s.

Proofs using the banker’s method are often more tedious and traditionally less formal. In

Chapter 3, we present a formalization of the banker’s method by way of recurrence extraction.

Chapter 2 presents λ-Amor, which is based primarily on the physicist’s method.

2. Substructural and Modal Types Primer

While Chapter 3 is primarily concerned with approaching cost analysis from a recurrence

extraction angle, it will, like Chapter 2, involve the creation of a type system. The two type

systems under consideration, those of λA and λ-Amor, share a major feature which is common to

most developments in resource analysis: they are both affine substructural type systems. Most

type systems have three “non-logical” rules governing the behavior of their typing context. The

rule that allows contexts to be freely considered up to permutations is called exchange, the rule

allowing variables to be dropped from the context is called weakening, and the rule which allows

variables to be duplicated is referred to as contraction. The three rules are sometimes explicitly

included in the list of rules generating a typing judgment, but more often than not they are

omitted and derived as admissible rules.

Substructural type systems are ones in which some or all of the traditional structural rules

governing typing contexts are disallowed. Disallowing all of them yields ordered types, and

allowing only exchange yields linear types. Most importantly for this thesis however, is the

combination of exchange and weakening (but not contraction), which yields an affine type

system. In an affine type system, contexts are sets, where each variable from the context may

be used at most once.

The rules of an affine type system are set up in such a way that the contraction rule

is inadmissible. In particular, every multi-premise rule “splits” the context so that a variable
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cannot be used by more than one sub-term. For instance, consider the usual product introduction

rule of a fully-structural type system:

Γ ⊢ e1 ∶ A Γ ⊢ e2 ∶ B

Γ ⊢ (e1, e2) ∶ A ×B

is transformed into the following rule to support affine types:

Γ1 ⊢ e1 ∶ A Γ2 ⊢ e2 ∶ B

Γ1,Γ2 ⊢ (e1, e2) ∶ A⊗B

The context must be divided into two disjoint parts Γ1 and Γ2 to be given to the two premises3.

Affine types are a natural object of study in the resource-usage literature, since they nat-

urally enforce a resource-usage restriction: using a variable “consumes” it, which corresponds

to the consumption of the resources the variable holds. In the type systems we will study for

the remainder of this thesis, the notion of resource which our affine type systems will track will

be the credits and potentials of amortized analysis. Indeed, non-duplication of variables in an

affine type system can be leveraged to enforce the non-duplication requirement of credits and

potential in the banker’s and physicist’s method of amortized analysis.

Of course, this restriction on the usage of variables is very strong from a programming

perspective. Even incredibly simple programs often require the re-use of a single variable. The

traditional solution to this is the introduction of a new type !A, which represents values of

type A that can be used arbitrarily many times. This !, usually referred to as the exponential

modality is our first example of a modality, or a unary operator on types. To “implement” this

modality in the type system, one usually adds a second context to the typing judgment of so-

called exponential variables, which can be used multiple times. This context is fully structural

— it is not split in multi-premise rules. For instance, the product introduction rule becomes

something like:

Ω; Γ1 ⊢ e1 ∶ A Ω; Γ2 ⊢ e2 ∶ B

Ω; Γ1,Γ2 ⊢ (e1, e2) ∶ A⊗B

3 The name of the connective changes also — in a fully structural type system, positive and negative products

are isomorphic, and thus written ×. Passing to a substructural type system disentangles the two notions.
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and we also add an exponential variable rule to use variables from the Ω context.

Ω, x ∶ A; Γ ⊢ x ∶ A

The modality itself is governed by a pair of simple introduction and elimination rules. A term

can be made exponential with the introduction rule, so long as it does not depend on any affine

resources:

Ω; ⋅ ⊢ e ∶ A

Ω; Γ ⊢ e ∶ !A
The elimination rule allows for a term of type !A to be bound as one of type A in the exponential

context, and thus be used many times:

Ω; Γ1 ⊢ e ∶ !A Ω, x ∶∶ A; Γ2 ⊢ e′ ∶ B

Ω; Γ1,Γ2 ⊢ let !x = ein e′ ∶ B

Both λA and λ-Amor make use of versions of this modality, but λA generalizes it to also

allow n-affine types, whose values may be used at most n times. In addition, each type system

uses a graded modality to quantify the usage of potential and credits. While the presentation

(and terminology) is slightly different, the !rA modality of λA and the [I]A modality of λ-Amor

can be thought of as essentially one and the same.
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Amortized Analysis with Type Systems

12
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1. Introduction

As anyone who’s ever tried it knows, writing correct software is hard. Fortunately, decades

of work in verification and interactive theorem proving for program correctness have brought

forth a world of possibilities for future programmers to harness in their quest to build robust,

correct, and extensible modern software [68]. The vast majority of work in this area is about

functional or extensional correctness: proving that a program’s input/output behavior matches

the programmer’s intended specification. Much less well studied is the correctness of programs

with respect to intensional properties: those which refer to how a program runs, rather than

simply what it computes. Of particular interest to this thesis is the intensional property of

resource usage. While some intensional properties such as information flow can be rephrased in

an extensional manner1, resource usage is inherently intensional. More specifically, as Chapter 1

suggests, we will restrict our view to a particular resource: that of cost.

One particularly promising verification method based in interactive theorem proving is in-

trinsic verification [43], wherein the program being verified and the proof of its correctness are

packaged together. In this approach, expressive (usually dependent) type systems are used to

encode invariants in the types of the program, in such a way that a certificate that the program

is type-correct is also a certificate of its functional correctness.

In this work, we apply the approach of intrinsic verification to proving cost bounds of

functional programs. Unfortunately, the settings in which intrinsic verification of extensional

properties is traditionally performed — dependently-typed proof assistants such as Coq [76],

Agda [56], or F* [74], to name a few — are not optimal settings for verifying cost bounds of

programs. While some work [50, 14, 27] has attempted to forge ahead and perform intrinsic cost

analyses in dependently-typed languages, it is all limited in various ways by the fact that cost

and potential is not a first-class notion in any of their logics2.

Instead, the primary goal of this work is the development of LambdaAmor, a domain-specific

functional language for cost verification which combines a first class notion of cost with a rich

1For instance, noninterference [26] is an extensional (hyper-)property which soundly under-approximates

information flow control policies
2 Some dependent type theories such as Cost-Aware Type Theory (CATT) [54], do have first-class notions

of cost, but there are no proof assistants built on top of them.
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refinement type system to statically verify time bounds of the programs written in it. By analogy

to the behavioral invariants in the types of of traditional intrinsic analyses, programs written in

λ-Amor have types which enforce cost invariants. For instance, a function in LambdaAmor could

have a type like “function from nat to nat which runs in no more than five steps”. To expand the

class of possible cost analyses, LambdaAmor supports (as the name implies) amortized analysis.

This is enabled by adding types which classify values carrying certain amounts of potential.

These cost types and potential types can be combined in nontrivial ways to express nontrivial

amortized analyses, which is often required when deriving tight bounds involves breaking data

structure abstraction boundaries. Crucially, these cost and potential invariants are statically

enforced by the type system: a certificate that a program in LambdaAmor is type-correct is

also a certificate that it is cost-correct. In this sense, programs written in LambdaAmor are cost

analyses of themselves. This justifies an occasional reference to LambdaAmor (or its core calculus)

as allowing programmers to “perform a cost analysis” of a program, ostensibly written elsewhere

— this amounts to simply re-writing the program in LambdaAmor, with types that mirror the

corresponding “on-paper” analysis that would have been performed in LambdaAmor’s absence.

While other functional languages with amortized cost analysis capabilities (and resource

analysis more generally) do exist, LambdaAmor sits at a minimally-explored point in the design

space. Some languages like Resource Aware ML [31] aim for full automation, at the cost of

struggling to handle some common language features. Other languages like TiML [81] or LRT

[42] attempt to strike a balance by giving up on a degree of automation and requiring annotations

from the programmer in order to make gains in expressiveness. In contrast to these languages3,

LambdaAmor emphasizes expressiveness above all else. While this comes at the cost of some

automation, LambdaAmor is still backed by SMT, and so all of the quantative proof obligations

are handled automatically.

The core of LambdaAmor derives from a type system called λ-Amor [64]. By and large, the

creators of λ-Amor were interested in it as a unifying foundational framework in which one

could embed other cost analysis languages: there are many axes along which one may design

a type system for resource analysis, and λ-Amor serves as a calculus in which all sorts can be

be emulated. In this work, however, we primarily interest ourselves in λ-Amor’s usefulness as

3 A further comparison between LambdaAmor and these languages along with others can be found in Section 10
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a core calculus of a programming language which allows its users to prove cost bounds on the

programs they write in it. λ-Amor on paper is expressive enough to assign amortized cost bounds

for a wide class of functional programs, from the traditional examples of amortized analysis

such as functional queues and binary counters, to fully general cost-polymorphic higher-order

functions like map and fold, which aren’t well handled by existing resource-analysis languages

like Resource Aware ML [31]. This power and flexibility makes λ-Amor a perfect starting point

to develop the core calculus of LambdaAmor.

The main contribution of this work is the design and theory of a version of λ-Amor called dλ-

Amor which is amenable to implementation. This is accomplished by cutting out a fragment of

λ-Amor, and restricting its syntax somewhat. In the end, our changes will have been minor. dλ-

Amor bears all of the same major features as λ-Amor: a pair of modalities for cost and potential,

an affine substructural type system for soundly tracking the potential (values with potential must

not be duplicated), and refinement types for encoding potential functions which vary in the sizes

of data structures. The major change is the introduction of a construct to selectively restrict the

forms of potential functions, borrowed from Automated Amortized Resource Analysis (AARA)

[29]. However, despite this work in cutting out an implementable fragment, dλ-Amor does not

admit a direct implementation, as its typing rules (just like λ-Amor’s) are written in declarative

style, from which we cannot immediately construct an algorithm for type-checking or type

inference.

The traditional solution to this is to create yet another type system — an algorithmic one,

from which a type-checker can be easily implemented. For this purpose, we will introduce biλ-

Amor, a type system which encodes the same typing relations as dλ-Amor, but is presented

in a manner that is trivial to implement. biλ-Amor leverages several techniques from the type

systems and type theory literature to algorithmize the dλ-Amor type system. Most notably,

biλ-Amor makes use of bidirectional type inference [62], a technique which allows for the im-

plementation of highly expressive type systems, while minimizing the amount of annotation

required of the programmer. Additionally, biλ-Amor harnesses normalization, syntax-directed-

ness through admissible rules, and constraint generation to pave the way for an implementation.

Designing biλ-Amor is a nontrivial task, and proving it correct even moreso. To show that

dλ-Amor and biλ-Amor are the same type system presented in different ways (the latter being
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Figure 1. Relationship Between Calculi

easily implementable), we must prove a bevy of theorems relating the two. This proof effort

makes up the bulk of the technical contribution of this chapter. Finally, once the type system

design and proof work is complete, we implement biλ-Amor. Thanks to all of the work done in

algorithmization, our implementation is at its core a trivial translation of the rules of biλ-Amor

into code.

The outline of the rest of the chapter is as follows.

● We will begin in Section 2 by giving an overview of the concepts λ-Amor draws on. As

mentioned previously, λ-Amor includes two modalities for tracking cost and potential.

To soundly manage this potential, λ-Amor is based on an affine logic in which every

variable may be used at most once so that values with potential cannot be duplicated.

To make complex potential functions, λ-Amor uses refinement types in the style of

Dependent ML (DML) [84], which we review. Next, we discuss the main obstacle

the original type system presents to implementation: constraint solving. Our solution

to this problem is based on univariate polynomial potential functions in the style

of AARA, which we introduce. This motivates the primary restriction of dλ-Amor

compared to λ-Amor: costs and potentials are (with some exception) AARA-style

univariate polynomials. Finally, we provide a more foundational account of dλ-Amor’s

cost and potential modalities, based in linear logic.

● Next, in Section 3, we explore some programs written “on-paper” in the core calculus

dλ-Amor. These examples serve to illustrate the kind of cost-correctness proofs en-

abled by dλ-Amor, and provide a first glimpse of how programs in LambdaAmor will

be packaged together with their cost-correctness proofs. We present a wide variety of

programs, each of which shows off a different facet of of dλ-Amor’s type system. These

examples provide the beginnings of a comprehensive test suite against which we can

evaluate our eventual implementation.
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● Then, in Section 4, we give an overview of biλ-Amor, the algorithmic version of dλ-

Amor. To help motivate biλ-Amor’s creation, we begin by describing the pitfalls which

make it impossible to directly implement dλ-Amor. We then move to presenting a

high-level overview of the techniques we use to avoid these implementation obstacles.

● In Section 5, we discuss the syntax and type system of dλ-Amor in depth, providing

intuition for the each of the judgments, and discussing selected rules from the type

system. dλ-Amor’s type system is many-layered, with judgments for type formation,

type assignment, and a smaller type system for the sub-language which governs the

refinement types. We pay special attention to the rules which govern the cost-analysis-

specific language features, and describe them in detail.

● In Section 6, we sketch the soundness proof for dλ-Amor, by showing that it may be

embedded in λ-Amor, and appealing to its soundness theorem featured in Rajani et al.

[64].

● In Section 7, we introduce the formalism for biλ-Amor. While the majority of the

syntax is carried over from dλ-Amor, this formalism differs drastically from that of

dλ-Amor, and so we take time to explore the ways that the algorithmization features

discussed previously in Section 4 are actually applied.

● In Section 8, we prove that biλ-Amor and dλ-Amor are in fact (essentially) the same

type system. This fact is a requirement for a good implementation, as it guaran-

tees that our typechecker accurately and soundly types terms. The proof is broken

into two parts. A proof of soundness tells us that when a typechecker derived from

the algorithmic rules of biλ-Amor confirms that an expression has a given type, our

“ground truth” declarative dλ-Amor agrees. Dually, the proof of completeness ensures

that every declaratively-derivable typing relationship in dλ-Amor will be found by a

typechecker which implements biλ-Amor’s algorithm.

● Finally, in Section 9, we discuss LambdaAmor, our OCaml implementation of the dλ-

Amor. In order to support nontrivial programs, LambdaAmor sports a top-level envi-

ronment with multiple declaration types, on top of the simple typechecking prescribed

by biλ-Amor. We discuss these additions to the language, as well as the specific design
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choices made while building the artifact. We finish the section by writing the examples

from Section 3 in LambdaAmor, and benchmarking our implementation.

2. Overview of dλ-Amor

In this section, we will begin by presenting the overarching ideas which make λ-Amor useful

as a core calculus for our resource-aware language. Subsequently, we move to discussing its

variant, dλ-Amor, which we will focus on for the rest of the chapter.

One of the most basic insights that λ-Amor takes advantage of in its design is that costly

computation can be thought of an effect4. When a program does work, it has an effect on the

world, namely the effect of taking time. In this sense, nearly all “pure” programming languages

are impure, as they allow pervasive use of the effect of cost. In contrast to most languages, λ-

Amor enforces strict requirements on the use of this effect in particular. While many solutions

to controlling effects have been explored in the literature [47] [63], λ-Amor takes the approach

of enforcing a monadic [53] discipline on the effect of cost.

2.0.1. Cost Monad. However, a simple monad is not enough. We care not only that a term

may incur cost, but how much cost it can incur! For this purpose, λ-Amor employs a graded

monad M I τ to encapsulate the effect of cost [24]. A computation of this type returns a value

of type τ , and may incur up to I cost, where I is drawn from the sort of positive real numbers.

As a graded modality, this monad’s operations interact with the grade in nontrivial ways: for

instance, the “pure” computation ret(e) has type M 0 τ when e ∶ τ . This allows any pure term

to be lifted to a monadic computation which incurs no cost. Most importantly, given a costly

computation e1 ∶M I1 τ1 and a continuation x ∶ τ2 ⊢ e2 ∶M I2 τ2, the two can be sequenced into

a computation bindx = e1 in e2 ∶M (I1 + I2) τ2. Note that the costs add: a computation which

may take up to I1 units of time followed by a computation which takes up to I2 units takes

at most I1 + I2 units. However, neither ret nor bind incurs any nontrivial cost: any program

written using only rets and binds will have type M0 τ . For this, λ-Amor includes a term

tick[I] of type M I 1, which incurs cost I (and 1 is the unit type). This is the only construct

in λ-Amor which incurs any “extra cost”, the idea being that programmers insert ticks in front

4 In fact, cost can also be thought of as a coeffect [25], and one of the major breakthroughs of λ-Amor is

the unification of both styles of resource tracking in a single calculus.



2. AMORTIZED ANALYSIS WITH TYPE SYSTEMS 19

of the operations their specific cost model dictates are costly. This technique is widely used in

the cost analysis literature [14], and so λ-Amor also adopts it for simplicity.

But of course, this cost monad can only be half the story. In a language which seeks to

provide types for amortized analysis, a mechanism for handling potential is required.

2.0.2. Potential Modality and Affine Types. In addition to the cost monad, λ-Amor includes

another graded modality for tracking potential. A term of type [I] τ can be thought of a term of

type τ which stores I potential5, where I is again drawn from a sort of positive real numbers. The

most important operation associated with the potential modality is the ability to use potential to

offset the cost of a computation. Concretely, given a term e1 ∶ [I] τ1 and a monadic continuation

x ∶ τ1 ⊢ e2 ∶M (I +J) τ2, we can form the computation releasex = e1 in e2 ∶M J τ2. The crucial

aspect of this construction is the fact that the resulting computation requires at most J units

of time to run, while the initial computation e2 required I + J . Intuitively, we think of this as

the I units of potential “paying for” I steps of computation.

Potential may also be created and attached to values. In λ-Amor, these two operations are

handled by the same construct. For terms e ∶ τ , we may form store[I](e) ∶M I ([I] τ), which is

a computation which runs for at most I units of time, and returns a τ with I potential attached.

The fact that store incurs this cost is what justifies the term release — the program has paid

an “extra” cost of I to create [I] τ , and thus can exercise this option to reduce the cost of a

subsequent computation with release.

This dynamic between store and release forces a restriction on the type system: variables

can only be used at most once. Our argument for the soundness of release relies on an the

assumption that the potential we are releasing has not already been released elsewhere, and

so duplication of variables must be disallowed. This kind of restriction is very common, as

discussed in Section 2: λ-Amor is an affine type system.

2.0.3. Refinement Types and Index Terms. The situation we’ve described so far would only

allow types with constant amounts of potential. For nontrivial analyses, this is wholly insuffi-

cient, as the potential of a data structure must be able to depend on the size or other numerical

5 In some senses, potential in λ-Amor behaves more like the credits of the banker’s method discussed in

Chapter 1 — it can be created and attached to specific values. To avoid confusion, we follow Rajani et al. [64]

with the terminology of “potential”
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parameters of that data structure. For this purpose, λ-Amor includes refinement types in the

style of Dependent ML [84]. Concretely, λ-Amor supports length-refined lists. A value of type

LIτ is a list of length I, where I is a term in a small language of arithmetic expressions over a

set of variables, which we call an index term. These index terms may also appear in potentials.

For example, [I2] (LIτ) is the type of lists of length I with potential I2.

2.0.4. Index Term Quantifiers, Indexed Types, and Constraint Types. To make good use of

these refinements, λ-Amor supports more refinement-related types. While not strictly part of

the resource-analysis “core” of λ-Amor, these are required for practical use. First and foremost is

the inclusion of universal and existential quantifiers over index terms, which allow for types like

(τ ⊸ σ) ⊸ ∀n ∶ N. (Ln τ ⊸ Ln σ), a possible type for a map function which can operate on lists

of any length. λ-Amor also includes a syntax for constraints over index terms, which take the

form I = J , I ≤ J , I < J along with conjunctions, disjunctions, and implications thereof. These

constraints are used in constraint types. The conjunction constraint type (n ≥ 1)&τ classifies

values of type τ with an attached (irrelevant) proof of n ≥ 1, while terms of the implication

constraint type (m + n = 1) Ô⇒ σ have type σ when m + n = 1 is true. Finally, λ-Amor sports

indexed types, which can be thought of as type-level functions from sorts to types: λi ∶ N.Liτ

is a function which, given a natural number i, produces the type Liτ . Note that this is not the

same as ∀i ∶ N.Liτ , as they have different “kinds”: the first has kind N → ⋆ (a function which

returns types), while the second has kind ⋆, the kind of types of terms.

2.1. Potential Vectors and AARA. The story we’ve just told about λ-Amor is loyal

to the original presentation in [64], but somewhat inadequate for implementation purposes. As

we will discuss in Section 4, efficient subtyping is necessary for implementation of λ-Amor.

However, the inclusion of the potential and cost modalities presents a challenge. For [I] τ1 to

be a subtype of [J] τ2, it must be that τ1 <∶ τ2, and that J ≤ I. But as discussed above, I and

J are index terms, and may be polynomials in a set of index variables. Ideally, we would like

to discharge these inequalities generated by subtyping by constraint solver, but even the most

advanced SMT solvers struggle to handle polynomial inequalities.

To solve this problem, we borrow a key idea from AARA [29] which will allow us to generate

only linear constraints over index variables, while still allowing univariate polynomial potentials

and cost. The main idea is to fix a clever “basis” for the space of polynomials, and then represent
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polynomials as a vector of their coefficients with respect to that basis. The basis in question is

chosen to satisfy one key property: if a real polynomial f(n) is written in terms of the basis,

then the coefficients of f(n−1) may be efficiently determined from those of f(n). This property

gives rise to the ability to easily analyze list algorithms in λ-Amor: when writing a function

([f(n)] (Ln τ)) ⊸ σ, it is simple to pattern match on the argument and determine the type of

the tail [f(n − 1)] (Ln−1 τ) to pass to a recursive call.

In dλ-Amor, we will syntactically restrict potential functions to be of this form, with some

exception. It is intuitively clear that all AARA-style potential functions are expressible in the

index term language of the original λ-Amor6. This restricted potential form is also sufficiently

expressive for practical purposes, as the examples we present in Section 3 show.

The reader accustomed to the literature surrounding AARA or Resource-Aware ML is likely

to be familiar with the following presentation of AARA-style polynomial potential. The less

familiar reader is encouraged to consult Hoffmann’s Thesis [28] for a more in-depth exposition

of the technique.

Definition 2.1 (Potential Vector). For a fixed k, we call a vector of nonnegative reals

(a0, . . . , ak) a potential vector.

Definition 2.2 (φ Function). For fixed k, we define φ ∶ N ×Rk≥0 → R≥0 to be

φ (n, (p0, . . . , pk)) =
k

∑
i=0

pi(
n

i
)

where (n
r
) is the binomial coefficient. We refer to the first argument of φ as the “base”, and the

second argument as the “potential”.

With φ in hand, we redefine the cost and potential modalities. In dλ-Amor, the cost modality

is written as M (I, p⃗) τ and the potential modality is [I ∣p⃗] τ . These two types classify values of

type τ which cost up to φ(I, p⃗) units of time and posess φ(I, p⃗) potential, respectively.

Theorem 2.1 (Monotonicity and Additivity of Φ). Let p⃗ and q⃗ be potential vectors.

(1) If p⃗ ≤ q⃗ componentwise, then φ(n, p⃗) ≤ φ(n, q⃗).

(2) φ(n, p⃗ + q⃗) = φ(n, p⃗) + φ(n, q⃗)
6 While we do not prove this fact, a version of the requisite translation can be found in the code of the

constraint elaboration pass described in Section 9.
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This theorem has two main consequences for the new cost and potential modalities. First,

the fact that φ is monotone in its second argument allows us to reduce the problematic subtyping

rule for potentials (and costs) to generating linear inequalities and equalities7 [I ∣p⃗] τ1 is a subtype

of [J ∣q⃗] when I = J and q⃗ ≤ p⃗ componentwise. Second, the additivity of φ also allows us to pass

from addition of polynomial index terms in the bind and release rules to componentwise

(linear) addition on potential vectors. Given a computation e1 ∶ M (I, p⃗) τ1 and a continuation

x ∶ τ1 ⊢ e2 ∶ M (I, q⃗) τ2, we perform the computations in sequence with bindx = e1 in e2 ∶

M (I, p⃗ + q⃗) τ2.

For convenience, it is sometimes useful to consider a restricted version of the orignal λ-

Amor cost monad in dλ-Amor: for this we will sometimes write M p⃗ τ to mean ∀j ∶ N.M (j, p⃗) τ .

Intuitively, this ought to be considered the same as M (0, p⃗) τ , since a computation that costs

at most φ(j, p⃗) for any j must be bounded above by φ(0, p⃗) by monotonicity of φ.8 Rather than

writing this type as such, we instead use the universally-quantified type ∀j ∶ N.M (j, p⃗) τ to ensure

that it can be composed with any other computation: the bind rule requires that the base of the

term and the base of the continuation be equal. It is easy to compute that φ(0, ⟨p0, . . . , pk⟩) = p0,

and so it is reasonable to think of a term of type M ⟨p0, . . . , pk⟩ τ ≡ ∀j ∶ N.M (j, ⟨p0, . . . pk⟩) τ as

being a computation of a τ which takes p0 time: throwing away the higher-order terms of the cost

allows us to emulate the original λ-Amor’s “constant” cost monad. Practical concerns necessitate

the addition of one more construct into the mix: the constant potential vector const(I), where

I is of sort R+. Intuitively, we think of this as being the potential vector ⟨I,0, . . . ,0⟩, such that

φ(n,const(I)) = I, for any n.

The final ingredient of this new version of the cost and potential modalities is the ability

to change base. To illustrate, consider the process of writing a function Lnτ ⊸M (n, p⃗)σ. The

recursive call on the tail of the input list will have type M (n−1, p⃗)σ, but the function expects a

return value of type M (n, p⃗)σ. Since the bind requires that the argument and the continuation

have the same base, the recursive call cannot be used in this context, rendering it useless. To fix

this, we include a term shift in dλ-Amor which “promotes” a computation of type M (n−1, p⃗)σ

7 This is somewhat inaccurate: the presence of a sum construct in the language of index terms breaks

linearity, but this is rarely a problem in practice.
8 The ∀j ∶ N... being irrelevant is crucial here: since one cannot pattern match on the value of j, the cost

of the computation must be uniform in j.



2. AMORTIZED ANALYSIS WITH TYPE SYSTEMS 23

to one of type M (n, q⃗)σ, for a specific q⃗ determined by p⃗. This concept is likely familar to the

reader familiar with AARA: in Resource Aware ML (an implementation of OCaml based on

AARA) this construct is baked into the pattern match rule, while we make it explicit.

Definition 2.3 (Additive Shift). For p⃗ = (a0, . . . , ak−1, ak) a potential vector, we define

⊲ p⃗ = (a0 + a1, . . . , ak−1 + ak, ak)

Theorem 2.2. For n ≥ 1 and p⃗ a potential vector, φ(n, p⃗) = φ(n − 1,⊲ p⃗)

Proof. Follows from the fact that (n−1
i
) + (n−1

i+1
) = ( n

i+1
), and unfolding definitions. �

The shift operator allows us to define the proper type of the shift operator: shift(e)

has type M(n, p⃗) τ when e has type M(n − 1,⊲ p⃗). This shift in perspective will be of critical

importance when performing AARA-style analyses: when required to provide a term of type

M(n, p⃗) τ , we will often find ourselves in posession of only costly computations with base n − 1,

and so it we will be required to shift our perspective.

2.2. Cost and Potential Foundations. The more logically-inclined reader is likely to be

unsatisfied with the presentation of the potential and cost modalities thusfar. Luckily, the two

modalities are far from ad-hoc. In fact, they can easily be explained as being user-optimized

instances of a more basic phenomenon. Consider affine types with an additional atomic type P

which encodes a single unit of potential. The potential type [I ∣p⃗] τ can be encoded as Pφ(I,p⃗)⊗τ ,

where P k is the k-fold tensor of P with itself9. This is in line with our intuitive understand of the

potential type as carrying I potential along with a value of type τ . On the other hand, the cost

type M (I, p⃗) τ is encoded as Pφ(I,p⃗) ⊸ τ . This presents a monadic computation which costs up

to φ(I, p⃗) as a function requiring that much potential to be provided in order to produce the

result.

Under this framing, all of the operations on costs and potentials in dλ-Amor can be thought

of in this way by considering their denotations in this model. For example, the store operation,

which has type τ ⊸M (I, p⃗) ([I ∣p⃗] τ) can be thought of as having type τ ⊸ Pφ(I,p⃗) ⊸ Pφ(I,p⃗)⊗τ ,

which is plainly the pairing function. Similarly, the release function of type [I ∣p⃗] τ ⊸ (τ ⊸

9 This analogy breaks down slightly when φ(I, p⃗) is not an integer, but the principle stands.
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M (I, p⃗ + q⃗)σ) ⊸M (I, q⃗)σ can instead be thought of a function of type:

Pφ(I,p⃗) ⊗ τ ⊸ (τ ⊸ Pφ(I,p⃗+q⃗) ⊸ σ) ⊸ Pφ(I,q⃗) ⊸ σ

which operates by using Theorem 2.1 to equate the types Pφ(I,p⃗) ⊗ Pφ(I,q⃗) = Pφ(I,p⃗)+φ(I,q⃗) =

Pφ(I,p⃗+q⃗).

This “model” of dλ-Amor also serves to motivate two of the fundamental strictures of

programming in it. Since we have described no introduction forms for the type P , it is impossible

to construct a closed term of that type. This is in line with the intended mental model of

potentials in dλ-Amor and amortized analysis more generally: potentials are unobservable, and

thus should never “escape” a program. The first consequence of this fact is that there are no

closed terms of type [I] τ : potential can only occur under a monadic computation. Second, given

a function P ⊸ τ , one should not be able to recover a τ in a closed context. Correspondingly, a

programmer in dλ-Amor can never internally “run” a monadic computation of type M (I, p⃗) τ

to get at the underlying τ . This stricture is similar in spirit to Haskell’s IO monad, whose terms

cannot be evaluated except at the interactive top level.

Next, considering the two modalities in this model makes plain their potentially confusing

subtyping rules. While P is not a part of dλ-Amor, its subtyping is the primary source of

confusion, as the the actual subtyping rules in λ-Amor are inherited from this model. Intuitively,

we think of P as being a subtype of the unit type 1, as one can always discard “an atom of

potential”. From this, it follows that P k <∶ P ` when ` ≤ k. More potential can always be used

in place of less10. Note the contravariance in this subtyping rule: the ordering in amounts of

potential is the opposite of the ordering on numbers. From this intuitive understanding of the

subtyping in this atomic potential model, we can derive the subtyping rules of the cost and

potential modalities in dλ-Amor. We begin by supposing that q⃗ ≤ p⃗. By Theorem 2.1, we have

φ(I, q⃗) ≤ φ(I, p⃗), which implies that Pφ(I,p⃗) <∶ Pφ(I,q⃗) as discussed. For the subtyping rule for

potentials, we use the ⊗ subtyping rule to get Pφ(I,p⃗) ⊗ τ <∶ Pφ(I,q⃗) ⊗ σ, when τ <∶ σ. However,

these types are [I ∣p⃗] τ and [I ∣q⃗]σ, respectively, which justifies our subtyping rule: to show that

[I ∣p⃗] τ <∶ [I ∣q⃗]σ, it suffices to have q⃗ ≤ p⃗ and τ <∶ σ. For costs, we use the ⊸ subtyping rule to

get Pφ(I,q⃗) ⊸ τ <∶ Pφ(I,p⃗) ⊸ σ, when τ <∶ σ. This time, the types are M (I, q⃗) τ and M (I, p⃗)σ,

10 Alternatively, this can be thought of as being analogous to width subtyping for records.
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which again justifies our eventual rule: to show M (I, q⃗) τ <∶ M (I, p⃗)σ, it suffices to have q⃗ ≤ p⃗

and τ <∶ σ.

Finally, while this model of the cost and potential modalities is useful, it is by no means

complete. In other words, there are types which are inhabited in the model whose counterparts

are uninhabited in dλ-Amor. A key example is the lack of a term corresponding to potential

“application”. In the model, the type P k ⊗ (P k ⊸ τ) ⊸ τ is inhabited by the λ-term which

performs the application. Meanwhile in dλ-Amor, the corresponding type [I ∣p⃗] (M (I, p⃗) τ) ⊸ τ

is uninhabited. The only way to use a term with potential is to release the potential into a

monadic computation, which the target of this function is not. Another example is the lack of a

potential fusion law. Since potentials only occur under the cost monad, the potential modality

is not itself a monad: there is no term inhabiting [I ∣p⃗]([I ∣q⃗] τ) ⊸ [I ∣p⃗ + q⃗] τ . However, the

potential join can be written in an ambient monadic context. In other words, there is a term of

type [I ∣p⃗]([I ∣q⃗] τ) ⊸M (I, 0⃗) ([I ∣p⃗ + q⃗] τ).

3. Examples of Programs in dλ-Amor

In this section, we will present a number of examples of programs written in dλ-Amor, each

of which exemplifies a different component of its cost analysis features. While we have not

formally introduced the syntax of dλ-Amor yet, we provide a simple term for the first example

in Figure 2 to illustrate the way programs are intertwined with their proofs. These examples will

loosely follow the presentation of Section 3 of Rajani et al. [64], where more in-depth discussion

can be found.

3.0.1. Add One. We begin with a (very) simple example to demonstrate the utility of dλ-

Amor’s AARA-style costs. Consider writing a function addOne, which adds one to each integer

in a list. If we assume the cost model that natural number addition costs one unit of time, the

function would have type ∀n ∶ N. Ln(nat) ⊸ M (n, ⟨0,1⟩) (Ln(nat)). Recalling the intended

meaning of the AARA-style cost functions, this means that addOne costs φ(n, ⟨0,1⟩) = n in

total, where n is the length of the input list (and also the output). This makes sense, as

each entry in the list incurs a single cost to add one to it. Pseudocode of the term for this

type can be found in Figure 2. The operational aspects of the program are exactly what

one expects from an instance of map. More interesting are the cost-related aspects of the
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fix(addOne.Λn.λxs.match(xs,ret([]), y.ys.
shift(
bind zs = addOne [n − 1] ysin
bind = tick[n − 1∣⟨1,0⟩]in
ret((y + 1) ∶∶ zs)

)
))

Figure 2. addOne function in dλ-Amor

code. In the cons branch, we immediately shift. This allows us to provide a term of type

M (n − 1, ⟨1,1⟩) (Ln(nat)) in place of the expected type M (n, ⟨0,1⟩) (Ln(nat)). Although

this is guaranteed to be by Theorem 2.2, we can check that this is sound by computing that

φ(n−1, ⟨1,1⟩) = (n−1)+1 = n = φ(n, ⟨0,1⟩). This shift is required to perform the recursive call on

the tail: addOne [n − 1] ys has type M (n − 1, ⟨0,1⟩) (Ln−1(nat)), which can only be bound into

a continuation which results in something of type M (n − 1, ) . Further, the shift “exposes”

the one constant cost, which is incurred by the tick (which we attribute to the addition). This

raises a crucial point: a “hole” in a program expecting M (n, ⟨0,1⟩) τ cannot accept a term of

type M (n, ⟨1,0⟩) τ for any n, despite this being semantically sound for n ≥ 1.

This example can also be performed using potentials, rather than costs. Instead of a function

which incurs n cost, we can instead think of addOne as a free-to-execute function which expects

n potential. One possible choice for this function’s type is:

∀n ∶ N. [n∣⟨0,1⟩]1⊸ Ln(nat) ⊸M (n, ⟨0,0⟩) (Ln(nat))

This style is reminiscent of the “gas-cost” analyses from Chapter 1, as we expect n gas up

front to run, and spend it all towards performing the additions. For technical reasons relating to

expressivity11, we often use this style (preferring the type [I] τ ⊸M0σ over the type τ ⊸M I σ)

even in cost analyses which are not amortized.

Another option is a type which attaches a single potential to each element of the input list,

in a style indicative of the Banker’s method:

∀n ∶ N. Ln ([1]nat) ⊸M (n, ⟨0,0⟩) (Ln(nat))

11 In short, coeffect-style analyses require the use of potentials.
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This cost analysis is tight and fairly uninteresting: it requires no “real” amortized analysis.

To illustrate how dλ-Amor handles describing cost analyses for programs where amortization

is required for tight bounds, we show how a few classic examples of amortized analysis can be

written in dλ-Amor.

3.0.2. Insertion Sort. Our second example will illustrate how the AARA-style costs of dλ-

Amor will allow us to verify quadratic-and-higher cost bounds, while only ever solving linear

constraints. Insertion sort is a good example of this class of program, since its cost analysis is

very understandable (nested loops, nothing fancy), while still being an interesting function.

For insertion sort, we will assume the traditional cost metric for sorting algorithms: all

comparisons cost one unit. The insertion sort we will write will be monomorphic, and assume a

comparison operator of type

leq ∶ τ ⊗ τ ⊸M ⟨1⟩2

where 2 is defined to be 1⊕ 1.

Since elements of the list will have to be compared multiple times, we will use the exponential

modality (!τ in Chapter 1) to have insertion sort operate over lists of infinite-use τs. With this

in mind, we give the insertion function the following type:

insert ∶ ∀n ∶ N. !τ ⊸ Ln (!τ) ⊸M (n, ⟨0,1⟩) (Ln+1 (!τ))

The type of this function should be intuitive: at worst, we scan the list once, incurring n =

φ(n, ⟨0,1⟩) cost. Folding this function over a list yields the insertion sort algorithm, which has

the type shown below.

ins sort ∶ ∀n ∶ N. Ln (!τ) ⊸M (n, ⟨0,0,1⟩) (Ln (!τ))

We can compute that φ(n, ⟨0,0,1⟩) = (n
2
) = 1

2
n2 − 1

2
n, which gives ins sort the requisite

quadratic cost bound. This cost analysis is fairly elementary, but it’s important to note the

design of dλ-Amor (via AARA) is what makes this analysis possible. Because the constraints on

polynomial functions are only ever coefficient-wise and linear, checking the corresponding terms

(found in Appendix A) is easy for SMT solvers, despite the cost bound being quadratic.

3.0.3. Functional Queue. The first example of amortized analysis is the traditional func-

tional queue [58]. Here, a queue is represented as a pair of lists, lf and lr, which we refer to

as the front and rear lists, respectively. To enqueue an element, we cons it to the head of the
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front list, and to dequeue, an element is removed from the head of the rear list. If the rear list

is empty when a dequeue operation is issued, the front list is reversed into the rear.

If we assume that cons operations are the only costly operation, and that they each incur

one cost, this dequeue operation has worst-case complexity O(n) where n is the size of the queue

(the sum of the sizes of lf and lr). While “most” calls to dequeue will be O(1), the worst case

is O(n) since the function needs to reverse the entire front list whenever the rear list is emppty.

However, by employing the banker’s method, we may enforce the invariant that each element of

the front list carries two credits to be used to pay for its eventual reversal. Under this scheme,

both enqueue and dequeue are constant amortized time.

This entire informal analysis is captured formally by the types of the enqueue and dequeue

operations in dλ-Amor. To encode this analysis, we define a queue to be of type Ln([2] τ)⊗Lm τ :

a pair of τ -lists, where the front has 2 potential on each of its n elements.

The enqueue function has the following type.

enq ∶ ∀n,m ∶ N. [3]1⊸ τ ⊸ Ln([2] τ) ⊗Lm τ ⊸M ⟨0⟩ (Ln+1([2] τ) ⊗Lm τ)

From a queue and three extra potential, we may enqueue a single element, resulting in queue

with one more element on its front list, for no cost. The term implementing enc can be found in

Appendix A. The type of dequeue is somewhat more involved, since the sizes of the output lists

are not a simple function of this inputs. In addition, the function has a precondition: the queue

cannot be empty. These two numerical restrictions provide a nice illustration of dλ-Amor’s

refinement types.

deq ∶ ∀m,n ∶ N.(m + n > 0) Ô⇒ Ln([2] τ) ⊗Lm τ ⊸

M⟨0⟩ (∃n′,m′ ∶ N.(n′ +m′ + 1 = n +m)& (Ln
′

([2] τ) ⊗Lm
′

τ))

deq takes a nonempty queue, and produces another queue which has one element removed.

The implementation of deq relies on a function move, which reverses the rear list into the front.

The terms for all functions involved can be found in Appendix A.

3.0.4. Cost-Parametric Map. While many existing languages and type systems for (amor-

tized) resource analysis also support higher-order functions, the allowable analyses with higher-

order functions are limited. One such limitation is that function arguments to higher-order

functions are usually assumed to be constant-cost: for instance, in the cost analysis of a map,

each application of the mapping function is assumed to incur the same amount of cost.
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To improve on this, we employ a cost family C ∶ N → R+ to encode the costs of each

application of the function: the i-th call to the function is thought to incur C(i) cost. Then in

total, the map function incurs ∑0≤i<nC(i) cost. This analysis is reified in the type of map:

map ∶ ∀α,β ∶ ⋆.∀C ∶ N→ R+.∀n ∶ N.

! (∀i ∶ N.[C i]1⊸ Nat(i) ⊸ α⊸M ⟨0⟩β) ⊸

!Nat(n) ⊸

Ln α⊸

M ⟨const (∑0≤i<nC(i))⟩ (Ln β)

Most importantly, the mapping function has type ! (∀i ∶ N.[C i]1⊸ Nat(i) ⊸ α⊸M ⟨0⟩β).

Since it must be applied to each element of the list, its type is !-ed to ensure it may be duplicated.

The function is parameterized by the index i on which it operates. To ensure that the mapping

function at i is actually only ever used at index i, the mapping function takes an additional

argument of type Nat(i), which is the singleton type of natural numbers equal to i12. Finally,

the mapping function requires C i potential to run, and incurs no amortized cost, which ensures

that its actual cost is bounded by C i.

Given the mapping function, the function map then transforms an Ln α into a monadic

computation of an Ln β, incurring ∑0≤i<nC(i) amortized cost. As usual, the term implementing

map can be found in Appendix A

4. Overview of biλ-Amor

For dλ-Amor to be useful as a programming language, it must be implementable! While

a declarative type system on paper is useful for modeling and proving purposes, it has limited

utility from a language engineering standpoint. dλ-Amor is far more implementation-ready

than its predecessor λ-Amor, but the rules of its type system do not provide us with an obvious

implementation method. Traditionally, one hopes to implement a type system in a manner

similar to implementing a definitional interpreter [66]. For each judgment of the type system,

the programmer writes a function which essentially runs a non-backtracking proof search for

that judgment, with the type position as an input or output depending on if the function is type

checking or inference.

12 This is simply an alias for Li 1.
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Unfortunately, many of the judgments of dλ-Amor— which we will see when the formalism

is presented in Section 5 — do not have straightforward implementations. The difficulties of

coming up with implementations stems from five critical challenges which must be overcome

before we can implement dλ-Amor. Our eventual solutions to these five challenges form the

basis of biλ-Amor, the algorithmic version of dλ-Amor which we will subsequently implement.

(1) The main type-assignment judgment of dλ-Amor yields an ambiguous proof search

method. It is not at all clear which rule to apply at any given step of building a

derivation, since there are some rules (subtyping, weakening) that can always be tried

at each stage. Indeed, one could always implement proof search for dλ-Amor using

backtracking, but it is preferable to avoid this if possible. Instead, we would like our

implementation-ready calculus biλ-Amor to be syntax-directed in the sense that the

outermost syntax of the current term informs us which typing rule must be applied

next to build a successful derivation.

(2) dλ-Amor includes full System F impredicative polymorphism, but a well-known result

of Wells [83] states that type inference for System F is undecidable. Hence, we will not

be able to design a type inference algorithm for dλ-Amor. A natural second option is

to shoot for implementing a type checker. Unfortunately, this too has its limitations.

To implement proper type checking, the syntax of dλ-Amor would have to be changed

such that every variable binder includes a type annotation. This is a heavy burden on

the programmer: annotating binders with types is tedious, error prone, and generally

uninteresting13. Instead, biλ-Amor adopts bidirectional type checking, a technique

pioneered by Pierce and Turner [62] which trades off some of the generality of full type

inference for added ergonomics over standard type checking.

(3) dλ-Amor’s subtyping relation provides a challenge which should be familiar to the

reader who is versed in the implementation of dependent type theories. The inclusion

of indexed types means that the deciding the subtyping relation requires (essentially)

deciding β equality at the type level: for instance, establishing the subtyping relation

(λi ∶ N.Li τ)3 <∶ L3 τ requires a step of β-reduction. Luckily, the equational theory

of types is simpler than that of a simply-typed lambda calculus, since the type-level

13 As Pierce [61] notes: “The more interesting your types get, the less fun it is to write them down!”
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lambda in dλ-Amor λi ∶ S.τ ranges over index terms, not types. This allows for a very

simple single-pass normalization procedure which allows us to subsequently decide the

subtyping relation.

(4) Many of the crucial rules of the dλ-Amor subtyping relation include constraint validity

premises: for instance, the rule for deriving subtyping of potential types [I ∣p⃗] τ <∶

[I ∣q⃗]σ has q⃗ ≤ p⃗ as a premise. These premises will need to be discharged by an SMT

solver. However, repeatedly pausing the subtyping algorithm to send constraints to a

solver each time the premise of a rule requires one be verified is inefficient. Instead, we

would prefer to do one pass of typechecking, followed by a single call to the solver. To

achieve this, the judgments of biλ-Amor “output” constraints. The intended meaning

of this is that when the constraints are valid, the declarative version of the same

judgment is derivable.

(5) The final barrier to implementation comes not from the refinement type or cost analysis

features of dλ-Amor, but simply from the fact that it is an affine type system. Multi-

premise rules require the context to the type-checker be split into disjoint parts which

can be used by each premise. This choice is nondeterministic: there is no way to know

a priori what allocation of resources to which premise until later. To solve this, we

employ a classical technique for implementing substructural type systems, which we

refer to as the IO method [11].

In the rest of the section, we present the solutions to these five problems that we choose

to adopt. All five solutions are well-known techniques, but to our knowledge biλ-Amor is the

language to show that they may all be simultaneously integrated into a single system. Since the

five techniques are orthogonal, we present each feature of biλ-Amor in isolation for a significantly

simpler language. In Section 7, we will present the formalism for biλ-Amor, which applies the

below-presented techniques to the declarative calculus dλ-Amor.

4.0.1. Bidirectional Type Systems. Bidirectional type inference, also known as “local type

inference” is a type system algorithmization technique pioneered by Pierce and Turner [62]. The

technique works by separating the typing judgment Γ ⊢ e ∶ τ of a declarative type system into

two algorithmic judgments: Γ ⊢ e ↓ τ and Γ ⊢ e ↑ τ , which are read “e checks against τ” and “e

infers τ” (sometimes “synthesizes”), respectively. These two judgments are mutually-recursively



2. AMORTIZED ANALYSIS WITH TYPE SYSTEMS 32

defined in a specific manner. The process of turning a declarative type system into a bidirectional

algorithmic one is straightforward to the point of mechanical: Dunfield and Pfenning [22] provide

a simple-to-follow recipe for this conversion, which extends from the simple type system they

consider all the way to dλ-Amor.

Syntax-directed algorithmic type systems presented in a bidirectional style are trivially im-

plementable: the implementation strategy is built into the structure of the rules. To implement a

bidirectional type system, one writes two mutually-recursive functions check:ctx->tm->typ->unit

and infer:ctx->tm->typ by recursion on the term input: the recursive calls are guided by the

premises of each rule. Note that the types of these functions indicate the intended modes of the

three positions of the judgment, in the sense of logic programming. In the checking judgment,

all positions are imagined to be inputs, while the inference judgment indicates that the type

position is an output of the judgment.

As alluded to earlier, the “inference” of the judgment Γ ⊢ e ↑ τ is not full inference, but

merely “local” inference: this judgment is derivable when enough information is present in the

form of e to determine its type. This is in contrast to full type inference, where the type of a

term may not be fully known until its typing constraints are considered in the context of those

from the larger term in which it sits. For this reason, every syntactic form in the language has

either an inference or checking rule: if requiring one of the premises to be inference gathers

enough information to determine the type of the conclusion, then that conclusion will be an

inference judgment. Otherwise, the judgment will be checking.

To mediate between the two judgments, bidirectional type systems include two special rules.

First, is the rule which is traditionally referred to as “subsumption”: to show that e ↓ τ , it suffices

to show that e ↑ τ . In other words, if e can infer a type, then it checks against that type. This

rule is usually strengthened by subtyping:

Γ ⊢ e ↑ τ ′ τ ′ <∶ τ
Γ ⊢ e ↓ τ

For e to check against τ , it suffices for e to synthesize a more precise type τ ′.

Going in the other direction from a checking premise to an infering conclusion is somewhat

more involved. In general, the desired converse rule is not true: there will always be terms such

that e ↓ τ but it is not the case that e ↑ τ . To remedy this, bidirectional type systems introduce
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a new piece of syntax to the declarative language on which they’re based: annotations. When

e checks against τ , the annotated term (e ∶ τ) infers the type τ :

Γ ⊢ e ↓ τ
Γ ⊢ (e ∶ τ) ↑ τ

These annotations must be manually added to terms by the programmer as they write the

program. However, the only place where annotations are truly required are at the sites of bare

β-redexes. For example, to check the term (λx.e) e′, it must be annotated as (λx.e ∶ τ → σ) e′.

Since most programs only contain bare β-redexes in the form of let-bindings, this requirement

is both predictable and fairly ergonomic. In fact, the only type that truly must be annotated

is the so-called “cut type”, the τ in (λx.e ∶ τ → σ) e′. This is because when checking (λx.e) e′

against σ, the type of e must be σ, and the only unknown type is type of e′ (and x). In the

eventual implementation, we include an annotated let-binding construct let x : t = e in

e’ for exactly this reason.

It is important to remember that these annotations are not present in a declarative syntax.

It will eventually be useful (when discussing the relation between biλ-Amor and dλ-Amor) to

have the ability to talk about the “underlying” declarative term of an algorithmic term, which is

achieved by simply removing all type annotations (e ∶ τ) from a term. We usually denote this ∣e∣,

when e is an algorithmic term, and sometimes refer to it as the erasure of a term. The erasure

can be trivially defined by recursion on raw terms, with the critical case being ∣(e ∶ τ)∣ = ∣e∣.

As of yet, the relationship between a declarative calculus and its bidirectional algorithmic

counterpart has been left unstated. However, the point of the bidirectional calculus is to be able

to algorithmically generate declarative derivations! To this end, one always requires that the

bidirectional type system be sound for the declarative one.

Theorem 4.1 (Bidirectional Soundness). If Γ ⊢ e ↓ τ , then Γ ⊢ e ∶ τ

In other words, successfully running check(Γ, e, τ) is sufficient to show that e in fact has

type τ in context Γ.

Conversely, completeness is also desirable, but not strictly necessary for bidirectional type

systems. The most obvious statement of completeness (Γ ⊢ e ∶ τ implies Γ ⊢ e ↓ τ) does not,

in fact, hold. If the term e contains un-annotated explicit β-redexes, the algorithmic system
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will fail to infer function types in those positions. For this reason, the following slightly weaker

theorem is used as the completeness result for bidirectional type systems.

Theorem 4.2 (Bidirectional Completeness). If Γ ⊢ e ∶ τ , then there exists e′ such that

Γ ⊢ e′ ↓ τ , and ∣e′∣ = e, where ∣e′∣ is the annotation-erasure of e′.

When proven constructively, this completeness result encodes an algorithm which inserts

annotations into the term e so that the resulting term checks against τ . When Theorem 4.2

is proven directly by induction, the algorithm it encodes introduces far more annotations than

is often strictly necessary. We improve on this with our completeness proof of biλ-Amor in

Section 8 by proving an equivalent statement whose constructive proof inserts fewer annotations

than the standard theorem.

4.0.2. Algorithmic Subtyping and Normalization. To implement the subsumption rule men-

tioned above, a decision procedure for the subtyping relation τ <∶ τ ′ is required. However,

dλ-Amor’s subtyping is not immediately implementable for two important reasons.

Firstly, like dλ-Amor’s typing relation, it is not syntax directed: the relation includes two

rules (reflexivity and transitivity) that can be used at any step of a derivation. To avoid a

backtracking implementation, it will be necessary to design an algorithmic subtyping relation

for biλ-Amor which includes neither of these rules. Of course, the algorithmic subtyping will need

to be sound and complete for the declarative one. This requirement means that the algorithmic

subtyping relation will need to have reflexivity and transitivity as admissible rules: in effect, we

will need to prove identity and cut elimination.

The second (and more pernicious) problem is the inclusion of indexed types. While many

refinement type systems (including DML [84], on which λ-Amor’s refinement types are based)

include indexed types [85], they are usually implemented only as types of the form ∀i ∶ S.τ .

While useful, these indexed types are limited: their abstraction and application is controlled

by term-level introduction and elimination rules. Instead, dλ-Amor includes indexed types of

the form λi ∶ S.τ , which operate entirely at the type level, without programmer input required.

The inclusion of type-level abstractions and applications does require the subtyping relation to

include β equalities for these indexed type families: without them, the subtyping relation would
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not be able to judge relations like (λi ∶ N.Li τ)3 <∶ L3 τ , where the subtying relation holds up to

β equality.

The inclusion of β-conversion makes a simple algorithmic subtyping relation unlikely, since

any way of deciding declarative subtyping must also decide β-equality of this small λ-calculus

at the type level. However, the situation is sufficiently simple that we can get away with a

fairly low-powered solution. To this end, biλ-Amor’s subtyping relation is split into two phases.

First, both types are evaluated (or normalized) to normal forms, and then judged for subtyping

by a relation which only contains the congruence rules. These normal forms are only normal

insofar as they contain no type-level β-redexes. Since index terms only become important at

constraint-solving time, we do not require that the index terms appearing in a normal form

type be normal in any sense. This notion of normal form has a major benefit: since abstractions

λi ∶ S.τ range over index terms and not types, a β reduct has strictly fewer type connectives than

its redex. For this reason, the normalization can be implemented in a single pass: substituting

an index term for a free variable in a type in normal form yields another type in normal form.

The two-phase algorithmic subtyping relation, as well as the normalization proof, are discussed

in detail in Section 7.1

4.0.3. Constraint Generation. As motivated in Section 2, most of the changes to λ-Amor

that result in dλ-Amor are there for the purpose of simplifying the constraint-solving process

that arises as a part of subtyping. Efficiently handling these constraints is crucial to an efficient

implementation. For this reason, it is useful to defer the discharging of inference rules’ constraint

validity premises until after the typechecking pass has finished.

We operationalize this in biλ-Amor by designing each judgment to “output” a constraint: we

replace declarative judgments J with algorithmic ones J ⇒ Φ, where Φ is a constraint, thought

of as an output of the judgment. For instance, a constraint-emitting algorithmic version of a

declarative type-assignment judgment Γ ⊢ e ∶ τ might look like Γ ⊢ e ∶ τ ⇒ Φ. The intended

meaning of this (and the shape of the soundness theorem for an algorithmic judgment with a

constraint output) is that if we can derive the algorithmic judgment J ⇒ Φ and Φ holds, then

the declarative judgment J is derivable.

This scheme is pervasive. Since every judgment in dλ-Amor either has a rule with a con-

straint validity premise or depends on one that does, every judgment in biλ-Amor must emit
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constraints. The pattern in transforming a declarative judgment to an algorithmic one which

emits constraints is fairly uniform: the output constraint of a rule is essentially the conjunction

of the constraints output by its premises. One must also ensure that implications and quantifiers

are inserted for constraints and index variables bound in premises: the logical structure of the

output constraint mirrors the structure of the premises.

The constraints Φ that each judgment emits are drawn from a syntax of logical formulae,

which is outlined in Figure 3 in Section 5. This syntax is very general, allowing unrestricted

universal and existential quantification, the usual truth-functional logical connectives, as well

as equalities and inequalities between index terms. While this theory is (almost certainly) not

decidable, SMT solvers handle it well enough for practical purposes, as we will see in Section 9.

4.0.4. I/O Method. On top of the implementation challenges created by the fancier aspects

of dλ-Amor’s type system, its affine-ness presents a well-understood barrier to implementation.

To illustrate, consider writing the following case of the check:ctx->tm->typ->unit function

from earlier.14

check gamma Pair(e1,e2) Tensor(t1,t2) = ??

This case corresponds to the introduction rule for tensor,

Γ1 ⊢ e1 ∶ τ1 Γ2 ⊢ e2 ∶ τ2
Γ1,Γ2 ⊢ (e1, e2) ∶ τ1 ⊗ τ2

It is not at all clear how to proceed in this case. The tensor introduction rule prescribes that

we make two recursive calls check gamma1 e1 t1 and check gamma2 e2 t2, but provides no

direction how to obtain gamma1 and gamma2 from gamma: the rule is presented in the standard

way so that the two halves of the context are given at the outset.

This problem has two naive solutions. Firstly, one could analyze the structure of e1 and e2

to determine the variables they each use, and partition the context accordingly. This approach

is very inefficient: even if done with a pre-processing step, it adds at least one pass through the

term. Secondly, one could split the context symbolically, and generate yet more constraints to

unify at the end of the typechecking process.

14 To simplify some of the presentation of this sub-section, we will specialize to the non-bidirectional setting,

and work in a simply-typed language where binders are fully annotated.
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Instead of either of these, we adopt a more principled approach based on the work of

Cervesato et al. [11]. In short, we extend the main typing judgment with yet another output —

this time a second context, which contains the variables which were unused in typing the term.

A simplified version of the typing judgment takes the form Γ ⊢ e ∶ τ ⇒ Γ′, where Γ is the input

context, and Γ′ is the output context. The key idea of this setup (known sometimes as the I/O

method) is that we may thread the contexts through the premises of a rule as follows:

Γ ⊢ e1 ∶ τ1 ⇒ Γ1 Γ1 ⊢ e2 ∶ τ2 ⇒ Γ2

Γ ⊢ (e1, e2) ∶ τ1 ⊗ τ2 ⇒ Γ2

The first premise (the first component of the pair) has access to the entire input context, and

it outputs Γ1, the variables in Γ which were unused in typing e1. This context is then used as the

input context for checking e2. Since affine variables may be used at most once, the only variables

which e2 may access are those unused by e1. This property is enforced in declarative systems

“in parallel” by splitting the context up front, but it may similarly be enforced “sequentially”

by lazily deciding which premises may use which variables in this algorithmic style.

The key rule in designing an algorithmic type system which uses the I/O method is the

affine variable rule. When a variable is used, it must be removed from the output context:

x ∶ τ ∈ Γ
Γ ⊢ x ∶ τ ⇒ Γ ∖ {x}

Moreover, this I/O method will be trivial to implement. We simply change the type of

check and infer to output a context as well. Since these functions both receive and output a

context, one can think of typechecking with the I/O method as happening inside a state monad

of contexts, as opposed to the usual reader monad. While this solution is clearly preferable to

the naive ones efficiency-wise, it is not at all obvious that this way of algorithmizing an affine

type system is sound, much less complete, for the standard presentation of the rules.

Writing Γ ⊢ e ∶ τ (with no output context) as the declarative typing relation, a first cut at

a soundness theorem for this calculus is the following:

Theorem 4.3 (First Cut at Soundness of the I/O Method). If Γ ⊢ e ∶ τ ⇒ Γ′, then Γ ⊢ e ∶ τ

While true, the statement of this theorem isn’t strong enough to be proven by a direct

induction. Intuitively, Γ contains variables that are unused in the typing of e, namely those in
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Γ′. Thus, it makes sense to strengthen the conclusion to type e in a context with only the free

variables it mentions, namely Γ ∖ Γ′.

Theorem 4.4 (Soundness of the I/O Method). If Γ ⊢ e ∶ τ ⇒ Γ′, then Γ ∖ Γ′ ⊢ e ∶ τ

Note that Γ ∖ Γ′ is well-defined because Γ′ ⊆ Γ, a fact which must be proven by induction

over the algorithmic rules. The completeness theorem is simpler to state, but harder to prove.

Theorem 4.5 (Completeness of the I/O Method). If Γ ⊢ e ∶ τ , then there is some Γ′ such

that Γ ⊢ e ∶ τ ⇒ Γ′

The proof of this theorem relies on the fact that weakening is also admissible for an algo-

rithmic type system using the I/O method. When new variables are added to the input context,

they simply “flow through” the judgment to the output context, and are left unused.

Theorem 4.6 (Admissibility of Weakening for the I/O Method). If Γ ⊢ e ∶ τ ⇒ Γ′, then for

all Γ′′, we have that Γ,Γ′′ ⊢ e ∶ τ ⇒ Γ′,Γ′′

5. Syntax and Type System of dλ-Amor

In this section, we will finally rip off the band-aid and begin to discuss the formal system

that makes up dλ-Amor. All of the main motivating concepts for the design of this formalism

have been discussed in the previous sections. When the cost monad and potential modalities

with their AARA-style representations, refinements, and polymorphism are combined, we have

a recipe for some potentially convoluted inference rules. The puzzled reader is encouraged to

refer to Xi [84] for an account of similar material, without any of the added burden of resource-

tracking features.

Since dλ-Amor is only a minor revision of λ-Amor, the structure of its formalism closely

follows that of the original found in Rajani et al. [64]. We will begin by presenting its syntax,

which differs from λ-Amor only in its added term-level index and type variables, which are added

for syntax-directedness purposes. Next, we discuss dλ-Amor’s type system, which mirrors that

of λ-Amor judgment-for-judgment. The only major difference between the systems is that we

take some extra care to pin down the invariants and presuppositions of each judgment: this

extra level of precision and formality is required to prove some of the proof-theoretic properties

of dλ-Amor with which we conclude the section.
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Base Sort bS ∶∶= N ∣ R+ ∣ R⃗+

Sort S ∶∶= bS ∣ bS → S

Kinds K ∶∶= ⋆ ∣ S →K

Constants c ∶∶= n ∈ N ∣ r ∈ R+ ∣ (c0, . . . , ck) ∈ R⃗+

Index Term I, J, p⃗, q⃗ ∶∶= 0,1, . . . ∣ i, j ∣ I + J ∣ I − J ∣ k ⋅ I ∣ λi ∶ bS.I ∣ I J

∣ const(I) ∣ ∑I1i=I0 J

Constraint Φ ∶∶= ⊺ ∣ � ∣ Φ1 ∧Φ2 ∣ Φ1 ∨Φ2 ∣ Φ1 → Φ2 ∣ ∀i ∶ S.Φ ∣ ∃i ∶ S.Φ

∣ I = J ∣ I ≤ J

Type τ ∶∶= 1 ∣ α ∣ τ1 ⊸ τ2 ∣ τ1 ⊗ τ2 ∣ τ1&τ2 ∣ !τ ∣ τ1 ⊕ τ2 ∣ ∀i ∶ S.τ

∣ ∃i ∶ S.τ ∣ ∀α ∶K.τ ∣ LIτ ∣ Φ Ô⇒ τ ∣ Φ&τ ∣ M(I, p⃗) τ

∣ [I ∣p⃗] τ ∣ [I] τ ∣ λi ∶ S.τ ∣ τ I

Expression e ∶∶= 0,1, . . . ∣ x ∣ λx.e ∣ e1 e2 ∣ (e ∶ τ) ∣ ⟪e1, e2⟫

∣ let ⟪x, y⟫ = e in e′ ∣ (e1, e2) ∣ fst(e) ∣ snd(e)∣ !e

∣ let !x = e in e′ ∣ inl(e) ∣ inr(e) ∣ case(e, x.e1, y.e2)

∣ case(e, e1, x.e2) ∣ fix(x.e) ∣ Λi.e ∣ e [I] ∣ Λα.e ∣ e [τ]

∣ nil ∣ e1 ∶∶ e2 ∣ match(e, e1, x.y.e2) ∣ pack[I](e)

∣ unpack (i, x) = e in e′ ∣ Λ.e ∣ e {} ∣ < e >

∣ clet x = e in e′ ∣ ret(e) ∣ bind x = e in e′ ∣ tick[I ∣p⃗]

∣ store[I ∣p⃗](e) ∣ store[I](e) ∣ release x = e in e′

∣ shift(e)

Type Variable Context Ψ ∶∶= ⋅ ∣ Ψ, τ ∶K

Index Variable Context Θ ∶∶= ⋅ ∣ Θ, i ∶ S

Constraint Context ∆ ∶∶= ⋅ ∣ ∆,Φ

Term Variable Context Γ,Ω ∶∶= ⋅ ∣ Γ, x ∶ τ

Figure 3. Syntax of dλ-Amor

5.1. Syntax of dλ-Amor. In preparation to discuss dλ-Amor’s type system, we present

its syntax in Figure 3.
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5.1.1. Index Terms, Sorts, Kinds, and Constraints. dλ-Amor’s refinement types are mod-

eled in the style of DML, which takes the form of a two-level type system. As discussed in

Section 2, these refinements allow the user to assign potential to types which depends on the

sizes of data structures, such as the lengths of lists. These numerical values are denoted by index

terms (I, J) which decorate some of the types and surface syntax of dλ-Amor. Index terms may

be of three possible numerical base sorts: natural numbers N, positive real numbers R+, and

potential vectors of some fixed length k, R⃗+. Additionally, dλ-Amor also includes first-order

sort-level functions.

The syntax of index terms themselves is generated by the standard arithmetic operations,

along with constants, variables, and application/abstraction forms for the sort-level functions.

Of special note are the const and Σ constructs. For an index term I of sort R+, the term

const(I) is of potential vector sort, and may be thought of as the “constant” potential vector

(I,0, . . . ,0), such that for all nN, φ(n,const(I)) = I. The Σ construct is as expected, although

the upper bound is non-inclusive: the sum ∑I1i=I0 J sums from J[I0/i] to J[(I1 − 1)/i], as long

as the range is nonempty, when the sum is of course zero15.

dλ-Amor also supports full System F-style impredicative polymorphism, as well as sort-

indexed types. We denote the kind of types as ⋆. Note that sort-indexed types may have

sort-level arrows in negative position, and so sort-function-indexed types are included also.

Finally, dλ-Amor includes constraints over index terms, which can be combined with con-

junction, disjunction, implication, and both kinds of quantification. We will not provide a proof

system for these constraints. Instead, we will only ever interact with constraints via an abstract

validity relation Theta; ∆ ⊧ Φ, and all the proofs of soundness and completeness in Section 8

will be relative to a decision procedure/oracle for this relation ⊧. In the implementation of

LambdaAmor, we think of this relation parameter of the type system as being instantiated by

the SMT solver backend, which does a good enough job of deciding the theory for practical

purposes.

15 Including arbitrary sums in index terms has the consequence that the constraints from subtyping may be

nonlinear. In practice this is rarely an issue — sums are only needed in specific analyses such as cost-parametric

map/fold and church numerals.
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5.1.2. Types. dλ-Amor’s types include all of the standard connectives from affine logic,

namely positive and negative products (⊗ and &), sums (⊕), affine functions (⊸), and the

exponential modality !τ . Of course, dλ-Amor also supports a litany of more specialized types

for amortized cost analysis.

Chief among these are the cost monad and potential types, A monadic type M (I, p⃗) τ clas-

sifies monadic computations of type τ , which may incur up to φ(I, p⃗) cost. The type formation

rules ensure that I is of sort N, and p⃗ is of sort R⃗+. With the same restrictions on the sorts

of its index terms, the potential type [I ∣p⃗] τ classifies values with at least φ(I, p⃗) potential. In

addition to the AARA-style potential, dλ-Amor also has a “constant potential” modality [I] τ ,

whose values are those of type τ , with I = φ(n,const(I)) potential, for any n. While not

strictly necessary for the theoretical development of dλ-Amor, this modality is sometimes useful

in practice.

Index variables may be quantified over in types with the ∀i ∶ S.τ and ∃i ∶ S.τ types, and

polymorphic type variables are quantified over using the ∀α ∶K.τ type constructor — we do not

support existential types, though there is no metatheoretical barrier to their inclusion.

As previously mentioned, the type of lists LI τ is refined by length — the values of this

type all have length I. Next, dλ-Amor also includes two “constraint types”, Φ Ô⇒ τ , and

Φ&τ . Values of the first type are known to have type τ when Φ holds, and values of the

second type are values of type τ , along with an (irrelevant) proof of Φ. As λ-Amor has no

error handling mechanism, this construct is helpful for statically preventing errors by encoding

function pre and post-conditions in a type: for instance, the head function may be typed as

∀n ∶ N.(n ≥ 1) Ô⇒ (Ln τ ⊸ τ)

Finally, dλ-Amor’s types include abstraction and application forms for indexed types. The

abstraction form λi ∶ S.τ has kind S → K when τ has kind K, and so term variables will never

have type λi ∶ S.τ , as it is a higher-kinded type.

5.1.3. Terms. While the original presentation of λ-Amor takes great care to include only a

barebones term syntax, dλ-Amor will have to expand this syntax somewhat to ensure that the

textual representation of a program is unambiguous for programming purposes. Practically, this

means that every logical connective has explicit syntactic introduction and elimination forms,

whereas this is handled silently in λ-Amor.
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Θ ⊢∆wf Θ; ∆ ⊢ I ∶ S Θ; ∆ ⊢ Φ wf Ψ; Θ; ∆ ⊢ τ ∶K

Ψ; Θ; ∆ ⊢ τ <∶ τ ′ ∶K Ψ; Θ; ∆ ⊢ Γwf Ψ; Θ; ∆ ⊢ Γ ⊑ Γ′ Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

Figure 4. Judgment Forms of the dλ-Amor Type System

The term syntax for all of the standard connectives should be familiar. The two products

are distinguished by double angled brackets for positive pairs, and parentheses for negative pairs.

All binders are un-annotated to reduce the burden on the programmer. Lists are constructed

with nil and cons constructors, and the elimination form is a pattern match. The last standard

inclusion is a fixpoint operator fix, which allows us to write generally-recursive functions.

The refinement type syntax is similar to that of the logical connectives: universal quantifiers

are introduced and eliminated with Λi.e abstraction and application e [I], while existentials have

the traditional pack/unpack. The two constraint types are less standard: constraint conjunction

is introduced with a pair of angle brackets < e > and eliminated with a clet, while constraint

implication is introduced and eliminated with a “silent” abstraction Λ.e, and eliminated with

an application e{}.

The syntax associated to the amortized analysis constructs is likely less familiar. The

monadic cost type M (I, p⃗) τ has three operations associated with it: ret(e) and bindx =

e1 in e2, the unit and bind of the monad, respectively, as well as tick[I ∣p⃗], an atomic operation

which incurs a cost of φ(I, p⃗). The potential type has introduction form store[I ∣p⃗](e) and

elimination form releasex = e1,in e2. Similarly, the constant potential type has introduction

form store[I](e), and the same elimination syntax as the AARA-style potential type.

5.2. Type System of dλ-Amor. In Figure 4, we provide a listing of the judgments which

make up dλ-Amor’s type system. Selected rules are presented in Figure 8, and a listing of all

rules can be found in Appendix A.

5.2.1. Contexts. Judgments in dλ-Amor have as many as five contexts. Contexts Ψ map

type variables to their kinds. Θ is an index variable context, which maps index variables to their

sorts. ∆ is a list of constraints, which are assumptions of the judgment — constraints in ∆ may

mention variables in Θ, and so there is a weak form of dependence between the two contexts.

The final two contexts Ω and Γ are term variable contexts, which map variables to their types.
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The context Ω is referred to as the exponential context, and it contains variables which may be

used more than once: i.e. are not subject to the affine restriction 16. Finally, the context Γ lists

the rest of the variables, which may be used at most once.

To avoid questions of exchange, we consider all of the contexts except for ∆ up to permu-

tations. Indeed, we will frequently treat contexts like sets, testing membership. Further, it will

be useful later on to take intersections, unions, and differences of contexts: these operations will

only be defined when both operations involved are subsets of a common superset.

5.2.2. Index Terms and their Sorts. The rules that make up the sort system for index terms

(prefixed I-) are mostly self-explanatory: we ensure that arguments to arithmetic operators have

the same sorts. Since all three base sorts (N, R+, R⃗+) are nonnegative, the rule for subtraction

I − J must ensure that I ≥ J . As discussed in Section 2, the rule I-ConstVec shows how const

promotes index terms of sort R+ to sort R⃗+, while the rule I-Shift types the shift operation on

potential vectors (Definition 2.3). Finally, the I-Lam and I-App rules give the introduction and

elimination rules for the index-level functions.

5.2.3. Types and their Kinds. The type formation rules (prefixed K-) for dλ-Amor are very

straightforward. All types have kind ⋆, with the exception of the index type abstraction and

elimination forms. The rule K-FamLam ensures that an indexed type λi ∶ S.τ has kind S → K

when τ has kind K, and the indexed-type application τ I has kind K when τ has kind S → K

and I is of sort S, as seen in K-FamApp.

5.2.4. Subtyping. The majority of the rules for subtyping in dλ-Amor (prefixed by S-) are

the standard congruences for logical connectives. The rules for the types involved in cost analysis

for refinements, however, warrant some discussion.

The rule S-Monad gives the subtyping relation for the cost monad: M (I, q⃗) τ1 <∶M(J, p⃗) τ2

when τ1 <∶ τ2, I = J , and q⃗ ≤ p⃗ componentwise. The soundness of this rule relies on the fact

that φ(n, q⃗) ≤ φ(n, p⃗) when q⃗ ≤ p⃗, and the fact that the cost annotations represent upper bounds

— it is safe to use a computation which incurs less cost in a context which expects one that

16 One may think of all types in Ω implicitly beginning with !, and imagine the variable rule for exponential

variables to be silently inserting the counit !τ ⊸ τ . This dual-context construction is standard in the study of

modal types. [39]
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I-Var

i ∶ S ∈ Θ

Θ; ∆ ⊢ i ∶ S

I-Plus

Θ; ∆ ⊢ I ∶ bS Θ; ∆ ⊢ J ∶ bS

Θ; ∆ ⊢ I + J ∶ bS

I-Minus

Θ; ∆ ⊢ I ∶ bS Θ; ∆ ⊢ J ∶ bS Θ; ∆ ⊧ I ≥ J

Θ; ∆ ⊢ I − J ∶ bS

I-Shift

Θ; ∆ ⊢ I ∶ R⃗+

Θ; ∆ ⊢ ⊲ I ∶ R⃗+

I-ConstVec

Θ; ∆ ⊢ I ∶ R+

Θ; ∆ ⊢ const(I) ∶ R⃗+

I-Lam

Θ, i ∶ bS; ∆ ⊢ I ∶ S

Θ; ∆ ⊢ λi ∶ bS.I ∶ bS → S

I-App

Θ; ∆ ⊢ I ∶ bS → S Θ; ∆ ⊢ J ∶ bS

Θ; ∆ ⊢ I J ∶ S

I-Sum

Θ; ∆ ⊢ I0 ∶ N Θ; ∆ ⊢ I1 ∶ N Θ, i ∶ N; ∆, I0 ≤ i < I1 ⊢ J ∶ bS

Θ; ∆ ⊢
I1

∑
i=I0

J ∶ bS

K-Var

α ∶K ∈ Ψ

Ψ; Θ; ∆ ⊢ α ∶K

K-Unit

Ψ; Θ; ∆ ⊢ 1 ∶ ⋆

K-Monad

Θ; ∆ ⊢ I ∶ N Θ; ∆ ⊢ p⃗ ∶ R⃗+ Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢M(I, p⃗)τ ∶ ⋆

K-Pot

Θ; ∆ ⊢ I ∶ N Θ; ∆ ⊢ p⃗ ∶ R⃗+ Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ [I ∣p⃗]τ ∶ ⋆

K-FamLam

Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶K

Ψ; Θ; ∆ ⊢ λi ∶ S.τ ∶ S →K

K-FamApp

Ψ; Θ; ∆ ⊢ τ ∶ S →K Θ; ∆ ⊢ I ∶ S

Ψ; Θ; ∆ ⊢ τ I ∶K

C-Conj

Θ; ∆ ⊢ Φ1 wf Θ; ∆ ⊢ Φ2 wf

Θ; ∆ ⊢ Φ1 ∧Φ2 wf

C-Eq

Θ; ∆ ⊢ I ∶ bS Θ; ∆ ⊢ J ∶ bS

Θ; ∆ ⊢ I = J wf

Figure 5. Selected Sort, Kind, and Constraint Rules
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S-Refl

Ψ; Θ; ∆ ⊢ τ <∶ τ ∶K

S-Trans

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶K Ψ; Θ; ∆ ⊢ τ2 <∶ τ3 ∶K

Ψ; Θ; ∆ ⊢ τ1 <∶ τ3 ∶K

S-Monad

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ Θ; ∆ ⊧ I = J Θ; ∆ ⊧ q⃗ ≤ p⃗

Ψ; Θ; ∆ ⊢M(I, q⃗)τ1 <∶M(J, p⃗)τ2 ∶ ⋆

S-Pot

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ Θ; ∆ ⊧ I = J Θ; ∆ ⊧ p⃗ ≤ q⃗

Ψ; Θ; ∆ ⊢ [I ∣q⃗]τ1 <∶ [J ∣p⃗]τ2 ∶ ⋆

S-FamLam

Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶ τ2 ∶K

Ψ; Θ; ∆ ⊢ λi ∶ S.τ1 <∶ λi ∶ S.τ2 ∶ S →K

S-FamApp

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ S →K Θ; ∆ ⊧ I = J

Ψ; Θ; ∆ ⊢ τ1 I <∶ τ2 J ∶K

S-Fam-Beta1

Ψ; Θ; ∆ ⊢ (λi ∶ S.τ) J <∶ τ[J/i] ∶K

S-Fam-Beta2

Ψ; Θ; ∆ ⊢ τ[J/i] <∶ (λi ∶ S.τ) J ∶K

Figure 6. Selected Subtyping rules

incurs more. Dually, it is always safe to throw away potential in the subtyping rules for the two

potential modalities, S-Pot and S-ConstPot.

In addition to the subtyping rules at base kind, the rules S-FamLam and S-FamApp govern

the subtyping of indexed types. The rule S-FamLam states that subtyping at kind S → K is

simply generated by pointwise subtyping in the codomain K, while S-FamApp is a standard

congruence rule. Note that S-FamApp requires that the two arguments be equal: since we do

not require that indexed types be monotone, this is the strongest possible form of the rule.

Finally, the rules S-FamBeta-1 and S-FamBeta-2 serve to include β-equality of type families in

the subtyping relation.

5.2.5. Context Well-Formedness Judgments and Context Subsumption. The judgment Θ; ∆ ⊢

Φ wf ensures that Φ is a well-formed context: all index terms mentioned in it are sort-correct,

and relations are only judged between index terms of the same sort.
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WF-CCtxE

Θ ⊢ ⋅ wf

WF-CCtxNe

Θ ⊢∆ wf Θ; ∆ ⊢ Φ wf

Θ ⊢∆,Φ wf

WF-TCtxE

Ψ; Θ; ∆ ⊢ ⋅ wf

WF-TCtxNE

Ψ; Θ; ∆ ⊢ Γ wf Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ Γ, x ∶ τ wf

CS-Emp

Ψ; Θ; ∆ ⊢ Γ ⊑ ⋅

CS-Var

x ∶ τ ′ ∈ Γ Ψ; Θ; ∆ ⊢ τ ′ <∶ τ Ψ; Θ; ∆ ⊢ Γ ∖ {x ∶ τ ′} ⊑ Γ′

Ψ; Θ; ∆ ⊢ Γ ⊑ Γ′, x ∶ τ

Figure 7. Context Well-formedness rules and Context Subsumption

dλ-Amor also requires two auxiliary context-well-formedness judgments: Θ ⊢ ∆ wf and

Ψ; Θ; ∆ ⊢ Γ wf. The former ensures that the constraints in the context ∆ are well-typed with

respect to the context Θ, and the latter ensures that all of the types in Γ have kind ⋆.

Finally, The judgment Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ determines when we may relax a context Γ′ to a

weaker one Γ with the T-Weaken rule. Intuitively, this judgment encodes the permission to

weaken a context as a kind of record subtyping.

5.2.6. Terms and their Types. The typing rules for all of the logical connectives have the

standard caveats for an affine type system: affine arrow introduction T-ArrI binds variable

x ∶ A in the affine context Γ. Multi-premise rules like tensor introduction (T-TensorI) and

sum elimination (T-Case) require splitting the affine context to type the premises. As usual,

“parallel” premises such as the two arms of a case may share affine resources, as only one branch

will be taken at run-time.

Of greater interest are the rules for the cost analysis and refinement type-related constructs.

The return of the cost monad lifts a pure value e ∶ τ to a monadic computation ret(e) which

incurs no cost. So, the rule T-Ret types ret(e) at M(I, 0⃗) τ for any index term I of sort N,

where 0⃗ is the length k vector of 0s. Since φ(I, 0⃗) = 0 independent of the base I, this rule has the

desired effect. Meanwhile, the bind of the cost monad sums the costs of the computation and

the continuation. T-Bind operationalizes this by typing bindx = ein e′ ∶ M(I, p⃗ + q⃗) τ2 when
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T-Var-1

x ∶ τ ∈ Γ

Ψ; Θ; ∆; Ω; Γ ⊢ x ∶ τ

T-TensorI

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ τ1 Ψ; Θ; ∆; Ω; Γ2 ⊢ e2 ∶ τ2

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ ⟪e1, e2⟫ ; τ1 ⊗ τ2

T-TensorE

Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶ τ1 ⊗ τ2 Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1, y ∶ τ2 ⊢ e′ ∶ τ ′

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ let ⟪x, y⟫ = e in e′ ∶ τ ′

T-Nil

Ψ; Θ; ∆; Ω; Γ ⊢ nil ∶ L0τ

T-Cons

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ τ Ψ; Θ; Ω; Γ2 ⊢ e2 ∶ LIτ

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e1 ∶∶ e2 ∶ LI+1τ

T-Match

Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶ LIτ

Ψ; Θ; ∆, I = 0; Ω; Γ2 ⊢ e1 ∶ τ ′ Ψ; Θ; ∆, I ≥ 1; Ω; Γ2, h ∶ τ, t ∶ LIτ ⊢ e2 ∶ τ ′

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ match(e, e1, h.t.e2) ∶ τ ′

T-Ret

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ ret e ∶M (I, 0⃗) τ

T-Tick

Θ; ∆ ⊢ I ∶ N Θ; ∆ ⊢ p⃗ ∶ R⃗+

Ψ; Θ; ∆; Ω; Γ ⊢ tick[I ∣p⃗] ∶M (I, p⃗)1

T-Bind

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶M (I, p⃗) τ1 Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1 ⊢ e2 ∶M (I, q⃗) τ2

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ bind x = e1 in e2 ∶M (I, p⃗ + q⃗) τ2

T-Release

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ [I ∣q⃗]τ1 Ψ; Θ; ∆; Ω; Γ2, x ∶ τ ⊢ e2 ∶M (I, p⃗ + q⃗) τ2

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ release x = e1 in e2 ∶M (I, p⃗) τ2

T-Store

Θ; ∆ ⊢ I ∶ N Θ; ∆ ⊢ p⃗ ∶ R⃗+ Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ store[I ∣p⃗](e) ∶M (I, p⃗) ([I ∣p⃗] τ)

T-Sub

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ ′ Ψ; Θ; ∆ ⊢ τ ′ <∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

T-Weaken

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ Θ; ∆ ⊢ Ω′ ⊑ Ω Θ; ∆ ⊢ Γ′ ⊑ Γ

Ψ; Θ; ∆; Ω′; Γ′ ⊢ e ∶ τ

Figure 8. Selected dλ-Amor rules
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e ∶ M(I, p⃗) τ1 and x ∶ τ1 ⊢ e′ ∶ M(I, q⃗) τ2. The soundness of this rule is justified by the linearity

of the φ function from Theorem 2.1.

The two operations for the potential modality are carefully constructed to work harmo-

niously with the cost monad. Firstly, given a term e ∶ τ , the rule T-Store allows us to store φ(I, p⃗)

potential on the term by incurring that amount of cost: this takes the form of assigning the

type M(I, p⃗) ([I ∣p⃗] τ) to the term store[I ∣p⃗](e). Note that to access the underlying potential,

one must first bind the computation, in effect incurring the requisite φ(I, p⃗) cost to have access

to the potential. Dually, the rule T-Release gives the typing for using potential. The potential

on a term e ∶ [I ∣p⃗] τ1 can be used to pay for a monadic continuation x ∶ τ1 ⊢ e′ ∶ M(I, q⃗ + p⃗) τ2

to get releasex = ein e′ ∶M(I, q⃗) τ2. The rules for constant potentials follow a similar pattern:

the constant store expression store[J](e) has type M(I,const(J)) ([J] τ) by T-StoreConst.

We note that the type system enforces a discipline that all potential-related activities happen

inside the cost monad, which greatly simplifies the type soundness proof found in Rajani et al.

[64], when compared to resource-aware type systems with pervasive cost.

The list type (LI τ) is length-indexed, and so its typing rules are somewhat more involved

than the standard ones. To enforce the length refinement, the rules T-Nil and T-Cons specify

that the empty list [] has type L0τ , while a cons list e ∶∶ e′ has type LI+1τ for e ∶ τ and e′ ∶∶ LIτ .

The list elimination rule T-Match is more or less standard, but the two branches are typed

under extra constraints in the constraint context ∆. If the scrutinee has type LIτ , then the nil

case of the match is typed under the assumption that I = 0. Meanwhile the cons case is given

the assumption I ≥ 1, and the tail of the list is bound as having type LI−1τ .

In addition to the length-refined lists, the refinement type portion of dλ-Amor’s type system

also includes index term quantifiers in types (∀,∃), as well as the two constraint types (Φ&⋅,

Φ Ô⇒ ⋅). The treatment of the quantifiers is standard: the rules T-ILam and T-ExistE bind

index variables in the index context Θ, while the rules T-IApp and T-ExistI substitute in index

terms provided by the syntax. The rules for the constraint types operate in a similarly dual

fashion.

Finally, dλ-Amor explicitly includes two non-logical rules. The first is a subtyping rule

T-Sub, which may be used to downcast the type of a term to a less precise one. This rule has no

corresponding syntactic form, and thus may be inserted anywhere in a derivation. The second
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is T-Weaken, which allows for the weakening of the two term variable contexts, Ω and Γ. As

previously mentioned, the weakening relation on which this rule depends includes subtyping,

and so a weaker context may include less precise types, and not just fewer available variables.

5.2.7. Presuppositions. All of the judgments presented so far are “raw” judgments — one

may mechanically derive a proof of one using the inference rules, without regard for whether

or not the judgment makes any sense. Traditionally, the requisite assumptions for stating a

judgment in a sensical manner are known as presuppositions. For example, the sort-checking

judgment Θ; ∆ ⊢ I ∶ S requires that the constraint context ∆ be well-formed with respect to Θ.

There are many ways of handling these, but in this work we choose to make them explicit. Each

raw judgment form has an associated judgment form which packages together the requisite

well-formedness presuppositions for that judgment. We denote this by a subscript p on the

turnstile.

Definition 5.1. We say that Θ; ∆ ⊢p I ∶ S when Θ ⊢∆ wf and Θ; ∆ ⊢ I ∶ S.

Definition 5.2. We write Ψ; Θ; ∆ ⊢p τ ∶K to mean that Θ ⊢∆ wf and Ψ; Θ; ∆ ⊢ τ ∶K

Definition 5.3. We write Ψ; Θ; ∆ ⊢p τ <∶ τ ′ ∶K to mean that

(1) Θ ⊢∆ wf

(2) Ψ; Θ; ∆ ⊢ τ ∶K

(3) Ψ; Θ; ∆ ⊢ τ ′ ∶K

(4) Ψ; Θ; ∆ ⊢ τ <∶ τ ′ ∶K

Definition 5.4. We say Ψ; Θ; ∆ ⊢p Γ ⊑ Γ′ to mean that

(1) Θ ⊢∆ wf

(2) Ψ; Θ; ∆ ⊢ Γ wf

(3) Ψ; Θ; ∆ ⊢ Γ′ wf

(4) Ψ; Θ; ∆ ⊢ Γ ⊑ Γ′

Definition 5.5. We say that Ψ; Θ; ∆; Ω; Γ ⊢p e ∶ τ when

(1) Θ ⊢∆ wf

(2) Ψ; Θ; ∆ ⊢ Ω wf

(3) Ψ; Θ; ∆ ⊢ Γ wf
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(4) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

(5) Ψ; Θ; ∆; Ω ⊢ e ∶ τ

5.3. Proof Theory of dλ-Amor. Any type system as complex as dλ-Amor’s has heaps

of syntactic structure to exploit. This structure comes, as is traditional for type theories and

type systems, in the form of admissible rules. Each of dλ-Amor’s five principal judgments have

their own set of admissible rules, corresponding to the structural rules for each context, as well

as other judgmental structure. Because of this, the proof theory of dλ-Amor is incredibly rich.

We will make no attempt to cover it all here, and instead pick and choose the theorems which

will be useful down the line when it comes time to prove the soundness and completeness of biλ-

Amor. Below, we present the admissible rules which are used repeatedly in further metatheoretic

developments: proofs and intermediate theorems can be found in Appendix A.

First, we prove two statements about the context well-formedness judgments that should be

intuitively clear: since term variable contexts are not dependent, subsets of well-formed contexts

are themselves well-formed.

Theorem 5.1. If Ψ; Θ; ∆ ⊢ Γ wf and Γ′ ⊆ Γ then Ψ; Θ; ∆ ⊢ Γ′ wf

Theorem 5.2. If Θ ⊢∆,Φ wf then Θ ⊢∆ wf

Since the type and index variable contexts are fully structural, every judgment that uses

them admits weakening and contraction. In practice, we will only ever need to explicitly use

the weakening theorem for context subsumption.

Theorem 5.3. If Ψ; Θ; ∆ ⊢p Γ ⊑ Γ′ and Ψ′ ⊇ Ψ, Θ′ ⊇ Θ, and ∆′ ⊇ ∆, then Ψ′; Θ′; ∆′ ⊢p Γ ⊑

Γ′

Substitution is admissible for all contexts in all judgments — this is essentially a requirement

of a type system! However, we will primarily be concerned with substitution for types, as it will

become critical once we discuss normalization for types in Section 7.1.

Theorem 5.4. If Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶K and Θ; ∆ ⊢p I ∶ S then Ψ; Θ; ∆ ⊢p τ[I/i] ∶K

The strengthening theorem below only becomes relevant when passing back and forth be-

tween dλ-Amor and our eventual algorithmic system. Intuitively, the concept is clear: if a
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subtyping relation holds between two types which share a common set of free variables, the

subtyping can be derived while mentioning only those variables.

Theorem 5.5. Suppose Ψ; Θ; ∆ ⊢ τ ∶ K and Ψ; Θ; ∆ ⊢ τ ′ ∶ K. If Ψ′; Θ′; ∆ ⊢p τ <∶ τ ′ ∶ K

with Θ′ ⊇ Θ and Ψ′ ⊇ Ψ, then Ψ; Θ; ∆ ⊢p τ <∶ τ ′ ∶K

The next theorem is a convenient equivalent characterization of the context subsumption

judgment, which formalizes our intuition of this judgment as being essentially record subtyping:

the inclusion of Γ′ into Γ acts as record width subtyping, while pointwise subtyping on the

intersection of the two contexts allows for record depth subtyping.

Theorem 5.6. Ψ; Θ; ∆ ⊢ Γ ⊑ Γ′ if and only if for all x ∶ τ ′ ∈ Γ′, there is some τ so that

x ∶ τ ∈ Γ and Ψ; Θ; ∆ ⊢ τ <∶ τ ′ ∶ ⋆.

Finally, we prove a compatability lemma about context subsumption that is similar in flavor

to Theorem 5.5, which allows us to strengthen the assumptions of the judgment in a specific

(but common) situation.

Theorem 5.7. Suppose that

(1) Ψ; Θ; ∆ ⊢p Γ1 ⊑ Γ′1

(2) Ψ′; Θ′; ∆′ ⊢p Γ2 ⊑ Γ′2

(3) Γ1 ⊇ Γ2 and Γ′1 ⊇ Γ′2

Then, Ψ; Θ; ∆ ⊢p Γ2 ⊑ Γ′2.

6. Semantics and Soundness of dλ-Amor

For dλ-Amor to be useful, its type system must be sound. In this context, soundness means

that the static amortized execution costs from the types given to programs are in fact actual

upper bounds on the programs’ real dynamic execution cost. To prove that dλ-Amor’s type

system is sound in this way, we will appeal to a version of the soundness proof of λ-Amor. As

discussed in Section 2, λ-Amor differs from dλ-Amor mainly in its treatment of potentials and

costs. In fact the two languages are sufficiently similar (by design, of course) that there is a

straightforward embedding of dλ-Amor into λ-Amor. This embedding is cost-preserving, and

so the soundness of dλ-Amor follows immediately from the soundness of λ-Amor. Formally, we
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do not present a true embedding into λ-Amor, as it does not have a sort of potential vectors.

However, potential vectors can be trivially added to λ-Amor: the kripke logical relation which

forms the basis for its soundness proof never inspects index terms, and conflates index terms

with the semantic objects they denote. For this reason, we freely consider λ-Amor as having a

sort of potential vectors in the style of dλ-Amor, as well as a sort-level uninterpreted function

φ ∶ N × R⃗+ → R which is additive and monotonic in the second argument.

In Section 6.1, we present the operational semantics for dλ-Amor upon which the soundness

theorem is based. This semantics is a big-step cost-indexed operational semantics: the cost

indices are the concrete notion of cost that will be bounded by the statically-predicted costs in

the soundness theorem.

Then, in Section 6.2, we sketch the embedding of dλ-Amor into λ-Amor, and further sketch

proofs that the cost semantics of dλ-Amor coincides with that of λ-Amor under the embedding,

as well as the overall soundness theorem of dλ-Amor. We will not present the full details of the

translation here. However, the strategy is clear, and we see no barriers to its formalization.

6.1. Operational Semantics of dλ-Amor. To pin down the exact cost of programs writ-

ten in dλ-Amor, we provide a cost semantics for the language: a big-step operational semantics

which is indexed by the cost of evaluation.

Operationally, dλ-Amor behaves like a call-by-name monadic version of PCF. The cost

semantics, for which selected rules are presented in Figure 9, consists of two separate judgments.

First is a pure evaluation relation: e ⇓ v, which evaluates an expression of type τ to a value

of the same type. Evaluations in this relation are not thought to incur any cost. The set of

values includes all of the monadic actions, which must be subsequently forced to be evaluated.

This is accomplished with the forcing evaluation relation e ⇓κ v′, which relates monadic values

of type M I τ to values of type τ . The pure evaluation judgment is an entirely standard big-step

semantics, but selected rules from the forcing judgment can be found in Figure 9.

The rules for the pure evaluation relation are straightforward- as all monadic terms are

values, the pure relation simply behaves like a big-step evaluation relation for by-name PCF.

The rules for the refinement syntax at term level behave as if the syntax for refinements has

been erased at runtime- they contribute nothing meaningful to the operational semantics.
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e ⇓ v

ret(e) ⇓0 v tick[I ∣p⃗] ⇓φ(I,p⃗) ()

e ⇓ v

store[I ∣p⃗](e) ⇓φ(I,p⃗) v

e1 ↓ v1 v1 ⇓κ1 v′1 e2[v′1/x] ⇓ v2 v2 ⇓κ2 v

bindx = e1 in e2 ⇓κ1+κ2 v

e ⇓ v1 e2[v1/x] ⇓ v2 v2 ⇓κ v3

releasex = ein e′ ⇓κ v3

Figure 9. Selected Rules of dλ-Amor’s Cost Semantics

The rules for the forcing relation warrant some discussion. Since all monadic computations

are values, the forcing relation depends on the pure relation to evaluate sub-expressions. For

instance, the forcing relation evaluates ret(e) to v in 0 steps when e ⇓ v. The pure relation will

take some steps of computation by performing β-redexes, but we will not consider these to be

costly — only ticks incur any cost. Pure evaluations steps thus do not need to be accounted

for in the forcing relation.

Most importantly, the tick[I ∣p⃗] term evaluates with cost φ(I, p⃗) to the trivial value (). This

rule encodes the heretofore intutitive cost behavior of the type M(I, p⃗) τ , by explicitly assigning

the atomic costly operation the cost φ(I, p⃗) in our cost semantics. The final cost-monadic term,

the bind, is assigned cost in a purely compositional way. The evaluation of bind proceeds like

the evaluation of a let-binding, where the costs of forcing the argument and then the subsequent

continuation are added, and given as the total cost.

Finally, the two potential-related operations incur no semantic cost. This may come as a

surprise — the statically predicted cost for the store operation (for example) is the amount

of potential to be allocated. However, this cost is entirely for bookeeping purposes to ensure

that potentially is used soundly: it is not truly incurred when the program runs. Similarly, the

release operation runs identically to bind: it is simply a monadic sequencing. This “ghost”

nature of potential at runtime is congruent with the way we think about amortized analysis.

Recalling the notation of Chapter 1, the operational semantics give the costs C(f), while the

static types encode the amortized cost A(f) +∆Φ.
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6.2. Embedding of dλ-Amor in λ-Amor. The translation of dλ-Amor into λ-Amor

requires little insight: we simply compile the costs and potentials written abstractly as a base

and potential vector to the φ function applied to a pair. Concretely, the meat of the translation

on types consists of two rules: the dλ-Amor cost type M(I, p⃗) τ is translated to the λ-Amor

M (φ(I, p⃗)) τ ′, and the potential type [I ∣p⃗] τ is translated to [φ(I, p⃗)] τ ′, where τ ′ is the trans-

lation of τ . These translations respect rules of the two type systems: the monotonicity and

additivity of the φ function from Theorem 2.1 justify the translations of the bind and release

operations, as well as the subtyping rule for costs and potentials. The rest of the translation

is primarily an erasure. λ-Amor’s syntax includes no explicit index terms or types at the term

level, and so these are all erased. Finally, the shift operation is erased, a move which is justified

by Theorem 2.2.

For the remainder of the section, we will write the embedding on all syntactic forms as (⋅)○.

Further, the typing judgments of λ-Amor will be distinguished from those of dλ-Amor by using

a ⊩ for their turnstile, while the evaluation relation of λ-Amor will be written with a single

arrow ↓.

Theorem 6.1. If Ψ; Θ; ∆; Ω; Γ ⊢p e ∶ τ then Ψ○; Θ○; ∆○; Ω○; Γ○ ⊩ e○ ∶ τ ○

6.2.1. Statement of Soundness of dλ-Amor. To prove the soundness of dλ-Amor, we begin

by noting that its operational semantics are preserved under the erasure to λ-Amor. This is to

be expected: dλ-Amor’s cost semantics is simply that of λ-Amor, only written in terms of the

abstract costs φ(I, p⃗).

Theorem 6.2. If e ⇓κ v, then e○ ↓κ v○

From this, the soundness theorem for dλ-Amor follows immediately: the actual cost of

running a closed monadic computation is bounded above by its statically-predicted amortized

cost.

Theorem 6.3. If ⋅ ⊢p e ∶M (I, p⃗) τ and e ⇓κ v, then κ ≤ φ(I, p⃗).

Proof. By Theorem 6.1 and Theorem 6.2, we have that ⋅ ⊩ e○ ∶Mφ(I, p⃗) τ ○, and e○ ↓κ v○.

Then, by Theorem 1 of Rajani et al. [64], we have that κ ≤ φ(I, p⃗), as required. �
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Θ ⊢∆wf⇒ Φ Θ; ∆ ⊢ I ∶ S ⇒ Φ Θ; ∆ ⊢ Φ wf⇒ Φ′ Ψ; Θ; ∆ ⊢ τ ∶K ⇒ Φ

Ψ; Θ; ∆ ⊢ τ <∶ τ ′ ∶K ⇒ Φ Ψ; Θ; ∆ ⊢ Γwf⇒ Φ Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ ⇒ Φ,Γ′

Figure 10. Judgment Forms of the biλ-Amor Type System

7. Algorithmic Type System of biλ-Amor

With the formalism of dλ-Amor under control, we move on to presenting the formalism for

biλ-Amor. In short, this entails applying all of the type system algorithmization techniques

from Section 4 to dλ-Amor at once. As one might expect, this yields a fair bit of complexity

in the type system, and so we spend a good deal of space in this section exploring the rules

of biλ-Amor in depth, and commenting on some non-obvious design decisions along the way.

Additionally, we will formalize the type normalization procedure that is built into biλ-Amor’s

two-phase subtyping.

7.0.1. Syntax. The syntax of biλ-Amor is nearly identical to that of dλ-Amor: this is by

design, as biλ-Amor is intended to be an implementable version of dλ-Amor. The only difference

is the addition of the type annotation syntax (e ∶ τ) described in Section 4.0.1. The main change

between the two type systems is in the forms of the judgments. Some judgments change in only

minor ways: the sort-checking, kind-checking, and constraint well-formedness judgments are all

the same as in dλ-Amor, with the exception of the added constraint outputs as described in

Section 4.0.3. The subtyping judgment also sports a constraint output, but is also is split into

two, with first a “normal form subtyping” relation which judges one type to be a subtype of

another when both are in normal form, and then the general algorithmic subtyping relation which

relates two types by normalizing them and then relating them via the normal form subtyping

relation. Finally, the typing judgment changes the most: it splits into a checking (↓) and

inferring/synthesis (↑) judgment to support bidirectional type inference, with added constraint

outputs for solving and unused variable context output for the I/O method. These judgment

forms are all shown in Figure 10.

7.0.2. Sorts, Kinds, and Well-Formed Constraints. As we will see is true for the majority

of the judgments of biλ-Amor, the majority of the rules from dλ-Amor carry over with only

minor modification. Although they do form the typing rules for a (small) language embedded
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AI-Var

i ∶ S ∈ Θ

Θ; ∆ ⊢ i ∶ S ⇒ ⊺

AI-Plus

Θ; ∆ ⊢ I ∶ bS ⇒ Φ1 Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

Θ; ∆ ⊢ I + J ∶ bS ⇒ Φ1 ∧Φ2

AI-Minus

Θ; ∆ ⊢ I ∶ bS ⇒ Φ1 Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

Θ; ∆ ⊢ I − J ∶ bS ⇒ Φ1 ∧Φ2 ∧ (I ≥ J)

AI-Sum

Θ; ∆ ⊢ I0 ∶ N⇒ Φ1 Θ; ∆ ⊢ I1 ∶ N⇒ Φ2 Θ, i ∶ N; ∆, I0 ≤ i < I1 ⊢ J ∶ bS ⇒ Φ3

Θ; ∆ ⊢
I1

∑
i=I0

J ∶ bS ⇒ Φ1 ∧Φ2 ∧ ∀i ∶ N.(I0 ≤ i < I1 → Φ3)

AC-Top

Θ; ∆ ⊢ ⊺ wf⇒ ⊺

AC-Bot

Θ; ∆ ⊢ � wf⇒ ⊺

AC-Conj

Θ; ∆ ⊢ Φ1 wf⇒ Φ′
1 Θ; ∆ ⊢ Φ2 wf⇒ Φ′

2

Θ; ∆ ⊢ Φ1 ∧Φ2 wf⇒ Φ′
1 ∧Φ′

2

AC-Forall

Θ, i ∶ S; ∆ ⊢ Φ wf⇒ Φ′

Θ; ∆ ⊢ ∀i ∶ S.Φ wf⇒ ∀i ∶ S.Φ′

AC-Eq

Θ; ∆ ⊢ I ∶ bS ⇒ Φ1 Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

Θ; ∆ ⊢ I = J wf⇒ Φ1 ∧Φ2

AK-Unit

Ψ; Θ; ∆ ⊢ 1 ∶ ⋆ ⇒ ⊺

AK-Tensor

Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

AK-IForall

Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ ∶ ⋆ ⇒ ∀i ∶ S.Φ

AK-Monad

Θ; ∆ ⊢ I ∶ N⇒ Φ1 Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ2 Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ3

Ψ; Θ; ∆ ⊢M(I, p⃗)τ ∶ ⋆ ⇒ Φ1 ∧Φ2 ∧Φ3

Figure 11. Selected Algorithmic Sort, Kind, and Constraint Rules
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in biλ-Amor, the sort-assignment, kind-assignment and well-formedness judgments for index

terms, types, and constraints respectively, do not require a bidirectional treatment. This is

because all binders in these three syntactic categories are fully annotated, and so we can easily

implement sort/kind inference and checking without any difficulty. Similarly, since the index

and type variable contexts are fully structural, there is no need for the I/O method. Hence, the

only modification to these three judgments is the addition of the constraint output.

Intuitively, the three judgments all have very simple meanings: for instance, Θ; ∆ ⊢ I ∶ S ⇒

Φ is intended to mean that when Φ is valid, Θ; ∆ ⊢ I holds declaratively, and similarly for the

other two judgment forms. This intuition is made formal by the soundness proofs in Section 8.

We present a few selected rules from these judgments in Figure 11. As mentioned earlier, the

vast majority of rules are carried over from dλ-Amor: two good examples are AI-Plus and AC-

Conj, which follow an identical structure to their declarative counterparts, and simply conjoin

the output contexts from the premises in the conclusion.

Some declarative rules have an instance of the constraint validity relation as a premise: for

example, the rule I-Minus requires Θ; ∆ ⊧ I ≥ J to judge Θ; ∆ ⊢ I − J ∶ bS. In the algorithmic

judgments of biλ-Amor, these constraints are conjoined onto the output constraint of the con-

clusion. The algorithmic rule corresponding to I-Minus, AI-Minus, exemplifies this pattern. It

has two premises to check that the two subterms I and J are of the proper sort, which emit

constraints Φ1 and Φ2, respectively. The output constraint is then Φ1 ∧ Φ2 ∧ (I ≥ J). This is

constructed in such a way that our eventual soundness theorem will be simple, if the output

constraint is valid, then so is I ≥ J , and we can thus use Θ; ∆ ⊧ I ≥ J to construct a declarative

proof that I − J is sort-correct.

In a similar manner, in rules where premises bind index variables or assume constraints,

the bound variable or constraint must be introduced to the conclusion’s output constraint to

maintain the well-formedness of output constraints. As an example, consider the rules AK-

Forall and AC-Forall. Their premises output constraints Φ which may (and usually do) mention

the universal index variable i ∶ S, which is bound in the context Θ. Then in the conclusion,

this variable is no longer present, and so Φ need not be well-formed. To fix this, we explicitly

quantify over the index variable i in the conclusion’s output constraint.
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AWF-CCtxE

Θ ⊢ ⋅ wf⇒ ⊺

AWF-CCtxNe

Θ ⊢∆ wf⇒ Φ1 Θ; ∆ ⊢ Φ wf⇒ Φ2

Θ ⊢∆,Φ wf⇒ Φ1 ∧ (⋀∆→ Φ2)

AWF-TCtxE

Ψ; Θ; ∆ ⊢ ⋅ wf⇒ ⊺

AWF-TCtxNE

Ψ; Θ; ∆ ⊢ Γ wf⇒ Φ1 Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ Γ, x ∶ τ wf⇒ Φ1 ∧Φ2

Figure 12. Algorithmic Context Wellformedness Rules

The assumption context ∆ bears a similar requirement, as illustrated by the rule AI-Sum.

When the constraint I0 ≤ i ≤ I1 is assumed in a premise which emits a constraint Φ3, the output

constraint is transformed to I0 ≤ i ≤ I1 → Φ3 to preserve the meaning of the judgment.

Finally, it’s worth noting a potential confusion about the algorithmic constraint well-formedness

judgment, Θ; ∆ ⊢ Φ wf ⇒ Φ′. The output constraint Φ′ does not encode the truth of Φ. The

soundness proof will make this concrete, but knowing that Θ; ∆ ⊧ Φ′ only implies that Φ is

well-formed, but it need not be valid.

7.0.3. Algorithmic Context-Wellformedness. While these judgments are not a part of the

typechecking algorithm we will eventually implement, biλ-Amor includes algorithmic versions

of the two context-wellformedness judgments from dλ-Amor to be used in the presuppositions for

the rest of the algorithmic judgments. The two judgments, constraint context well-formedness

(Θ ⊢ ∆ wf ⇒ Φ) and term variable context well-formedness (Ψ; Θ; ∆ ⊢ Γ wf ⇒ Φ) have the

expected intended meaning: when the output constraint is valid, the declarative version is

thought to hold.

These judgments will not need to be implemented since typechecking will begin from empty

contexts, where both judgments hold vacuously. Finally, we note that biλ-Amor does not have

an algorithmic version of the declarative context subsumption judgment, since it only exists in

the declarative theory to be used in the weakening rule, which biλ-Amor does not have. Indeed,

weakening of the term context in biλ-Amor is admissible, a fact which will be proven in Section 8.

7.1. Normalization of Types. To circumvent the issue of deciding β-equality of types as

a part of biλ-Amor’s subtyping routine, we employ a normalization (or evaluation) procedure

to eliminate all β-redexes from a type. Once these β-redexes have been eliminated, subtyping



2. AMORTIZED ANALYSIS WITH TYPE SYSTEMS 59

only requires congruence rules. The normalization proof that we describe in this section is a

normalization relative to the equational theory induced by dλ-Amor’s subtyping relation, that

is to say: we will eventually prove that a type and its normal form are mutual subtypes of each

other with the subtyping relation of dλ-Amor.

This normalization procedure computes normal forms for types, which should be thought of

as canonical representatives of their β-equivalence classes. These normal forms can characterized

syntactically: we present a pair of relations τ ne and τ nf, which judge a type to be neutral or

normal, respectively. Neutral types are those which can be of arrow kind, but will not induce any

β-redexes when applied to an argument. Normal types are types which include no β-redexes.

The former are required to define the latter: the type τ I is only in normal form when τ is not

of the form λi ∶ S.τ ′. The rules generating these two relations can be found in Appendix A.

Before we present the normalization function, let us a moment to consider why the solution

we are about to present is so simple. Proofs of normalization for most calculi require fairly high-

powered techniques such as logical relations, categorical semantics, or hereditary substitution.

The inherent complexity of normalization proofs stems from the fact that straightforward induc-

tion on terms rarely works, since one would need to induct on substitution instances of lambda

terms, which are not subterms of the original term. However, dλ-Amor’s type-level lambdas do

not range over types, they range over index terms. Because of this, substituting an index term

into a type also cannot introduce any new type-level β-redexes, and so any substitution instance

of an open type in normal form is also normal.

Theorem 7.1.

(1) If τ ne then τ[I/i] ne

(2) If τ nf then τ[I/i] nf

Because of these simplifying factors, we can define an evaluation function eval defined

inductively on the structure of types which computes normal forms. The most important clauses

of the definition can be found in Figure 13. For all of the logical connectives, the definition

proceeds compositionally — the remaining rules can be found in Appendix A

The most important (and only nontrivial) clause of the definition is the application case. To

evaluate τ I, we begin by evaluating τ . If its normal form is a lambda, we simply perform the
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eval(α) = α eval(λi ∶ S.τ) = λi ∶ S.eval(τ)

eval(τ I) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ ′[I/i] eval(τ) = λi ∶ S.τ ′

eval(τ) I otherwise

Figure 13. Selected Clauses of the eval Function

β-reduction. Note that we do not need to evaluate this substitution instance, as it must already

be in normal form by Theorem 7.1, assuming the correctness of the eval function. Otherwise,

we simply re-apply the index term I.

It is not immediately clear that this function in fact computes what we want! For eval

function to be a normalization procedure, its image must consist only of types in normal form,

and every type must be equivalent to its evaluation. Note that we do not prove the stronger

property that equivalence is completely characterized by syntactic equality of normal forms (up

to equality of index terms). While almost certainly true, this property requires a bit more work

to prove and is not required for the discussion, and so we omit it. Finally, we must also prove

that the eval function preserves kinds. This proof follows the same inductive structure as the

proof of normalization, and so we bundle them together. We present the case for evaluation

below, and the remainder of the cases can be found in Appendix A. The Normalization Theorem

does depend on a small canonical forms lemma: types of arrow kind in normal form must either

be lambdas or neutral.

Theorem 7.2 (Canonical Forms for S →K). If Ψ; Θ; ∆ ⊢ τ ∶ S →K and τ nf, then either:

(1) τ = λi ∶ S.τ ′ with τ ′ nf

(2) τ ne

Theorem 7.3 (Normalization Theorem). If Ψ; Θ; ∆ ⊢p τ ∶K, then:

(1) Ψ; Θ; ∆ ⊢p eval(τ) ∶K

(2) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶K

(3) eval(τ) nf

Theorem 7.4. eval(τ[J/i]) = eval(τ)[J/i]
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AS-Unit

Ψ; Θ; ∆ ⊢ 1 <∶nf 1 ∶ ⋆ ⇒ ⊺

AS-Tensor

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 <∶nf τ ′1 ⊗ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

AS-Monad

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢M(I, q⃗)τ1 <∶nf M(J, p⃗)τ2 ∶ ⋆ ⇒ (I = J) ∧ (q⃗ ≤ p⃗) ∧Φ

AS-Pot

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ [I ∣q⃗]τ1 <∶nf [J ∣p⃗]τ2 ∶ ⋆ ⇒ (I = J) ∧ (p⃗ ≤ q⃗) ∧Φ

AS-FamLam

Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶K ⇒ Φ

Ψ; Θ; ∆ ⊢ λi ∶ S.τ1 <∶nf λi ∶ S.τ2 ∶ S →K ⇒ ∀i ∶ S.Φ

AS-FamApp

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ S →K ⇒ Φ

Ψ; Θ; ∆ ⊢ τ1 I <∶nf τ2 J ∶K ⇒ (I = J) ∧Φ

AS-Normalize

Ψ; Θ; ∆ ⊢ eval(τ1) <∶nf eval(τ2) ∶K ⇒ Φ

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶K ⇒ Φ

Figure 14. Selected Algorithmic Subtyping Rules

7.1.1. Algorithmic Subtyping. In biλ-Amor, there is not one subtyping judgment, but two.

The first, which we will refer to as “normal form” subtyping (denoted <∶nf), judges one type to be

a subtype of another when both are in normal form. This relation contains all of the congruence

rules from dλ-Amor’s subtyping relation: these are simply transcriptions of their declarative

counterparts. Just like with sort/kind-checking, constraint-validity premises are shuffled to

the constraint output of the conclusion, and variables bound in premises are quantified over.

Deciding a subtyping relation which only includes congruences reduces to syntax-directed search

and solving the emitted constraints. Hence, the subtyping relation, selected rules of which can

be found in Figure 14, is certainly algorithmic.

The second judgment (denoted <∶) is generated by a single rule, AT-Normalize. AT-

Normalize encodes the first step of our two-step subtyping algorithm. To show that Ψ; Θ; ∆ ⊢

τ1 <∶ τ2 ∶ K ⇒ Φ, it suffices (and indeed it is necessary) to first normalize τ1 and τ2, and then
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judge that their normal forms are related by the normal form subtyping judgment, Ψ; Θ; ∆ ⊢

eval(τ1) <∶nf eval(τ2) ∶K ⇒ Φ.

Two distinct phases and normalization aside, the remaining way that biλ-Amor’s subtyping

differs from dλ-Amor’s is in the removal of two rules. The rules S-Refl and S-Trans from dλ-

Amor are not included in our algorithmic subtyping relation, as they are not syntax-directed.

In Section 8, we show that reflexivity and transitivity are admissible for types in normal form,

and that these results may be lifted to the full relation through evaluation.

7.1.2. Bidirectional Typing Rules. As expected, the typing judgments of biλ-Amor change

the most. For one, we pass to a bidirectional type system. As discussed in Section 4.0.1, this

process is fairly standardized, and so the reader who has seen bidirectional type systems in

the past will find no surprises in biλ-Amor. The typing judgment is split in two, yielding a

mutually recursive pair of checking and inference judgments. Secondly, typing judgment sports

a constraint output in a manner identical to all of the other algorithmic judgments discussed so

far. Finally, to handle the affine context Γ in an algorithmic way, we employ the I/O method

from Section 4.0.4, adding an output context of unused variables Γ′, which are threaded through

rules in a state-passing manner.

While all of these algorithmization techniques were described in the abstract in Section 4,

understanding how they work in the context of a type system as feature-rich as biλ-Amor is

another matter entirely. To this end, we take some time to describe the selected rules presented

in Figure 15.

Algorithmizing the declarative typing rules is mostly mechanical for the rules governing logi-

cal connectives, but requires some ingenuity for the non-logical ones. For each declarative typing

rule, we bidirectionalize each premise along with the conclusion, convert to IO-style contexts,

and output constraints. In most cases, this is sufficient to algorithmize a rule. However, for

some of the cost-related rules like AT-bind or AT-Release, further “optimization” are required.

In these cases, we build certain subtyping relations into the algorithmic typing rules to overcome

the fact that subtyping can only be applied at the boundary between checking and inference,

and not at will, as in the declarative typing rules of dλ-Amor.
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AT-Var-1

x ∶ τ ∈ Γ

Ψ; Θ; ∆; Ω; Γ ⊢ x ↑ τ ⇒ ⊺,Γ ∖ {x ∶ τ}

AT-Lam

Ψ; Θ; ∆; Ω; Γ, x ∶ τ1 ⊢ e ↓ τ2,⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ λx.e ↓ τ1 ⊸ τ2 ⇒ Φ,Γ′ ∖ {x ∶ τ1}

AT-App

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ τ1 ⊸ τ2 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ τ1 ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ e1 e2 ↑ τ2 ⇒ Φ1 ∧Φ2,Γ2

AT-TensorI

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓ τ1 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ τ2 ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ ⟪e1, e2⟫ ↓ τ1 ⊗ τ2 ⇒ Φ1 ∧Φ2,Γ2

AT-TensorE

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1 ⊗ τ2 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1, y ∶ τ2 ⊢ e′ ↓ τ ′ ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ let ⟪x, y⟫ = e in e′ ↓ τ ′ ⇒ Φ1 ∧Φ2,Γ2 ∖ {x, y}

AT-Ret

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ ret e ↓Mφ(I, p⃗) τ ⇒ Φ,Γ′

AT-Bind

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑M (J, p⃗) τ1 ⇒ Φ1,Γ1

Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e2 ↓M (I, q⃗ − p⃗) τ2 ⇒ Φ2,Γ2 Φ = (q⃗ ≥ p⃗) ∧ (I = J) ∧Φ1 ∧Φ2

Ψ; Θ; ∆; Ω; Γ ⊢ bind x = e1 in e2 ↓M (I, q⃗) τ2 ⇒ Φ,Γ2 ∖ {x ∶ τ1}

AT-Release

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ [J ∣q⃗]τ1 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1, x ∶ τ ⊢ e2 ↓M (I, p⃗ + q⃗) τ2 ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ release x = e1 in e2 ↓M (I, p⃗) τ2 ⇒ (I = J ∧Φ1 ∧Φ2),Γ2 ∖ {x}

AT-Store

Θ; ∆ ⊢K ∶ N⇒ Φ1 Θ; ∆ ⊢ w⃗ ∶ R⃗+ ⇒ Φ2

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ3,Γ
′ Φ = Φ1 ∧Φ2 ∧Φ3 ∧ (p⃗ ≤ w⃗ ≤ q⃗) ∧ (I = J =K)

Ψ; Θ; ∆; Ω; Γ ⊢ store[K ∣w⃗](e) ↓Mφ(I, q⃗) ([J ∣p⃗] τ) ⇒ Φ,Γ′

AT-Sub

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ ′ ⇒ Φ1,Γ
′ Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ1 ∧Φ2,Γ
′

AT-Anno

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ (e ∶ τ) ↑ τ ⇒ Φ,Γ′

Figure 15. Selected Algorithmic Typing Rules
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We begin with AT-Var-1, which allows us to use variables from the affine context. When

x ∶ τ ∈ Γ, the term x infers the type τ . Using this rule in a derivation counts as a use of x, and

so x must be removed from the output context, as it is no longer unused.

The pair of rules AT-Lam and AT-App exhibit a common pattern which is common to nearly

all negative logical connectives in biλ-Amor. For introduction form, both the conclusion and

premise are checking. In the elimination form, the conclusion as well as the principal judgment

(the judgment typing the term being eliminated) are inferring, while all other premises check

17. The AT-Lam rule also illustrates a small oddity of the I/O method when applied to affine

types. Since variables can be left unsued, it’s possible for the λ-bound variable x to end up

in the output context Γ′ of the premise checking the body of the lambda. For this reason, we

must explicitly remove x from the context of unused variables as it falls out of scope, lest it

be possible to typecheck terms like ⟪λx.(), x⟫, where a bound variable escapes its scope. The

rule AT-App also illustrates how the “threading” aspect of the I/O method is easily combined

with the two kinds of typing judgments. To check e1 e2 in context Γ, the type of e1 is inferred,

returning unused variables Γ1. Then, the type of e2 is checked in context Γ1. That judgment

“returns” Γ2, which is then used as the output judgment for the checking conclusion.

Dually, the rules AT-TensorI and AT-TensorE are a simple instance of the bidirectional rules

for a positive logical connective. The introduction form has checking premises and conclusions,

just like the negatives. On the other hand, the elimination form has an inferring principle

judgment, but checking conclusion — this is because positive elims all take the form of a (many-

armed) let-binding, and the type of the continuation cannot be inferred locally. Because of this

let-binding style, most positive elims must remove bound variables from the output context to

deal with the same scoping issue as AT-Lam.

The remaining rules for logical connectives following a similar pattern: their bidirectional

behavior is predetermined by logical concerns discovered by prior work in the area. Algorithmiz-

ing the rules for nonlogical connectives, however, requires quite a bit more work and cleverness.

As a case study, consider the rule T-Bind from dλ-Amor:

17 The connection between bidirectional type systems and polarization/focusing which makes this pattern

so ubiquitous in the rules of biλ-Amor is deep, beautiful, and not fully understood. A wonderful overview of

work on the subject, as well as exposition about how to bidirectionalizing your own declarative type systems can

be found in a paper by Dunfield and Krishnaswami [21].
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Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶M (I, p⃗) τ1 Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1 ⊢ e2 ↓M (I, q⃗) τ2

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ bind x = e1 in e2 ↓M (I, p⃗ + q⃗) τ2

This plainly follows the let-binding style of positive elimination forms (despite not being

a logical connective), and so the same direction pattern seems like a good choice. This rule

has no constraint solving premises, and so the output constraints can be conjoined together.

Finally, this term has the form of a let-binding, and so we thread contexts through the premises,

removing x in the conclusion. These three choices lead to the following first cut at an algorithmic

bind rule:

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑M (I, p⃗) τ1 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e2 ∶M (I, q⃗) τ2 ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ bind x = e1 in e2 ∶M (I, p⃗ + q⃗) τ2 ⇒ Φ1 ∧Φ2,Γ2 ∖ {x}

Unfortunately, this rule is insufficient for potentially subtle reasons. When we implement

biλ-Amor, the checking judgment is implemented as a function (essentially) of type ctx -> tm

-> ty -> unit, which proceeds by a (very large) case analysis on the term and type arguments.

The algorithmic bind rule corresponds to the case where the term is the constructor for bind,

and the type is the cost monad. However, we hope to not match further into the type to match

the index term p⃗+ q⃗, because the second component of the cost need not be syntactically a sum

of potential vectors! To fix this, we take a slightly different approach. Instead of typing the

conclusion at type M (I, p⃗ + q⃗) τ2, we will instead have it check against the type M (I, q⃗) τ2, so

long as the continuation checks against M (I, q⃗ − p⃗) τ2 (when q⃗ ≥ p⃗). Intuitively, this new rule

encodes the same logic: the total amortized cost of the composite is the sum of the costs of e1

and e2.

A similar situation plays out if we consider the first component of the cost pair. The rule

above indicates that the first components in the three monadic types need to be identical. Just

like requiring that the second component be literally a sum, this is far too strong a condition:

we only need require that they are provably equal. This leads us to the completed AT-Bind

rule, as shown in Figure 15. A nearly identical game is played with the rule for the potential

elimination form, AT-Release: we generalize the potentials to have syntactically but provably

equal bases.
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The introduction rules for monads and potentials also require some tweaking. To illustrate,

we consider the declarative store rule, T-Store.

Θ; ∆ ⊢ I ∶ N Θ; ∆ ⊢ p⃗ ∶ R⃗+ Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ store[I ∣p⃗](e) ∶M (I, p⃗) ([I ∣p⃗] τ)

We bidirectionalize this in a straightforward manner, by making both the premise and the

conclusion checking. The constraint and context outputs are similarly trivial: they are passed

from the output of the premise directly to the conclusion. We are then faced with yet another

matching problem: the Is and p⃗s in the term and type are required to be syntactically equal. It

is clear how to generalize the bases: we allow all three to be different, but provably equal. The

proper formulation for the coefficient components is less clear, however. Inspiration comes from

considering the ranges of sound but imprecise typings for the positions. For store[K ∣w⃗](e) to

check against M (I, q⃗) ([J ∣p⃗]) when I = J =K, it ought to be allowable for w⃗ to be smaller than

q⃗, and for p⃗ to be smaller than w⃗. When we ask for φ(I, q⃗) potential, it is sound to overpay, and

underdeliver. The final rule, AT-Store, allows just this.

The last two interesting rules to be discussed are AT-Sub and AT-Anno. These rules are

not analogues of rules which were present in dλ-Amor. Instead, they are the two bidirectional-

specific rules discussed in Section 4.0.1 which allow us to mediate between the checking and

inference judgments. When a synactic form whose corresponding rule has a checking conclusion

(such as a lambda) is placed in a position where its expected to infer (such as the principal

position of application), an annotation must be introduced. However, in the opposite situation,

a term whose rule has an inferring conclusion may always be used in a checking position, so long

as the type which is inferred is more specific than the one the term is being checked against.

7.1.3. Well-formedness and Presuppositions. The judgments of biλ-Amor presented thusfar

have all been raw judgments, in the same sense that we have presented no well-formedness

restrictions. Just like in dλ-Amor, we restrict the positions of each relation by well-formedness

presuppositions. Again, these are denoted with a subscript p on the turnstile. Unlike, dλ-Amor,

these presuppositions are algorithmic in the sense that they use the corresponding judgments

from biλ-Amor to impose restrictions. Recalling that the intended meaning of an algorithmic

judgment with constraint output is that the declarative analogue holds when the constraint is

valid, all of the conditions in algorithmic presuppositions require their constraints to be solved.
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This is a natural restriction: once soundness and completeness have been established, these

algorithmic presuppositions are equivalent to their declarative counterparts.

Definition 7.1. We write Θ; ∆ ⊢p I ∶ S ⇒ Φ to mean

(1) Θ ⊢∆ wf⇒ Φ1 and Θ; ⋅ ⊧ Φ1

(2) Θ; ∆ ⊢ I ∶ S ⇒ Φ

Definition 7.2. We write Ψ; Θ; ∆ ⊢p τ ∶K ⇒ Φ to mean

(1) Θ ⊢∆ wf⇒ Φ1 and Θ; ⋅ ⊧ Φ1

(2) Ψ; Θ; ∆ ⊢ τ ∶K ⇒ Φ

Definition 7.3. We write Ψ; Θ; ∆ ⊢p τ <∶ τ ′ ∶K ⇒ Φ to mean that

(1) Θ ⊢∆ wf⇒ Φ1 and Θ; ⋅ ⊧ Φ1

(2) Ψ; Θ; ∆ ⊢ τ ∶K ⇒ Φ2 and Θ; ∆ ⊧ Φ2

(3) Ψ; Θ; ∆ ⊢ τ ′ ∶K ⇒ Φ3 and Θ; ∆ ⊧ Φ2

(4) Ψ; Θ; ∆ ⊢ τ <∶ τ ′ ∶K ⇒ Φ

Definition 7.4. We say that Ψ; Θ; ∆; Ω; Γ ⊢p e ↓ τ ⇒ Φ,Γ′ when

(1) Θ ⊢∆ wf⇒ Φ1 and Θ; ⋅ ⊧ Φ1

(2) Ψ; Θ; ∆ ⊢ Ω wf⇒ Φ2 and Θ; ∆ ⊧ Φ2

(3) Ψ; Θ; ∆ ⊢ Γ wf⇒ Φ3 and Θ; ∆ ⊧ Φ3

(4) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ4 and Θ; ∆ ⊧ Φ4.

(5) Ψ; Θ; ∆; Ω ⊢ e ↓ τ ⇒ Φ,Γ′

Definition 7.5. We say that Ψ; Θ; ∆; Ω; Γ ⊢p e ↑ τ ⇒ Φ,Γ′ when

(1) Θ ⊢∆ wf⇒ Φ1 and Θ; ⋅ ⊧ Φ1

(2) Ψ; Θ; ∆ ⊢ Ω wf⇒ Φ2 and Θ; ∆ ⊧ Φ2

(3) Ψ; Θ; ∆ ⊢ Γ wf⇒ Φ3 and Θ; ∆ ⊧ Φ3

(4) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ4 and Θ; ∆ ⊧ Φ4.

(5) Ψ; Θ; ∆; Ω ⊢ e ↑ τ ⇒ Φ,Γ′
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8. Soundness and Completeness of biλ-Amor with respect to dλ-Amor

With the algorithmic system of biλ-Amor in place, the time has come to prove theorems

about it. Ideally, we would like to prove that it behaves exactly the same as dλ-Amor. That

way, when we build LambdaAmor in Section 9, we will know that (a) every program typechecked

by our implementation declarative has the proper type in dλ-Amor, and that (b) every well-

typed program in dλ-Amor can be checked by our implementation. In this context, these two

properties are known as soundness and completeness18, respectively.

As is usually the case with such things, the soundness proofs are very straightforward.

This is because biλ-Amor is far more strict and structured than dλ-Amor, so it is always fairly

easy to lift a biλ-Amor proof to a proof in dλ-Amor. This mismatch simultaneously makes

completeness quite difficult to prove: compiling a proof of one of the judgments of dλ-Amor

down to a structured one in biλ-Amor requires some work in general. For this reason, we will

begin with proving the soundness theorems, and subsequently move to proving completeness.

The general shape of the soundness theorems are all the same: for every algorithmic judg-

ment J ⇒ Φ (and corresponding declarative judgment J ) we prove that if there is a derivation

of J ⇒ Φ and Φ is valid, then there is a derivation of J . Individual theorems may vary —

the inclusion of bidirectionality and the I/O method complicates the statement of soundness for

typing — but this is the main flavor. This pattern justifies the intended use of the algorithmic

system: we derive algorithmic judgments using the implementation, which outputs constraints.

If the constraints are solvable by a solver, the corresponding declarative judgment holds.

Dually, the completeness theorems have the “opposite” shape: if J holds, then there is some

valid Φ such that the corresponding algorithmic judgment J ⇒ Φ is derivable. Modulo handling

the bells and whistles of an individual judgment (such as IO contexts or bidirectionality), all

of our completeness statements will have this form. To simplify the wording of our theorems

somewhat, we adopt the “Twelf convention”: theorem meta-variables which appear only in the

18 This may seem backwards to the reader already familiar with the terms: we think of the declarative

system as giving a “ground truth” semantics of which terms have which types, and the algorithmic system as a

proof system in which one may manually derive proofs of well-typedness. From this perspective, soundness and

completeness are as described above.
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conclusion of a theorem are implicitly existentially quantified. For instance, we will write “If J

then J ⇒ Φ and ⊧ Φ” to mean “If J then there is some Φ such that J ⇒ Φ and ⊧ Φ”.

Intuitively, this theorem structure justifies our intended usage of λ-Amor, as an implemen-

tation of the algorithmic judgments must cover all possible uses of the declarative system. When

combined with soundness (to translate algorithmic judgments back into declarative ones), our

algorithm always succeeds to derive a proof of a declarative judgment, if one exists.

8.0.1. Soundness of Index Terms, Constraints, Contexts, and Types. The four most ba-

sic algorithmic judgments of biλ-Amor mirror their declarative counterparts rule-for-rule: the

only “real” modification is the addition of constraint output. This uniformity means that the

soundness proofs are fairly trivial single-pass inductions on derivations. Each of these proofs

comes in two parts. First, we prove that the soundness holds as a a statement about “raw”

judgments by omitting the presuppositions. These theorems are garbage-in, garbage-out: mal-

formed judgments in biλ-Amor are sent to malformed judgments in dλ-Amor. Afterwards, we

prove that the presuppositions are preserved, and so well-formed judgments in biλ-Amor are

sent to well-formed judgments in dλ-Amor. This two-step process is only necessary because the

presuppositions have a mutually inductive structure: to untangle the knot, we must first prove

the raw statements, and then repackage them with the required presuppositions afterwards.

Below, we will only present the versions of the theorems with presuppositions included: the

gory details can be found in Appendix A. All of the proofs proceed by elementary inductions

on derivations, occasionally using easy properties about constraint validity.

Theorem 8.1 (Soundness of Index Context Well-Formedness). If Θ ⊢ ∆ wf ⇒ Φ and

Θ; ⋅ ⊧ Φ, then Θ ⊢∆ wf

Theorem 8.2 (Soundness of Sort Checking). If Θ; ∆ ⊢p I ∶ S ⇒ Φ and Θ; ∆ ⊧ Φ, then

Θ; ∆ ⊢p I ∶ S

Theorem 8.3 (Soundness of Constraint Well-Formedness). If Θ; ∆ ⊢p Φ wf ⇒ Φ′ and

Θ; ∆ ⊧ Φ′ then Θ; ∆ ⊢p Φ wf

Theorem 8.4 (Soundness of Kind Checking). If Ψ; Θ; ∆ ⊢p τ ∶ K ⇒ Φ and Θ; ∆ ⊧ Φ then

Ψ; Θ; ∆ ⊢p τ ∶K.
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8.0.2. Soundness of Subtyping. Subtyping provides a significantly more interesting sound-

ness proof than the prior cases: we must justify that biλ-Amor’s two-step normalize-then-

compare strategy is in fact sound for the declarative type system. The proof proceeds in two

parts corresponding to the two judgments. We first prove soundness for the normal form sub-

typing, and then lift it, using the results about normalization from Section 7.1, to the full

algorithmic subtyping relation.

Theorem 8.5 (Soundness of Subtyping for Normal Forms). If Ψ; Θ; ∆ ⊢p τ1 <∶nf τ2 ∶K ⇒ Φ

and Θ; ∆ ⊧ Φ then Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K

Theorem 8.6 (Soundness of Subtyping). If Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K ⇒ Φ and Θ; ∆ ⊧ Φ, then

Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K

Proof. There is only one case: Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ K ⇒ Φ by way of Ψ; Θ; ∆ ⊢

eval(τ1) <∶nf eval(τ2) ∶ K ⇒ Φ with Θ; ∆ ⊧ Φ. By Theorem 8.5, Ψ; Θ; ∆ ⊢ eval(τ1) <∶

eval(τ2) ∶K. By Theorem 7.3 and two uses of S-Trans, Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K, as required. �

8.0.3. Soundness of Typechecking. As is to be expected, the soundness of the bidirectional

type-checking judgment is the most involved. Before we can prove it, a few small lemmata are

required. First, we prove (as was noted before) that the output contexts of the I/O method

in both typing judgments have a strong regularity condition: the output context is always a

subset19 of the input context.

Theorem 8.7.

● If Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′ then Γ′ ⊆ Γ

● If Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ ⇒ Φ,Γ′ then Γ′ ⊆ Γ

The next lemma is required for cases of Theorem 8.9 where variables are bound in premises

and subsequently removed in the conclusion. In essence, it proves compatibility between the set

difference operator which removes variables from the output, and context extension.

Theorem 8.8. If Γ′ ⊆ Γ, then (Γ, x ∶ τ) ∖ Γ′ ⊆ Γ ∖ (Γ′ ∖ {x ∶ τ}), x ∶ τ . Moreover, if:

19 This containment is almost always strict: in fact, a corollary of Theorem 8.9 is that the containment is

strict unless the term is closed.
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● Θ ⊢∆ wf

● Ψ; Θ; ∆ ⊢ Γ wf

● Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Then Ψ; Θ; ∆ ⊢p Γ ∖ (Γ′ ∖ {x ∶ τ}), x ∶ τ ⊑ (Γ, x ∶ τ) ∖ Γ′.

Proof. The first part follows by an elementary set-theoretic containment proof, and the

second is immediate by applying the presuppositions. �

Because the two judgments (checking and inference) are mutually inductively defined, we

must prove each judgment’s corresponding soundness theorem simultaneously. The theorem

must also handle two as-of-yet untreated differences of biλ-Amor and dλ-Amor. First, the

syntax of algorithmic terms is different from the declarative ones. To translate an algorithmic

term to a declarative one, we rely on the erasure transformation from Section 4.0.1 to remove all

type annotations from a term. Second, the use of the I/O method means we must incorporate

the “context-strengthening”-style completeness theorem from Section 4.0.4. All together, we

arrive at the following theorem.

Theorem 8.9 (Soundness of Type Checking/Inference).

(1) If Ψ; Θ; ∆; Ω; Γ ⊢p e ↓ τ ⇒ Φ,Γ′ and Θ; ∆ ⊧ Φ then Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢p ∣e∣ ∶ τ

(2) If Ψ; Θ; ∆; Ω; Γ ⊢p e ↑ τ ⇒ Φ,Γ′ and Θ; ∆ ⊧ Φ then Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢p ∣e∣ ∶ τ

The proof of Theorem 8.9 is not particularly enlightening: we prove both claims simultane-

ously by induction on the judgment premises, liberally applying Theorem 8.8 when binders are

used.

8.0.4. Completeness of Sorts, Constraints, Contexts, and Kinds. Perhaps expectedly, the

four basic judgments admit very simple completeness proofs. Similarly to their soundness proofs,

these are all proved by single-pass inductions on derivations. Again, these proofs are split into

two parts to untie the knot: we first prove completeness of “raw” judgments, and then repackage

the theorems with presuppositions after all of the raw theorems have been proven.

Theorem 8.10. If Θ; ∆ ⊢p I ∶ S, then Θ; ∆ ⊢p I ∶ S ⇒ Φ and Θ; ∆ ⊧ Φ.

Theorem 8.11. If Θ ⊢∆ wf then Θ ⊢∆ wf⇒ Φ with Θ; ⋅ ⊧ Φ
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Theorem 8.12. If Θ; ∆ ⊢p Φ wf, then Θ; ∆ ⊢p Φ wf⇒ Φ′ with Θ; ∆ ⊧ Φ′

Theorem 8.13. If Ψ; Θ; ∆ ⊢p τ ∶K, then Ψ; Θ; ∆ ⊢p τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

8.0.5. Completeness of Subtyping. The proof that biλ-Amor’s subtyping is complete is per-

haps the most exciting proof we will see. As has been discussed numerous times, dλ-Amor’s

inclusion of index term-indexed types means that proving the algorithmic subtyping complete

is tantamount to deciding β-equivalence of a limited lambda calculus. It may be tempting20 to

attempt to split the proof of completeness of subtyping into two statements: one could attempt

to first prove that the algorithmic normal form subtyping relation is complete for types in nor-

mal form: i.e. that if τ1 <∶ τ2 in dλ-Amor with τ1, τ2 nf, then there is some solvable Φ such that

τ1 <∶nf τ2 ⇒ Φ. Unfortunately, this is not easily provable: if the premise is a use of transitivity,

the cut type may not be in normal form, and thus the inductive hypothesis cannot be applied.

The actual proof of completeness of algorithmic subtyping relies on two key admissibility

theorems, namely of reflexivity and transitivity. Since dλ-Amor’s subtyping includes the rules S-

Refl and S-Trans but biλ-Amor’s doesn’t include analogues of these (for the purposes of syntax-

directedness), the algorithmic subtyping must be able to emulate these rules whenever they

occur in a declarative derivation. In both cases, the proof proceeds by proving the statement for

normal forms, and then lifting the result to the full algorithmic relation through normalization.

Theorem 8.14 (Reflexivity of Algorithmic Subtyping for Neutral Forms). If Ψ; Θ; ∆ ⊢p τ ∶

K and τ ne, then Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

Theorem 8.15 (Reflexivity of Algorithmic Subtyping for Normal Forms). If Ψ; Θ; ∆ ⊢p τ ∶

K and τ nf, then Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

Theorem 8.16 (Reflexivity of Algorithmic Subtyping). If Ψ; Θ; ∆ ⊢p τ ∶K then Ψ; Θ; ∆ ⊢p

τ <∶ τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

Proof. By AS-Normalize, it suffices to show that Ψ; Θ; ∆ ⊢ eval(τ) <∶nf eval(τ) ∶K ⇒ Φ.

By Theorem 7.3, we have that eval(τ) nf, and Ψ; Θ; ∆ ⊢p eval(τ) ∶ K, By Theorem 8.15, we

have Ψ; Θ; ∆ ⊢ eval(τ) <∶nf eval(τ) ∶K ⇒ Φ and Θ; ∆ ⊧ Φ, as required. �

20 I certainly was tempted.
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Theorem 8.17 (Transitivity of Algorithmic Subtyping for Normal Forms). If Ψ; Θ; ∆ ⊢p

τ1 <∶nf τ2 ∶ K ⇒ Φ1 and Ψ; Θ; ∆ ⊢p τ2 <∶nf τ3 ∶ K ⇒ Φ2 with Θ; ∆ ⊧ Φ1 ∧ Φ2, then Ψ; Θ; ∆ ⊢

τ1 <∶nf τ3 ∶K ⇒ Φ such that Θ; ∆ ⊧ Φ.

Theorem 8.18 (Transitivity of Algorithmic Subtyping). If Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ K ⇒ Φ1

and Ψ; Θ; ∆ ⊢p τ2 <∶ τ3 ∶ K ⇒ Φ2 with Θ; ∆ ⊧ Φ1 ∧ Φ2, then Ψ; Θ; ∆ ⊢p τ1 <∶ τ3 ∶ K ⇒ Φ and

Θ; ∆ ⊧ Φ

Proof. By inversion, Ψ; Θ; ∆ ⊢ eval(τ1) <∶nf eval(τ2) ∶K ⇒ Φ1 and Ψ; Θ; ∆ ⊢ eval(τ2) <∶nf

eval(τ3) ∶K ⇒ Φ1 By Theorem 7.3 and Theorem 8.17, Ψ; Θ; ∆ ⊢ eval(τ1) <∶nf eval(τ3) ∶K ⇒

Φ with Θ; ∆ ⊧ Φ. Then, by AS-Normalize, Ψ; Θ; ∆ ⊢ τ1 <∶ τ3 ∶K ⇒ Φ, as required. �

The following theorem is essentially a subtyping version of Theorem 7.1: not only does

index term substitution preserve the property that types are in normal form, it also preserves all

subtyping relations. This theorem depends on a series of theorems that index-term substitution

is admissible for sort assignment, kind assignment, and constraint well-formedness. These are

all proved (in Appendix A) by appealing to the corresponding substitution theorem in dλ-Amor,

and taking a round trip through soundness and completeness for the judgment in question.

Theorem 8.19 (Admissibility of Normal Form Subtyping Substitution). Suppose the fol-

lowing:

● Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶nf τ2 ∶K ⇒ Φ with Θ; ∆ ⊧ Φ and Θ ⊢∆ wf.

● Θ; ∆ ⊢p I ∶ S ⇒ Φ1 with Θ; ∆ ⊧ Φ1

● Θ; ∆ ⊢p J ∶ S ⇒ Φ2 with Θ; ∆ ⊧ Φ2

● Θ; ∆ ⊧ I = J

Then, Ψ; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶K ⇒ Φ′ for some Φ′ with Θ; ∆ ⊧ Φ′.

A corollary for the above admissibility theorem is that type evaluation essentially commutes

with type family application. This theorem is pivotal for proving the AS-FamApp case of

Theorem 8.21 below.

Theorem 8.20 (Type Family Application Commutes with Evaluation). If Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf

eval(τ2) ∶ S → K ⇒ Φ and Θ; ∆ ⊧ Φ ∧ I = J with Θ; ∆ ⊢p I ∶ S and Θ; ∆ ⊢p J ∶ S then

Ψ; Θ; ∆ ⊢p eval(τ1 I) <∶nf eval(τ2 J) ∶K ⇒ Φ′ for some Θ; ∆ ⊧ Φ′.
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Proof. By inversion on Ψ; Θ; ∆ ⊢ eval(τ1) <∶nf eval(τ2) ∶ S →K ⇒ Φ.

● For the first case, suppose the derivation was Ψ; Θ; ∆ ⊢ λi ∶ S.τ ′1 <∶nf τ ′2 ∶ S → K ⇒ Φ

from Ψ; Θ, i ∶ S; ∆ ⊢ τ ′1 <∶nf τ ′2 ∶ K ⇒ Φ′. By Theorem 8.19, Ψ; Θ; ∆ ⊢p τ ′1[I/i] <∶nf

τ ′2[J/i] ∶ K ⇒ Φ′, for some Θ; ∆ ⊧ Φ′. But eval(τ1 I) = τ ′1[I/i] and eval(τ2 J) =

τ ′2[J/i].

● Now, suppose the derivation was Ψ; Θ; ∆ ⊢ τ ′1 L1 <∶nf τ ′2 L2 ∶ S → K ⇒ Φ ∧ (L1 = L2),

where eval(τ1) = τ ′1 L1 and eval(τ2) = τ2 L2. These must both be ne, since they are

both applications, and therefore eval(τ1) I = eval(τ1 I) and eval(τ2) J = eval(τ2 J),

as required.

�

Finally, we prove the full completeness of algorithmic subtyping. The proof proceeds by

a single induction on the hypothesis. The reflexivity and transitivity cases are handled by

Theorems 8.16 and 8.18.

Theorem 8.21 (Completeness of Algorithmic Subtyping). If Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ K then

Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K ⇒ Φ and Θ; ∆ ⊧ Φ.

8.0.6. Completeness of Typechecking. Finally, we arrive at the completeness of biλ-Amor’s

typechecking algorithm. To begin, we must prove the admissibility of dλ-Amor’s weakening rule

(T-Weaken) in biλ-Amor. This requires a fairly sizable and involved simultaneous induction on

the checking and inference judgments, which must account for all of the bells and whistles of the

bidirectional typechecking with constraints and I/O contexts. The theorem is best understood

as a biλ-Amor-specific version of the mock I/O weakening theorem from Section 4.0.4. When

we weaken the affine context, the added variables flow through, and remain unused.

Theorem 8.22 (Admissibility of Algorithmic Weakening).

(1) If Ψ; Θ; ∆; Ω; Γ ⊢p e ↓ τ ⇒ Φ,Γ′′ with Θ; ∆ ⊧ Φ, then whenever Ψ; Θ; ∆ ⊢p Γ′ ⊑ Γ and

Ψ; Θ; ∆ ⊢p Ω′ ⊑ Ω, there are Φ1, e1, Γ1 so that ∣e1∣ = ∣e∣, Θ; ∆ ⊧ Φ1, Ψ; Θ; ∆ ⊢p Γ1 ⊑

Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢p Γ1 ⊑ Γ′′, and Ψ; Θ; ∆; Ω′; Γ′ ⊢p e1 ↓ τ ⇒ Φ1,Γ1.
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(2) If Ψ; Θ; ∆; Ω; Γ ⊢p e ↑ τ ⇒ Φ,Γ′′ with Θ; ∆ ⊧ Φ, then whenever Ψ; Θ; ∆ ⊢p Γ′ ⊑ Γ and

Ψ; Θ; ∆ ⊢p Ω′ ⊑ Ω, there are Φ2, e2, Γ2 so that ∣e2∣ = ∣e∣, Θ; ∆ ⊧ Φ2, Ψ; Θ; ∆ ⊢p Γ2 ⊑

Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢p Γ2 ⊑ Γ′′ and Ψ; Θ; ∆; Ω′; Γ′ ⊢p e2 ↑ τ ⇒ Φ2,Γ2.

The actual statement of completeness is easily understandable. For any declarative type

assignment, we can always annotate the term with types so that it can either check or infer,

while outputting a valid constraint. We note that it is not strictly necessary to prove the theorem

in this form: the careful reader may have noticed that (2) is implied by (1) and a single use

of AT-Anno. This method is in fact the traditional way of proving bidirectional completeness.

However, the algorithm its proof encodes inserts many unnecessary annotations: any term in

inference position will be annotated, even if the term is already a syntactic form whose rule has

inferring conclusion. However, by providing an inductive hypothesis for an inference judgment

at every stage, we give terms which may infer their own types the opportunity to do so. For

this reason, the algorithm which the proof of completeness encodes inserts far fewer annotations

than the traditional one.

Theorem 8.23 (Completeness of Type Checking/Inference). If Ψ; Θ; ∆; Ω; Γ ⊢p e ∶ τ , then:

(1) There are e′, Φ′, Γ′ such that ∣e′∣ = e, Θ; ∆ ⊧ Φ′, and Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ ⇒ Φ′,Γ′.

(2) There are e′′, Φ′′, Γ′′ such that ∣e′′∣ = e, Θ; ∆ ⊧ Φ′′, and Ψ; Θ; ∆; Ω; Γ ⊢p e′′ ↑ τ ⇒ Φ′′,Γ′′

9. Implementation of λ-Amor

To exhibit the practical use of dλ-Amor, we present an implementation of biλ-Amor, which

we will simply refer to as LambdaAmor. The implementation consists of approximately 16,000

lines of OCaml, and is freely available at the URL below, under a BSD license.

https://github.com/jdublu10/lambda-amor

Functionally, the implementation sports a typechecker and interpreter for dλ-Amor, as well as

a command-line interface for interactive use.

We begin the section by discussing the format of programs in LambdaAmor. To use LambdaAmor

as a programming language, we require some language features other than the type-checking

and evaluation of single expressions, as modeled by biλ-Amor. To this end, we introduce four

top-level declaration forms which can be composed to form programs in LambdaAmor. Next, we

https://github.com/jdublu10/lambda-amor
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Let Declaration let x:t = e

Do Declaration do x:t <- e

Type Alias Declaration type a:k = t

Index Alias Declaration idx i:s = it

Figure 16. Declarations in LambdaAmor

discuss the artifact itself in some depth: giving an overview of the project’s structure, elaborat-

ing on design decisions, and remarking on a few places where the implementation departs from

the theory. Finally, we present an experimental evaluation of the tool, and compare it with

existing resource-aware languages.

9.1. Declarations and Structure of LambdaAmor Programs. Programs in LambdaAmor

are lists of declarations, which can be any of four forms: let-bound definitions, type and index

term aliases, and do-declarations. The syntax for each can be seen in Figure 16. These four

declaration types are allow programmers to ergonomically write interesting programs by com-

posing them from smaller ones, and building up abstractions. All four declarations should be

understood as simply exposing existing judgmental structure from dλ-Amor to the programmer,

and as such they do not add or subtract from the expressive power of the language.

Index term and type aliases are somewhat self-explanatory: a programmer may give names

to types and index terms they wish to use later. Since types in LambdaAmor can get quite

complex, liberal use of type aliases is often very helpful. Importantly, both index term and

type aliases may be of higher sort and kind, respectively, and so a user can give names to type

families and index functions, too.

do-declarations are reminiscent of top-level interaction in Haskell’s GHCI interpreter. In

GHCI, computations in the IO monad entered at top level are not only evaluated, but forced for

effect. The do of LambdaAmor serves a similar role by allowing monadic computations which have

previously been built up to be run, and have their actual run-time costs computed. The reader

may find it helpful to think of do-declarations as being a bind into an ambient cost-monadic

context, again in a manner similar to GHCI. In order to preserve soundness of costs, the only
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File Description

src/constr elab.ml Constraint elaboration phase to eliminate R⃗+

src/ctx.ml Typing context module

src/env.ml Typing environment module

src/fresh var.ml Globably-unique variable generation

src/freshen.ml AST freshening pass

src/interp.ml Definitional interpreter

src/lexer.mll OCamlLex lexer specification file

src/main.ml Entry point and command line interface

src/normalize.ml Type normalization routine

src/parser.mly OCamlYacc parser specification file

src/support.ml Debug info

src/syntax.ml AST datatypes and helpers

src/tycheck.ml Main bidirectional typechecking algorithms

src/tyerror.ml Error handling monad for typechecking

src/why backend.ml Code to interface with Why3

src/why trans.ml Translate constraints into Why3 goals

la.why Why3 supplementary theory file

Figure 17. File Structure of LambdaAmor

computations that may be run at the top level are those that return observable types — i.e.

those that are built up from base types, lists, sums, products, and exponentials.

Let-bindings in LambdaAmor behave just like top-level bindings in any other functional lan-

guage. The only twist is that all top-level let-bound variables are required to be exponential

variables, and hence cannot use any affine variables bound by do-declarations.

9.2. Overview of Phases. A program to be run by LambdaAmor follows a straightforward

path. It is first lexed and parsed from its textual form into an abstract syntax representation.

This abstract syntax is then passed to the typechecker, which closely follows the algorithmic

approach prescribed by biλ-Amor. This typechecking emits constraints, which are then passed
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to an SMT solver using the Why3 prover frontend [7]. If the constraints come back valid, the

program can then be passed to the built-in definitional interpreter [66], which runs the program

according to the cost semantics of Rajani et al. [64].

For the remainder of this section, we will take a tour through the implementation and design

choices of each of the phases of the language’s execution. Each of these roughly corresponds to

a single module in the LambdaAmor source, so a table of files along with their descriptions can

be found in Figure 17. Finally, some of the structure of the implementation is borrowed and

inspired from previous developments in resource-aware and bidirectional type systems, and so

we are careful to flag our predecessors for each pass.

9.2.1. Lexing and Parsing. LambdaAmor uses off-the-shelf OCaml lexer and parser genera-

tors, ocamllex and ocamlyacc. While not the most performant options, these do fine for our

purposes. The syntax of LambdaAmor was carefully chosen to resemble the syntax of biλ-Amor

as much as possible while retaining an unambiguous grammar, and while ensuring that users

need not type unicode symbols.

While the language syntax is closely modeled on that of biλ-Amor, it must be extended

to support the top-level features introduced for ease of use in LambdaAmor. The only change

to the term syntax is the introduction of a syntax (wildcards/underscores) for typed holes in

LambdaAmor, in the style of OLEG [48], Agda[56], or Haskell, which allow a programmer to

typecheck partial programs, and be informed about what types the checker expects to fill the

holes.

The lexer and parser are specified in src/lexer.mll, respectively src/parser.mly. The

parser emits an abstract syntax representation of a program. The type of these syntax trees, as

well as all of the abstract syntax of the language, is found in src/syntax.ml.

9.2.2. AST Freshening Pass. Since this development includes no mechanized metatheory,

all variables in LambdaAmor are represented as strings for simplicity. This poses complications

for the substitution operation, as one would need to α-convert variables at each substitution

instance. To resolve this, the AST of a program is fed to a “freshener” immediately after parsing,

which α-converts all terms so that every bound variable is globally unique21. A single freshening

pass is sufficient to eliminate the possibility of variable capture in closed terms. When handling

21This pass is modeled off of a similar one from the Granule language [60].
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open terms, such as those that include index and type aliases, we always re-freshen index terms

and types before they are substituted in to prevent capture.

9.2.3. Normalization. Thanks to the theoretical simplicity of λ-Amor’s type normalization

algorithm, LambdaAmor’s implementation of it is similarly simple: the code (in src/normalize.ml)

is only ≈ 150 lines. The procedure works in two passes, first by evaluating object-language types

into a meta-language type of types in normal form, and then quoting back. In practice, most

types in λ-Amor programs are in normal form. To avoid unnecessarily normalizing types, we

tag types with a status bit which is set when the type is in normal form.

9.2.4. Bidirectional Type Checking. The core typechecking algorithm of LambdaAmor is very

faithful to the core algorithmic calculus presented in Section 7. Search functions for each of

the four user-facing judgments (sort-checking, kind-checking, subtyping, typechecking) are im-

plemented in the file src/tycheck.ml. The sort-checking and kind-checking judgments both

operate on fully annotated terms. For this reason, we implement full inference and checking for

both: with sort/kind as output and input, respectively. Subtyping is implemented as expected:

both types are normalized, and then passed to a helper function which decides the normal

form subtyping relation of biλ-Amor. Finally, the main pair of type checking and inference

judgments are implemented in the usual bidirectional style as a pair of mutually recursive func-

tions. All of these functions, in addition to their usual return types (unit for checking functions,

sort/kind/type for inference functions) also return the constraints output by their corresponding

judgments, to be passed to the solver.

To simplify the lives of programmers, we do deviate slightly from the core calculus in a

few places. First, the type checking and inference judgments include a few “parallel rules”:

instances where the bidirectional rule has a checking or inference conclusion, but we also include

a case for the other mode. While not strictly required for completeness, these extra rules can

make programming more ergonomic. Next, we always normalize the output of the type inference

function: this is helpful in cases where the type of a term inferred in an elimination position has

a β-redex as its head, and not the expected connective. This is also clearly still sound, as it can

be emulated by adding an annotation in the requisite elimination position. Finally, we note the

behavior of typed holes in LambdaAmor. This feature is a practical necessity in languages with

type systems as complex as ours. Fortunately, the bidirectional framework makes them simple
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to implement: when the type checking or inference judgments hit the hole, checking is halted,

and the expected type of the hole (in the case of a checking judgment) as well as the current

context is printed for the user.

To simplify some of the boilerplate involved in implementing the functions corresponding to

each algorithmic judgment, we introduce a monadic discipline inspired by the implementation

of BiRelCost [10]. We use a combined state/error monad called ’a checker to simultaneously

handle the four fully structural contexts and the substructural one via the I/O method (hence

state, not reader), as well as managing type errors. OCaml’s let* syntax allows us to cleanly

write the typechecker in a manner similar to do-notation in Haskell, while a preponderance of

useful monadic combinators lifted from BiRelCost make for very readable code.

Of course, the typechecker must not only handle the core term calculus, but also the top-

level declaration features. Because of the inclusion of type and index term aliases, the state

part of the checker monad must also include a type and index term environment which binds

aliases to their values, on top of the existing type contexts. The top-level declarations require

more choices to be made.

Top level term declarations let x : t = e are implicitly typed as exponential terms: the

affine context is erased before checking them, and the variable x given type t in the exponential

context Ω. This allows functions declared at the top level to be used many times, instead of just

once, which is the intended pattern of use for a top-level definition.

The only terms which are bound in the affine context at top level are variables resulting

from the do declarations, which are checked to have monadic type. Since the result of a monadic

computation can store potential, the result of a do declaration must not be duplicated.

9.2.5. Constraint Elaboration. The language of dλ-Amor’s constraints includes equations

and inequalities over potential vectors (index terms of sort R⃗+). While many solvers allow us to

define our own theory to handle this nonstandard type, it is instead preferable to instead appeal

to built-in (and highly optimized) real arithmetic theories. For this purpose, all constraints

output from the typechecker are elaborated to transform equalities over potential vectors to

componentwise equalities over reals.

This works in three phases. First, the length of the potential vectors (k ≥ 2) is determined.

This can be passed as a command-line parameter of LambdaAmor, or computed as the largest
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potential vector appearing in the program. Then, all potential vector constants are padded with

zeroes up to length k, while quantifiers over potential vector index variables i ∶ R⃗+ are replaced

by variables in ∶ R, for 0 ≤ n < k. Finally, index terms and (in)equalities over potential vectors

are “flattened” to operate componentwise,

This elaboration only works because the language of index terms is sufficiently first-order. If

one added truly higher-order index terms, the elaboration would be significantly more complex.

The implementation of this transformation is quite simple, and can be found in src/constr -

elab.ml.

9.2.6. Constraint Solving. The actual constraint solving of LambdaAmor is handled by the

Why3 platform [7]. Why3 is a unified frontend for a number of SMT solvers, which allows the

user to switch between the proovers of their choosing. After the constraint elaboration phase,

the constraints are translated into a format understandable by Why3 using its OCaml API. We

then interface with the prover by building a Why3 proof goal for each constraint emitted by the

typechecker. This set of proof goals is then checked in sequence by the prover, and the results

are reported to the user.

9.2.7. Interpreter. Finally, a type-correct program can be interpreted. The interpreter in-

cluded with LambdaAmor is a straightforward definitional implementation of the big-step cost-

indexed operational semantics of dλ-Amor: nothing too fancy. When the interpreter is invoked,

all of the do declarations are run. The cost semantics tallies up the total actual cost of running

a single declaration, and presents it, along with the statically predictied cost to the user. By

the soundness theorem of dλ-Amor, the predicted cost will always be an upper bound on the

actual cost.

9.3. Examples and Experimental Evaluation. We now return to the examples pre-

sented in Section 3. All of these programs (and more) have been implemented in LambdaAmor:

the source code for each can be found in the .la files in the examples/ directory of the artifact

repository. Below, we discuss each of the examples presented previously, as well as some new

ones included with LambdaAmor. The examples were chosen to test a variety of LambdaAmor’s

features, and show a breadth of the kinds of analyses that can be performed using LambdaAmor.
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● examples/addone.la: As presented in Section 3. This program is quite simple, only

making use of the RAML-style potentials and a single shift. We include this in the

test suite purely as a coherence check.

● examples/ins sort.la: As presented in Section 3. Insertion sort has quadratic com-

plexity, so the inclusion of this example demonstrates how LambdaAmor can pass linear

constraints to a solver when analyzing functions with degree-2 or higher cost behavior.

The file also includes an example of a do-declaration, where the ins sort function is

run to sort a list.

● examples/queue.la: As presented in Section 3. The functional queue is the first

example of amortized analysis, which makes nontrivial use of potentials combined

with costs.

● examples/binary.la: The analysis of a binary counter is a classic example of an

amortized analysis, and the running example of Chapter 3. This uses similar techniques

to the functional queue (RAML-style potentials, refinements)

● examples/map.la: As presented in Section 3. The cost-polymorphic map is an example

of a function which cannot be typed in RAML [31], the best-established resource-aware

language, due to its complex use of higher order quantifiers over cost families. These

quantifiers are reflected in the constraints which are emitted, which provide the first

nontrivial goal for the solver backend.

● examples/foldr.la: The analysis and type of foldr can be expressed in a similar

manner to that of map. We include this example primarily because it is discussed in

depth in the original λ-Amor paper [64]

● examples/church.la: Our final example is the assignment of a very complex type to

church numerals. In short, we generalize the type of the “iterate” function !(τ ⊸ τ) ⊸

N ⊸ τ ⊸ τ to operate over a type family α ∶ N → ⋆ and a cost family C ∶ N → R+ to

get the much more precise type:

∀α ∶ N → ⋆.∀C ∶ N→ R+. (∀i.α i⊸M ⟨C i⟩ (α (i + 1))) ⊸ Nat(n) ⊸ α 0⊸M ⟨∑C i⟩ (αn)

Further details can be found in Rajani et al. [64]. The file includes two operations

defined on these church numerals, namely successor and addition.
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File Solving Time Checking Time Total Time

examples/addone.la 0.17s 0.0008s 0.29s

examples/ins sort.la 0.29s 0.0039s 0.40s

examples/queue.la 0.25s 0.0044s 0.37s

examples/binary.la 0.34s 0.0040s 0.46s

examples/map.la 0.26s 0.0039s 0.38s

examples/foldr.la 0.24s 0.0041s 0.37s

examples/church.la 2.10s 0.0046s 2.23s

Figure 18. Benchmarks of LambdaAmor

The type-checking times for all of these examples can be found in Figure 18. Total time

denotes the end-to-end running time, from parsing the input file all the way through running

the program (when applicable). Solving time refers to the amount of time spent by the prover in

solving the constraints, while checking time refers to the time taken by the type checker itself, as

well as the constraint elaboration phase. Each statistic is an average over ten runs. In all cases,

the execution time not spent constraint solving is negligible — the SMT solver is by far the

largest bottleneck. However, the total time remains low, even for programs like church which

emit very large high-order constraints. Finally, the total time not accounted for by checking and

solving can be atributed to Why3 initialization and file IO.

The evaluation was performed on a 2018 MacBook Pro running OSX 10.13.6 with a 2.3GHz

Intel Core i5 processor and 8GB of memory. The artifact itself is written in OCaml, and was

compiled using OCaml v4.09.1, along with its included versions of OCamllex and OCamlyacc.

Library dependencies can be found in the dune file. Constraints emitted from the typechecker

were solved by Why3 v1.3.1 [7], using Z3 v4.8.5 [20] as a prover.

10. Related Work

While still greatly under-researched, the prospect formally verifying cost bounds of programs

is sufficiently intriguing that researchers have been chipping away at the problem for decades.

While LambdaAmor takes a specific intrinsic approach to verifying amortized cost, many other

approaches exist.
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10.0.1. Program Logics and Static Analyses. As program logics are commonly used to reason

about and verify program correctness, it is natural to consider their utility in verifying costs

of programs, as well! Some recent work in this line includes that of Carbonneaux et al. [9],

who develop a Hoare logic with quantative reasoning capabilities. Moreover, modern logics like

separation logic can used to emulate some kinds of amortized complexity analysis [12, 51]. Çiçek

et al. [10] use a relational program logic to derive bounds on the cost difference between two

programs of the same type. Finally, Li et al. [45] develop a dual pair of program logics [57]

for reasoning about the cost of lazy functional programs. A related (usually more automated)

technique for verifying cost properties of programs is static analysis. The COSTA project [1, 2, 3]

has used this to great effect in their work on automatically verifying cost usage of Java bytecode

programs. While all of these papers do a good job of achieving their goals, the goals are very

different from ours. In particular, they all take an extrinsic point of view on cost verification: a

program and the certificate of its cost are separate.

10.0.2. Proof Assistant Libraries. Some work has studied ways of extending existing proof

assistants to reasoning about cost, or building libraries which emulate such features. Danielsson

[14] presents an Agda library for semiformal cost analysis of purely functional data structures.

This work is based on an indexed cost monad similar to that of LambdaAmor, but does not include

types for handling potential. Interestingly, the framework handles cost analysis of laziness, which

we do not. In the Coq side of the world, McCarthy et al. [50] have developed a similar library

based on a similar monadic discipline, but this time for by-value evaluation. Both of these

works are similar in spirit to LambdaAmor, as they provide intrinsic cost reasoning abilities in a

richly-typed framework. However, both build this ability on top of an existing proof assistant,

whose logic does not have a first-class notion of cost or potential.

10.0.3. Languages and Proof Assistants with Resource-Aware Type Systems. The works

which bear the most resemblance to LambdaAmor are those which develop a full language with

a resource-aware type systems from scratch. These projects all fall along a spectrum, from

languages with fully automated cost bound inference which on the surface behave much like

languages with built-in static analyses, to resource-aware richly-typed proof languages in the

style ofLambdaAmor.
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A classic example of the first type is Resource Aware ML [31], an implementation of Au-

tomated Amortized Resource Analysis [36], from which λ-Amor borrows its univariate poly-

nomial potentials. While RAML provides highly-automated cost-bound inference, it struggles

to handle some moderately complex language features like variable-cost higher-order functions.

LambdaAmor is at least as expressive as AARA, since AARA embeds into λ-Amor [64]. More-

over, LambdaAmor can verify cost-polymorphic functions such as map (Section 3). Further along

the spectrum is a language like TiML [81], in which the programmer annotates regular ML

functions with statically-checked cost bounds. The cost verification techniques involved are

somewhat brittle. For instance, TiML includes a set of pattern-based heuristics for solving

recurrences, and generates nonlinear constraints when handling polynomial potentials. TiML

is also not sound for amortized analysis, as its type system is not affine. Both RAML and

TiML can only type terminating functions, while LambdaAmor includes general (polymorphic)

recursion. The closest-in-spirit language to LambdaAmor is Liquid Resource Types (LRT) [42],

an ambitious project which builds on Liquid Haskell [79], and previous work on resource-guided

synthesis [41] to provide a language for formally verifying amortized cost properties of func-

tional programs. LRT has one notable feature that outpaces all other developments in the space

(including LambdaAmor): it allows for value-dependent cost analyses. In principle, LambdaAmor

could be extended to allow for such analyses by enhancing its refinement types, although we

have yet to consider this. The largest practical benefit of LambdaAmor over LRT is the ability to

associate any amount of poential to any value. LRT shares RAML’s restriction that potentials

may only be associated to the constructors of inductive types, and the amount of potential

is dictated by the shape of the constructors. Because of this, to assign different amounts of

potential to a datatype, one must carefully re-define the datatype so that its constructors hold

the correct amount of potential. In contrast, LambdaAmor allows one to separate these concerns,

and assign different amounts of potential to the same data type.

Recent work has also attempted to develop type theories with resource analysis capabilities.

Quantitative Type Theory (QTT) [5] continues in with philosophy of ? ] in using a generalized

form of n-linear types to track resources in a dependent type theory. Similar work by the Granule

project [13] [60] seeks similar, albeit more practical, ends: the integration of resource reasoning

capabilities into general dependently typed languages. However, none of these developments are
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specific to the resource of cost. To the author’s knowledge, the only type theory with built-in

notions of program cost is Cost-Aware Type Theory (CATT) [54].



CHAPTER 3

Amortized Analysis by Recurrence Extraction

87
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1. Introduction

A common technique for analyzing the asymptotic resource complexity of functional pro-

grams is the extract-and-solve method, in which one extracts a recurrence expressing an upper

bound on the cost of the program in terms of the size of its input, and then solves the recur-

rence to obtain a big-O bound. Typically, the connection between the original program and the

extracted recurrence is left informal, relying on an intuitive understanding that the extracted

recurrence correctly models the program. Previous work [18, 19, 37, 40, 15] has begun to ex-

plore more formal techniques for relating programs and extracted recurrences. The process of

extracting a recurrence consists of two phases. The first is a monadic translation into the writer

monad C × ⋅, translating a program to also “output” its cost along with its value. We call the

result a syntactic recurrence, and at function type, the result is essentially a function that maps

a value to a pair consisting of the cost of evaluating that function along with its result. At

higher type, the syntactic recurrence maps a recurrence for the argument to a recurrence for

the result. A bounding logical relation relates programs to syntactic recurrences, and the funda-

mental bounding theorem states that a program and its syntactic recurrence are related, which

in particular implies that its actual runtime cost is bounded by the extracted prediction. Since

inductive values are translated to (essentially) themselves, this phase does not abstract values to

sizes; in effect, the syntactic recurrence describes the cost of the program in terms of its actual

arguments. The second phase performs this size abstraction by interpreting (the language of)

syntactic recurrences in a denotational model. The interpretation of each type is intended to be

a domain of sizes for values of that type, and different models can implement different notions

of size. For example, a list value (i.e., the list type and constructors) may be interpreted by its

length in one model, or even more exotic notions of size, such as the number of pairwise inver-

sions (as required for an analysis of insertion sort) for a list of numbers. Thus the interpretation

of the syntactic recurrence extracted from a source program (what we might call the semantic

recurrence) is a function that maps sizes (of source-program values) to a bound on the cost of

that program on those values. It is these semantic recurrences that match the recurrences that

arise from the typical “extract-and-solve” approach to analyzing program cost. Our previous

work develops this methodology for functional programs with numbers and lists [18], inductive

types with structural recursion [19], general recursion [40], and let-polymorphism [15].
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As an example that demonstrates both the approach and a weakness of the underlying

technique for cost analysis that it formalizes, let us consider the binary increment function, a

standard motivating example for amortized analysis:

inc ∶ bit list→ bit list

inc [ ] = [1]

inc (0 ∶∶ bs) = 1 ∶∶ bs

inc (1 ∶∶ bs) = 0 ∶∶ inc bs

set ∶ nat→ bit list

set0 = [ ]

set (S n) = inc(setn)

The value part of a monadic translation of a function into C×⋅ is a function into a pair, but here

we sugar that into a pair of functions, which may be mutually recursive. We denote the cost

and value components by (⋅)c and (⋅)p, respectively (this notation is explained in Section 3.1),

and charge one unit of cost for each ∶∶ operation:

incc ∶ bit list→ C

incc [] = 1

incc (0 ∶∶ bs) = 1

incc (1 ∶∶ bs) = 1 + incc bs

setc ∶ nat→ C

setc 0 = 0

setc (S n) = setc(n) + incc(setp n)

incp ∶ bit list→ bit list

incp [] = [1]

incp (0 ∶∶ bs) = 1 ∶∶ bs

incp (1 ∶∶ bs) = 0 ∶∶ incp bs

setp ∶ nat→ bit list

setp 0 = []

setp (S n) = incp(setp n)

We obtain the usual recurrences that we expect when we interpret these syntactic recurrences

in an appropriate denotational semantics. We interpret bit list and nat by N, the natural

numbers, and interpret the constructors so that a bit list is interpreted by its length and a

nat by its value. Doing so, we obtain semantic recurrences for the the cost and size of inc:

Tinc(0) = 1

Tinc(n + 1) = max{1,1 + Tinc(n)}

Sinc(0) = 1

Sinc(n + 1) = max{1 + n,1 + Sinc(n)}

The usual techniques (in the semantics) then allow us to conclude that Tinc(n) ≤ n + 1 and

Sinc(n) ≤ n + 1, which are correct and tight bounds on the cost and size of the inc function.
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The semantic recurrences for set are

Tset(0) = 0

Tset(n + 1) = Tset(n) + Tinc(Sset(n))

≤ Tset(n) + Sset(n) + 1

Sset(0) = 0

Sset(n + 1) = Sinc(Sset(n))

≤ Sset(n) + 1

and so we conclude that Sset(n) ≤ n and hence Tset(n) ∈ O(n2), both of which are correct, but

not tight, bounds.

On the one hand, through syntactic recurrence extraction, the bounding theorem, and

soundness of the semantics, we have a formal connection between the original programs and the

semantic recurrences that bound their cost and size. On the other, this example demonstrates a

well-understood weakness in the informal technique: while the cost of a composition of functions

is bounded by the composition of their costs, the bound is not necessarily tight. The tight

bound is usually established with some form of amortized analysis, and the goal of this paper

is to provide a formalization of the banker’s method for amortized analysis comparable to the

formalization of [18, 19, 37] for non-amortized analysis.

The banker’s method for amortized analysis [75] permits one to “prepay” time cost to gen-

erate “credits” that are “spent” later to reduce time cost, rearranging the accounting of costs

from one portion of a program to another (in particular, generating a credit costs 1 unit of time,

while spending a credit reduces the cost by 1 unit of time). In this example, we maintain the

invariant that one credit is attached to every 1 bit in the counter representation. The amortized

cost of flipping a bit from 0 to 1 is then 2 units of time—one for the actual bit flip plus one

to generate the credit. However, the amortized cost of flipping a bit from 1 to 0 is 0 units of

time—the bit flip takes one unit of time, but that is paid for by the credit. Using these new

amortized costs, we can see that Tinc(n) is O(1) amortized: in the case where the first bit is

0, we flip it to 1, which costs 2 units of time, and stop. In the case where the first bit is 1,

we flip it for free to 0, and then make a recursive call, which inductively is bounded by 2. So

Tinc(n) = 2, which means that Tset(n) = 2n, amortized. Since a single run of set starts with no

credits, its actual cost will be bounded by the amortized cost 2n: all of the credits spent during

the call to set, which subtract from the cost, must have been created earlier, incurring a cost

which balances out the gain garnered from spending it.
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Formalizing recurrence extraction for the banker’s method for amortized analysis requires

us to move from a relatively standard source language based on the simply-typed λ-calculus

with inductive datatypes to a more specialized one. We do not expect amortization policies

(e.g. generate a credit when flipping a bit from 0 to 1, to be spent when flipping a bit from 1 to

0) to be automatically inferable in the general case—these policies are the part of an amortized

analysis that requires the most cleverness. To notate these policies, we use an intermediate

language λA (Section 2) 1, which has “effectful” operations for generating and spending credits

(create and spend), as well as a modal type operator !` for associating credits with values (e.g.

storing a credit with each 1 in a bit list). The type !`A classifies a value of type A that has `

credits associated with it. To correctly manage credits, this intermediate language is based on a

form of linear logic, which prevents spending the same credit more than once; in particular, λA

is an affine lambda calculus with all of the standard connectives ⊗,⊕,&,⊸, ! plus multiplicities

!kA (where k is a positive number) for tracking multiple-use values. The type structure of the

intermediate language is inspired by the credits (written as ◇) of [34, 35], n-linear types (e.g.

[25, 65, 49, 5]), and the uses of credits and linear logic in in automatic amortized resource

analysis (AARA) (e.g. [36, 32, 41]).

The target of the monadic translation is the recurrence language λC, which, following [19, 37],

is a standard simply-typed λ-calculus with a base type for costs (linearity is not needed at

this stage). It is equipped with an inequality judgment E ≤T E′ that can be used to express

upper bounds. The translation we define here extracts a recurrence for the amortized cost of

the program (where the costs have been “rearranged”), by translating the credit generation

and spending operations in λA to modifications of the cost. We define a bounding relation (a

cross-language logical relation) for the amortized case, and prove that a term is related to its

extraction. As a corollary, we obtain that the amortized cost of running a program from λA is

bounded by the cost component of its translation into λC; for programs that use no external

credits, this gives a bound on its actual cost as well. The recurrence language, recurrence

extraction and bounding theorem are described in Section 3. Next, we use a denotational

1 In an unfortunate coincidence, the recurrence extraction project including λA was developed concurrently

with the λ-Amor project by disjoint sets of authors. This led to a name collision that we hope will not cause the

reader too much grief.
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Figure 1. Recurrence Extraction Pipeline

semantics of the recurrence language in preorders, similar to [19], to justify the consistency of

the recurrence language ≤ judgment, and to simplify and solve extracted recurrences (Section 4).

The version of λA and the recurrence extraction presented through Section 4 allows a stati-

cally fixed number of credits to be stored with each element of a data structure (e.g. 1 credit on

element of a list, so n credits overall). For some analyses, it is necessary to choose the number

of credits stored with an element dynamically. For example, when analyzing splay trees [72],

the number of credits stored at each node in the tree is a function of the size of the subtree

rooted at that node, which varies for different tree nodes. To support such analyses, we extend

λA with existential quantifiers over credit variables in Section 5, and use them to code a portion

of Okasaki [58]’s analysis of splay trees in our system.

The process of extracting and solving a recurrence in diagrammed in Figure 1. While

automation of the annotation and solving steps is a worthwhile goal, our main motivation in

this paper is to formally justify the extract-and-solve method for amortized analysis, a technique

that we teach and that is typically used by practitioners. Connecting the extracted recurrence

in terms of user-defined notions of size to the operational cost is the least justified step in this

process, and so a formal account of it has important foundational value. It could likewise have

important practical value: because students and practitioners are trained in the use of cost

recurrences, reverse-engineering a recurrence that yields a worse-than-expected cost bound to

the (mis)implementation may require a lower cognitive load than doing the same with more

sophisticated techniques. Moreover, though this technique is less automated than others, it can

handle at least some examples that existing techniques cannot—to our knowledge, splay trees

cannot be analyzed by the existing automatic techniques. We give a detailed comparison with

related work in Section 6.
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2. Intermediate Language λA

In this section we discuss the static and operational semantics of λA, which is an affine

lambda calculus—it permits weakening (unused variables) but not contraction (duplication of

variables). It includes some standard connectives of linear logic, such as positive/eager/multiplicative

products (⊗ and 1), sums/coproducts (⊕), and functions (⊸), as well as negative/lazy/additive

products (&). The language has two basic datatypes, natural numbers (N) and (eager) lists

([A]), both with structural recursion (though we expect these techniques to extend to all

strictly positive inductive types [19, 15]).

In addition to these, λA contains some constructs specific to its role as an intermediate

language for expressing amortized analyses. First, instead of fixing the operational costs of λA’s

programs themselves, we include a tick operation which costs 1 unit of time, and assume that

the translation of a program into λA has annotated the program with sufficient ticks to model

the desired operational cost [14] (for example, we can charge only for bit flips in the above binary

counter program).

Second, we have operations create and spend for creating and spending credits, which

respectively increase and decrease the amortized cost of the program without changing the true

operational cost.

Third, we have a type constructor !`A, where a value of this type is a value of type A with `

credits attached; its introduction and elimination rules allow for the movement of credits around

a program. The combination of of spend and the !` modality motivates our affine type system:

because spending credits decreases the amortized cost of a program, we must ensure that a credit

is spent only once, so credits should not be duplicated; because credits can be stored in values,

values cannot in general be duplicated as well. However, λA does allow credit weakening—

choosing not to spend available credits—because this increases the amortized cost (relative to

spending the credits), and we are interested in upper bounds on running time. While the basic

affine type system allows a variable to be used only once, to simplify the expression of programs

that use a variable a fixed number of times, we use n-linear types (see e.g. [25, 65, 49, 5]),

where variables are annotated with a multiplicity k, and can be used at most k times.2 This is

2While Girard’s notation for multiplicities is !kA [25], we write superscripts following Atkey [5], and write

subscripts for the credit-storing modality, which is used more frequently in our system.
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Types A,B,C ∶∶= N ∣ [A] ∣ A⊸ B ∣ A⊗B ∣ A⊕B ∣ A&B ∣ !k`A

Terms M,N ∶∶= x ∣ tick ; M ∣ create` M ∣ spend` M ∣ savek` M ∣ transferk′ !k` x =M to N

∣ λx.M ∣M N ∣ inlM ∣ inrM ∣ casek′(M,x.N1, y.N2) ∣ ⟨M,N⟩ ∣ π1M ∣ π2M

∣ split(M, x.y.N) ∣ 0 ∣ S(M) ∣ nrec(M,N1,N2) ∣ [] ∣M ∶∶ N ∣ lrec(M,N1,N2)

Figure 2. λA Grammar

internalized by a modality !kA, which represents an A that can be used at most k times. We

additionally allow k to be ∞, in which case !∞A is the usual exponential of linear logic, allowing

unrestricted use. Using this modality, standard functional programs can be coded in λA, but our

current recurrence extraction does not handle the !∞ fragment very well, as explained below—at

present, we use !∞ mainly as a technical device for typing recursors. It is technically convenient

to combine the two modalities into one type former !k`A, which represents an A that can be used

k times, which also has ` credits attached (total, not ` credits with each use). Because k is a

coefficient but ` is an additive constant, the individual modalities are recovered as !kA ∶=!k0A and

!`A ∶=!1`A. In pure affine logic, one can think of !k`A as X ⊗ . . .⊗X ⊗A⊗ . . .⊗A with ` Xs and

k A’s (in the case where k and ` are finite), for an atomic proposition X representing a single

credit. However, our judgmental presentation is easier to work with for our bounding relation

and theorem below, and the n-linear modality !kA ensures that additional invariant that it is

the same value that can be used k times, i.e. it only allows the diagonal of A⊗ . . .⊗A.

2.1. Type System. In Fig. 3 we define a typing judgment of the form Γ ⊢f M ∶ A, where

Γ is a standard context x1 ∶ A1, x2 ∶ A2, . . . , xn ∶ An and f is a resource term of the form

a1x1 + a2x2 + . . . + anxn + `, where x1, . . . , xn are the variables in Γ and ai and ` are natural

numbers or ∞. The resource term f can be thought of as annotating each variable xi with

the number of times ai that it is allowed to occur, and additionally annotating the judgment

with a nonnegative “bank” ` of available credits that can be used. For example, the judgment

x ∶ A,y ∶ B, z ∶ C ⊢3x+2y+0z+2 M ∶D, means that M is a term of type D, which may use x at most

3 times, y at most twice, z not at all, and has access to 2 credits. We consider these resource

terms up to the usual arithmetic identities (associativity, unit, commutativity, distributivity,

0f = 0, ∞k = ∞ otherwise, etc.). In the admissible substitution rule, we write g[f/x] to denote

the result of normalizing the textual substitution of f for x in g according to these identities;
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e.g. (3x+ 2y + 2)[10a+ 11b+ 3/x] = 30a+ 33b+ 2y + 11. Our judgmental presentation of n-linear

types differs from some existing ones– the reader more familiar with Girard’s BLL [25] may read

Γ ⊢f M ∶ A as analogous to !f⃗Γ ⊢M ∶ A – but this type system was derived as an instance of a

general framework for modal types [46], which, for our purposes, simplifies the presentation of

standard metatheorems like substitution. Note that the resource terms f play a different role

than the resource polynomials in Bounded Linear Logic and AARA [25, 32], which provide a

mechanism for measuring the size and credit allocation in a data structure. The resource terms

are also affine in the sense of a polynomial—the exponent of every variable is 1, except for the

constant term `—but we will avoid this meaning of affine to avoid confusion with “affine logic”

(allowing weakening but not contraction).

2.1.1. Structural Rules. The rules make three structural principles admissible:

Theorem 2.1 (Admissible structural rules).

● Resource Weakening: Write g ≥ f for the coefficient-wise partial order on resource

terms (a1x1 + a2x2 + . . . + ` ≥ b1x1 + b2x2 + . . . + `′ iff ai ≥ bi for all i and ` ≥ `′). Then

if Γ ⊢f M ∶ A and g ≥ f then Γ ⊢g M ∶ A.

● Variable Weakening: If Γ ⊢f M ∶ A and y does not occur in Γ, then Γ, y ∶ B ⊢f+0y M ∶

A.

● Substitution: If Γ ⊢f M ∶ A and Γ, x ∶ A ⊢g N ∶ B, then Γ ⊢g[f/x] N[M/x] ∶ B

Proof. By induction on derivations. �

First, we can weaken the resource subscript, allowing more uses of a variable or more credits

in the bank (e.g. if ⋅ ⊢3 M ∶ A, then ⋅ ⊢5 M ∶ A). Second, we can weaken a context to include an

unused variable (we write f + 0y for emphasis, but by equating resource terms up to arithmetic

identities, this is just f). Third, we can substitute one term into another, performing the

corresponding substitution on resource terms. The idea is that, if N uses a variable x say 3

times, then it requires 3 times the resources needed to make M to duplicate M three times; this

multiplication occurs when substituting f for the occurrence of x in g.

2.1.2. Multiplicative/Additive Rules in n-linear Style. In the n-linear types style of presenta-

tion, rules of linear logic that traditionally split the context (e.g. ⊗ introduction, ⊸ elimination)

sum the resources used in each premise, but keep the same underlying variable context Γ in all
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Admissible:

Γ ⊢f M ∶ A g ≥ f

Γ ⊢g M ∶ A

Γ ⊢f M ∶ A

Γ, y ∶ B ⊢f+0y M ∶ A

Γ ⊢f M ∶ A Γ, x ∶ A ⊢g N ∶ B

Γ ⊢g[f/x] N[M/x] ∶ B

Γ, x ∶ A ⊢f+x x ∶ A

Γ ⊢f M ∶ A

Γ ⊢f tick ; M ∶ A

Γ ⊢f+` M ∶ A

Γ ⊢f create` M ∶ A

Γ ⊢f M ∶ A

Γ ⊢f+` spend` M ∶ A

Γ ⊢f M ∶ A kf + ` ≤ g

Γ ⊢g save
k
` M ∶!k`A

Γ ⊢f M ∶!k`A Γ, x ∶ A ⊢g+k′(kx+`) N ∶ B

Γ ⊢k′f+g transferk′ !k` x =M to N ∶ B

Γ, x ∶ A ⊢f+x M ∶ B

Γ ⊢f λx.M ∶ A⊸ B

Γ ⊢f M ∶ A⊸ B Γ ⊢g N ∶ A

Γ ⊢f+g M N ∶ B

Γ ⊢f M ∶ A

Γ ⊢f inlM ∶ A⊕B

Γ ⊢f M ∶ B

Γ ⊢f inrM ∶ A⊕B

Γ ⊢f M ∶ A⊕B

Γ, x ∶ A ⊢g+k′x N1 ∶ C

Γ, y ∶ B ⊢g+k′y N2 ∶ C

Γ ⊢k′f+g casek′ (M, x.N1 , y.N2) ∶ C

Γ ⊢f M ∶ A Γ ⊢f N ∶ B

Γ ⊢f ⟨M,N⟩ ∶ A&B

Γ ⊢f M ∶ A1&A2

Γ ⊢f πiM ∶ Ai

Γ ⊢f () ∶ 1

Γ ⊢f M ∶ A Γ ⊢g N ∶ B

Γ ⊢f+g (M,N) ∶ A⊗B

Γ ⊢f M ∶ A⊗B Γ, x ∶ A,y ∶ B ⊢g+k′(x+y) N ∶ C

Γ ⊢k′f+g splitk′(M, x.y.N) ∶ C

Γ ⊢f 0 ∶ N
Γ ⊢f M ∶ N

Γ ⊢f S(M) ∶ N

Γ ⊢f M ∶ N

Γ ⊢g1 N1 ∶ 1⊸ C

Γ ⊢g2 N2 ∶!
∞

0 (N⊗ (1⊸ C) ⊸ C)

Γ ⊢f+g1+g2 nrec (M,N1,N2) ∶ C

Γ ⊢f [] ∶ [A]

Γ ⊢f M1 ∶ A Γ ⊢g M2 ∶ [A]

Γ ⊢f+g M1 ∶∶ M2 ∶ [A]

Γ ⊢f M ∶ [A]

Γ ⊢g1 N1 ∶ 1⊸ C

Γ ⊢g2 N2 ∶!
∞

0 (A⊗ ([A]&C) ⊸ C)

Γ ⊢f+g1+g2 lrec (M,N1,N2) ∶ C

Figure 3. λA Typing Rules

premises. For example, in a positive pair (M,N) ∶ A⊗B, if M is allowed to use x 3 times and N

is allowed to use x 4 times, then the whole pair must be allowed to use x 7 times. As a special

case, if a variable is not allowed to occur in, e.g., N , it can be marked with a coefficient of 0. On
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the other hand, rules for additives (e.g. pairing for A&B) use the same resource term in multi-

ple premises. While the elimination rule for ⊕ is additive in sequent calculus style, in natural

deduction there is some summing because it builds in a cut for the term being case-analyzed.

2.1.3. Ticks, and Creating/Spending Credits. The tick ; M construct is used to mark pro-

gram points that are intended to incur one unit of time cost (e.g. bit flips in the binary counter

example); it uses the same resources as M .

create is the means to create credits, where create` gives M access to ` extra credits to use,

along with whatever resources are present in the ambient context; formally, this is represented

by adding to the “bank” in the premise of the typing rule for M . In the operational semantics

and recurrence extraction below, create adds ` steps to the amortized cost of M—it is used to

“prepay” for later costs.

spend is the means to spend credits, where spend` spends ` credits; because credits can

only be spent once, these ` credits in the conclusion of the typing rule are not also available in

the premise for M . In the operational semantics/recurrence extraction, spend subtracts ` steps

from the amortized cost of M—it is used to take advantage of prepaid steps. Note that spend

satisfies the same typing judgments as an instance of resource weakening (because f + ` ≥ f);

the “silent” weakening does not change the amortized cost, but instead is a case where our

recurrence extraction might obtain a non-tight upper-bound.

2.1.4. !k` Modality. Instead of having two separate modalities, one for n-use types and the

other for types storing credits, we combine them into a single modality !k`A. A value of type !k`A

is a k-use A with ` credits attached (not k ⋅ ` credits, which is what one would expect if each use

had ` credits attached—though that could be modeled by the type !k0(!1`A)). While we write a

and ` for nonnegative numbers or ∞, we restrict k to range over a positive number or ∞ – i.e.

we do not allow a “zero-use” modality !0`A, which would complicate the erasure of λA to regular

simply typed lambda calculus.

The introduction rule for !k` says that if we can prove M has type A with f resources, then

a version of M that can be used k times requires kf resources. If in addition, ` credits are to be

attached, then kf + ` resources are required. Intuitively, one can think of savek` M as the act of

running M once to obtain its value, but repeating whatever requirement it imposes on the bank

k times, which justifies making k uses of its value, and then attaching ` credits to this value. In



3. AMORTIZED ANALYSIS BY RECURRENCE EXTRACTION 98

order to make resource weakening admissible in general, it is necessary to build weakening into

this rule (the second premise).

The elimination rule for the modality allows for the credit stored on a term to be released

into the ambient context of another in order to be redistributed or spent. We first present a

simplified version, and then explain the general version. Given Γ ⊢f M ∶!k`A, we essentially have

k copies of an A, along with ` extra credits. Given a term N which can use k copies of an A and

` credits, Γ, y ∶ A ⊢ky+` N ∶ C, we can form the term Γ ⊢f transfer !k` y = M to N ∶ C, which,

intuitively, deconstructs M into its k-usable value and ` credits, and moves them to N , where

they can be used. On top of this version, we make two modifications. Firstly, N should have

access to resources other than just what’s provided to it by M– so we add a resource term g

available in N (and therefore required to type the transfer). Secondly, it may be necessary at

the site of the transfer to further duplicate the M ∶!k`A — this is required to prove a fusion law

below, for example. To support this, we parameterize the transfer term by another number,

k′, arriving at the version of the rule presented in Figure 3, which should be thought of as

eliminating k′ copies of a !k`A at once. The rules for other positive types (⊕,⊗) similarly permit

elimination of multiple copies at once.

The ! modality satisfies the following interactions with other logical connectives, where we

write A ⊣⊢ B to mean interprovability/functions in both directions:

Theorem 2.2 (Fusion Laws).

(1) !k1k2`1+k1⋅`2A ⊣⊢ !k1`1 !k2`2A

(2) !k`1+`2(A⊗B) ⊣⊢ !k`1A⊗!k`1B

(3) !k` (A⊕B) ⊣⊢ !k`A⊕!k`B

2.1.5. Natural Number Recursor. For natural numbers, while the rules for zero and successor

are standard, the recursor takes a bit of explanation. We think of the recursor nrec as a function

constant of type N⊸ (1⊸ C) ⊸!∞0 (N×(1⊸ C) ⊸ C) ⊸ C. The base case is “thunked” because

we think of ⊸ as a call-by-value function type, but the base case should not be evaluated until

the recurrence argument is 0. The ordinary type for the step function (inductive case) would

be (N×C ⊸ C), but we also suspend the recursive call, to allow for a simple case analysis that

chooses not to use the recursive call. The !∞0 modality surrounding the step function is needed to
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ensure that the step function itself does not use any ambient credits, which is necessary because

the step function is applied repeatedly by the recursor (n times if the value of M is n). Without

this restriction, one could, for example, iterate a step function that spends k credits to subtract

Mk credits from the amortized cost, while only having k credits in the bank to spend. For

example, without the use of !∞0 , the term ⋅ ⊢1 nrec (7, λ .0, λ .spend1 0) ∶ N typechecks with

only one credit in the ambient bank, but intuitively subtracts 7 from the amortized cost, rather

than just the 1 credit that was allowed. We solve this problem using the type !∞0 A (where A is the

ordinary type of the step function N⊗(1⊸ C) ⊸ C), which represents an infinitely duplicable A

that stores no additional credits. Being infinitely duplicable is an over-approximation, because

the step function really only needs to be run M times, but being more precise would require

reasoning about such values in the type system.

In the common case, the step function will use other infinite-use variables but no credits

from the bank. A typical typing derivation for this case, where H is the type of a helper function

and A is the type of the step function, would be

f ∶H ⊢∞f N ′
2 ∶ A

f ∶H ⊢∞(∞f)=∞f save
∞
0 N ′

2 ∶!∞0 A

Using this as the third premise of the typing rule of nrec, we see that such an nrec itself

requires only the credits demanded by the number argument (M) and base case (N1), assuming

f is substituted by a helper function that uses no credits.

The way in which the !∞ modality “prevents” the use of credits from the bank is somewhat

subtle: a step function can use credits from the bank, but this will require the bank to be infinite

in the conclusion. This is because the introduction rule for !∞0 inflates any finite resources to ∞

in the conclusion:

f ∶H ⊢2x+3 N
′
2 ∶ A

f ∶H ⊢∞(2f+3)=∞f+∞ save∞0 N ′
2 ∶!∞0 A

Thus, the step function is only permitted to use credits from the bank when the bank has ∞

credits in the conclusion, while we are generally interested in programs that use finitely many

credits.

2.1.6. List Recursor. The list recursor lrec (M,N1,N2) has the same “credit capture” prob-

lem as the recursor on naturals, which we solve using !∞0 . The list recursor has another challenge,
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though, because unlike a natural number, the values of the list can themselves store credits. Be-

cause of this, to prevent credits from being duplicated, in the cons case, the recursor may use

either the tail of the list or the recursive result, but not both. We code this using an internal

choice/negative product &. The negative product will itself be treated as a lazy type construc-

tor, where an A&B pair is a value even when the A and B are not, so we do not need to further

thunk the recursive result C here.

2.2. Operational Semantics for λA. We present a call-by-value big-step operational

semantics for λA in Figure 4, whose primary judgment form is M ↓(n,r) v, which means that

M evaluates to the value v with cost (n, r). The first component of the cost, n (a non-negative

number) indicates the real cost of evaluating M , in this case the number of ticks performed

while evaluating M . The second component, r (which can be any integer), tracks creates and

spends — the (possibly negative) sum total of credits created and spent while evaluating M ,

where creating is positive and spending is negative. The amortized cost of evaluating M is n+r:

the number of “actual” steps taken, plus the number of credits created, minus the number spent.

One reason we separate n and r in the judgment form is that there is a straightforward

erasure of λA to ordinary simply typed λ-calculus (STLC with a tick operation), in which

evaluating the STLC program has cost (number of ticks) n. Briefly, this translation translates

!k`A to A, translates all of the linear connectives to their unrestricted counterparts, drops all

create, spend, save term constructors, and translates transfer to a let. The definition of

n in each of our inference rules for M ↓(n,r) v is the same as the usual cost for STLC with a

tick operation, so this erasure preserves cost. Because of this erasure, the n in M ↓(n,r) v is a

meaningful cost to bound. Further, the distinction between n and r is why we have separate

terms create and tick: tick increases the operational cost which should be preserved under

erasure, while create increase the amortized cost only.

As discussed in Section 2.1.3, create` M creates ` credits for M to use for the price of

` units of time cost, whereas spend subtracts from the amortized cost of an expression — a

speedup which is paid for by the ` credits which the body is no longer allowed to use. Both are

reflected by corresponding changes to r.

The operational intuition for savek` M ∶ !k`A is that it runs M once, but repeats whatever

effect this had on the credit bank k times, which justifies using the credits in the value of M
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M ↓
(n,r) v

tick ; M ↓
(1+n,r) v

M ↓
(n,r) v

create` M ↓
(n,r+`) v

M ↓
(n,r) v

spend` M ↓
(n,r−`) v

M ↓
(n,r) v

savek` M ↓
(n,kr) savek` v

M ↓
(n1,r1) savek` v1 N[v1/x] ↓

(n2,r2) v

transferk′ !k` x =M to N ↓(n1+n2,k
′r1+r2) v

λx.M ↓
(0,0) λx.M

M ↓
(n1,r1) λx.M ′ N ↓(n2,r2) v1 M ′

[v1/x] ↓
(n3,r3) v

M N ↓(n1+n2+n3,r1+r2+r3) v

M ↓
(n,r) v

inrM ↓
(n,r) inr v

M ↓
(n1,r1) inr v1 N2[v1/x] ↓

(n2,r2) v

casek′ (M, x.N1 , y.N2) ↓
(n1+n2,k

′r1+r2) v

M ↓
(n,r) v

inlM ↓
(n,r) inl v

M ↓
(n1,r1) inl v1 N1[v1/x] ↓

(n2,r2) v

casek′ (M, x.N1 , y.N2) ↓
(n1+n2,k

′r1+r2) v

⟨M,N⟩ ↓
(0,0)

⟨M,N⟩

M ↓
(n1,r1)

⟨N1,N2⟩ Ni ↓
(n2,r2) v

πiM ↓
(n1+n2,r1+r2) v

M ↓
(n1,r1) v1 N ↓(n2,r2) v2

(M,N) ↓
(n1+n1,r1+r2)

(v1, v2)

M ↓
(n1,r1)

(v1, v2) N[v1/x, v2/y] ↓
(n2,r2) v

splitk′(M, x.y.N) ↓
(n1+n2,k

′r1+r2) v

0 ↓(0,0) 0

M ↓
(n,r) v

S(M) ↓
(n,r) S(v) ( ) ↓

(0,0)
( )

M ↓
(n1,r1) 0 N1 ↓

(n2,r2) λx.N ′

1 N2 ↓
(n3,r3) v′ N ′

1[()/x] ↓
(n4,r4) v

nrec (M,N1,N2) ↓
(n1+n2+n3+n4,r1+r2+r3+r4) v

M ↓
(n1,r1) S(v1)

N2 ↓
(n2,r2) save∞0 (λx.N ′

2)

N1 ↓
(n3,r3) λx.N ′

1

N ′

2[(v1, λz.(nrec (v1, λx.N
′

1,save
∞

0 (λx.N ′

2))))/x] ↓
(n4,r4) v

nrec (M,N1,N2) ↓
(n1+n2+n3+n4,r1+r2+r3+r4) v

M ↓
(n1,r1)

[] N1 ↓
(n2,r2) λx.N ′

1 N2 ↓
(n3,r3) save∞0 (λx.N ′

2) N ′

1[()/x] ↓
(n4,r4) v

lrec (M,N1,N2) ↓
(n1+n2+n3+n4,r1+r2+r3+r4) v

M ↓
(n1,r1) v1 ∶∶ v2

N2 ↓
(n2,r2) save∞0 (λx.N ′

2)

N1 ↓
(n3,r3) λx.N ′

1

N ′

2[(v1, ⟨v2,lrec (v2, λx.N
′

1,save
∞

0 (λx.N ′

2))⟩)/x] ↓
(n4,r4) v

lrec (M,N1,N2) ↓
(n1+n2+n3+n4,r1+r2+r3+r4) v

Figure 4. λA Operational Semantics
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k times. (The erasure to STLC discussed above runs M only once, not k times—which would

be challenging when k is ∞.) Formally, this means that the n in the conclusion is just the n in

the premise, but the r is multiplied by k. Running savek` does not add ` to the r component

because save does not create credits (adding to the amortized cost), but only attaches some

already existing credits to the value v. Recall that transfer detaches the credits from a !k`

value, and allows for them, along with the k copies of the value, to be used in another term.

The evaluation rule says that, in order to evaluate transferk′ !
k
` x =M to N , we first evaluate

M to a save value, and then evaluate the substitution instance N[v1/x]. The k′ in transfer

means to repeat the evaluation of M k′ times, allowing k ⋅ k′ uses in the body of N , so this

(similarly to save) repeats the credit effects r1 of M k′ times in the conclusion. The other

positive elimination forms are similar.

2.3. Syntactic Properties. In the operational semantics judgment M ↓(n,r) v, we think

of n + r (the actual cost n plus the credit difference r) as the amortized cost of the program. A

key property of amortized analysis is that the amortized cost is an upper bound on the true cost,

which means in this case that n+r ≥ n, so we would like r ≥ 0. While r is in general allowed to be

a negative number, it is controlled by the credits a of the typing judgment ⋅ ⊢a M ∶ A, intuitively

because it is only spend operations that subtract from r, and spend operations are only allowed

when the type system deems there to be sufficient credits available. Thus, we will be able to

prove that r ≥ 0 for well-typed terms. To do so, we strengthen the induction hypotheses to prove

that ⋅ ⊢a M ∶ A and M ↓(n,r) v imply a + r ≥ 0, which gives r ≥ 0 for closed programs that use

no external credits (so a = 0), which is what a “main” function is expected to be (e.g. set in

the binary counter example). It is technically convenient to combine this with a preservation

result, stating that the credits of v is in fact a+ r (the resource term in a typing judgment must

be non-negative, so a + r ≥ 0 is in fact a prerequisite for even asserting that ⋅ ⊢a+r v ∶ A). The

proofs of the following are relatively straightforward and may be found Appendix B.

Theorem 2.3 (Preservation Bound). If ⋅ ⊢a M ∶ A and M ↓(n,r) v, then a + r ≥ 0 and

⋅ ⊢a+r v ∶ A.

We also have that values evaluate in 0 steps:

Theorem 2.4. If v is a value, and v ↓(n,r) v, then n = r = 0.
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⋅ ⊢0 inc ∶= λb.lrec(b, λ .tick ; create1 (inl (save1
1 ())) ∶∶ [],

save∞0 (λ(a, tr).case1(a, .tick ; create1 (inl (save1
1 ())) ∶∶ π1tr,

y.transfer1 !11 = y to

spend1 (tick ; inl () ∶∶ π2tr)))) ∶ [bit]⊸ [bit]

⊢0 set ∶= λn.nrec(n,λ .[],save∞0 (λp.split1(p, .x.inc (x ())))) ∶ N⊸ [bit]

Figure 5. Binary Counter Terms in λA

and that values of type N contain no credits:

Theorem 2.5 (Resource strengthening for N). If ⋅ ⊢a v ∶ N, then ⋅ ⊢0 v ∶ N

2.4. Binary Counter Annotation. As an example, we translate the binary counter pro-

gram from Section 1 to λA, decorating the program with create, spend, save, and transfer in

order to emulate the analysis described in Section 1. Since the analysis stores credits on 1 bits,

the type of bits is bit = 1⊕!111; a value inl ( ) represents a 0 bit, and a value inr (save1
1 ( ))

represents a 1 bit, with a credit attached. A binary number is represented as a list of bits,

[bit]. The cost of interest is the number of bit flips, so we insert ticks everywhere a bit is

flipped from 0 to 1 or vice versa. Next, to handle the credits, we create and subsequently save

a credit when we flip a bit from 0 to 1, and transfer then spend when flipping bits from 0 to

1. This annotation is shown in Figure 5 – for simplicity, we use inc as a meta-level name for

the term implementing the function, so its occurrence in set really means a copy of that entire

term (to do this at the object level, we could alternatively think of a top-level definition of inc

as binding an infinite-use variable).

3. Recurrence Language λC, Amortized Recurrence Extraction, and Bounding

Theorem

Next, we define a translation from λA into a recurrence language λC. Unlike λA, λC has a

fully structural (weakening and contraction) type system, and no special constructs for amortized

analysis (it is mostly unchanged from [19, 37]). Further, because we view λC as a syntatx for

mathematical expressions, it is designed as a call-by-name language– this is in contrast to λA,



3. AMORTIZED ANALYSIS BY RECURRENCE EXTRACTION 104

which is by-value. The recurrence translation takes a function in λA to a function that outputs

the original function’s cost in λC, using a cost type C (which we will often take to be integers).

Formally, C can be any commutative ring with an ∞ element, the typical example being the

(“tropical”) max-plus ring on the integers, i.e. integers with addition and binary maxes. Some

of the typing rules for λC are presented in Figure 6.

Relative to our previous work, the main conceptual change for supporting amortized analysis

is that, instead of extracting recurrences for the true cost of a program (n in M ↓(n,r) v), we

extract recurrences that given an upper bound on the program’s amortized cost n + r, which is

itself a bound on the true cost for programs which begin with an empty bank of credits.

Γ, x ∶ T ⊢ x ∶ T
k ∈ Z

Γ ⊢ k ∶ C
Γ ⊢ E1 ∶ C Γ ⊢ E2 ∶ C

Γ ⊢ E1 +E2 ∶ C Γ ⊢ () ∶ 1

Γ ⊢ E1 ∶ T1 → T2 Γ ⊢ E2 ∶ T1

Γ ⊢ E1 E2 ∶ T2

Γ, x ∶ T1 ⊢ E ∶ T2

Γ ⊢ λx.E ∶ T1 → T2

Γ ⊢ E1 ∶ T1 Γ ⊢ E2 ∶ T2

Γ ⊢ (E1,E2) ∶ T1 × T2

Γ ⊢ E ∶ T1 × T2

Γ ⊢ πiE ∶ Ti

Γ ⊢ E ∶ T1

Γ ⊢ inlE ∶ T1 + T2

Γ ⊢ E ∶ T2

Γ ⊢ inrE ∶ T1 + T2

Γ ⊢ E ∶ T1 + T2 Γ, x ∶ T1 ⊢ E1 ∶ T Γ, y ∶ T2 ⊢ E2 ∶ T

Γ ⊢ case (E, x.E1 , y.E2) ∶ T

Γ ⊢ 0 ∶ N
Γ ⊢ E ∶ N

Γ ⊢ S(E) ∶ N
Γ ⊢ E ∶ N Γ ⊢ E1 ∶ 1→ T Γ ⊢ E2 ∶ N × T → T

Γ ⊢ nrec (E,E1,E2) ∶ T

Γ ⊢ [] ∶ [T]

Γ ⊢ E1 ∶ T Γ ⊢ E2 ∶ [T]

Γ ⊢ E1 ∶∶ E2 ∶ [T]

Γ ⊢ E ∶ [T1]

Γ ⊢ E1 ∶ 1→ T

Γ ⊢ E2 ∶ T1 × ([T1] × T ) → T

Γ ⊢ lrec (E,E1,E2) ∶ T

Figure 6. Recurrence Language λC Definition

3.1. Monadic Translation from λA to λC. Following [18, 19], a function A⊸ B in λA

will be translated to a function ⟪A⟫ → C × ⟪B⟫, where for a λA type A, a value of λC type ⟪A⟫

represents the size of a value in λA. Intuitively, this means that a function in λA is translated

to a λC function that, in terms of the size of the input, gives the cost of running the function on

that argument and the size of the output. Generalized to higher-type, “size” is properly viewed

as “use-cost;” it is a property that tells us how the value affects the cost of a computation that

uses it. In an unfortunate terminological clash, prior work [17] refers to this concept as potential
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(as in “potential cost” or “future cost”), with no intentional connotation of potential functions

from the physicist’s method of amortized analysis. In order to keep this work consistent with

the sequence of papers it follows, and since λA is based on the banker’s method, we will only

use “potential” to refer to the use-cost of a value, and so call ⟪A⟫ the potential type for A

and a value of type ⟪A⟫ a potential. The size of the output is needed for the translation to

be compositional: the recurrence extracted for a term should be composed of the recurrences

extracted for its subterms, but the cost of e.g. a function application depends on the size of the

argument itself, not just its cost. A recurrence extraction of this form can be packaged as a

monadic translation into the writer monad C ×A.

As discussed in Section 1, the proper notion of size for a specific datatype may vary from

analysis to analysis. To this end, we follow [19] in deferring the abstraction of values as sizes to

denotational semantics of λC defined in Section 4, which allows the same recurrence extraction

and bounding theorem to be reused for multiple models with different notions of size.

We call the pair of a cost and a potential a complexity. The translation consists of three

separate functions, the definitions of which are shown in Figure 7. Firstly, ⟪⋅⟫ takes a type A in

λA and maps it to the type ⟪A⟫ whose elements are the potentials of type A. We extend this to

contexts pointwise: ⟪Γ, x ∶ A⟫ = ⟪Γ⟫ , x ∶ ⟪A⟫. The second is ∥A∥ ∶= C × ⟪A⟫, which takes a type

A to the corresponding type of complexities. Finally, we overload ∥⋅∥ to denote the recurrence

extraction function from terms of λA to terms in λC. For convenience, when E ∶ C×T , we often

write π1E as Ec (cost) and π2E as Ep (potential). 3 We also use special notation for adding a

cost to a complexity, writing E +c E′ for (E +E′
c,E

′
p) when E ∶ C and E′ ∶ C × T .

Overall, the idea is that a term is translated to a function from potentials of its context to

complexities of its type:

Theorem 3.1 (Extraction Preserves Types). If Γ ⊢a M ∶ A then ⟪Γ⟫ ⊢ ∥M∥ ∶ ∥A∥

We comment on some of the less obvious aspects of this translation:

● !k`A: The type translation erases the !k` modality.

3We regard the subscript notation as binding tighter than ordinary projection: i.e. π1Ep = π1(Ep).
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∥A∥ = C × ⟪A⟫

⟪1⟫ = 1 ⟪A⊗B⟫ = ⟪A⟫ × ⟪B⟫ ⟪A⊕B⟫ = ⟪A⟫ + ⟪B⟫ ⟪A⊸ B⟫ = ⟪A⟫ → ∥B∥

⟪!k`A⟫ = ⟪A⟫ ⟪A&B⟫ = ∥A∥ × ∥B∥

⟪N⟫ = N ⟪[A]⟫ = [⟪A⟫]

∥x∥ = (0, x)

∥()∥ = (0, ()) ∥(M,N)∥ = (∥M∥c + ∥N∥c , (∥M∥p , ∥N∥p)) ∥πiM∥ = ∥M∥c +c πi (∥M∥p)

∥inlM∥ = (∥M∥c ,inl ∥M∥p) ∥inrM∥ = (∥M∥c ,inr ∥M∥p)

∥casek′ (M, x.N1 , y.N2)∥ = k
′
∥M∥c + case (∥M∥p , x. ∥N1∥ , y. ∥N2∥)

∥λx.M∥ = (0, λx. ∥M∥) ∥M N∥ = (∥M∥c + ∥N∥c) +c ∥M∥p ∥N∥p

∥⟨M,N⟩∥ = (0, (∥M∥ , ∥N∥))

∥splitk′(M, x.y.N)∥ = k′ ∥M∥c +c ∥N∥ [π1 ∥M∥p /x,π2 ∥M∥p /y]

∥0∥ = (0,0) ∥S(M)∥ = (∥M∥c , S(∥M∥p))

∥[]∥ = (0,[]) ∥M ∶∶ N∥ = (∥M∥c + ∥N∥c , ∥M∥p ∶∶ ∥N∥p)

∥tick ; M∥ = 1 +c ∥M∥

∥transferk′ !k` x =M to N∥ = k′ ∥M∥c +c ∥N∥ [∥M∥p /x] ∥savek` M∥ = (k ∥M∥c , ∥M∥p)

∥create` M∥ = ` +c ∥M∥ ∥spend` M∥ = (−`) +c ∥M∥

∥nrec (M,N1,N2)∥ = (∥M∥c + ∥N1∥c + ∥N2∥c) +c nrec (∥M∥p , ∥N1∥p , λx. ∥N2∥p (π1x,λz.π2x))

∥lrec (M,N1,N2)∥ = (∥M∥c + ∥N1∥c + ∥N2∥c)+c

lrec (∥M∥p , ∥N1∥p , λx. ∥N2∥p (π1x, ((0, π1π2x), π2π2x)))

Figure 7. Recurrence Extraction

● A&B: Since the negative product in λA is lazy, a value of type A&B is a pair of

un-evaluated terms. Thus, the potential of a term of type A&B must include the cost

of evaluating each term, since that will factor into the cost of using such a value.
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● tick: Since tick ; M evaluates with (true cost and) amortized cost 1 higher than

M ’s, the cost component of ∥tick ; M∥ is 1 + ∥M∥c.

● savek` : The extracted amortized cost of savek` M is k times the extracted cost of M ,

with the potential remaining the same. This is in principle a non-exact bound, because

we are conceptually multiplying the operational amortized cost of M ↓(n,r) v, which is

n + r, by k, whereas the operational semantics gives the more precise n + kr. We view

this as a consequence of the fact that amortized analyses extract recurrences for the

amortized cost n + r, rather than n and r separately. However, this inflation is not a

problem for our uses of !∞ in typing recursors because the branches of the recursor are

usually values, which have 0 cost, and ∞× 0 = 0. In future work, we might consider

a recurrence translation into the C ×C ×A monad, with separate extractions of n and

r, if more precision is needed. This would allow for λA to be used in the place of

the (linear fragment) of the source language in previous work [19]. Embedding that

language into the !∞ fragment of λA and then extracting recurrences into C × C × A

would yield the same results as applying the non-amortized recurrence extraction. We

emphasize that the loss of precision from not making this change has no bearing on

amortized algorithm analyses, it would only allow for non-amortized analyses to also

be performed with λA– but such analyses are already handled by prior work [19, 40]

● transfer: A similar imprecision arises with respect to the multiplicity k′ here, but

otherwise transfer is translated like a let.

● nrec: As in the operational semantics, because we think of the recursor as a call-by-

value function constant, some cost is in principle incurred for evaluating the branches

to function values, though the branches are usually values in practice.

● lrec: The type of the step function in a list recursor is !∞0 (A ⊗ ([A]&C) ⊸ C), and

the potential translation of this type is ⟪A⟫ × ((C × [⟪A⟫]) × (C × ⟪C⟫)) → C × ⟪C⟫.

However, this does not match the required type of the step function of the list recursor

in λC, which must be T1 × ([T1] × T2) → T2. Taking T1 = ⟪A⟫ and T2 = C × ⟪C⟫, the

translation of the step function additionally requires a C input representing the cost

of the tail of the list. However, lists are eager, so the step function is always applied

to a value, so we can supply 0 cost here.
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C ∶∶= [] ∣ π0C ∣ π1C ∣ C E ∣ case (C, x.E , y.E′) ∣ nrec (C,E1,E2) ∣ lrec (C,E1,E2)

Γ, x ∶ T ′ ⊢ C[x] ∶ T Γ ⊢ E0 ≤T ′ E1

Γ ⊢ C[E0] ≤T C[E1] Γ ⊢ E ≤T E
Γ ⊢ E1 ≤T E2 Γ ⊢ E2 ≤T E3

Γ ⊢ E1 ≤T E3

Γ ⊢ E1[E/x] ≤T case (inlE, x.E1 , y.E2) Γ ⊢ E2[E/x] ≤T case (inrE, x.E1 , y.E2)

Γ ⊢ E[E′/x] ≤T (λx.E) E′ Γ ⊢ Ei ≤Ti πi(E1,E2)

Γ ⊢ E1 () ≤T nrec (0,E1,E2) Γ ⊢ E2 (E,nrec (E,E1,E2)) ≤T nrec (S(E),E1,E2)

Γ ⊢ E1 () ≤T lrec ([],E1,E2) Γ ⊢ E2 (E, (E′,lrec (E′,E1,E2))) ≤T lrec (E ∶∶ E′,E1,E2)

Figure 8. Syntactic Ordering on λC

3.2. Recurrence Language Inequality Judgment. λC has a syntactic inequality judg-

ment Γ ⊢ E1 ≤T E2 (Figure 8), which intuitively means that the recurrence E1 is bounded above

by E2. For now, we include only those inequalities that are necessary to prove the bounding

theorem; this allows for the most models of the recurrence language, and additional axioms valid

in particular models can be added in order to simplify recurrences syntactically. The necessary

axioms are congruence in the principal positions of elimination forms, as well as the fact that

β-reducts are bounded above by their redexes. We often omit the context and type subscript

from Γ ⊢ E1 ≤T E2, writing E1 ≤T E2 or E1 ≤ E2, though formally it is a relation on well-typed

terms in context. This relation is primarily a technical device to provide closure properties for

the bounding relation. Because of this, we omit a more lengthy discussion of the relation here,

and refer the reader to the prior work [19] which introduces this type of relation.

3.3. Bounding Relation and Its Closure Properties. The correctness of the recur-

rence extraction is stated in terms of a logical relation between terms in λA and terms in λC.

The intended meaning is that the λC recurrence term is an upper bound on the λA term’s cost

and potential.

Definition 3.1 (Bounding Relation). When ⋅ ⊢a M ∶ A and ⋅ ⊢ E ∶ ∥A∥, then M ⊑A,a E if

and only if, when M ↓(n,r) v,

● n ≤ Ec − r

● v ⊑A,a+rval Ep
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When ⋅ ⊢a v ∶ A and ⋅ ⊢ E ∶ ⟪A⟫, we define v ⊑A,aval E by induction on A.

● savek` v ⊑
!k`A,c
val E if there exists d ≥ 0 so that kd + ` ≤ c, and v ⊑A,dval E

● λx.M ⊑A⊸B,cval E if whenever v ⊑A,dval E
′, we have that M[v/x] ⊑B,c+d E E′

● (v1, v2) ⊑A1⊗A2,a
val E if there are a1, a2 such that a1 + a2 = a and vi ⊑Ai,ai

val πiE for

i ∈ {1,2}

● [] ⊑[A],a
val E iff [] ≤[⟪A⟫] E

● v1 ∶∶ v2 ⊑[A],a
val E iff there are E1,E2 with E1 ∶∶ E2 ≤[⟪A⟫] E, and there are a1, a2 such

that a1 + a2 = a such that v1 ⊑A,a1val E1 and v2 ⊑[A],a2
val E2.

● 0 ⊑N,aval E iff 0 ≤ E

● S(v) ⊑N,aval E iff there is some E′ such that S(E′) ≤N E, and v ⊑N,aval E
′

● inl v ⊑A⊕B,aval E if there exists E′ such that inlE′ ≤⟪A⟫ E and v ⊑A,aval E
′.

● inr v ⊑A⊕B,aval E if there exists E′ such that inrE′ ≤⟪B⟫ E and v ⊑B,aval E
′.

● () ⊑1,a
val E if () ≤1 E.

● ⟨M,N⟩ ⊑A&B,a
val E if M ⊑A,a π1E, and N ⊑B,a π2E.

We extend the value bounding relation to substitutions pointwise: θ ⊑Γ,σ
sub Θ if for all x ∶ A ∈ Γ,

θ(x) ⊑A,σ(x)val Θ(x). Finally, we define the bounding relation for open terms: when Γ ⊢f M ∶ A,

we say that M ⊑ E if for all θ ⊑Γ,σ
sub Θ, we have M[θ] ⊑A,f[σ] E[Θ].

The term/expression bounding relation M ⊑A,a E says first that the cost component of E

is an upper bound on the amortized cost of M , which is n + r ≤ Ec (since we will eventually be

interested in bounding the actual cost of evaluating M , we write this as n ≤ Ec−r). Additionally,

expression bounding says that the potential component of E is an “upper bound” on the value

thatM evaluates to; this is expressed via a mutually-defined type-varying value bounding relation

M ⊑A,aval E. The value bounding relation is defined first by induction on the type A, and the

cases for natural numbers and lists have a local induction on the number/list value as well.4 We

write the credit bank a as a parameter of the bounding relations, but it is a presupposition that

this number is the same one that was used to type check ⋅ ⊢a {M,v} ∶ A (because the bounding

relation is on closed terms, the resource subscript is just a single number a).

4In general, it is necessary to define the relations for inductive types inductively [19], but the values of N

and [A] are simple enough that induction on values suffices here.
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We extend the bounding relation to open terms by considering all closing substitutions: a

term Γ ⊢f M ∶ A is bounded by E if for every substitution θ which is bounded pointwise by Θ

with some credit function σ, then the closed term M[θ] is bounded by E[Θ] with f[σ] credits.

In this definition, σ gives a number of credits ai for each variable xi, because θ is a substitution

of closed terms for variables (⋅ ⊢a1 v1 ∶ A1)/x1, (⋅ ⊢a2 v2 ∶ A2)/x2, . . ..

3.4. Bounding Theorem. As usual for a logical relation, we first require some lemmas

about the bounding relation, before a main loop proving the fundamental theorem that terms are

related to their extractions. The proofs of the following theorems can be found in Appendix B.

First, we have an analogue of Theorem 2.5:

Theorem 3.2 (N-strengthening). For all ⋅ ⊢a v ∶ N, if v ⊑N,aval E, then v ⊑N,0val E.

Second, we can weaken a bound by recurrence language inequality:

Theorem 3.3 (Weakening).

(1) If M ⊑A,a E, and E ≤∥A∥ E
′, then M ⊑A,a E′

(2) If v ⊑A,aval E, and E ≤⟪A⟫ E
′, then v ⊑A,aval E

′

Next, we have an analogue of resource weakening in Theorem 2.1:

Theorem 3.4 (Credit Weakening). If a1 ≤ a2, then:

(1) If M ⊑A,a1 E, then M ⊑A,a2 E

(2) If v ⊑A,a1val E, then v ⊑A,a2val E

Next, we have inductive lemmas that will be used in the recursor cases of the fundamental

theorem:

Theorem 3.5 (N-Recursor). If λx.N ′
1 ⊑

1⊸C,c3
val E1, λx.N ′

2 ⊑
N⊗(1⊸C)⊸C,d
val E2 with d ≥ 0, then

∀n ≥ 0, if n ⊑N,0val E, then nrec (n,λx.N ′
1,save

∞
0 (λx.N ′

2)) ⊑C,c3+∞⋅d nrec (E,E1, λp.E2 (π1p, λz.π2p))

Theorem 3.6 ([A]-Recursor). If λx.N ′
1 ⊑1⊸C,c1

val E1 and λx.N ′
2 ⊑A⊗([A]&C)⊸C,c2

val E2, then

for all values ⋅ ⊢d v ∶ [A] such that v ⊑[A],d
val E, we have that

lrec (v, λx.N ′
1,save

∞
0 (λx.N ′

2)) ⊑C,c1+d+∞⋅c2 lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x)))
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⋅ ⊢ ∥inc∥ ∶= (0, λbs.lrec(bs, λ .(2, (inr ()) ∶∶ []),

λp.(λx.case(π1x,

.(2 + (π1π2x)c, (inr ()) ∶∶ (π1π2x)p)

.((π2π2x)c, (inl ()) ∶∶ (π2π2x)p))

)(π1p, ((0, π1π2p), π2π2p)))) ∶ C × ([1 + 1]→ C × [1 + 1]

⋅ ⊢ ∥set∥ ∶= (0, λn.nrec(n,λ .(0,[]), λu.(0, λp.(π2p ())c +c ∥inc∥p (π2p ())p)p

(π1u,λ .π2u))) ∶ C × (N→ C × [1 + 1])

Figure 9. Binary Counter Recurrences in λC

Using these, we prove the main result:

Theorem 3.7 (Bounding Theorem). If Γ ⊢f M ∶ A, then M ⊑A ∥M∥

Finally, for terms that use no external credits, the true cost is bounded by the extracted

recurrence:

Corollary 3.1 (True cost bounding). If ⋅ ⊢0 M ∶ A and M ↓(n,r) v then n ≤ ∥M∥c.

Proof. By Theorem 3.7, we have n ≤ ∥M∥c − r, but by preservation (Theorem 2.3), we

have that 0 + r ≥ 0, so n ≤ ∥M∥c. �

3.5. Binary Counter Recurrences. As an example, the binary counter program in λA

(Figure 5) is translated by the recurrence extraction translation to the terms in Figure 9. Next,

we will use a denotational semantics of the recurrence language to simplify these recurrences to

the desired closed form.

4. Recurrence Language Semantics

The final step of our technique is to simplify recurrences to closed forms. This can be done

semantically, in a denotational model of the recurrence languages, or syntactically, by adding

axioms to the inequality judgment Γ ⊢ E ≤T E′ corresponding to properties true in a particular

model. Here, we will work in a denotational model of λC in preorders, which mostly follows

previous work [18, 19, 37].
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4.1. Semantic Interpretation. We describe the semantic interpretation of λC in pre-

orders here, and highlight the differences from [37], which gives a similar presentation with

mechanized proofs.

The semantics of types and terms is given in Figure 10, omitting function and product types,

which are interpreted using the standard cartesian product and exponential objects of preorders.

For each type A of λC, we associate a partially ordered set JAK equipped with a top element

(∞) and binary maximums (∨) for which the top element is an annihilator. We write 1 for the

one-element poset, and N∪∞ for the natural numbers with an infinite element added, with the

usual 0 ≤ 1 ≤ 2 ≤ . . . ≤ ∞ total order, and Z ∪∞ for the integers with an infinite element added,

with the usual total order. We write P ×Q for the cartesian product of posets with the pointwise

order, and QP for the poset of monotone functions from P to Q, ordered pointwise; these have

binary maxes and top elements given pointwise. We write P+Q/∼ for the “coalesced” sum, which

first takes the disjoint union of P and Q, with only inl(x) ≤ inl(y) if x ≤P y and similarly for

inr, and then equates inl(∞P ) and inr(∞Q) to create a top element ∞P+Q/∼; binary maxes

are defined using maxes in P and Q for two elements whose injections match, and to be ∞

otherwise. The translation on types is extended to contexts: J⋅K = 1, JΓ, x ∶ AK = JΓK × JAK.

Finally, we interpret terms of λC as monotone (but not necessarily infinity- or max-preserving)

maps5 from the interpretation of their contexts into the interpretation of their types. These

maps are morphisms in the category Poset of partially ordered sets and monotone maps, and

so we write them as elements of HomPoset(A,B), the set of monotone maps between posets A

and B.

In Figure 10, we show some representative cases of the interpretation of terms for sums,

natural numbers and lists. For costs, the interpretation of cost constants and addition uses

the elements and addition of Z ∪ ∞. In this model, we interpret both natural numbers and

lists as N ∪ ∞; for lists, this interprets a list as its length. N ∪ ∞ has a 0 element and a

monotone successor function S, where S(∞) = ∞; these are used to interpret 0/the empty

list and successor/cons. The elimination forms for positives are more complex, and use some

auxiliary monotone functions (which are the morphisms in the category of posets):

Theorem 4.1. For any posets A,B,C,G with ∞ and ∨,

5 We write the composition of maps f ∶ A→ B and g ∶ B → C in diagrammatic order, f ; g ∶ A→ C.
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JCK = Z ∪ {∞}

JNK = N ∪ {∞}

J[T]K = N ∪ {∞}

JT1 + T2K = (JT1K + JT2K) / ∼ where inl∞ ∼ inr∞

JΓ, x ∶ T,Γ′ ⊢ x ∶ T K = πk1 ;π2 where ∣Γ′∣ = k

JΓ ⊢ k ∶ CK = const (k)

JΓ ⊢ E1 +E2 ∶ CK = (JΓ ⊢ E1 ∶ CK, JΓ ⊢ E2 ∶ CK);+

JΓ ⊢ () ∶ 1K = const (())

JΓ ⊢ inlE ∶ T1 + T2K = JΓ ⊢ E ∶ T1K;inl

JΓ ⊢ inrE ∶ E1 +E2K = JΓ ⊢ E ∶ E2K;inr

JΓ ⊢ case (E, x.E1 , y.E2) ∶ T K = (1JΓK, JΓ ⊢ E ∶ T1 + T2K) ;scase(JΓ, x ∶ T1 ⊢ E1 ∶ T K, JΓ, y ∶ T2 ⊢ E2 ∶ T K)

scase ∈ HomPoset (C
G×A

×CG×B ,CG×(A+B)
)

scase(f, g)(γ,inla) = f(γ, a) ∨ g(γ,∞)

scase(f, g)(γ,inr b) = f(γ,∞) ∨ g(γ, b)

JΓ ⊢ 0 ∶ NK = const (0)

JΓ ⊢ S(M) ∶ NK = JΓ ⊢M ∶ NK;S

JΓ ⊢ nrec (E,E1,E2) ∶ T K = (1JΓK, JΓ ⊢ E ∶ NK) ;snrec(JΓ ⊢ E1 ∶ 1→ T K, JΓ ⊢ E2 ∶ N × T → T K)

snrec ∈ HomPoset ((C
1
)
G
× (CN×C

)
G
,CG×N)

snrec(f, g)(γ,0) = f(γ)()

snrec(f, g)(γ,n + 1) = g(γ)(n,snrec(f, g)(γ,n)) ∨ f(γ)()

JΓ ⊢ [] ∶ [A]K = const (0)

JΓ ⊢ E1 ∶∶ E2 ∶ [A]K = JΓ ⊢ E2 ∶ [A]K;S

JΓ ⊢ lrec (E,E1,E2) ∶ T K = (1JΓK, JΓ ⊢ E ∶ [T]′K) ;

slrec(JΓ ⊢ E1 ∶ 1→ T K, JΓ ⊢ E2 ∶ T
′
× ([T]′ × T ) → T K)

slrec ∈ HomPoset ((C
1
)
G
× (CA×(N×C)

)
G
,CG×N)

slrec(f, g)(γ,0) = f(γ)()

slrec(f, g)(γ,n + 1) = g(γ)(∞, (n,slrec(f, g)(γ,n))) ∨ f(γ)()

Figure 10. Semantic Interpretation Definition



3. AMORTIZED ANALYSIS BY RECURRENCE EXTRACTION 114

(1) snrec ∈ HomPoset ((C1)G × (CN×C)G,CG×N)

(2) slrec ∈ HomPoset ((C1)G × (CA×(N×C))G,CG×N)

(3) scase ∈ HomPoset (CG×A ×CG×B ,CG×(A+B))

The definition of scase is required to respect the quotienting inl(∞) = inr(∞); by maxing

each branch the image of ∞ from the other branch, we obtain f(γ,∞) ∨ g(γ,∞) as the image

of both of those. The definition of snrec is required to be monotone in the 0 ≤ 1 ≤ . . . ≤ ∞

ordering; taking the maximum of the base case and the inductive step achieves this, because it

forces the image of 1 to dominate the image of 0. The definition of slrec is similar; the new

question that arises is that, because we have abstracted lists as their lengths, forgetting the

elements, we do not have a value for the head of the list to supply to g (which, when we use this

operation, will be the translation of the cons branch given to the λC recursor). Here, we always

supply ∞ as the head list element, which is sufficient when the analysis really does not require

any information about the elements of the list (otherwise, one can make a model where lists are

interpreted more precisely than as their lengths [19, 15]).

The interpretation satisfies standard soundness theorems, the proofs of which are in Appen-

dix B.

Theorem 4.2 (Compositionality). If Γ, x ∶ T1 ⊢ E ∶ T2, and Γ ⊢ E′ ∶ T1, then JΓ ⊢ E[E′/x] ∶

T2K = (1JΓK, JΓ ⊢ E′ ∶ T1K) ; JΓ, x ∶ T1 ⊢ E ∶ T2K

Theorem 4.3 (Soundness (Terms)). If Γ ⊢ E ∶ T , then JΓ ⊢ E ∶ T K ∈ Hom (JΓK, JT K)

Theorem 4.4 (Soundness (Inequality)). If Γ ⊢ E ≤ E′, then for all γ ∈ JΓK, JΓ ⊢ E ∶ T K(γ) ≤

JΓ ⊢ E′ ∶ T K(γ)

4.2. Binary Counter Conclusion. We interpret the binary counter recurrences from

Figure 9 in preorders by unfolding the definitions in Figure 10; the result is shown in Figure 11.

For the function inc, this yields a monotone map J∥inc∥pK ∈ Hom(1,N → Z × N), which is

(essentially) a function from an input list size to the cost of evaluation and the length of the

output. For the function set, this yields a monotone map J∥set∥K ∈ Hom(1,Z × (N → Z ×N)),
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J∥inc∥pK = λγ.λbs.slrec(λγ.λz.( 2 ,1),

λγ.λp.case(λx.( 2 ,1 + π1π2p),

λx.( π1π2π2p ,1 + π2π2π2p)

)(γ′, π1π1p)

where γ′ = ((γ, p), (π1p, ((0, π1π2p), π2π2p)))

)(γ, bs)

J∥set∥pK = λγ.(0, λn.snrec(λγ
′.λx.( 0 ,0)

λγ.λp.( π1π2p + π2(J∥inc∥pK()(π2π2p)) , π2(J∥inc∥pK()(π2π2p)))))

Figure 11. Binary Counter Recurrences Interpreted

which is a pair of a cost (the cost of evaluating the function definition — 0 since set is a value)

and a function from input size to the cost of evaluation and the length of the output.

We have boxed the parts of the term that are related to computing the cost. The boxed

portions of inc express that its amortized cost is 2 on the empty list (to create a 1 bit with

a credit), is 2 when the bit is 0, and is exactly the same number of steps as the recursive

call when the bit is 1. The boxed portions of set express that for zero it costs 0, and for

successor it costs the recursive call plus the cost of inc on the potential of the output of the

recursive call. However, because we will show that inc turns out to be constant amortized time,

we do not need to bound the potential of the output of set. Intuitively, to see that inc has

constant amortized time, observe that the slrec will always supply the ∞ bit as the head of

the list, which by definition of the coalesced sum is both true and false, so the case is effectively

the maximum of 2 and π1π2π1p. Thus, we effectively have recurrence where Tinc(0) = 2 and

Tinc(n) = 2 ∨ Tinc(n − 1), which solves to T (n) = 2 by induction. Substituting this into the

recurrence for set, we have essentially Tset(0) = 0 and Tset(n) = Tset(n − 1) + 2, which is of

course O(n). More formally, we can show by induction that for all n ≥ 0, (J∥inc∥pK()(n))c ≤ 2,

and that for all n, (J∥set∥pK()(n))c ≤ 2n, establishing bounds on these recurrences in this

denotational semantics in preorders.

By the bounding theorem (Corollary 3.1), we have that, for the true operational cost m

of evaluating set(n) ↓(m,r) v, we have m ≤C ∥set∥p(n)c in terms of the syntactic preorder

judgment in λC. By the soundness of the interpretation in preorders (Theorem 4.4), we have
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that m ≤Z⊔∞ J∥set∥pK()(n)c in the preorder model. Therefore, by transitivity, we have m ≤ 2n

in the preorder model, so our technique proves that the true operational cost m of setting the

binary counter to n is in fact O(n), as desired.

5. Variable-Credit Extension

The version of λA described thus far supports amortized analyses where the amount of credit

stored on each element of a data structure is fixed (e.g. [!2A] is a list with 2 credits on each

element). However, in some important amortized analyses, different amounts of credit must be

stored in different parts of a data structure—e.g. for balanced binary search trees implemented

via splay trees [72], the number of credits stored on each node is a function of the size of the

subtree rooted at that node. In this section, we show that adding existential quantification over

credit amounts to λA suffices to analyze such examples, using a portion of splay trees as an

example. Using existentials, a value of type ∃α.!αA is a value of type A which carries α credits,

for some α; for example, a tree whose elements are of type ∃α.!αN stores a variable number of

credits with the number on each node. In keeping with our methodology of doing as much of an

analysis as possible in the recurrence language and its semantics, the fact that a particular piece

of code uses existentials to implement a desired credit policy will not be tracked by the type

system, but proved after recurrence extraction. An alternative approach would be to enrich λA

with some form of indexed or dependent types to track the sizes of data structures in the type

system, but such an extension is not necessary for our approach. The proofs of the results in

this section are in Appendix B.

5.1. Existential Types in λA. To support existential quantifiers over credits, we extend

the main typing judgment to be one of the form ∆∣Γ ⊢f M ∶ A, where ∆ = α1, . . . , αn is a

list of “credit variables”. Any of the αi can occur free in the types in Γ, the resource term f ,

the term M , or the type A. Credit variables α range over credit terms c, which are (finite)

sums of credit variables like α,β and credit constants ` — i.e. α1 + α2 + . . . + αn + l. We write

∆ ⊢ c credit to mean that a credit term is well-formed from the variables in ∆. We consider

credit terms up to the usual equations for addition on natural numbers. These credit terms can

then be used as the “bank” in resource terms: the resource term 3x + 2y + (α + 2) describes a

context where one can use x 3 times, y twice, and has access to the credit term α + 2 credits.



3. AMORTIZED ANALYSIS BY RECURRENCE EXTRACTION 117

∆∣Γ ⊢f M ∶ A[c/α] ∆, α ⊢ A ∆ ⊢ c credit

∆∣Γ ⊢f packα=cM ∶ ∃α.A

M ↓
(n,r) v

packα=`M ↓
(n,r) packα=`v

∆∣Γ ⊢f M ∶ ∃α.A ∆, α∣Γ, x ∶ A ⊢g+x N ∶ C ∆ ⊢ C

∆∣Γ ⊢f+g unpack (α,x) =M in N ∶ C

M ↓
(n1,r1) packα=`v1 N[`/α, v1/x] ↓

(n2,r2) v

unpack (α,x) =M in N ↓(n1+n2,r1+r2) v

Figure 12. Extension of λA with existential types

Most importantly, credit terms are now allowed to appear in the subscript of the ! modality

(generalizing the natural number constants ` allowed above): a term α ∣ Γ ⊢f M ∶!αA with is

an A with α credits attached. We add a new type ∃α.A for existentially quantifying over credit

variables. A value of type ∃α.A is a value of type A[c/α], for some credit term c. Such a value

does not store the ability to use the credits c — it stores a number of credits itself. However,

combining the existential with the ! modality, a value of type ∃α.!αA is an A with c credits

attached, for some credit term c. The operational semantics is defined for terms with no free

credit variables, so its structure remains unchanged.

The typing rules and operational semantics for existential types are presented in Figure 12.

The terms for existentials are standard pack/unpack terms. The operational semantics of pack

and unpack are also standard; because we only evaluate closed terms, the credit term being

packed/unpacked with the value will always be a (closed) natural number `.

The rest of the rules for λA are mostly unchanged, so we do not repeat them: they are

obtained from the rules in Figure 3 by carrying the credit variable context ∆ through all of the

rules, and, in the !kc modality and the save, transfer, create, and spend terms, the natural

number constants ` are generalized to credit terms c constructed from these variables. Finally,

since the resource terms may contain free credit variables, the ordering judgment on resource

terms must be augmented with a credit variable context, and the ordering itself extended to

contain the coefficient-wise ordering on credit variables. The operational semantics for these

constructs in unchanged, because closed credit terms are precisely the credit values ` used

above.

For this extension, substitution and type preservation are stated as follows:

Theorem 5.1 (Substitution).

● If ∆ ⊢ c credit and ∆, α ⊢ c′ credit, then ∆ ⊢ c′[c/α] credit
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⟪∃α.A⟫ = $ × ⟪A⟫

∥packα=cM∥ = (∥M∥c , (c, ∥M∥p))

∥unpack (α,x) =M in N∥ = ∥M∥c +c ∥N∥ [π1 ∥M∥p /α,π2 ∥M∥p /x]

∥createc M∥ = (toC(c) + ∥M∥c , ∥M∥
)

∥spendc M∥ = (−toC(c) + ∥M∥c , ∥M∥p)

Figure 13. Recurrence extraction for credit existentials

● If ∆ ⊢ c credit and ∆, α∣Γ ⊢f M ∶ A, then ∆∣Γ[c/α] ⊢f[c/α] M[c/α] ∶ A[c/α]

Theorem 5.2 (Preservation). If ⋅∣⋅ ⊢a M ∶ A and M ↓(n,r) v, then a+r ≥ 0 and ⋅∣⋅ ⊢a+r v ∶ A.

5.2. Extracting Recurrences for Existentials. Recall that the recurrence extraction in

Figure 7 erases the !k`Amodalities and translates create` M and spend` M by adding/subtracting

` to/from the amortized cost. Since we now allow credit variables α, such as those coming from

unpacking an existential type, in the credit position of create/spend, the recurrence extraction

will need to refer to the values chosen for α in order to know how much to add/subtract to/from

the amortized cost. Thus, we add a type $ to the recurrence language, the values of which

are numbers of credits, represented by natural numbers. The credit context ∆ is translated to

recurrence language variables of type $ (i.e. ⟪∆, α⟫ = ⟪∆⟫ , α ∶ $), while existential types ∃α.A

are translated to pairs $ × ⟪A⟫. A simple pair suffices because the ! modality is erased by ⟪⋅⟫,

and this is the only place where credit terms can occur in the syntax of types, so all occurrences

of α under the binder are removed, and ⟪A⟫ is a closed type.

We show the new and changed cases of recurrence extraction in Figure 13. The introduction

and elimination rules for ∃α.A translate to the corresponding introduction and elimination forms

for $×⟪A⟫. For create and spend, in principle, we would like the cost component of createc M

to be c+∥M∥c, but this will not type check, given that c ∶ $ but ∥M∥c ∶ C. Recalling that costs C,

though axiomatized as a monoid with some operations, are morally integers, we add a coerction

toC ∶ $→ C, which is morally the inclusion of natural numbers into integers.

Theorem 5.3 (Extraction Preserves Types). If ∆∣Γ ⊢f M ∶ A, then ⟪∆⟫ ,⟪Γ⟫ ⊢ ∥M∥ ∶ ∥A∥
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5.3. Bounding Relation and Bounding Theorem. The definition of the bounding

relation for values (Definition 3.1) is extended with

● packα=`v ⊑
∃α.A,a
val E iff ` ≤$ π1E and v ⊑A[`/α],a

val π2E

Recalling that E ∶ ⟪∃α.A⟫ = $ × ⟪A⟫, this simply states that the amount of credit packed by α

is bounded by the amount described by π1E, and that the value packed with the credit amount

is in fact bounded by π2E. We remark that this definition may give the careful reader pause–

inducting on a substitution instance of an existential type where the existential variable ranges

over types leads to well-definedness issues. But, our existential variables range over credits, so

we may simply regard a closed substitution instance of a type α ⊢ A type as a smaller type than

A.

The definition of the bounding relation for open terms must also be modified to quantify

over closing substitutions for the credit context, as well as the term context. First, if ω is a

substitution of credit amounts ` for credit variables, and Ω is a substitution of closed terms of

type $ for recurrence language variables, then ω ⊑∆ Ω means that for all α ∈ ∆, ω(α) ≤$ Ω(α).

Then for ∆∣Γ ⊢f M ∶ A we write M ⊑A E if for all ω ⊑∆ Ω and for all θ ⊑Γ[ω],σ Θ, we have that

M[ω, θ] ⊑A[ω],f[ω,σ] E[Ω,Θ]. Using this notation, the bounding theorem is

Theorem 5.4 (Bounding Theorem). If ∆∣Γ ⊢f M ∶ A, then M ⊑A ∥M∥

and the cases which differ from the original Theorem 3.7 are proved in the supplementary

materials.

5.4. Splay Tree Analysis. We now describe somewhat informally how to use the above

machinery to analyze splay trees; the complete formalism is given in Appendix B (Figure B.1).Following

Okasaki’s presentation [58], the key operation is a split ∶ (A×tree (A)) → tree (A)×tree (A)

function that splits a given tree into elements larger and smaller than a given pivot. Insertion,

deletion, union, intersection, difference etc. can be all implemented from split and a join

operation that combines two sorted trees where all the elements of the first are less than the

elements of the second. Showing that split is amortized O(logn) time, where n is the size of

the tree, is the most difficult part of the amortized analysis, and implies the desired time bounds

for the other operations. The key idea of splay trees is that each access rearranges the tree so
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N1 = λ .packα=0(save1
0 ())

N2 = λ( , (α,saveα1 ())).create1 (packβ=α+1save
α+1
1 ())

spawn(n) = nrec (n,N1,save
∞
0 N2) ∶ ∃α.!1α1

Figure 14. λA term for the spawn function

that accessing the same element twice in a row is quicker the second time. In Okasaki’s presen-

tation, this rearrangement takes place in split, which performs a series of tree rotations. These

rotations ensure that the amortized cost of split (amortized over any sequence of binary search

tree operations) is O(logn), even though the tree is not always balanced. The most challenging

cases of the code unpack the tree to depth two, and rotate the output if they traverses the same

direction twice while searching for the pivot:

split p (N(x,N(y, a11, a12),N(z, a21, a22)))∣ x ≥ p&& y ≥ p =

(small,N(y, big,N(x, a12,N(z, a21, a22)))) where (small, big) = split p a11

Okasaki’s analysis of split maintains the invariant that there are ϕ(t) = ⌈lg(∣t∣ + 1)⌉ credits

associated with the root of every subtree t in a splay tree, and uses the potential/physicists

method to analyze the amortized cost.

The addition of existentials to λA allows us to encode this analysis, by giving split the type

A⊗ tree (∃α.!1αA) ⊸ tree (∃α.!1αA) ⊗ tree (∃α.!1αA), and using code to maintain the invariant

that each of these α’s are precisely ϕ(t).

5.4.1. Creating Variable Amounts of Credit. To maintain this invariant, we will sometimes

need to create amounts of credit determined by a run-time natural number, like ϕ(t) for some

tree t—but the primitive createc M term allows for waiting only for a credit term c, which

cannot depend on run-time values. However, we can write a recursive loop that spawns a number

of credits dependent on a run-time value, and package this as a function spawn ∶ N ⊸ ∃α.!1α1

such that the α packed in the result of spawn(n) is (the credit term representing) n. The

implementation of spawn is shown in Figure 14—at a high level, the term loops create1 in a

N-recursor, using a credit existential as a counter variable. In this example, and throughout

this section, we use pattern-matching notation as syntactic sugar for the elimination rules for

positive types like ∃, !,⊗, with the convention that matching on the result of a thunked recursive

call implicitly forces it.



3. AMORTIZED ANALYSIS BY RECURRENCE EXTRACTION 121

In Section 2.2, we argued that the n component in the operational cost semantics M ↓n,r v

captures the actual operational cost of an erasure to simply-typed λ-calculus, as long as ticks in

λA are inserted for each STLC β-redex. Because we do not include any tick terms in spawn, its

abstract operational cost n is zero. Thus, to realize this cost semantics, spawn must be erased

before actually running the program. Fortunately, a simple program optimization suffices to

do this: translate λA to simply-typed λ-calclus by dropping both the ∃ and ! types and the

associated terms, at which point spawn has type N→ 1; then replace all terms of type 1 with the

trivial value. That is, we think of spawn as a ghost loop — code that is meant for the extracted

recurrence, but not intended to actually be run.

5.4.2. Definition of Trees in λA. Extending λA with the requisite tree type constructor and

its rules follows both previous work [19] and the pattern illustrated with lists above. The type of

trees is essentially tree (A) = Emp ∣ N of A⊗N⊗ tree (A) ⊗ tree (A). The N argument caches

the size of the tree, making the function size ∶ tree (A) ⊸ N⊗ tree (A) — which projects out

that field and then rebuilds the tree6 — constant time. To support coding the split function

described above, we directly add a recursor that performs a two-level pattern match, with cases

for the empty tree, for a node with one child or the other empty and the other is another node,

and for a node with two nodes as children; in the latter case, the recursor provides recursive

calls on all four subtrees.

5.4.3. Splay Tree Implementation. We define a splay tree to be a binary search tree t ∶

tree (∃α.!∞α A) satisfying the property that if size(t) = n, then if t = N( ,m, t0, t1), then t0

and t1 are splay trees, and for J∥t∥pK = N((α, ), , ), we have α = φ(n). In other words, the

credit invariant holds at each node in the tree. We note that each element of the tree not only

carries α credits, but is also infinitely usable since we are required to compare nodes in the tree

more than constantly many times. This causes no issues for the extracted recurrences, because

keys in the tree are always values. We then prove a lemma which states that split preserves

the splay tree property — i.e. that the existentially quantified credits stored in the tree satisfy

the desired invariant.

6The tree can be rebuilt because values of type N are duplicable— there is a diagonal map N⊸ N⊗N. Also,

we will often use size as a function tree (A) ⊸ N, and silently contract the second projection for re-use of the

argument.
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Lemma 5.1. If t ∶ tree (∃α.!∞α A) is a splay tree and split(t) ↓ (t0, t1), then t0 and t1 are

also splay trees.

To illustrate the λA term for split, we show one key case of the recursor, which corresponds

to the snippet given at the beginning of this section and to [58, Theorem 5.2]. For this case,

we are in the situation where the root, labeled by x, has two subtrees, y with subtrees a11, a12,

and z with subtrees , a21, a22. If the pivot is less than both x and y, we recur on the leftmost

subtree a11, which produces the elements of a11 that are smaller and bigger than the pivot.

Then smaller contains all the elements of the original tree smaller than the pivot. The elements

bigger than the pivot are bigger and everything else from the original tree; we combine these

together into a new tree, performing a rotation to put y at the root.

The λA version of this term, presented in Figure 15, annotates the above code with some

additional information about the sizes of trees, and with some code for manipulating credits.

The variables x, y, z are the values of type A at the root and its immediate children; these

come with existentially-quantified numbers of credits α,β, γ (α credits are stored with x, β with

y, and γ with z), and also with natural numbers caching the sizes of the subtrees that they

are the roots of (n1, n2, n3 respectively). The variables aij stand for the four subtrees with

their (suspended) recursive call outputs; we write split(p, a11) for projecting and forcing the

recursive call, and write aij for projecting the other subtrees. The credit manipulation involves

spending the credits α and β stored with x and y in the input tree (we do not spend z, because

the z node is left unchanged in the output), calculating the sizes of the new nodes t′ and s′ that

will be part of the output, and spawning credits corresponding to ϕ of these sizes. The term

presented in Figure 15 is one branch of one of the step functions passed to the treerec which

forms the outermost structure of split.

To analyze splay trees, we pass this λA term through recurrence extraction and the preorder

semantics and then prove the following:

Theorem 5.5. If t ∶ tree (∃α.!∞α A) is a splay tree with size(t) = n, then for any v ∶ A,

J∥split(t, v)∥cK ≤ 1 + 2ϕ(J∥size∥p (t)K) ∈ O(lgn).
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λ((α,save∞α x), n1, (β,save
∞

β y), n2, (γ,save
∞

γ z), n3, a11, a12, a21, a22).

if x ≥ p&& y ≥ pthentick; let

(small, big) =spendα+β (split(p, a11)) d =N(packα=γ(save
∞

γ z), n3, a21, a22)

n12 =size(a12) nbig =size(big)

t′size =1 + n12 + n3 s′size =2 + nbig + n12 + n3

((α′, ), (β′, ))= (spawn(ϕ(t′size)),spawn(ϕ(s
′

size))) t′ =N(packα=α′(save
∞

α′ x), t
′

size, a12, d)

s′ =N(packα=β′(save
∞

β′ y), s
′

size, big, t
′
)

in (small, s′)end

else . . .

Figure 15. Part of the λA term for split

Proof. As an example, we show the case for the code in Figure 15. The cost component

of the extracted recurrence is

1 − α − β + J∥split(p, a11)∥K + ϕ(1 + n12 + n3) + ϕ(2 + nbig + n12 + n3)

The 1 comes from the tick; α and β are subtracted because they are spent; and the ϕ of the

sizes of t′ and s′ are added because they are created. By definition, 1+n12+n3 = J∥size∥p (t′)K

and 2 + nbig + n12 + n3 = J∥size∥p (s′)K. By the credit invariant, α = ϕ(J∥size∥p (t)K), and

β = ϕ(J∥size∥p (s)K), where s is the subtree of t rooted at y. Rewriting by these and commuting

terms, the extracted recurrence is precisely

1+J∥split(p, a11)∥K+ϕ(J∥size∥p (s
′)K)+ϕ(J∥size∥p (t

′)K)−ϕ(J∥size∥p (s)K)−ϕ(J∥size∥p (t)K)

which Okasaki [58, Theorem 5.2] proves is bounded by 1 + 2ϕ(size(t)), as required. �

6. Related Work

Techniques for extracting (asymptotic) cost information from high-level program source

code is a project that is almost as old as studying programming languages. For non-amortized

analysis of functional languages, we have examples from the 1970s and 1980s by Wegbreit [82],

Le Métayer [44], and Rosendahl [69]. The idea of simultaneously extracting information about

cost and size, and defining the size of a function to be a function itself (leading to higher-order

recurrences) has its roots in Danner and Royer [17], which in turn draws from ideas in Shultis

[71], Sands [70], and Van Stone [73]. Using bounded modal operators to describe resource usage

goes back at least to Girard et al. [25], and Orchard et al. have recently incorporated these ideas
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into the Granule language [59]. Perhaps the work that is closest in spirit to ours is Benzinger’s

ACA system for analyzing call-by-name Nuprl programs [6]. From a cost-annotated opera-

tional semantics, he extracts a “symbolic semantics” that is similar in flavor to our recurrence

language and extracted recurrences, although without amortization. The symbolic semantics

yields higher-order recurrences, which he reduces to first-order recurrences that can be analyzed

with a computer algebra system.

There is also extensive work on recurrence extraction from first-order imperative languages.

The COSTA project [1, 2, 3] takes Java bytecode as its source language, extracts cost relations

(essentially, non-deterministic cost recurrences), and solves them for upper bounds. In this

line of work, Alonso-Blas and Genaim [4] and Flores-Montoya [23] investigate the failure to

derive tight upper bounds in settings where amortized analysis is typically deployed. They trace

the issue to the fact that typically cost relations do not depend on the results of the analyzed

functions. Making this possible allows more precise constraints which, when solved, yield tighter

bounds. The dependency on output corresponds roughly to total accumulated savings, and they

infer an appropriate potential function (in the terminology of the physicist’s method), modulo

a choice of templates. To analogize with our work, they delay the determination of the credit

policy until solving for upper bounds of extracted recurrences, whereas we specify the credit

policy as part of the source program, which directly yields a recurrence for cost that takes the

policy into account.

Two recent approaches that handle amortized analysis for functional programs are Timed ML

(TiML, [81]) and automatic amortized resource analysis (AARA, [32, 30, 33, 55]). In TiML,

ML type and function definitions are annotated with indices that convey size information. The

notion of size is left unspecified and the indices are very flexible, and can include constraints

such as those required to define red-black trees. Type inference generates verification conditions.

Depending on the details of the annotations, solving the verification conditions provides exact

or asymptotic bounds on the cost of the original program. The focus is on worst-case analysis,

but the annotation language is sufficiently rich to encode the physicist’s method of amortized

analysis. Although it is not part of their focus, the formalism does not appear to enable anal-

ysis of higher-order functions whose cost depends on the complexity behavior of the function

arguments.
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AARA provides a type inference system for resource bound analysis of higher-order func-

tional programs that incorporates amortization. Credit allocation is built into the type system

itself. Soundness says that the net credit change during evaluation is bounded by the net credit

change described by the typing. AARA focuses primarily on strict languages, but Jost et al. [38]

use similar ideas to analyze programs under lazy evaluation. In AARA, the credit allocation

and usage is described in the type judgment. Type inference generates constraints, and the

solution of these constraints is essentially a credit allocation strategy. Our approach describes

usage in the type judgment, but requires the strategy to be explicit in the program (via save,

create, spend, etc.), which places a greater burden on the programmer. However, reasoning

about that strategy (e.g., establishing a credit invariant) in the semantics may provide more

flexibility, though that requires more investigation.

We note that the technical differences between TiML and AARA and our approach arise

from a difference in what we might consider the philosophical underpinnings. TiML and AARA

introduce novel type systems with a goal of inferring cost bounds to the greatest extent possible.

Those bounds are extracted as part of the type inference procedure. This is not how most

programmers conceptualize a cost analysis, and our interest is in staying as close to typical

informal analyses as we can. While λA is a novel type system, the novelty exists solely in order

to make the programmer be explicit about how credits are allocated and used. This task is part

of a banker’s-method analysis, though it is usually stated informally (“put one credit on each 1

in the bit list”). After that, it is extraction of ordinary (semantic) recurrences which one hopes

to be able to bound using whatever methods are at the programmer’s disposal.
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1. Example Terms

1.1. Insertion Sort.

insert ∶ ∀n ∶ N. !τ ⊸ Ln (!τ) ⊸M (n, ⟨0,1⟩) (Ln+1 (!τ))

insert = fix(insert.
Λn.λbx.let !x = bx in
λxs.

case(xs,ret(!(x ∶∶ nil)), by.ys.
shift(
bind b = leq (x, y) [n − 1]in
if bthenret ((!x) ∶∶ (!y) ∶∶ ys)
else bind zs = insert [n − 1] (!x) ysin
ret ((!y) ∶∶ zs)

)
)

)

ins sort ∶ ∀n ∶ N. Ln (!τ) ⊸M (n, ⟨0,0,1⟩) (Ln (!τ))

ins sort = fix(ins sort.

Λn.λxs.

case(xs,retnil, y, ys.
shift(
bind ys′ = ins sort [n − 1] ysin
insert [n − 1] y ys

)
)

)

1.2. Functional Queue.

enq ∶ ∀n,m ∶ N. [3]1⊸ τ ⊸ Ln([2] τ) ⊗Lm τ ⊸M ⟨0⟩ (Ln+1([2] τ) ⊗Lm τ)

enq = Λn.Λm.λp.λx.λins.λouts.Λj.

release = pin
bind = tick[j∣[1.0]]in
bindx′ = store[2.0](x)in
ret(x′ ∶∶ ins, outs)
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move ∶ ∀n ∶ N.∀m ∶ N.Ln([2] τ) ⊸ Lmτ ⊸M⟨0⟩Lm+nτ

move = fix(move.
Λn.Λm.λxs.λys.Λj.

case(xs,retys, z.zs.
release z′ = z in
bind = tick[j∣[2.0]]in
bind zs′ = move [n − 1] [m] zs ys [j]in
ret(z′ ∶∶ zs′)

)
)

deq ∶ ∀m,n ∶ N.(m + n > 0) Ô⇒ Ln([2] τ) ⊗Lm τ ⊸

M⟨0⟩ (∃n′,m′ ∶ N.(n′ +m′ + 1 = n +m)& (Ln
′

([2] τ) ⊗Lm
′

τ))]

deq = fix(deq.
Λn.Λm.Λ.λl1.λl2.λj.

case(l2,
bind lr = move [n] [0] l1 nil [j]in
case(lr,fix(x.x), hr.l′r
ret (pack[0] (pack[n − 1] < ((hr,nil), l′r) >))

), h2.l
′
2.ret (pack[n] (pack[m − 1] < ((h2, l1), l′2) >))

)
)
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1.3. Map.

map ∶ ∀α,β ∶ ⋆.∀C ∶ N→ R+.∀n ∶ N.
! (∀i ∶ N.[C i]1⊸ Nat(i) ⊸ α⊸M ⟨0⟩β) ⊸
!Nat(n) ⊸
Ln α⊸
M ⟨const (∑0≤i<nC(i))⟩ (Ln β)

map = Λα.Λβ.ΛC.fix(map.

λp.λfb.λxs.λNb.Λj.

let !f = fb in

let !N = Nb in

release = pin

case(xs,retnil, y.ys.

bindp′ = store[C (n − 1)]()in

bind z = f [n − 1] p′ (pred [n] [] N) )

)
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2. Rules of dλ-Amor

2.1. Wellformedness Judgments.

WF-CCtxE

Θ ⊢ ⋅ wf

WF-CCtxNe

Θ ⊢∆ wf Θ; ∆ ⊢ Φ wf

Θ ⊢∆,Φ wf

WF-TCtxE

Ψ; Θ; ∆ ⊢ ⋅ wf

WF-TCtxNE

Ψ; Θ; ∆ ⊢ Γ wf Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ Γ, x ∶ τ wf

2.2. Sort Assignment.

I-Var

i ∶ S ∈ Θ

Θ; ∆ ⊢ i ∶ S

I-Plus

Θ; ∆ ⊢ I ∶ bS Θ; ∆ ⊢ J ∶ bS

Θ; ∆ ⊢ I + J ∶ bS

I-Minus

Θ; ∆ ⊢ I ∶ bS Θ; ∆ ⊢ J ∶ bS Θ; ∆ ⊧ I ≥ J

Θ; ∆ ⊢ I − J ∶ bS

I-Times-R

c ∈ R+ Θ; ∆ ⊢ I ∶ R+

Θ; ∆ ⊢ c ⋅ I ∶ R+

I-Times-R⃗

c ∈ R+ Θ; ∆ ⊢ I ∶ R⃗+

Θ; ∆ ⊢ c ⋅ I ∶ R⃗+

I-Times-N

c ∈ N Θ; ∆ ⊢ I ∶ N

Θ; ∆ ⊢ c ⋅ I ∶ N

I-Shift

Θ; ∆ ⊢ I ∶ R⃗+

Θ; ∆ ⊢ ⊲ I ∶ R⃗+

I-Lam

Θ, i ∶ bS; ∆ ⊢ I ∶ S

Θ; ∆ ⊢ λi ∶ bS.I ∶ bS → S

I-App

Θ; ∆ ⊢ I ∶ bS → S Θ; ∆ ⊢ J ∶ bS

Θ; ∆ ⊢ I J ∶ S

I-Sum

Θ; ∆ ⊢ I0 ∶ N Θ; ∆ ⊢ I1 ∶ N Θ, i ∶ N; ∆, I0 ≤ i < I1 ⊢ J ∶ bS

Θ; ∆ ⊢
I1

∑
i=I0

J ∶ bS

I-ConstVec

Θ; ∆ ⊢ I ∶ R+

Θ; ∆ ⊢ const(I) ∶ R⃗+

I-Vec-Lit

⋅; ⋅ ⊧ ⋀
i

ci ≥ 0

Θ; ∆ ⊢ (c0, . . . , ck) ∶ R+

I-Nat-Lit

⋅; ⋅ ⊧ n ≥ 0

Θ; ∆ ⊢ n ∶ N

I-PosReal-Lit

⋅; ⋅ ⊧ r ≥ 0.0

Θ; ∆ ⊢ r ∶ R+



A 140

2.3. Constraint Wellformedness.

C-Top

Θ; ∆ ⊢ ⊺ wf

C-Bot

Θ; ∆ ⊢ � wf

C-Conj

Θ; ∆ ⊢ Φ1 wf Θ; ∆ ⊢ Φ2 wf

Θ; ∆ ⊢ Φ1 ∧Φ2 wf

C-Disj

Θ; ∆ ⊢ Φ1 wf Θ; ∆ ⊢ Φ2 wf

Θ; ∆ ⊢ Φ1 ∨Φ2 wf

C-Impl

Θ; ∆ ⊢ Φ1 wf Θ; ∆,Φ1 ⊢ Φ2 wf

Θ; ∆ ⊢ Φ1 → Φ2 wf

C-Forall

Θ, i ∶ S; ∆ ⊢ Φ wf

Θ; ∆ ⊢ ∀i ∶ S.Φ wf

C-Exists

Θ, i ∶ S; ∆,Φ ⊢ Φ wf

Θ; ∆ ⊢ ∃i ∶ S.Φ wf

C-Leq

Θ; ∆ ⊢ I ∶ bS Θ; ∆ ⊢ J ∶ bS

Θ; ∆ ⊢ I ≤ J wf

C-Lt

Θ; ∆ ⊢ I ∶ bS Θ; ∆ ⊢ J ∶ bS

Θ; ∆ ⊢ I < J wf

C-Eq

Θ; ∆ ⊢ I ∶ bS Θ; ∆ ⊢ J ∶ bS

Θ; ∆ ⊢ I = J wf

2.4. Kind Assignment.

K-Var

α ∶K ∈ Ψ

Ψ; Θ; ∆ ⊢ α ∶K

K-Unit

Ψ; Θ; ∆ ⊢ 1 ∶ ⋆

K-Arr

Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 ∶ ⋆

K-Tensor

Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 ∶ ⋆

K-With

Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

Ψ; Θ; ∆ ⊢ τ1&τ2 ∶ ⋆

K-Sum

Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 ∶ ⋆

K-Bang

Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢!τ ∶ ⋆

K-IForall

Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ ∶ ⋆

K-IExists

Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ ∶ ⋆

K-TForall

Ψ, α ∶K; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ ∀α ∶K.τ ∶ ⋆
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K-List

Θ; ∆ ⊢ I ∶ N Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ LIτ ∶ ⋆

K-Conj

Θ; ∆ ⊢ Φ wf Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ Φ&τ ∶ ⋆

K-Impl

Θ; ∆ ⊢ Φ wf Ψ; Θ; ∆,Φ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ Φ Ô⇒ τ ∶ ⋆

K-Monad

Θ; ∆ ⊢ I ∶ N Θ; ∆ ⊢ p⃗ ∶ R⃗+ Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢M(I, p⃗)τ ∶ ⋆

K-Pot

Θ; ∆ ⊢ I ∶ N Θ; ∆ ⊢ p⃗ ∶ R⃗+ Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ [I ∣p⃗]τ ∶ ⋆

K-ConstPot

Θ; ∆ ⊢ I ∶ R+ Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Ψ; Θ; ∆ ⊢ [I] τ ∶ ⋆

K-FamLam

Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶K

Ψ; Θ; ∆ ⊢ λi ∶ S.τ ∶ S →K

K-FamApp

Ψ; Θ; ∆ ⊢ τ ∶ S →K Θ; ∆ ⊢ I ∶ S

Ψ; Θ; ∆ ⊢ τ I ∶K

2.5. Subtyping.

S-Refl

Ψ; Θ; ∆ ⊢ τ <∶ τ ∶K

S-Trans

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶K Ψ; Θ; ∆ ⊢ τ2 <∶ τ3 ∶K

Ψ; Θ; ∆ ⊢ τ1 <∶ τ3 ∶K

S-Arr

Ψ; Θ; ∆ ⊢ τ ′1 <∶ τ1 ∶ ⋆ Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆

Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 <∶ τ ′1 ⊸ τ ′2 ∶ ⋆

S-Tensor

Ψ; Θ; ∆ ⊢ τ1 <∶ τ ′1 ∶ ⋆ Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆

Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 <∶ τ ′1 ⊗ τ ′2 ∶ ⋆

S-With

Ψ; Θ; ∆ ⊢ τ1 <∶ τ ′1 ∶ ⋆ Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆

Ψ; Θ; ∆ ⊢ τ1&τ2 <∶ τ ′1&τ ′2 ∶ ⋆

S-Sum

Ψ; Θ; ∆ ⊢ τ1 <∶ τ ′1 ∶ ⋆ Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆

Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 <∶ τ ′1 ⊕ τ ′2 ∶ ⋆

S-Bang

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

Ψ; Θ; ∆ ⊢!τ1 <∶!τ2 ∶ ⋆

S-IForall

Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ1 <∶ ∀i ∶ S.τ2 ∶ ⋆

S-IExists

Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ1 <∶ ∃i ∶ S.τ2 ∶ ⋆

S-TForall

Ψ, α ∶K; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

Ψ; Θ; ∆ ⊢ ∀α ∶K.τ1 <∶ ∀α ∶K.τ2 ∶ ⋆
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S-List

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ Θ; ∆ ⊧ I = J

Ψ; Θ; ∆ ⊢ LIτ1 <∶ LJτ2 ∶ ⋆

S-Impl

Ψ; Θ; ∆,Φ2 ⊢ τ1 <∶ τ2 ∶ ⋆ Θ; ∆ ⊧ Φ2 → Φ1

Ψ; Θ; ∆ ⊢ Φ1 Ô⇒ τ1 <∶ Φ2 Ô⇒ τ2 ∶ ⋆

S-Conj

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ ⇒ Θ; ∆ ⊧ Φ1 → Φ2

Ψ; Θ; ∆ ⊢ Φ1&τ1 <∶ Φ2&τ2 ∶ ⋆

S-Monad

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ Θ; ∆ ⊧ I = J Θ; ∆ ⊧ q⃗ ≤ p⃗

Ψ; Θ; ∆ ⊢M(I, q⃗)τ1 <∶M(J, p⃗)τ2 ∶ ⋆

S-Pot

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ Θ; ∆ ⊧ I = J Θ; ∆ ⊧ p⃗ ≤ q⃗

Ψ; Θ; ∆ ⊢ [I ∣q⃗]τ1 <∶ [J ∣p⃗]τ2 ∶ ⋆

S-ConstPot

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ Θ; ∆ ⊧ J ≤ I

Ψ; Θ; ∆ ⊢ [I]τ1 <∶ [J]τ2 ∶ ⋆

S-FamLam

Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶ τ2 ∶K

Ψ; Θ; ∆ ⊢ λi ∶ S.τ1 <∶ λi ∶ S.τ2 ∶ S →K

S-FamApp

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ S →K Θ; ∆ ⊧ I = J

Ψ; Θ; ∆ ⊢ τ1 I <∶ τ2 J ∶K

S-Fam-Beta1

Ψ; Θ; ∆ ⊢ (λi ∶ S.τ) J <∶ τ[J/i] ∶K

S-Fam-Beta2

Ψ; Θ; ∆ ⊢ τ[J/i] <∶ (λi ∶ S.τ) J ∶K

2.6. Context Subsumption.

CS-Emp

Ψ; Θ; ∆ ⊢ Γ ⊑ ⋅

CS-Var

x ∶ τ ′ ∈ Γ Ψ; Θ; ∆ ⊢ τ ′ <∶ τ Ψ; Θ; ∆ ⊢ Γ ∖ {x ∶ τ ′} ⊑ Γ′

Ψ; Θ; ∆ ⊢ Γ ⊑ Γ′, x ∶ τ

2.7. Type Assignment.

T-Var-1

x ∶ τ ∈ Γ

Ψ; Θ; ∆; Ω; Γ ⊢ x ∶ τ

T-Var-2

x ∶ τ ∈ Ω

Ψ; Θ; ∆; Ω; Γ ⊢ x ∶ τ

T-Unit

Ψ; Θ; ∆; Ω; Γ ⊢ () ∶ 1
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T-Base

Ψ; Θ; ∆; Ω; Γ ⊢ c ∶ b

T-Absurd

Θ; ∆ ⊧ �

Ψ; Θ; ∆; Ω; Γ ⊢ absurd ∶ τ

T-Nil

Ψ; Θ; ∆; Ω; Γ ⊢ nil ∶ L0τ

T-Cons

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ τ Ψ; Θ; Ω; Γ2 ⊢ e2 ∶ LIτ

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e1 ∶∶ e2 ∶ LI+1τ

T-Match

Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶ LIτ

Ψ; Θ; ∆, I = 0; Ω; Γ2 ⊢ e1 ∶ τ ′ Ψ; Θ; ∆, I ≥ 1; Ω; Γ2, h ∶ τ, t ∶ LI−1τ ⊢ e2 ∶ τ ′

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ match(e, e1, h.t.e2) ∶ τ ′

T-ExistI

Θ; ∆ ⊢ I ∶ S Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ[I/i]

Ψ; Θ; ∆; Ω; Γ ⊢ pack[I](e) ∶ ∃i ∶ S.τ

T-ExistE

Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶ ∃i ∶ S.τ Ψ; Θ, i ∶ S; ∆; Ω; Γ2, x ∶ τ ⊢ e′ ∶ τ ′

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ unpack (i, x) = e in e′ ∶ τ ′

T-Lam

Ψ; Θ; ∆; Ω; Γ, x ∶ τ1 ⊢ e ∶ τ2

Ψ; Θ; ∆; Ω; Γ ⊢ λx.e ∶ τ1 ⊸ τ2

T-App

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ τ1 ⊸ τ2 Ψ; Θ; ∆; Ω; Γ2 ⊢ e2 ∶ τ1

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e1 e2 ∶ τ2

T-TensorI

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ τ1 Ψ; Θ; ∆; Ω; Γ2 ⊢ e2 ∶ τ2

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ ⟪e1, e2⟫ ; τ1 ⊗ τ2

T-TensorE

Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶ τ1 ⊗ τ2 Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1, y ∶ τ2 ⊢ e′ ∶ τ ′

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ let ⟪x, y⟫ = e in e′ ∶ τ ′



A 144

T-WithI

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ∶ τ1 Ψ; Θ; ∆; Ω; Γ ⊢ e2 ∶ τ2

Ψ; Θ; ∆; Ω; Γ ⊢ (e1, e2) ∶ τ1&τ2

T-Fst

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ1&τ2

Ψ; Θ; ∆; Ω; Γ ⊢ fst(e) ∶ τ1

T-Snd

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ1&τ2

Ψ; Θ; ∆; Ω; Γ ⊢ snd(e) ∶ τ2

T-Inl

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ1

Ψ; Θ; ∆; Ω; Γ ⊢ inl(e) ∶ τ1 ⊕ τ2

T-Inr

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ2

Ψ; Θ; ∆; Ω; Γ ⊢ inr(e) ∶ τ1 ⊕ τ2

T-Case

Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶ τ1 ⊕ τ2 Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1 ⊢ e1 ∶ τ Ψ; Θ; ∆; Ω; Γ2, y ∶ τ2 ⊢ e2 ∶ τ

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ case(e, x.e1, y.e2) ∶ τ

T-ExpI

Ψ; Θ; ∆; Ω; ⋅ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢!e ∶!τ

T-ExpE

Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶!τ Ψ; Θ; ∆; Ω, x ∶ τ ; Γ2 ⊢ e′ ∶ τ ′

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ let !x = e in e′ ∶ τ ′

T-TAbs

Ψ, α ∶K; Θ; ∆; Ω; Γ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ Λα.e ∶ ∀α ∶K.τ

T-TApp

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ ∀α ∶K.τ Ψ; Θ; ∆ ⊢ τ ′ ∶K

Ψ; Θ; ∆; Ω; Γ ⊢ e[τ ′] ∶ τ[τ ′/α]

T-IAbs

Ψ; Θ, i ∶ S; ∆; Ω; Γ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ Λi.e ∶ ∀i ∶ S.τ

T-IApp

Θ; ∆ ⊢ I ∶ S Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ ∀i ∶ S.τ

Ψ; Θ; ∆; Ω; Γ ⊢ e[I] ∶ τ[I/i]

T-Fix

Ψ; Θ; ∆; Ω, x ∶ τ ; ⋅ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ fix x.e ∶ τ

T-CImpI

Ψ; Θ; ∆,Φ′; Ω; Γ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ Λ.e ∶ (Φ′ ⇒ τ)

T-CImpE

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ Φ′ ⇒ τ Θ; ∆ ⊧ Φ′

Ψ; Θ; ∆; Ω; Γ ⊢ e{} ∶ τ

T-CAndI

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ Θ; ∆ ⊧ Φ′

Ψ; Θ; ∆; Ω; Γ ⊢< e >∶ Φ′&τ

T-CAndE

Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶ Φ′&τ Ψ; Θ; ∆,Φ′; Ω; Γ2, x ∶ τ ⊢ e′ ∶ τ ′

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ clet x = e in e′ ∶ τ ′
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T-Tick

Θ; ∆ ⊢ I ∶ N Θ; ∆ ⊢ p⃗ ∶ R⃗+

Ψ; Θ; ∆; Ω; Γ ⊢ tick[I ∣p⃗] ∶M (I, p⃗)1

T-Ret

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ ret e ∶M (I, 0⃗) τ

T-Bind

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶M (I, p⃗) τ1 Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1 ⊢ e2 ∶M (I, q⃗) τ2

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ bind x = e1 in e2 ∶M (I, p⃗ + q⃗) τ2

T-Release

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ [I ∣q⃗]τ1 Ψ; Θ; ∆; Ω; Γ2, x ∶ τ ⊢ e2 ∶M (I, p⃗ + q⃗) τ2

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ release x = e1 in e2 ∶M (I, p⃗) τ2

T-Store

Θ; ∆ ⊢ I ∶ N Θ; ∆ ⊢ p⃗ ∶ R⃗+ Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ store[I ∣p⃗](e) ∶M (I, p⃗) ([I ∣p⃗] τ)

T-StoreConst

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ Θ; ∆ ⊢ I ∶ N

Ψ; Θ; ∆; Ω; Γ ⊢ store[I](e) ∶M (K,const(I)) ([I] τ)

T-ReleaseConst

Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ [J]τ1 Ψ; Θ; ∆; Ω; Γ2, x ∶ τ ⊢ e2 ∶M (I, p⃗ + const(J)) τ2

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ release x = e1 in e2 ∶M (I, p⃗) τ2

T-Shift

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶M (I − 1,⊲ p⃗) τ Θ; ∆ ⊧ I ≥ 1

Ψ; Θ; ∆; Ω; Γ ⊢ shift(e) ∶M (I, p⃗) τ

T-Sub

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ ′ Ψ; Θ; ∆ ⊢ τ ′ <∶ τ

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

T-Weaken

Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ Θ; ∆ ⊢ Ω′ ⊑ Ω Θ; ∆ ⊢ Γ′ ⊑ Γ

Ψ; Θ; ∆; Ω′; Γ′ ⊢ e ∶ τ
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2.8. Normal Forms and Normalization.

N-Var

α ne

N-Unit

1 nf

N-Arr

τ1 nf τ2 nf

τ1 ⊸ τ2 nf

N-Tensor

τ1 nf τ2 nf

τ1 ⊗ τ2 nf

N-With

τ1 nf τ2 nf

τ1&τ2 nf

N-Sum

τ1 nf τ2 nf

τ1 ⊕ τ2 nf

N-Bang

τ nf

!τ nf

N-IForall

τ nf

∀i ∶ S.τ nf

N-IExists

τ nf

∃i ∶ S.τ nf

N-TForall

τ nf

∀α ∶K.τ nf

N-List

τ nf

LIτ nf

N-Conj

τ nf

Φ&τ nf

N-Impl

τ nf

Φ Ô⇒ τ nf

N-Monad

τ nf

M(I, p⃗)τ nf

N-Pot

τ nf

[I ∣p⃗]τ nf

N-ConstPot

τ nf

[I]τ nf

N-FamLam

τ nf

λi ∶ S.τ nf

N-FamApp

τ ne

(τ I) ne

N-NeNf

τ ne

τ nf

eval(α) = α

eval(1) = 1

eval(τ1 ⊸ τ2) = eval(τ1) ⊸ eval(τ2)

eval(τ1 ⊗ τ2) = eval(τ1) ⊗ eval(τ2)

eval(τ1&τ2) = eval(τ1)&eval(τ2)

eval(τ1 ⊕ τ2) = eval(τ1) ⊕ eval(τ2)

eval(!τ) =!eval(τ)

eval(∀i ∶ S.τ) = ∀i ∶ S.eval(τ)

eval(∃i ∶ S.τ) = ∃i ∶ S.eval(τ)

eval(∀α ∶K.τ) = ∀α ∶K.eval(τ)

eval(LIτ) = LI(eval(τ))

eval(Φ&τ) = Φ&eval(τ)

eval(Φ Ô⇒ τ) = Φ Ô⇒ eval(τ)

eval(M(I, p⃗)τ) =M(I, p⃗)(eval(τ))

eval([I ∣p⃗]τ) = [I ∣p⃗](eval(τ))
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eval([I]τ) = [I](eval(τ))

eval(λi ∶ S.τ) = λi ∶ S.eval(τ)

eval(τ I) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ ′[I/i], eval(τ) = λi ∶ S.τ ′

eval(τ) I eval(τ) ne
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3. Rules of biλ-Amor

3.1. Algorithmic Wellformedness Judgments.

AWF-CCtxE

Θ ⊢ ⋅ wf⇒ ⊺

AWF-CCtxNe

Θ ⊢∆ wf⇒ Φ1 Θ; ∆ ⊢ Φ wf⇒ Φ2

Θ ⊢∆,Φ wf⇒ Φ1 ∧ (⋀∆→ Φ2)

AWF-TCtxE

Ψ; Θ; ∆ ⊢ ⋅ wf⇒ ⊺

AWF-TCtxNE

Ψ; Θ; ∆ ⊢ Γ wf⇒ Φ1 Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ Γ, x ∶ τ wf⇒ Φ1 ∧Φ2

3.2. Algorithmic Sort Checking/Inference.

AI-Var

i ∶ S ∈ Θ

Θ; ∆ ⊢ i ∶ S ⇒ ⊺

AI-Plus

Θ; ∆ ⊢ I ∶ bS ⇒ Φ1 Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

Θ; ∆ ⊢ I + J ∶ bS ⇒ Φ1 ∧Φ2

AI-Minus

Θ; ∆ ⊢ I ∶ bS ⇒ Φ1 Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

Θ; ∆ ⊢ I − J ∶ bS ⇒ Φ1 ∧Φ2 ∧ (I ≥ J)

AI-Times-R

c ∈ R+ Θ; ∆ ⊢ I ∶ R+ ⇒ Φ

Θ; ∆ ⊢ c ⋅ I ∶ R+ ⇒ Φ

AI-Times-R⃗

c ∈ R+ Θ; ∆ ⊢ I ∶ R⃗+ ⇒ Φ

Θ; ∆ ⊢ c ⋅ I ∶ R⃗+ ⇒ Φ

AI-Times-N

c ∈ N Θ; ∆ ⊢ I ∶ N⇒ Φ

Θ; ∆ ⊢ c ⋅ I ∶ N⇒ Φ

AI-Shift

Θ; ∆ ⊢ I ∶ R⃗+ ⇒ Φ

Θ; ∆ ⊢ ⊲ I ∶ R⃗+ ⇒ Φ

AI-Lam

Θ, i ∶ bS; ∆ ⊢ I ∶ S ⇒ Φ

Θ; ∆ ⊢ λi ∶ bS.I ∶ bS → S ⇒ ∀i ∶ S.Φ

AI-App

Θ; ∆ ⊢ I ∶ bS → S ⇒ Φ1 Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

Θ; ∆ ⊢ I J ∶ S ⇒ Φ1 ∧Φ2

AI-Sum

Θ; ∆ ⊢ I0 ∶ N⇒ Φ1 Θ; ∆ ⊢ I1 ∶ N⇒ Φ2 Θ, i ∶ N; ∆, I0 ≤ i < I1 ⊢ J ∶ bS ⇒ Φ3

Θ; ∆ ⊢
I1

∑
i=I0

J ∶ bS ⇒ Φ1 ∧Φ2 ∧ ∀i ∶ N.(I0 ≤ i < I1 → Φ3)
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AI-ConstVec

Θ; ∆ ⊢ I ∶ R+ ⇒ Φ

Θ; ∆ ⊢ const(I) ∶ R⃗+ ⇒ Φ

AI-Vec-Lit

Φ = ⋀
i

ci ≥ 0

Θ; ∆ ⊢ (c0, . . . , ck) ∶ R+ ⇒ Φ

AI-Nat-Lit

Θ; ∆ ⊢ n ∶ N⇒ n ≥ 0

AI-PosReal-Lit

Θ; ∆ ⊢ r ∶ R+ ⇒ r ≥ 0

3.3. Algorithmic Constraint Wellformedness.

AC-Top

Θ; ∆ ⊢ ⊺ wf⇒ ⊺

AC-Bot

Θ; ∆ ⊢ � wf⇒ ⊺

AC-Conj

Θ; ∆ ⊢ Φ1 wf⇒ Φ′
1 Θ; ∆ ⊢ Φ2 wf⇒ Φ′

2

Θ; ∆ ⊢ Φ1 ∧Φ2 wf⇒ Φ′
1 ∧Φ′

2

AC-Disj

Θ; ∆ ⊢ Φ1 wf⇒ Φ′
1 Θ; ∆ ⊢ Φ2 wf⇒ Φ′

2

Θ; ∆ ⊢ Φ1 ∨Φ2 wf⇒ Φ′
1 ∧Φ′

2

AC-Impl

Θ; ∆ ⊢ Φ1 wf⇒ Φ′
1 Θ; ∆ ⊢ Φ2 wf⇒ Φ′

2

Θ; ∆,Φ1 ⊢ Φ1 → Φ2 wf⇒ Φ′
1 ∧ (Φ1 → Φ′

2)

AC-Forall

Θ, i ∶ S; ∆ ⊢ Φ wf⇒ Φ′

Θ; ∆ ⊢ ∀i ∶ S.Φ wf⇒ ∀i ∶ S.Φ′

AC-Exists

Θ, i ∶ S; ∆,Φ ⊢ Φ wf⇒ Φ′

Θ; ∆ ⊢ ∃i ∶ S.Φ wf⇒ ∀i ∶ S.(Φ→ Φ′)

AC-Leq

Θ; ∆ ⊢ I ∶ bS ⇒ Φ1 Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

Θ; ∆ ⊢ I ≤ J wf⇒ Φ1 ∧Φ2

AC-Lt

Θ; ∆ ⊢ I ∶ bS ⇒ Φ1 Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

Θ; ∆ ⊢ I < J wf⇒ Φ1 ∧Φ2

AC-Eq

Θ; ∆ ⊢ I ∶ bS ⇒ Φ1 Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

Θ; ∆ ⊢ I = J wf⇒ Φ1 ∧Φ2

3.4. Algorithmic Kind Checking/Inference.

AK-Var

α ∶K ∈ Ψ

Ψ; Θ; ∆ ⊢ α ∶K ⇒ ⊺

AK-Unit

Ψ; Θ; ∆ ⊢ 1 ∶ ⋆ ⇒ ⊺
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AK-Arr

Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

AK-Tensor

Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

AK-With

Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1&τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

AK-Sum

Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

AK-Bang

Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢!τ ∶ ⋆ ⇒ Φ

AK-IForall

Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ ∶ ⋆ ⇒ ∀i ∶ S.Φ

AK-IExists

Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ ∶ ⋆ ⇒ ∀i ∶ S.Φ

AK-TForall

Ψ, α ∶K; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ ∀α ∶K.τ ∶ ⋆ ⇒ Φ

AK-List

Θ; ∆ ⊢ I ∶ N⇒ Φ1 Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ LIτ ∶ ⋆ ⇒ Φ1 ∧Φ2

AK-Conj

Θ; ∆ ⊢ Φ wf⇒ Φ1 Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ Φ&τ ∶ ⋆ ⇒ Φ1 ∧Φ2

AK-Impl

Θ; ∆ ⊢ Φ wf⇒ Φ1 Ψ; Θ; ∆,Φ ⊢ τ ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ Φ Ô⇒ τ ∶ ⋆ ⇒ Φ1 ∧ (Φ→ Φ2)

AK-Monad

Θ; ∆ ⊢ I ∶ N⇒ Φ1 Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ2 Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ3

Ψ; Θ; ∆ ⊢M(I, p⃗)τ ∶ ⋆ ⇒ Φ1 ∧Φ2 ∧Φ3

AK-Pot

Θ; ∆ ⊢ I ∶ N⇒ Φ1 Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ2 Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ3

Ψ; Θ; ∆ ⊢ [I ∣p⃗]τ ∶ ⋆ ⇒ Φ1 ∧Φ2 ∧Φ3
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AK-ConstPot

Θ; ∆ ⊢ I ∶ R+ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ [I] τ ∶ ⋆ ⇒ Φ1 ∧Φ2

AK-FamLam

Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶K ⇒ Φ

Ψ; Θ; ∆ ⊢ λi ∶ S.τ ∶ S →K ⇒ ∀i ∶ S.Φ

AK-FamApp

Θ; ∆ ⊢ I ∶ S ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ ∶ S →K ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ I ∶K ⇒ Φ1 ∧Φ2

3.5. Algorithmic Subtyping.

AS-Unit

Ψ; Θ; ∆ ⊢ 1 <∶nf 1 ∶ ⋆ ⇒ ⊺

AS-Var

Ψ; Θ; ∆ ⊢ α <∶nf α ∶ ⋆ ⇒ ⊺

AS-Arr

Ψ; Θ; ∆ ⊢ τ ′1 <∶nf τ1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 <∶nf τ ′1 ⊸ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

AS-Tensor

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 <∶nf τ ′1 ⊗ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

AS-With

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1&τ2 <∶nf τ ′1&τ ′2 ⇒ Φ1 ∧Φ2

AS-Sum

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ1 Ψ; Θ; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 <∶nf τ ′1 ⊕ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

AS-Bang

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢!τ1 <∶nf!τ2 ∶ ⋆ ⇒ Φ

AS-IForall

Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ1 <∶nf ∀i ∶ S.τ2 ∶ ⋆ ⇒ ∀i ∶ S.Φ

AS-IExists

Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ1 <∶nf ∃i ∶ S.τ2 ∶ ⋆ ⇒ ∀i ∶ S.Φ

AS-TForall

Ψ, α ∶K; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ ∀α ∶K.τ1 <∶nf ∀α ∶K.τ2 ∶ ⋆ ⇒ Φ

AS-List

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ LIτ1 <∶nf LJτ2 ∶ ⋆ ⇒ I = J ∧Φ
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AS-Impl

Ψ; Θ; ∆,Φ2 ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ Φ1 Ô⇒ τ1 <∶nf Φ2 Ô⇒ τ2 ∶ ⋆ ⇒ (Φ2 → Φ) ∧ (Φ2 → Φ1)

AS-Conj

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ Φ1&τ1 <∶nf Φ2&τ2 ∶ ⋆ ⇒ Φ ∧ (Φ1 → Φ2)

AS-Monad

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢M(I, q⃗)τ1 <∶nf M(J, p⃗)τ2 ∶ ⋆ ⇒ (I = J) ∧ (q⃗ ≤ p⃗) ∧Φ

AS-Pot

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ [I ∣q⃗]τ1 <∶nf [J ∣p⃗]τ2 ∶ ⋆ ⇒ (I = J) ∧ (p⃗ ≤ q⃗) ∧Φ

AS-ConstPot

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

Ψ; Θ; ∆ ⊢ [I]τ1 <∶nf [J]τ2 ∶ ⋆ ⇒ Φ ∧ (J ≤ I)

AS-FamLam

Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶K ⇒ Φ

Ψ; Θ; ∆ ⊢ λi ∶ S.τ1 <∶nf λi ∶ S.τ2 ∶ S →K ⇒ ∀i ∶ S.Φ

AS-FamApp

Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ S →K ⇒ Φ

Ψ; Θ; ∆ ⊢ τ1 I <∶nf τ2 J ∶K ⇒ (I = J) ∧Φ

AS-Normalize

Ψ; Θ; ∆ ⊢ eval(τ1) <∶nf eval(τ2) ∶K ⇒ Φ

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶K ⇒ Φ

3.6. Algorithmic Type Checking/Inference.

AT-Var-1

x ∶ τ ∈ Γ

Ψ; Θ; ∆; Ω; Γ ⊢ x ↑ τ ⇒ ⊺,Γ ∖ {x ∶ τ}

AT-Var-2

x ∶ τ ∈ Ω

Ψ; Θ; ∆; Ω; Γ ⊢ x ↑ τ ⇒ ⊺,Γ

AT-Unit

Ψ; Θ; ∆; Ω; Γ ⊢ () ↑ 1⇒ ⊺,Γ
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AT-Base

Ψ; Θ; ∆; Ω; Γ ⊢ c ↑ b⇒ ⊺,Γ

AT-Absurd

Ψ; Θ; ∆; Ω; Γ ⊢ absurd ↓ τ ⇒ �,Γ

AT-Nil

Ψ; Θ; ∆; Ω; Γ ⊢ nil ↓ LIτ ⇒ I = 0,Γ

AT-Cons

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓ τ ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ LI−1τ ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ∶∶ e2 ↓ LIτ ⇒ (I ≥ 1) ∧Φ1 ∧Φ2,Γ2

AT-Match

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ LIτ ⇒ Φ1,Γ1

Ψ; Θ; ∆, I = 0; Ω; Γ1 ⊢ e1 ↓ τ ′ ⇒ Φ2,Γ2 Ψ; Θ; ∆, I ≥ 1; Ω; Γ1, h ∶ τ, t ∶ LI−1τ ⊢ e2 ↓ τ ′ ⇒ Φ3,Γ3

Φbody = (I = 0→ Φ2) ∧ (I ≥ 1→ Φ3) Γ′ = Γ2 ∩ (Γ3 ∖ {h, t})

Ψ; Θ; ∆; Ω; Γ ⊢ match(e, e1, h.t.e2) ↓ τ ′ ⇒ Φ1 ∧Φbody,Γ
′

AT-ExistI

Θ; ∆ ⊢ I ∶ S ⇒ Φ1 Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ[I/i] ⇒ Φ2,Γ
′

Ψ; Θ; ∆; Ω; Γ ⊢ pack[I](e) ↓ ∃i ∶ S.τ ⇒ Φ1 ∧Φ2,Γ
′

AT-ExistE

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ ∃i ∶ S.τ ⇒ Φ1,Γ1

Ψ; Θ, i ∶ S; ∆; Ω; Γ1, x ∶ τ ⊢ e′ ↓ τ ′ ⇒ Φ2,Γ2 Φ = Φ1 ∧ (∀i ∶ S.Φ2)

Ψ; Θ; ∆; Ω; Γ ⊢ unpack (i, x) = e in e′ ↓ τ ′ ⇒ Φ,Γ2 ∖ {x ∶ τ}

AT-Lam

Ψ; Θ; ∆; Ω; Γ, x ∶ τ1 ⊢ e ↓ τ2,⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ λx.e ↓ τ1 ⊸ τ2 ⇒ Φ,Γ′ ∖ {x ∶ τ1}

AT-App

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ τ1 ⊸ τ2 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ τ1 ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ e1 e2 ↑ τ2 ⇒ Φ1 ∧Φ2,Γ2
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AT-TensorI

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓ τ1 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ τ2 ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ ⟪e1, e2⟫ ↓ τ1 ⊗ τ2 ⇒ Φ1 ∧Φ2,Γ2

AT-TensorE

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1 ⊗ τ2 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1, y ∶ τ2 ⊢ e′ ↓ τ ′ ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ let ⟪x, y⟫ = e in e′ ↓ τ ′ ⇒ Φ1 ∧Φ2,Γ2 ∖ {x, y}

AT-WithI

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓ τ1 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ ⊢ e2 ↓ τ2 ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ (e1, e2) ↓ τ1&τ2 ⇒ Φ1 ∧Φ2,Γ1 ∩ Γ2

AT-Fst

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1&τ2 ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ fst(e) ↑ τ1 ⇒ Φ,Γ′

AT-Snd

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1&τ2 ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ snd(e) ↑ τ2 ⇒ Φ,Γ′

AT-Inl

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ1 ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ inl(e) ↓ τ1 ⊕ τ2 ⇒ Φ,Γ′

AT-Inr

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ2 ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ inr(e) ↓ τ1 ⊕ τ2 ⇒ Φ,Γ′

AT-Case

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1 ⊕ τ2 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e1 ↓ τ ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ1, y ∶ τ2 ⊢ e2 ↓ τ ⇒ Φ3,Γ3 Γ′ = (Γ2 ∖ {x ∶ τ1}) ∩ (Γ3 ∖ {y ∶ τ2})

Ψ; Θ; ∆; Ω; Γ ⊢ case(e, x.e1, y.e2) ↓ τ ⇒ Φ1 ∧Φ2 ∧Φ3,Γ
′

AT-ExpI

Ψ; Θ; ∆; Ω; ⋅ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢!e ↓!τ ⇒ Φ,Γ

AT-ExpE

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑!τ ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω, x ∶ τ ; Γ1 ⊢ e′ ↓ τ ′ ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ let !x = e in e′ ↓ τ ′ ⇒ Φ1 ∧Φ2,Γ2
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AT-TAbs

Ψ, α ∶K; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ Λα.e ↓ ∀α ∶K.τ ⇒ Φ,Γ′

AT-TApp

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ ∀α ∶K.τ ⇒ Φ1,Γ
′ Ψ; Θ; ∆ ⊢ τ ′ ∶K ⇒ Φ2

Ψ; Θ; ∆; Ω; Γ ⊢ e[τ ′] ↑ τ[τ ′/α] ⇒ Φ1 ∧Φ2,Γ
′

AT-IAbs

Ψ; Θ, i ∶ S; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ Λi.e ↓ ∀i ∶ S.τ ⇒ ∀i ∶ S.Φ,Γ′

AT-IApp

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ ∀i ∶ S.τ ⇒ Φ1,Γ
′ Θ; ∆ ⊢ I ∶ S ⇒ Φ2

Ψ; Θ; ∆; Ω; Γ ⊢ e[I] ↑ τ[I/i] ⇒ Φ1 ∧Φ2,Γ
′

AT-Fix

Ψ; Θ; ∆; Ω, x ∶ τ ; ⋅ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ fix x.e ↓ τ ⇒ Φ,Γ

AT-CImpI

Ψ; Θ; ∆,Φ′; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ Λ.e ↓ (Φ′ ⇒ τ) ⇒ (Φ′ → Φ),Γ′

AT-CImpE

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ (Φ′ ⇒ τ) ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ e{} ↑ τ ⇒ Φ ∧Φ′,Γ′

AT-CAndI

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢< e >↓ Φ′&τ ⇒ Φ ∧Φ′,Γ′

AT-CAndE

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ Φ′&τ ⇒ Φ1,Γ1 Ψ; Θ; ∆,Φ′; Ω; Γ1, x ∶ τ ⊢ e′ ↓ τ ′ ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ clet x = e in e′ ↓ τ ′ ⇒ Φ1 ∧ (Φ′ → Φ2),Γ2 ∖ {x ∶ τ}

AT-Ret

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ ret e ↓M (I, p⃗) τ ⇒ Φ,Γ′

AT-Bind

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑M (J, p⃗) τ1 ⇒ Φ1,Γ1

Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e2 ↓M (I, q⃗ − p⃗) τ2 ⇒ Φ2,Γ2 Φ = (q⃗ ≥ p⃗) ∧ (I = J) ∧Φ1 ∧Φ2

Ψ; Θ; ∆; Ω; Γ ⊢ bind x = e1 in e2 ↓M (I, q⃗) τ2 ⇒ Φ,Γ2 ∖ {x ∶ τ1}
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AT-Tick

Θ; ∆ ⊢ I ∶ N⇒ Φ1 Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ1

Ψ; Θ; ∆; Ω; Γ ⊢ tick[I ∣p⃗] ↑M (I, p⃗)1⇒ Φ1 ∧Φ2,Γ

AT-Release

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ [J ∣q⃗]τ1 ⇒ Φ1,Γ1 Ψ; Θ; ∆; Ω; Γ1, x ∶ τ ⊢ e2 ↓M (I, p⃗ + q⃗) τ2 ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ release x = e1 in e2 ↓M (I, p⃗) τ2 ⇒ (I = J ∧Φ1 ∧Φ2),Γ2 ∖ {x}

AT-Store

Θ; ∆ ⊢K ∶ N⇒ Φ1 Θ; ∆ ⊢ w⃗ ∶ R⃗+ ⇒ Φ2

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ3,Γ
′ Φ = Φ1 ∧Φ2 ∧Φ3 ∧ (p⃗ ≤ w⃗ ≤ q⃗) ∧ (I = J =K)

Ψ; Θ; ∆; Ω; Γ ⊢ store[K ∣w⃗](e) ↓M (I, q⃗) ([J ∣p⃗] τ) ⇒ Φ,Γ′

AT-StoreConst

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ1,Γ
′

Θ; ∆ ⊢ J ∶ R⇒ Φ2 Φ = (const(I) ≤ const(J) ≤ p⃗) ∧Φ1 ∧Φ2

Ψ; Θ; ∆; Ω; Γ ⊢ store[J](e) ↓M (K, p⃗) ([I] τ) ⇒ Φ,Γ′

AT-ReleaseConst

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ [J]τ1 ⇒ Φ1,Γ1

Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e2 ↓M (I, p⃗ + const(J)) τ2 ⇒ Φ2,Γ2

Ψ; Θ; ∆; Ω; Γ ⊢ release x = e1 in e2 ↓M (I, p⃗) τ2 ⇒ Φ1 ∧Φ2,Γ2 ∖ {x}

AT-Shift

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓M (I − 1,⊲ q⃗) τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ shift(e) ↓M (I, q⃗) τ ⇒ (I ≥ 1) ∧Φ,Γ′

AT-Sub

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ ′ ⇒ Φ1,Γ
′ Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆ ⇒ Φ2

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ1 ∧Φ2,Γ
′

AT-Anno

Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

Ψ; Θ; ∆; Ω; Γ ⊢ (e ∶ τ) ↑ τ ⇒ Φ,Γ′
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4. Theorems

Theorem 5.1. If Ψ; Θ; ∆ ⊢ Γ wf and Γ′ ⊆ Γ then Ψ; Θ; ∆ ⊢ Γ′ wf

Proof. Immediate from the fact that Ψ; Θ; ∆ ⊢ Γ wf exactly when Ψ; Θ; ∆ ⊢ τ ∶ ⋆ for every

x ∶ τ ∈ Γ. �

Theorem 5.2. If Θ ⊢∆,Φ wf then Θ ⊢∆ wf

Theorem A.1 (Raw Admissibility of Weakening for Sort Checking). If Θ; ∆ ⊢ I ∶ S and

Θ′ ⊇ Θ, then Θ′; ∆ ⊢ I ∶ S

Theorem A.2 (Raw Admissibility of Weakening for Constraint Well-Formedness). If Θ; ∆ ⊢

Φ wf and Θ′ ⊇ Θ, then Θ′; ∆ ⊢ Φ wf

Theorem A.3 (Admissibility of Weakening for Constraint Context Well-Formedness). If

Θ ⊢∆ wf and Θ′ ⊇ Θ, then Θ′ ⊢∆ wf

Theorem A.4 (Admissibility of Weakening for Sort Checking). If Θ; ∆ ⊢p I ∶ S and Θ′ ⊇ Θ,

then Θ′; ∆ ⊢p I ∶ S

Theorem A.5 (Admissibility of Weakening for Constraint Well-Formedness). If Θ; ∆ ⊢p

Φ wf and Θ′ ⊇ Θ, then Θ′; ∆ ⊢p Φ wf

Theorem A.6 (Raw Index Substitution for Constraint-Well-Formedness). If Θ, j ∶ S1; ∆ ⊢

I ∶ S2 and Θ; ∆ ⊢p J ∶ S1, then Θ; ∆[J/j] ⊢ I[J/j] ∶ S2

Theorem A.7 (Index Substitution for Sort Checking). If Θ, j ∶ S1; ∆ ⊢p I ∶ S2 and Θ; ∆ ⊢p

J ∶ S1 then Θ; ∆ ⊢p I[J/j] ∶ S2

Proof. Immediate by Theorem A.6, using the fact that Θ ⊢∆wf. �

Theorem A.8 (Raw Index Substitution for Constraint Well-formedness). If Θ, i ∶ S; ∆ ⊢

Φ wf and Θ; ∆ ⊢ I ∶ S then Θ; ∆[I/i] ⊢ Φ[I/i]wf

Theorem A.9 (Index Substitution for Constraint Well-Formedness). If Θ, i ∶ S; ∆ ⊢p Φ wf

and Θ; ∆ ⊢p I ∶ S then Θ; ∆ ⊢p Φ[I/i] wf.
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Proof. Immediate by Theorem A.8, using the fact that Θ ⊢∆wf. �

Theorem A.10 (Admissibility of Weakening for Type Formation). If Ψ; Θ; ∆ ⊢p τ ∶ K,

Ψ′ ⊇ Ψ, and Θ′ ⊇ Θ, then Ψ′; Θ′; ∆ ⊢p τ ∶K.

Theorem A.11 (Admissibility of Weakening for Term Context Wellformedness). If Ψ; Θ; ∆ ⊢

Γ wf, Ψ′ ⊇ Ψ, and Θ′ ⊇ Θ, then Ψ′; Θ′; ∆ ⊢ Γ wf.

Theorem 5.4. If Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶K and Θ; ∆ ⊢p I ∶ S then Ψ; Θ; ∆ ⊢p τ[I/i] ∶K

Theorem A.12 (Admissibility of Weakening for Subtyping). Suppose Ψ; Θ; ∆ ⊢p τ <∶ τ ′ ∶K,

Ψ′ ⊇ Ψ, and Θ′ ⊇ Θ. Then, Ψ′; Θ′; ∆ ⊢p τ <∶ τ ′.

Theorem 5.5. Suppose Ψ; Θ; ∆ ⊢ τ ∶ K and Ψ; Θ; ∆ ⊢ τ ′ ∶ K. If Ψ′; Θ′; ∆ ⊢p τ <∶ τ ′ ∶ K

with Θ′ ⊇ Θ and Ψ′ ⊇ Ψ, then Ψ; Θ; ∆ ⊢p τ <∶ τ ′ ∶K

Theorem A.13 (Context Subsumption Includes Subset). If Ψ; Θ; ∆ ⊢p Γ′ and Γ ⊆ Γ′ as

sets, then Ψ; Θ; ∆ ⊢p Γ′ ⊑ Γ

Proof. By induction on ∣Γ∣. If Γ = ∅, this is immediate by CS-Emp. Now suppose Γ =

Γ′′, x ∶ τ . Then, since Γ ⊆ Γ′, we have x ∶ τ ∈ Γ′, and Γ′′ ⊆ Γ′ ∖ {x ∶ τ}. Moreover, by S-Refl,

Ψ; Θ; ∆ ⊢ τ <∶ τ ∶ ⋆, and so we are done by IH. �

Theorem 5.6. Ψ; Θ; ∆ ⊢ Γ ⊑ Γ′ if and only if for all x ∶ τ ′ ∈ Γ′, there is some τ so that

x ∶ τ ∈ Γ and Ψ; Θ; ∆ ⊢ τ <∶ τ ′ ∶ ⋆.

Proof. By an easy induction on ∣Γ∣. �

Theorem A.14 (Admissibility of Weakening for Context Subsumption). If Ψ; Θ; ∆ ⊢p Γ ⊑ Γ′

and Ψ′ ⊇ Ψ, Θ′ ⊇ Θ, and ∆′ ⊇ ∆, then Ψ′; Θ′; ∆′ ⊢p Γ ⊑ Γ′

Theorem A.15 (Strengthening for Context Subsumption). Suppose Ψ; Θ; ∆ ⊢ Γ,Γ′ wf. If

Ψ′; Θ′; ∆ ⊢p Γ ⊑ Γ′ with Θ′ ⊇ Θ and Ψ′ ⊇ Ψ, then Ψ; Θ; ∆ ⊢p Γ ⊑ Γ′.

Proof. Immediate by Theorem 5.6 and Theorem 5.5 �

Theorem 5.7. Suppose that
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(1) Ψ; Θ; ∆ ⊢p Γ1 ⊑ Γ′1

(2) Ψ′; Θ′; ∆′ ⊢p Γ2 ⊑ Γ′2

(3) Γ1 ⊇ Γ2 and Γ′1 ⊇ Γ′2

Then, Ψ; Θ; ∆ ⊢p Γ2 ⊑ Γ′2.

Proof. By Theorem 5.6, it suffices to show that for every x ∶ τ ∈ Γ′2, there is some τ ′ such

that x ∶ τ ′ ∈ Γ′2, and Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆. Suppose x ∶ τ ∈ Γ′2. Then, x ∶ τ ∈ Γ′1. Further, since

Ψ′; Θ′; ∆′ ⊢ Γ2 ⊑ Γ′2, there is some τ ′ such that x ∶ τ ′ ∈ Γ2. But then, x ∶ τ ′ ∈ Γ1, and so since

Ψ; Θ; ∆ ⊢ Γ1 ⊑ Γ′1, we have that Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆, by Theorem 5.6. �

4.1. Normalization.

Theorem 7.2 (Canonical Forms for S →K). If Ψ; Θ; ∆ ⊢ τ ∶ S →K and τ nf, then either:

(1) τ = λi ∶ S.τ ′ with τ ′ nf

(2) τ ne

Proof. Inversion on Ψ; Θ; ∆ ⊢ τ ∶ S →K and then τ nf. �

Theorem 7.1.

(1) If τ ne then τ[I/i] ne

(2) If τ nf then τ[I/i] nf

Proof. By an easy simultaneous induction. This is only true because we don’t require

index terms inside a type to be in normal form for the type to be in normal form. �

Theorem 7.4. eval(τ[J/i]) = eval(τ)[J/i]

Theorem 7.3 (Normalization Theorem). If Ψ; Θ; ∆ ⊢p τ ∶K, then:

(1) Ψ; Θ; ∆ ⊢p eval(τ) ∶K

(2) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶K

(3) eval(τ) nf

Theorem A.16.

● If τ nf, then eval(τ) = τ

● If τ ne, then eval(τ) = τ
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Theorem A.17 (Raw Soundness of Sort Checking/Inference). If Θ; ∆ ⊢ I ∶ S ⇒ Φ and

Θ; ∆ ⊧ Φ, then Θ; ∆ ⊢ I ∶ S

Theorem A.18 (Raw Soundness of Constraint Well-Formedness). If Θ; ∆ ⊢ Φ wf⇒ Φ′ and

Θ; ∆ ⊧ Φ′ then Θ; ∆ ⊢ Φ wf

Theorem 8.1 (Soundness of Index Context Well-Formedness). If Θ ⊢ ∆ wf ⇒ Φ and

Θ; ⋅ ⊧ Φ, then Θ ⊢∆ wf

Proof. By induction on Θ ⊢ ∆ wf ⇒ Φ. The base case is immediate. Suppose Θ ⊢

∆,Φ wf ⇒ Φ1 ∧ (⋀∆ → Φ2) with Θ; ⋅ ⊧ Φ1 ∧ (⋀∆ → Φ2), by way of Θ ⊢ ∆ wf ⇒ Φ1 and

Θ; ∆ ⊢ Φ wf ⇒ Φ2. Since Θ; ⋅ ⊧ Φ1, we have by IH that Θ ⊢ ∆ wf. By Theorem A.17, since

Θ; ∆ ⊧ Φ2, we have that Θ; ∆ ⊢ Φ2 wf, and so Θ ⊢∆,Φ wf, as required. �

Theorem 8.2 (Soundness of Sort Checking). If Θ; ∆ ⊢p I ∶ S ⇒ Φ and Θ; ∆ ⊧ Φ, then

Θ; ∆ ⊢p I ∶ S

Proof. Immediate by Theorem A.17 and Theorem 8.1 �

Theorem 8.3 (Soundness of Constraint Well-Formedness). If Θ; ∆ ⊢p Φ wf ⇒ Φ′ and

Θ; ∆ ⊧ Φ′ then Θ; ∆ ⊢p Φ wf

Proof. Immediate by Theorem A.18 and Theorem 8.1 �

Theorem A.19 (Raw Soundness of Kind Checking/Inference). If Ψ; Θ; ∆ ⊢ τ ∶K ⇒ Φ and

Θ; ∆ ⊧ Φ then Ψ; Θ; ∆ ⊢ τ ∶K.

Theorem 8.4 (Soundness of Kind Checking). If Ψ; Θ; ∆ ⊢p τ ∶ K ⇒ Φ and Θ; ∆ ⊧ Φ then

Ψ; Θ; ∆ ⊢p τ ∶K.

Proof. Immediate by Theorem A.19 and Theorem 8.1 �

Theorem A.20 (Raw Soundness of Subtyping for Normal Forms). If Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶

K ⇒ Φ and Θ; ∆ ⊧ Φ then Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶K

Theorem 8.5 (Soundness of Subtyping for Normal Forms). If Ψ; Θ; ∆ ⊢p τ1 <∶nf τ2 ∶K ⇒ Φ

and Θ; ∆ ⊧ Φ then Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K
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Proof. Immediate by Theorem A.20 and Theorem 8.1 �

Theorem 8.6 (Soundness of Subtyping). If Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K ⇒ Φ and Θ; ∆ ⊧ Φ, then

Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K

Proof. There is only one case: Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶K ⇒ Φ by way of Ψ; Θ; ∆ ⊢ eval(τ1) <∶nf

eval(τ2) ∶ K ⇒ Φ with Θ; ∆ ⊧ Φ. By Theorem 8.5, Ψ; Θ; ∆ ⊢ eval(τ1) <∶ eval(τ2) ∶ K. By

Theorem 7.3 and two uses of S-Trans, Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K, as required. �

Theorem A.21 (Output Context is Uniquely Determined). For any Ψ,Θ,∆,Γ, e,Φ, there

is at most one Γ′ so that Ψ; Θ; ∆; Ω; Γ ⊢ e ↕ τ ⇒ Φ,Γ′

Theorem 8.7.

● If Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′ then Γ′ ⊆ Γ

● If Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ ⇒ Φ,Γ′ then Γ′ ⊆ Γ

Proof. Induction on Ψ; Θ; ∆; Ω; Γ ⊢ e ↕ τ ⇒ Φ,Γ′. �

Theorem A.22 (Output Context is Well-Formed). If Ψ; Θ; ∆; Ω; Γ ⊢p e ↕ τ ⇒ Φ,Γ′ then

Ψ; Θ; ∆ ⊢ Γ′ wf⇒ Φ′ with Θ; ∆ ⊧ Φ′.

Proof. An easy induction on Γ′, using the fact that Ψ; Θ; ∆ ⊢ Γ wf⇒ Φ′′ with Θ; ∆ ⊧ Φ′′,

and Theorem 8.7 �

Theorem A.23 (Algorithmic Well-Formedness of Context Operations). If Γ1,Γ2 ⊆ Γ such

that Ψ; Θ; ∆ ⊢ Γ wf, then the following are true:

(1) Ψ; Θ; ∆ ⊢ Γ1,Γ2 wf

(2) Ψ; Θ; ∆ ⊢ Γ1 ∩ Γ2 wf

(3) Ψ; Θ; ∆ ⊢ Γ1 ∖ Γ2 wf

Theorem A.24 (Raw Soundness of Type Checking/Inference).

(1) If Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′ and Θ; ∆ ⊧ Φ then Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

(2) If Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ ⇒ Φ,Γ′ and Θ; ∆ ⊧ Φ then Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

Theorem 8.9 (Soundness of Type Checking/Inference).
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(1) If Ψ; Θ; ∆; Ω; Γ ⊢p e ↓ τ ⇒ Φ,Γ′ and Θ; ∆ ⊧ Φ then Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢p ∣e∣ ∶ τ

(2) If Ψ; Θ; ∆; Ω; Γ ⊢p e ↑ τ ⇒ Φ,Γ′ and Θ; ∆ ⊧ Φ then Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢p ∣e∣ ∶ τ

Proof. Immediate by A.24. �

Theorem A.25 (Raw Completeness of Sort Checking/Inference). If Θ; ∆ ⊢ I ∶ S, then

Θ; ∆ ⊢ I ∶ S ⇒ Φ and Θ; ∆ ⊧ Φ.

Theorem A.26 (Raw Completeness of Constraint Well-Formedness). If Θ; ∆ ⊢ Φ wf, then

Θ; ∆ ⊢ Φ wf⇒ Φ′ with Θ; ∆ ⊧ Φ′

Theorem 8.11. If Θ ⊢∆ wf then Θ ⊢∆ wf⇒ Φ with Θ; ⋅ ⊧ Φ

Proof. By induction on Θ ⊢ ∆ wf. The base case is immediate. Suppose Θ ⊢ ∆,Φ wf

by way of Θ ⊢ ∆ wf and Θ; ∆ ⊢ Φ wf. By IH, there is some Φ1 such that Θ ⊢ ∆ wf ⇒ Φ1

with Θ; ⋅ ⊧ Φ1. By Theorem A.26, there is Φ2 such that Θ; ∆ ⊢ Φ wf ⇒ Φ2 with Θ; ∆ ⊧ Φ2.

Equivalently, Θ; ⋅ ⊧ ⋀∆ → Φ2, and so Θ; ⋅ ⊧ Φ1 ∧ (⋀∆ → Φ2). Then, by AWF-CCtx-Ne,

Θ ⊢∆,Φ wf⇒ Φ1 ∧ (⋀∆→ Φ2), as required. �

Theorem 8.10. If Θ; ∆ ⊢p I ∶ S, then Θ; ∆ ⊢p I ∶ S ⇒ Φ and Θ; ∆ ⊧ Φ.

Proof. Immediate by Theorem A.25 and Theorem 8.11 �

Theorem 8.12. If Θ; ∆ ⊢p Φ wf, then Θ; ∆ ⊢p Φ wf⇒ Φ′ with Θ; ∆ ⊧ Φ′

Proof. Immediate by Theorem A.26 and Theorem 8.11 �

Theorem A.27 (Raw Completeness of Kind Checking/Inference). If Φ; Θ; ∆ ⊢ τ ∶ K, then

Φ; Θ; ∆ ⊢ τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

Theorem 8.13. If Ψ; Θ; ∆ ⊢p τ ∶K, then Ψ; Θ; ∆ ⊢p τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

Proof. Immediate by Theorem A.27 and Theorem 8.11. �

Theorem A.28 (Assumption Precomposition for Sort Assignment). If Θ; ∆,Φ1 ⊢p I ∶ S ⇒ Φ

and Θ; ∆ ⊧ (Φ2 → Φ1)∧Φ then there exists Φ′ such that Ψ; Θ; ∆,Φ2 ⊢p I ∶ S ⇒ Φ′ and Θ; ∆ ⊧ Φ′.
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Theorem A.29 (Assumption Precomposition for Constraint Well-Formedness). If Θ; ∆,Φ1 ⊢p

Φ′′ wf⇒ Φ and Θ; ∆ ⊧ (Φ2 → Φ1) ∧Φ then there exists Φ′ such that Ψ; Θ; ∆,Φ2 ⊢p Φ′′ wf⇒ Φ′

and Θ; ∆ ⊧ Φ′.

Theorem A.30 (Assumption Precomposition for Kind Assignment). If Ψ; Θ; ∆,Φ1 ⊢p τ ∶

K ⇒ Φ and Θ; ∆ ⊧ (Φ2 → Φ1) ∧Φ then there exists Φ′ such that Ψ; Θ; ∆,Φ2 ⊢p τ ∶ K ⇒ Φ′ and

Θ; ∆ ⊧ Φ′.

Theorem A.31 (Assumption Precomposition for Subtyping). If Ψ; Θ; ∆,Φ1 ⊢p τ <∶nf τ ′ ∶

K ⇒ Φ and Θ; ∆ ⊧ (Φ2 → Φ1)∧Φ then there exists Φ′ such that Ψ; Θ; ∆,Φ2 ⊢p τ <∶nf τ ′ ∶K ⇒ Φ′

and Θ; ∆ ⊧ Φ′.

Theorem 8.14 (Reflexivity of Algorithmic Subtyping for Neutral Forms). If Ψ; Θ; ∆ ⊢p τ ∶

K and τ ne, then Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

Theorem 8.15 (Reflexivity of Algorithmic Subtyping for Normal Forms). If Ψ; Θ; ∆ ⊢p τ ∶

K and τ nf, then Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

Theorem 8.17 (Transitivity of Algorithmic Subtyping for Normal Forms). If Ψ; Θ; ∆ ⊢p

τ1 <∶nf τ2 ∶ K ⇒ Φ1 and Ψ; Θ; ∆ ⊢p τ2 <∶nf τ3 ∶ K ⇒ Φ2 with Θ; ∆ ⊧ Φ1 ∧ Φ2, then Ψ; Θ; ∆ ⊢

τ1 <∶nf τ3 ∶K ⇒ Φ such that Θ; ∆ ⊧ Φ.

Theorem A.32 (Index Substitution for Algorithmic Sort Checking). If Θ, i ∶ S; ∆ ⊢p J ∶

S′ ⇒ Φ1 and Θ; ∆ ⊢p I ∶ S ⇒ Φ2 with Θ, i ∶ S; ∆ ⊧ Φ1 and Θ; ∆ ⊧ Φ2, then Θ; ∆ ⊢p J[I/i] ∶ S′ ⇒

Φ for some Θ; ∆ ⊧ Φ

Proof. By Theorem 8.2, Θ, i ∶ S; ∆ ⊢p J ∶ S′ and Θ; ∆ ⊢p I ∶ S. By Theorem A.7, Θ; ∆ ⊢p

J[I/i] ∶ S′. By Theorem 8.10, Θ; ∆ ⊢p J[I/i] ∶ S′ ⇒ Φ′ for some Φ′ such that Θ; ∆ ⊧ Φ′. �

Theorem A.33 (Index Substitution for Algorithmic Constraint Well-Formedness). If Θ, i ∶

S; ∆ ⊢p Φ wf ⇒ Φ1 and Θ; ∆ ⊢p I ∶ S ⇒ Φ2 with Θ, i ∶ S; ∆ ⊧ Φ1 and Θ; ∆ ⊧ Φ2, then

Θ; ∆ ⊢p Φ[I/i] wf⇒ Φ′ for some Θ; ∆ ⊧ Φ′

Proof. By Theorem 8.3, Θ, i ∶ S; ∆ ⊢p Φ wf. By Theorem 8.2, Θ; ∆ ⊢p I ∶ S. By Theo-

rem A.9, Θ; ∆ ⊢p Φ[I/i] wf. By Theorem 8.12, Θ; ∆ ⊢p Φ[I/i] wf⇒ Φ′ for some Θ; ∆ ⊧ Φ′ �
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Theorem A.34 (Index Substitution for Algorithmic Type Formation). If Ψ; Θ, i ∶ S; ∆ ⊢p

τ ∶K ⇒ Φ1 and Θ; ∆ ⊢p I ∶ S ⇒ Φ2 with Θ, i ∶ S; ∆ ⊧ Φ1 and Θ; ∆ ⊧ Φ2, then Ψ; Θ; ∆ ⊢p τ[I/i] ∶

K ⇒ Φ for some Θ; ∆ ⊧ Φ

Proof. By Theorem 8.4, Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ K. By Theorem 8.2, Θ; ∆ ⊢p I ∶ S. By

Theorem 5.4, Ψ; Θ; ∆ ⊢p τ[I/i] ∶ K. Finally, by Theorem 8.13, Ψ; Θ; ∆ ⊢p τ[I/i] ∶ K ⇒ Φ for

some Θ; ∆ ⊧ Φ �

Theorem 8.19 (Admissibility of Normal Form Subtyping Substitution). Suppose the fol-

lowing:

● Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶nf τ2 ∶K ⇒ Φ with Θ; ∆ ⊧ Φ and Θ ⊢∆ wf.

● Θ; ∆ ⊢p I ∶ S ⇒ Φ1 with Θ; ∆ ⊧ Φ1

● Θ; ∆ ⊢p J ∶ S ⇒ Φ2 with Θ; ∆ ⊧ Φ2

● Θ; ∆ ⊧ I = J

Then, Ψ; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶K ⇒ Φ′ for some Φ′ with Θ; ∆ ⊧ Φ′.

Theorem 8.20 (Type Family Application Commutes with Evaluation). If Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf

eval(τ2) ∶ S → K ⇒ Φ and Θ; ∆ ⊧ Φ ∧ I = J with Θ; ∆ ⊢p I ∶ S and Θ; ∆ ⊢p J ∶ S then

Ψ; Θ; ∆ ⊢p eval(τ1 I) <∶nf eval(τ2 J) ∶K ⇒ Φ′ for some Θ; ∆ ⊧ Φ′.

Proof. By inversion on Ψ; Θ; ∆ ⊢ eval(τ1) <∶nf eval(τ2) ∶ S →K ⇒ Φ.

● For the first case, suppose the derivation was Ψ; Θ; ∆ ⊢ λi ∶ S.τ ′1 <∶nf τ ′2 ∶ S → K ⇒ Φ

from Ψ; Θ, i ∶ S; ∆ ⊢ τ ′1 <∶nf τ ′2 ∶ K ⇒ Φ′. By Theorem 8.19, Ψ; Θ; ∆ ⊢p τ ′1[I/i] <∶nf

τ ′2[J/i] ∶ K ⇒ Φ′, for some Θ; ∆ ⊧ Φ′. But eval(τ1 I) = τ ′1[I/i] and eval(τ2 J) =

τ ′2[J/i].

● Now, suppose the derivation was Ψ; Θ; ∆ ⊢ τ ′1 L1 <∶nf τ ′2 L2 ∶ S → K ⇒ Φ ∧ (L1 = L2),

where eval(τ1) = τ ′1 L1 and eval(τ2) = τ2 L2. These must both be ne, since they are

both applications, and therefore eval(τ1) I = eval(τ1 I) and eval(τ2) J = eval(τ2 J),

as required.

�

Theorem 8.21 (Completeness of Algorithmic Subtyping). If Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ K then

Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K ⇒ Φ and Θ; ∆ ⊧ Φ.
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Theorem 8.22 (Admissibility of Algorithmic Weakening).

(1) If Ψ; Θ; ∆; Ω; Γ ⊢p e ↓ τ ⇒ Φ,Γ′′ with Θ; ∆ ⊧ Φ, then whenever Ψ; Θ; ∆ ⊢p Γ′ ⊑ Γ and

Ψ; Θ; ∆ ⊢p Ω′ ⊑ Ω, there are Φ1, e1, Γ1 so that ∣e1∣ = ∣e∣, Θ; ∆ ⊧ Φ1, Ψ; Θ; ∆ ⊢p Γ1 ⊑

Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢p Γ1 ⊑ Γ′′, and Ψ; Θ; ∆; Ω′; Γ′ ⊢p e1 ↓ τ ⇒ Φ1,Γ1.

(2) If Ψ; Θ; ∆; Ω; Γ ⊢p e ↑ τ ⇒ Φ,Γ′′ with Θ; ∆ ⊧ Φ, then whenever Ψ; Θ; ∆ ⊢p Γ′ ⊑ Γ and

Ψ; Θ; ∆ ⊢p Ω′ ⊑ Ω, there are Φ2, e2, Γ2 so that ∣e2∣ = ∣e∣, Θ; ∆ ⊧ Φ2, Ψ; Θ; ∆ ⊢p Γ2 ⊑

Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢p Γ2 ⊑ Γ′′ and Ψ; Θ; ∆; Ω′; Γ′ ⊢p e2 ↑ τ ⇒ Φ2,Γ2.

Theorem 8.23 (Completeness of Type Checking/Inference). If Ψ; Θ; ∆; Ω; Γ ⊢p e ∶ τ , then:

(1) There are e′, Φ′, Γ′ such that ∣e′∣ = e, Θ; ∆ ⊧ Φ′, and Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ ⇒ Φ′,Γ′.

(2) There are e′′, Φ′′, Γ′′ such that ∣e′′∣ = e, Θ; ∆ ⊧ Φ′′, and Ψ; Θ; ∆; Ω; Γ ⊢p e′′ ↑ τ ⇒ Φ′′,Γ′′

5. Proofs

Proof of Theorem A.6

By induction on the derivation of Θ, j ∶ S1; ∆ ⊢ I ∶ S2. The case for I-Var is immediate.

▸ Case 1: I-Plus.

▸ Given:

(1) Θ, j ∶ S1; ∆ ⊢ I1 + I2 ∶ bS

(2) Θ, j ∶ S1; ∆ ⊢ I1 ∶ bS

(3) Θ, j ∶ S1; ∆ ⊢ I2 ∶ bS

(4) Θ ⊢∆ wf

▸ Goal:

Θ; ∆[J/j] ⊢ (I + J)[J/j] ∶ bS

By IH on (2) and (3)

(5) Θ; ∆[J/j] ⊢ I1[J/j] ∶ bS

(6) Θ; ∆[J/j] ⊢ I2[J/j] ∶ bS

By I-Plus

(7) Θ; ∆[J/j] ⊢ I1[J/j] + I2[J/j] ∶ bS

Goal follows by (7).

▸ Case 2: I-Minus.



A 166

▸ Given:

(1) Θ, j ∶ S1; ∆ ⊢ I1 − I2 ∶ bS

(2) Θ, j ∶ S1; ∆ ⊢ I1 ∶ bS

(3) Θ, j ∶ S1; ∆ ⊢ I2 ∶ bS

(4) Θ, j ∶ S1; ∆ ⊧ I1 ≥ I2

(5) Θ ⊢∆ wf

▸ Goal:

Θ; ∆[J/j] ⊢ (I + 1 − I2)[J/j] ∶ bS

By IH on (2) and (3)

(5) Θ; ∆[J/j] ⊢ I1[J/j] ∶ bS

(6) Θ; ∆[J/j] ⊢ I2[J/j] ∶ bS

Instantiating the quantifier in (4) and using (5)

(7) Θ; ∆[J/j] ⊧ I1[J/j] ≥ I2[J/j]

By I-Minus on (5) (6) (7)

(8) Θ; ∆[J/j] ⊢ I1[J/j] − I2[J/j] ∶ bS

Goal follows by (8).

▸ Case 3: I-Times-R+.

▸ Given:

(1) Θ, j ∶ S1; ∆ ⊢ c ⋅ I ∶ R+

(2) Θ, j ∶ S1; ∆ ⊢ I ∶ R+

(3) c ∈ R+

▸ Goal:

Θ; ∆[I/i] ⊢ (c ⋅ I)[J/j] ∶ R+

By IH on (2)

(4) Θ; ∆[J/j] ⊢ I[J/j] ∶ R+

By I-Times-R+ on (3) and (4)

(5) Θ; ∆[J/j] ⊢ c ⋅ I[J/j] ∶ R+

Goal follows by (5)

▸ Case 4: I-Times-R⃗+.
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Identical to I-Times-R+

▸ Case 5: I-Times-N.

Identical to I-Times-R+

▸ Case 6: I-Shift.

▸ Given:

(1) Θ, j ∶ S; ∆ ⊢⊲ I ∶ R⃗+

(2) Θ, j ∶ S; ∆ ⊢ I ∶ R⃗+

▸ Goal:

Θ; ∆[J/j] ⊢ (⊲ I) [J/j] ∶ R⃗+

By IH on (2)

(3) Θ; ∆[J/j] ⊢ I[J/j] ∶ R⃗+

By I-Shift on (3)

(4) Θ; ∆[J/j] ⊢⊲ I[J/j] ∶ R⃗+

Goal follows immediately from (4)

▸ Case 7: I-Lam.

▸ Given:

(1) Θ, j ∶ S1; ∆ ⊢ λi ∶ S2.I ∶ S2 → S3

(2) Θ, j ∶ S1, i ∶ S2; ∆ ⊢ I ∶ S3

▸ Goal:

Θ; ∆[J/j] ⊢ λi ∶ S2.I[J/j] ∶ S2 → S3

By IH on (2)

(3) Θ, i ∶ S2; ∆[J/j] ⊢p I[J/j] ∶ S3

By I-Lam on (3)

(4) Θ; ∆[J/j] ⊢ λi ∶ S2.I[J/j] ∶ S2 → S3

Goal follows immediately by (4)

▸ Case 8: I-App.

▸ Given:

(1) Θ, j ∶ S; ∆ ⊢ I1 I2 ∶ S2
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(2) Θ, j ∶ S; ∆ ⊢ I1 ∶ S1 → S2

(3) Θ, j ∶ S; ∆ ⊢ I2 ∶ S1

▸ Goal:

Θ; ∆[J/j] ⊢ (I1 I2)[J/j] ∶ S2,

By IH on (2) and (3)

(4) Θ; ∆[J/j] ⊢ I1[J/j] ∶ S1 → S2

(5) Θ; ∆[J/j] ⊢ I2[J/j] ∶ S1

By I-App on (4) and (5)

(6) Θ; ∆[J/j] ⊢ I1[J/j] I2[J/j] ∶ S2

Goal follows from (6)

▸ Case 9: I-Const.

▸ Given:

(1) Θ, j ∶ S; ∆ ⊢ const(I) ∶ R⃗+

(2) Θ, j ∶ S; ∆ ⊢ I ∶ R+

▸ Goal:

Θ; ∆[J/j] ⊢ const(I)[J/j] ∶ R⃗+

By IH on (2)

(3) Θ; ∆[J/j] ⊢ I[J/j] ∶ R+

By I-Const on (3)

(4) Θ; ∆[J/j] ⊢ const(I[J/j]) ∶ R⃗+

Goal follows from (4)

▸ Case 10: I-N-Lit.

Immediate.

▸ Case 11: I-R+-Lit.

Immediate.

▸ Case 12: I-R⃗+-Lit.

Immediate.

�

Proof of Theorem A.8
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▸ Given:

(1) Θ, i ∶ S; ∆ ⊢ Φwf

(2) Θ; ∆ ⊢ I ∶ S

▸ Goal:

Θ; ∆[I/i] ⊢p Φ[I/i]wf

▸ Case 1: C-Top.

Immediate.

▸ Case 2: C-Bot.

Immediate.

▸ Case 3: C-Conj.

▸ Given:

(1) Θ, i ∶ S; ∆ ⊢ Φ1 ∧Φ2 wf

(3) Θ, i ∶ S; ∆ ⊢ Φ1 wf

(4) Θ, i ∶ S; ∆ ⊢ Φ2 wf

▸ Goal:

Θ; ∆ ⊢p (Φ1 ∧Φ2)[I/i]wf

By IH on (3) and (4)

(5) Θ; ∆[I/i] ⊢ Φ1[I/i]wf

(6) Θ; ∆[I/i] ⊢ Φ2[I/i]wf

The result follows by C-Conj on (5) and (6)

▸ Case 4: C-Disj.

▸ Given:

(1) Θ, i ∶ S; ∆ ⊢ Φ1 ∨Φ2 wf

(3) Θ, i ∶ S; ∆ ⊢ Φ1 wf

(4) Θ, i ∶ S; ∆ ⊢ Φ2 wf

▸ Goal:

Θ; ∆ ⊢p (Φ1 ∨Φ2)[I/i]wf

By IH on (3) and (4)

(5) Θ; ∆[I/i] ⊢ Φ1[I/i]wf
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(6) Θ; ∆[I/i] ⊢ Φ2[I/i]wf

The result follows by C-Disj on (5) and (6)

▸ Case 5: C-Impl.

▸ Given:

(1) Θ, i ∶ S; ∆ ⊢ Φ1 → Φ2 wf

(3) Θ, i ∶ S; ∆ ⊢ Φ1 wf

(4) Θ, i ∶ S; ∆,Φ1 ⊢ Φ2 wf

▸ Goal:

Θ; ∆[I/i] ⊢ (Φ1 ∨Φ2)[I/i]wf

By IH on (3) and (4)

(5) Θ; ∆[I/i] ⊢ Φ1[I/i]wf

(6) Θ; ∆[I/i],Φ1[I/i] ⊢ Φ2[I/i]wf

By C-Impl on (5) and (6)

(7) Θ; ∆[I/i] ⊢ Φ1[I/i] → Φ2[I/i]wf

The result follows by C-Disj on (5) and (6)

▸ Case 6: C-Forall.

▸ Given:

(1) Θ, i ∶ S; ∆ ⊢ ∀j ∶ S′.Φwf

(3) Θ, i ∶ S, j ∶ S′; ∆ ⊢ Φwf

▸ Goal:

Θ; ∆[I/i] ⊢ (∀j ∶ S′.Φ)[I/i]

By IH on (3)

(4) Θ, j ∶ S′; ∆[I/i] ⊢ Φ[I/i]wf

By C-Forall on (4)

(5) Θ; ∆[I/i] ⊢ ∀j ∶ S′.Φ[I/i]wf

The goal follows by (5)

▸ Case 6: C-Exists.

▸ Given:

(1) Θ, i ∶ S; ∆ ⊢ ∃j ∶ S′.Φwf
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(3) Θ, i ∶ S, j ∶ S′; ∆ ⊢ Φwf

▸ Goal:

Θ; ∆[I/i] ⊢ (∃j ∶ S′.Φ)[I/i]

By IH on (3)

(4) Θ, j ∶ S′; ∆[I/i] ⊢ Φ[I/i]wf

By C-Exists on (4)

(5) Θ; ∆[I/i] ⊢ ∃j ∶ S′.Φ[I/i]wf

The goal follows by (5)

▸ Case 7: C-Eq.

Immediate by Theorem A.6.

▸ Case 8: C-Leq.

Immediate by Theorem A.6.

▸ Case 9: C-Lt.

Immediate by Theorem A.6.

�

Proof of Theorem 5.4:

By induction on Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶K

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶K

(2) Θ; ∆ ⊢p I ∶ S

▸ Goal:

Ψ; Θ; ∆ ⊢p τ[I/i] ∶K

▸ Case 1: K-Var.

Immediate.

▸ Case 2: K-Unit.

Immediate.

▸ Case 3: K-Arr.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ⊸ τ2 ∶ ⋆
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(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ∶ ⋆

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1[I/i] ⊸ τ2[I/i] ∶ ⋆

By IH on (3) and (4)

(5) Ψ; Θ; ∆ ⊢p τ1[I/i] ∶ ⋆

(6) Ψ; Θ; ∆ ⊢p τ2[I/i] ∶ ⋆

Goal follows by K-Arr on (5) and (6)

▸ Case 4: K-Tensor.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ⊗ τ2 ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ∶ ⋆

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1[I/i] ⊗ τ2[I/i] ∶ ⋆

By IH on (3) and (4)

(5) Ψ; Θ; ∆ ⊢p τ1[I/i] ∶ ⋆

(6) Ψ; Θ; ∆ ⊢p τ2[I/i] ∶ ⋆

Goal follows by K-Tensor on (5) and (6)

▸ Case 5: K-With.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p τ1&τ2 ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ∶ ⋆

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1[I/i]&τ2[I/i] ∶ ⋆
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By IH on (3) and (4)

(5) Ψ; Θ; ∆ ⊢p τ1[I/i] ∶ ⋆

(6) Ψ; Θ; ∆ ⊢p τ2[I/i] ∶ ⋆

Goal follows by K-With on (5) and (6)

▸ Case 6: K-Sum.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ⊕ τ2 ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ∶ ⋆

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1[I/i] ⊕ τ2[I/i] ∶ ⋆

By IH on (3) and (4)

(5) Ψ; Θ; ∆ ⊢p τ1[I/i] ∶ ⋆

(6) Ψ; Θ; ∆ ⊢p τ2[I/i] ∶ ⋆

Goal follows by K-Sum on (5) and (6)

▸ Case 7: K-Bang.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p!τ ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p!τ[I/i] ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢p τ[I/i] ∶ ⋆

Goal follows by K-Bang on (5)

▸ Case 8: K-IForall.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p ∀j ∶ S′.τ ∶ ⋆
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(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S, j ∶ S′; ∆ ⊢p τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p ∀j ∶ S′.τ[I/i] ∶ ⋆

By IH on (3)

(4) Ψ; Θ, j ∶ S′; ∆ ⊢p τ[I/i] ∶ ⋆

Goal follows by K-IForall on (4)

▸ Case 9: K-IExists.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p ∃j ∶ S′.τ ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S, j ∶ S′; ∆ ⊢p τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p ∃j ∶ S′.τ[I/i] ∶ ⋆

By IH on (3)

(4) Ψ; Θ, j ∶ S′; ∆ ⊢p τ[I/i] ∶ ⋆

Goal follows by K-IExists on (4)

▸ Case 10: K-TForall.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p ∀α ∶K.τ ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ, α ∶K; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p ∀α ∶K.τ[I/i] ∶ ⋆

By IH on (3)

(4) Ψ, α ∶K; Θ; ∆ ⊢p τ[I/i] ∶ ⋆

Goal follows by K-TForall on (4)

▸ Case 11: K-List.
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▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p LJτ ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

(4) Θ, i ∶ S; ∆ ⊢p J ∶ N

▸ Goal:

Ψ; Θ; ∆ ⊢p LJ[I/i] (τ[I/i]) ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢p τ[I/i] ∶ ⋆

By Theorem A.7 on (4)

(6) Θ; ∆ ⊢p J[I/i] ∶ N

Goal follows by K-List on (5) and (6)

▸ Case 12: K-Impl.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p Φ Ô⇒ τ ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

(4) Θ, i ∶ S; ∆ ⊢p Φ wf

▸ Goal:

Ψ; Θ; ∆ ⊢p Φ[I/i] Ô⇒ τ[I/i] ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢p τ[I/i] ∶ ⋆

By Theorem A.9 on (4)

(6) Θ; ∆ ⊢p Φ[I/i] wf

Goal follows by K-Impl on (5) and (6)

▸ Case 13: K-Conj.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p Φ&τ ∶ ⋆
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(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

(4) Θ, i ∶ S; ∆ ⊢p Φ wf

▸ Goal:

Ψ; Θ; ∆ ⊢p Φ[I/i]&τ[I/i] ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢p τ[I/i] ∶ ⋆

By Theorem A.9 on (4)

(6) Θ; ∆ ⊢p Φ[I/i] wf

Goal follows by K-Conj on (5) and (6)

▸ Case 14: K-Monad.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p M (J, p⃗) τ ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

(4) Θ, i ∶ S; ∆ ⊢p J ∶ N

(5) Θ, i ∶ S; ∆ ⊢p p⃗ ∶ R⃗+

▸ Goal:

Ψ; Θ; ∆ ⊢p M (J[I/i], p⃗[I/i]) (τ[I/i]) ∶ ⋆

By IH on (3)

(6) Ψ; Θ; ∆ ⊢p τ[I/i] ∶ ⋆

By Theorem A.7 on (4) and (5)

(7) Θ; ∆ ⊢p J[I/i] ∶ N

(8) Θ; ∆ ⊢p p⃗[I/i] ∶ R⃗+

Goal follows by K-Monad on (6), (7), and (8)

▸ Case 15: K-Pot.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p [J ∣p⃗] τ ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S
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(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

(4) Θ, i ∶ S; ∆ ⊢p J ∶ N

(5) Θ, i ∶ S; ∆ ⊢p p⃗ ∶ R⃗+

▸ Goal:

Ψ; Θ; ∆ ⊢p [J[I/i]∣p⃗[I/i]] (τ[I/i]) ∶ ⋆

By IH on (3)

(6) Ψ; Θ; ∆ ⊢p τ[I/i] ∶ ⋆

By Theorem A.7 on (4) and (5)

(7) Θ; ∆ ⊢p J[I/i] ∶ N

(8) Θ; ∆ ⊢p p⃗[I/i] ∶ R⃗+

Goal follows by K-Pot on (6), (7), and (8)

▸ Case 16: K-ConstPot.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p [J] τ ∶ ⋆

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

(4) Θ, i ∶ S; ∆ ⊢p J ∶ R

▸ Goal:

Ψ; Θ; ∆ ⊢p [J[I/i]] (τ[I/i]) ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢p τ[I/i] ∶ ⋆

By Theorem A.7 on (4)

(6) Θ; ∆ ⊢p J[I/i] ∶ N

Goal follows by K-ConstPot on (5) and (6)

▸ Case 17: K-FamLam.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p λj ∶ S′.τ ∶ S′ →K

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S, j ∶ S′ ⊢p τ ∶K
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▸ Goal:

Ψ; Θ; ∆ ⊢p λj ∶ S′.τ[I/i] ∶ S′ →K

By IH on (3)

(4) Ψ; Θ, j ∶ S′ ⊢p τ[I/i] ∶K

Goal follows by K-FamLam on (4)

▸ Case 18: K-FamApp.

▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p τ J ∶K

(2) Θ; ∆ ⊢p I ∶ S

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ S′ →K

(4) Θ, i ∶ S; ∆ ⊢p J ∶ S′

▸ Goal:

Ψ; Θ; ∆ ⊢p (τ[I/i]) (J[I/i]) ∶K

By IH on (3)

(5) Ψ; Θ; ∆ ⊢p τ[I/i] ∶ S′ →K

By Theorem A.7 on (4)

(6) Θ; ∆ ⊢p J[I/i] ∶ S′

Goal follows by K-FamApp on (5) and (6)

�

Proof of Theorem 7.3

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ ∶K

▸ Goal 1:

Ψ; Θ; ∆ ⊢p eval(τ) ∶K

▸ Goal 2:

Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶K

▸ Goal 3:

eval(τ) nf

By induction on the derivation of Ψ; Θ; ∆ ⊢ τ ∶K
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▸ Case 1: K-Var.

Immediate.

▸ Case 2: K-Unit.

Immediate.

▸ Case 3: K-Arr.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊸ τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢p τ2 ∶ ⋆

▸ Goal 1:

Ψ; Θ; ∆ ⊢p eval(τ1) ⊸ eval(τ1) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p τ1 ⊸ τ2 ≡ eval(τ1) ⊸ eval(τ1) ∶ ⋆

▸ Goal 3:

eval(τ1) ⊸ eval(τ1) nf

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ1) ∶ ⋆

(5) Ψ; Θ; ∆ ⊢p τ1 ≡ eval(τ1) ∶ ⋆

(6) eval(τ1) nf

By IH on (3)

(7) Ψ; Θ; ∆ ⊢p eval(τ2) ∶ ⋆

(8) Ψ; Θ; ∆ ⊢p τ2 ≡ eval(τ2) ∶ ⋆

(9) eval(τ2) nf

Goal 1 follows by K-Arr on (4) and (7)

Goal 2 follows by S-Arr twice on (5) and (8)

Goal 3 follows from (6) and (9)

▸ Case 4: K-Tensor.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊗ τ2 ∶ ⋆
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(2) Ψ; Θ; ∆ ⊢p τ1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢p τ2 ∶ ⋆

▸ Goal 1:

Ψ; Θ; ∆ ⊢p eval(τ1) ⊗ eval(τ1) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p τ1 ⊗ τ2 ≡ eval(τ1) ⊗ eval(τ1) ∶ ⋆

▸ Goal 3:

eval(τ1) ⊗ eval(τ1) nf

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ1) ∶ ⋆

(5) Ψ; Θ; ∆ ⊢p τ1 ≡ eval(τ1) ∶ ⋆

(6) eval(τ1) nf

By IH on (3)

(7) Ψ; Θ; ∆ ⊢p eval(τ2) ∶ ⋆

(8) Ψ; Θ; ∆ ⊢p τ2 ≡ eval(τ2) ∶ ⋆

(9) eval(τ2) nf

Goal 1 follows by K-Tensor on (4) and (7)

Goal 2 follows by S-Tensor twice on (5) and (8)

Goal 3 follows from (6) and (9)

▸ Case 5: K-With.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1&τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢p τ2 ∶ ⋆

▸ Goal 1:

Ψ; Θ; ∆ ⊢p eval(τ1)&eval(τ1) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p τ1&τ2 ≡ eval(τ1)&eval(τ1) ∶ ⋆

▸ Goal 3:

eval(τ1)&eval(τ1) nf
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By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ1) ∶ ⋆

(5) Ψ; Θ; ∆ ⊢p τ1 ≡ eval(τ1) ∶ ⋆

(6) eval(τ1) nf

By IH on (3)

(7) Ψ; Θ; ∆ ⊢p eval(τ2) ∶ ⋆

(8) Ψ; Θ; ∆ ⊢p τ2 ≡ eval(τ2) ∶ ⋆

(9) eval(τ2) nf

Goal 1 follows by K-With on (4) and (7)

Goal 2 follows by S-With twice on (5) and (8)

Goal 3 follows from (6) and (9)

▸ Case 6: K-Sum.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊕ τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢p τ2 ∶ ⋆

▸ Goal 1:

Ψ; Θ; ∆ ⊢p eval(τ1) ⊕ eval(τ1) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p τ1 ⊕ τ2 ≡ eval(τ1) ⊕ eval(τ1) ∶ ⋆

▸ Goal 3:

eval(τ1) ⊕ eval(τ1) nf

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ1) ∶ ⋆

(5) Ψ; Θ; ∆ ⊢p τ1 ≡ eval(τ1) ∶ ⋆

(6) eval(τ1) nf

By IH on (3)

(7) Ψ; Θ; ∆ ⊢p eval(τ2) ∶ ⋆

(8) Ψ; Θ; ∆ ⊢p τ2 ≡ eval(τ2) ∶ ⋆

(9) eval(τ2) nf
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Goal 1 follows by K-Sum on (4) and (7)

Goal 2 follows by S-Sum twice on (5) and (8)

Goal 3 follows from (6) and (9)

▸ Case 7: K-Bang.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p!τ ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ⋆

▸ Goal 1:

Ψ; Θ; ∆ ⊢p!eval(τ) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p!τ ≡!eval(τ) ∶ ⋆

▸ Goal 3:

!eval(τ) nf

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ) ∶ ⋆

(5) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(6) eval(τ) nf

Goal 1 follows by K-Bang on (4)

Goal 2 follows by S-Sum on (5)

Goal 3 follows from (6)

▸ Case 8: K-IForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p ∀i ∶ S.τ ∶ ⋆

(2) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

▸ Goal 1:

Ψ; Θ; ∆ ⊢p ∀i ∶ S.eval(τ) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p ∀i ∶ S.τ ≡ ∀i ∶ S.eval(τ) ∶ ⋆

▸ Goal 3:
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∀i ∶ S.eval(τ) nf

By IH on (2)

(3) Ψ; Θ, i ∶ S; ∆ ⊢p eval(τ) ∶ ⋆

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(5) eval(τ) nf

Goal 1 follows by K-IForall on (3)

Goal 2 follows by S-IForall on (4)

Goal 3 is immediate from (5)

▸ Case 9: K-IExists.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p ∃i ∶ S.τ ∶ ⋆

(2) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶ ⋆

▸ Goal 1:

Ψ; Θ; ∆ ⊢p ∃i ∶ S.eval(τ) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p ∃i ∶ S.τ ≡ ∃i ∶ S.eval(τ) ∶ ⋆

▸ Goal 3:

∃i ∶ S.eval(τ) nf

By IH on (2)

(3) Ψ; Θ, i ∶ S; ∆ ⊢p eval(τ) ∶ ⋆

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(5) eval(τ) nf

Goal 1 follows by K-IExists on (3)

Goal 2 follows by S-IExists on (4)

Goal 3 is immediate from (5)

▸ Case 10: K-TForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p ∀α ∶K.τ ∶ ⋆

(2) Ψ, α ∶K; Θ; ∆ ⊢p τ ∶ ⋆

▸ Goal 1:
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Ψ; Θ; ∆ ⊢p ∀α ∶K.eval(τ) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p ∀α ∶K.τ ≡ ∀α ∶K.eval(τ) ∶ ⋆

▸ Goal 3:

∀α ∶K.eval(τ) nf

By IH on (2)

(3) Ψ, α ∶K; Θ; ∆ ⊢p eval(τ) ∶ ⋆

(4) Ψ, α ∶K; Θ; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(5) eval(τ) nf

Goal 1 follows by K-TForall on (3)

Goal 2 follows by S-TForall on (4)

Goal 3 is immediate from (5)

▸ Case 11: K-List.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p LIτ ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ ∶ ⋆

(3) Θ; ∆ ⊢p I ∶ N

▸ Goal 1:

Ψ; Θ; ∆ ⊢p LI (eval(τ)) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p LIτ ≡ LI (eval(τ)) ∶ ⋆

▸ Goal 3:

LI (eval(τ)) nf

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ) ∶ ⋆

(5) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(6) eval(τ) nf

Goal 1 follows by K-List on (4) and (3)

Goal 2 follows by S-List on (5), and the fact that Θ; ∆ ⊧ I = I

Goal 3 is immediate from (6)
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▸ Case 11: K-Conj.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p Φ&τ ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ ∶ ⋆

(3) Θ; ∆ ⊢p Φwf

▸ Goal 1:

Ψ; Θ; ∆ ⊢p Φ&eval(τ) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p Φ&τ ≡ Φ&eval(τ) ∶ ⋆

▸ Goal 3:

Φ&eval(τ) nf

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ) ∶ ⋆

(5) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(6) eval(τ) nf

Goal 1 follows by K-Conj from (4) and (3)

Goal 2 follows by S-Conj from (5) and the fact that Θ; ∆ ⊧ Φ→ Φ

Goal 3 follows from (6)

▸ Case 12: K-Impl.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p Φ Ô⇒ τ ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ ∶ ⋆

(3) Θ; ∆ ⊢p Φwf

▸ Goal 1:

Ψ; Θ; ∆ ⊢p Φ Ô⇒ eval(τ) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p Φ Ô⇒ τ ≡ Φ Ô⇒ eval(τ) ∶ ⋆

▸ Goal 3:

Φ&eval(τ) nf
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By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ) ∶ ⋆

(5) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(6) eval(τ) nf

Goal 1 follows by K-Impl from (4) and (3)

Goal 2 follows by S-Impl from (5) and the fact that Θ; ∆ ⊧ Φ→ Φ

Goal 3 follows from (6)

▸ Case 13: K-Monad.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p M (I, p⃗) τ ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ ∶ ⋆

(3) Θ; ∆ ⊢p I ∶ N

(4) Θ; ∆ ⊢p p⃗ ∶ R⃗+

▸ Goal 1:

Ψ; Θ; ∆ ⊢p M (I, p⃗)eval(τ) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p M (I, p⃗) τ ≡M (I, p⃗)eval(τ) ∶ ⋆

▸ Goal 3:

M (I, p⃗)eval(τ) nf

By IH on (2)

(5) Ψ; Θ; ∆ ⊢p eval(τ) ∶ ⋆

(6) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(7) eval(τ) nf

Goal 1 follows by K-Monad on (5), (3), (5)

Goal 2 follows by S-Monad on (6) and the fact that Θ; ∆ ⊧ I = I ∧ p⃗ ≤ p⃗

Goal 3 follows from (7)

▸ Case 14: K-Pot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p [I ∣p⃗] τ ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ ∶ ⋆
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(3) Θ; ∆ ⊢p I ∶ N

(4) Θ; ∆ ⊢p p⃗ ∶ R⃗+

▸ Goal 1:

Ψ; Θ; ∆ ⊢p [I ∣p⃗]eval(τ) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p [I ∣p⃗] τ ≡ [I ∣p⃗]eval(τ) ∶ ⋆

▸ Goal 3:

[I ∣p⃗]eval(τ) nf

By IH on (2)

(5) Ψ; Θ; ∆ ⊢p eval(τ) ∶ ⋆

(6) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(7) eval(τ) nf

Goal 1 follows by K-Pot on (5), (3), (4)

Goal 2 follows by S-Pot on (6) and the fact that Θ; ∆ ⊧ I = I ∧ p⃗ ≤ p⃗

Goal 3 follows from (7)

▸ Case 15: K-ConstPot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p [I] τ ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ ∶ ⋆

(3) Θ; ∆ ⊢p I ∶ R

▸ Goal 1:

Ψ; Θ; ∆ ⊢p [I]eval(τ) ∶ ⋆

▸ Goal 2:

Ψ; Θ; ∆ ⊢p [I] τ ≡ [I]eval(τ) ∶ ⋆

▸ Goal 3:

[I]eval(τ) nf

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ) ∶ ⋆

(5) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶ ⋆

(6) eval(τ) nf
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Goal 1 follows by K-ConstPot on (4), (3)

Goal 2 follows by S-Pot on (5) and the fact that Θ; ∆ ⊧ I = I ∧ p⃗ ≤ p⃗

Goal 3 follows from (6)

▸ Case 15: K-FamLam.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p λi ∶ S.τ ∶ S →K

(2) Ψ; Θ, i ∶ S; ∆ ⊢p τ ∶K

▸ Goal 1:

Ψ; Θ; ∆ ⊢p λi ∶ S.eval(τ) ∶ S →K

▸ Goal 2:

Ψ; Θ; ∆ ⊢p λi ∶ S.τ ≡ λi ∶ S.eval(τ) ∶ S →K

▸ Goal 3:

λi ∶ S.eval(τ) nf

By IH on (2)

(3) Ψ; Θ, i ∶ S; ∆ ⊢p eval(τ) ∶K

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ ≡ eval(τ) ∶K

(5) eval(τ) nf

Goal 1 follows from K-FamLam on (3)

Goal 2 follows from S-FamLam on (4)

Goal 3 follows from (5)

▸ Case 15: K-FamApp.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ I ∶K

(2) Ψ; Θ; ∆ ⊢p τ ∶ S →K

(3) Θ; ∆ ⊢p I ∶ S

▸ Goal 1:

Ψ; Θ; ∆ ⊢p eval(τ I) ∶K

▸ Goal 2:

Ψ; Θ; ∆ ⊢p τ I ≡ eval(τ I) ∶K

▸ Goal 3:
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eval(τ I) nf

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p eval(τ) ∶ S →K

(5) Ψ; Θ; ∆ ⊢p τ ≡ eval(τ) ∶ S →K

(6) eval(τ) nf

By Theorem 7.2 on (4), there are two possibilities for eval(τ).

▸ Subcase 1: eval(τ)ne.

Here, eval(τ I) = eval(τ) I

Goal 1 follows from T-FamApp on (4) and (3)

Goal 2 follows from S-FamApp on (5) and (3) with Θ; Θ ⊧ I = I

Goal 3 follows from the fact that eval(τ)ne

▸ Subcase 2: eval(τ) = λi ∶ S.τ ′ and τ ′ nf.

In this case, eval(τ I) = τ ′[I/i]

From Theorem 7.2

(8) τ ′ nf

We also know from (4) that

(9) Ψ; Θ; ∆ ⊢p λi ∶ S.τ ′ ∶ S →K

Inverting (9)

(10) Ψ; Θ, i ∶ S; ∆ ⊢p τ ′ ∶K

Goal 1 follows from Theorem A.7 on (10) and (3)

By S-FamApp on (5)

(11) Ψ; Θ; ∆ ⊢p τ I ≡ (λi ∶ S.τ ′) I ∶K

By S-FamBeta{1,2}

(12) Ψ; Θ; ∆ ⊢p (λi ∶ S.τ ′) I ≡ τ ′[I/i] ∶K

Goal 2 follows from applying S-Trans to (11) and (12)

Goal 3 follows from applying Theorem 7.1 to (8)

�

Proof of Theorem A.17

▸ Given:
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(1) Θ; ∆ ⊢ I ∶ S ⇒ Φ

(2) Θ; ∆ ⊧ Φ

▸ Goal:

Θ; ∆ ⊢ I ∶ S

▸ Case 1: AI-Var.

Immediate.

▸ Case 2: AI-Plus.

▸ Given:

(1) Θ; ∆ ⊢ I + J ∶ bS ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Θ; ∆ ⊢ I ∶ bS ⇒ Φ1

(4) Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

▸ Goal:

Θ; ∆ ⊢ I + J ∶ bS

By IH on (3), since by (2) Θ; ∆ ⊧ Φ1

(5) Θ; ∆ ⊢ I ∶ bS

By IH on (4), since by (2) Θ; ∆ ⊧ Φ2

(6) Θ; ∆ ⊢ J ∶ bS

Goal follows by I-Plus

▸ Case 3: AI-Minus.

▸ Given:

(1) Θ; ∆ ⊢ I − J ∶ bS ⇒ Φ1 ∧Φ2 ∧ (I ≥ J)

(2) Θ; ∆ ⊧ Φ1 ∧Φ2 ∧ (I ≥ J)

(3) Θ; ∆ ⊢ I ∶ bS ⇒ Φ1

(4) Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

▸ Goal:

Θ; ∆ ⊢ I − J ∶ bS

By IH on (3), since by (2) Θ; ∆ ⊧ Φ1

(5) Θ; ∆ ⊢ I ∶ bS
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By IH on (4), since by (2) Θ; ∆ ⊧ Φ2

(6) Θ; ∆ ⊢ J ∶ bS

Goal follows by I-Plus, using the fact that Θ; ∆ ⊧ I ≥ J from (2)

▸ Case 4: AI-Times-*.

Immediate by IH.

▸ Case 5: AI-Shift.

▸ Given:

(1) Θ; ∆ ⊢⊲ I ∶ R⃗+ ⇒ Φ

(2) Θ; ∆ ⊧ Φ

(3) Θ; ∆ ⊢ I ∶ R⃗+ ⇒ Φ

▸ Goal:

Θ; ∆ ⊢⊲ I ∶ R⃗+

By IH on (3)

(4) Θ; ∆ ⊢ I ∶ R⃗+

Goal follows by I-Shift on (4)

▸ Case 6: AI-Lam.

▸ Given:

(1) Θ; ∆ ⊢ λi ∶ S.I ∶ S → S′ ⇒ ∀i ∶ S.Φ

(2) Θ; ∆ ⊧ ∀i ∶ S.Φ

(3) Θ, i ∶ S; ∆ ⊢ I ∶ S′ ⇒ Φ

▸ Goal:

Θ; ∆ ⊢ λi ∶ S.I ∶ S → S′

Equivalently to (2)

(4) Θ, i ∶ S; ∆ ⊧ Φ

By IH on (3) with (4)

(5) Θ, i ∶ S; ∆ ⊢ I ∶ S′

Goal follows by I-Lam on (5)

▸ Case 7: AI-App.
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▸ Given:

(1) Θ; ∆ ⊢ I J ∶ S′ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Θ; ∆ ⊢ I ∶ S → S′ ⇒ Φ1

(4) Θ; ∆ ⊢ J ∶ S ⇒ Φ2

▸ Goal:

Θ; ∆ ⊢ I J ∶ S′

By IH on (3)

(5) Θ; ∆ ⊢ I ∶ S → S′

By IH on (4)

(6) Θ; ∆ ⊢ J ∶ S

Goal follows by I-App on (5) and (6)

▸ Case 8: AI-Sum.

▸ Given:

(1) Θ; ∆ ⊢ ∑I1i=I0 J ∶ bS ⇒ Φ1 ∧Φ2 ∧ ∀i ∶ N.(I0 ≤ i ≤ I1 → Φ3)

(2) Θ; ∆ ⊧ Φ1 ∧Φ2 ∧ ∀i ∶ N.(I0 ≤ i ≤ I1 → Φ3)

(3) Θ; ∆ ⊢ I0 ∶ N⇒ Φ1

(4) Θ; ∆ ⊢ I1 ∶ N⇒ Φ2

(5) Θ, i ∶ N; ∆, I0 ≤ i ≤ I1 ⊢ J ∶ bS ⇒ Φ3

▸ Goal:

Θ; ∆ ⊢ ∑I1i=I0 J ∶ bS

From (2)

(6) Θ, i ∶ N; ∆, (I0 ≤ i ≤ I1) ⊧ Φ3

By IH on (5) using (6)

(7) Θ, i ∶ N; ∆, I0 ≤ i ≤ I1 ⊢ J ∶ bS

By IH on (3)

(8) Θ; ∆ ⊢ I0 ∶ N

By IH on (4)

(9) Θ; ∆ ⊢ I1 ∶ N
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Goal follows by I-Sum on (7), (8), (9)

▸ Case 9: AI-*-Lit.

Immediate.

�

Proof of Theorem A.18

▸ Given:

(1) Θ; ∆ ⊢ Φ wf⇒ Φ′

(2) Θ; ∆ ⊧ Φ′

▸ Goal:

Θ; ∆ ⊢ Φ wf

By induction on Θ; ∆ ⊢ Φ wf⇒ Φ′

▸ Case 1: AC-Top.

Immediate.

▸ Case 2: AC-Bot.

Immediate.

▸ Case 3: AC-Conj.

▸ Given:

(1) Θ; ∆ ⊢ Φ1 ∧Φ2 wf⇒ Φ′
1 ∧Φ′

2

(2) Θ; ∆ ⊧ Φ′
1 ∧Φ′

2

(3) Θ; ∆ ⊢ Φ1 wf⇒ Φ′
1

(4) Θ; ∆ ⊢ Φ2 wf⇒ Φ′
2

▸ Goal:

Θ; ∆ ⊢ Φ1 ∧Φ2 wf

By IH on (3)

(5) Θ; ∆ ⊢ Φ1 wf

By IH on (4)

(6) Θ; ∆ ⊢ Φ2 wf

Goal follows by C-Conj on (5) and (6)



A 194

▸ Case 4: AC-Disj.

▸ Given:

(1) Θ; ∆ ⊢ Φ1 ∨Φ2 wf⇒ Φ′
1 ∧Φ′

2

(2) Θ; ∆ ⊧ Φ′
1 ∧Φ′

2

(3) Θ; ∆ ⊢ Φ1 wf⇒ Φ′
1

(4) Θ; ∆ ⊢ Φ2 wf⇒ Φ′
2

▸ Goal:

Θ; ∆ ⊢ Φ1 ∨Φ2 wf

By IH on (3)

(5) Θ; ∆ ⊢ Φ1 wf

By IH on (4)

(6) Θ; ∆ ⊢ Φ2 wf

Goal follows by C-Disj on (5) and (6)

▸ Case 5: AC-Impl.

▸ Given:

(1) Θ; ∆ ⊢ Φ1 → Φ2 wf⇒ Φ′
1 ∧ (Φ1 → Φ′

2)

(2) Θ; ∆ ⊧ Φ′
1 ∧ (Φ1 → Φ′

2)

(3) Θ; ∆ ⊢ Φ1 wf⇒ Φ′
1

(4) Θ; ∆,Φ1 ⊢ Φ2 wf⇒ Φ′
2

▸ Goal:

Θ; ∆ ⊢ Φ1 → Φ2 wf

By IH on (3)

(5) Θ; ∆ ⊢ Φ1 wf

From (2)

(6) Θ; ∆,Φ1 ⊧ Φ′
2

By IH on (4) with (6)

(7) Θ; ∆,Φ1 ⊢ Φ2 wf

Goal follows by C-Impl on (5) and (7)

▸ Case 6: AC-Forall.
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▸ Given:

(1) Θ; ∆ ⊢ ∀i ∶ S.Φ wf⇒ ∀i ∶ S.Φ′

(2) Θ; ∆ ⊧ ∀i ∶ S.Φ′

(3) Θ, i ∶ S; ∆ ⊢ Φ wf⇒ Φ′

▸ Goal:

Θ; ∆ ⊢ ∀i ∶ S.Φ wf

Equivalently to (2)

(4) Θ, i ∶ S; ∆ ⊧ Φ′

By IH on (3) with (4)

(5) Θ, i ∶ S; ∆ ⊢ Φ wf

Goal follows from C-Forall on (5)

▸ Case 7: AC-Exists.

▸ Given:

(1) Θ; ∆ ⊢ ∃i ∶ S.Φ wf⇒ ∀i ∶ S.Φ′

(2) Θ; ∆ ⊧ ∃i ∶ S.Φ′

(3) Θ, i ∶ S; ∆ ⊢ Φ wf⇒ Φ′

▸ Goal:

Θ; ∆ ⊢ ∃i ∶ S.Φ wf

Equivalently to (2)

(4) Θ, i ∶ S; ∆ ⊧ Φ′

By IH on (3) with (4)

(5) Θ, i ∶ S; ∆ ⊢ Φ wf

Goal follows from C-Exists on (5)

▸ Case 8: AC-Eq.

▸ Given:

(1) Θ; ∆ ⊢ I = J wf⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Θ; ∆ ⊢ I ∶ bS ⇒ Φ1
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(4) Θ; ∆ ⊢ J ∶ bS ⇒ Φ2

▸ Goal:

Θ; ∆ ⊢ I = J wf

By Theorem A.17 on (3)

(5) Θ; ∆ ⊢ I ∶ bS

By Theorem A.17 on (4)

(6) Θ; ∆ ⊢ J ∶ bS

Goal follows by C-Eq on (5) and (6)

▸ Case 9: AC-Leq.

Identical to Case 8

▸ Case 10: AC-Lt.

Identical to Case 8

�

Proof of Theorem A.19

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ ∶K ⇒ Φ

(2) Theta; ∆ ⊧ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ tau ∶K

By Induction on Ψ; Θ; ∆ ⊢ τ ∶K ⇒ Φ

▸ Case 1: AK-Var.

Immediate.

▸ Case 2: AK-Unit.

Immediate.

▸ Case 3: AK-Arr.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2
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(3) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1

(4) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

By IH on (4)

(6) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

Goal follows by K-Arr on (5) and (6)

▸ Case 4: AK-Tensor.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1

(4) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

By IH on (4)

(6) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

Goal follows by K-Tensor on (5) and (6)

▸ Case 5: AK-With.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1&τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1

(4) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

▸ Goal:
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Ψ; Θ; ∆ ⊢ τ1&τ2 ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

By IH on (4)

(6) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

Goal follows by K-With on (5) and (6)

▸ Case 6: AK-Sum.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1

(4) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

By IH on (4)

(6) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

Goal follows by K-Sum on (5) and (6)

▸ Case 7: AK-Bang.

▸ Given:

(1) Ψ; Θ; ∆ ⊢!τ ∶ ⋆ ⇒ Φ

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢!τ ∶ ⋆

By IH on (3)

(4) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

Goal follows by K-Bang on (5)
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▸ Case 8: AK-IForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ ∶ ⋆ ⇒ ∀i ∶ S.Φ

(2) Θ; ∆ ⊧ ∀i ∶ S.Φ

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ ∶ ⋆

Equivalently to (2)

(5) Θ, i ∶ S; ∆ ⊧ Φ

By IH on (3) using (5)

(6) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆

Goal follows by K-IForall on (6)

▸ Case 9: AK-IExists.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ ∶ ⋆ ⇒ ∀i ∶ S.Φ

(2) Θ; ∆ ⊧ ∀i ∶ S.Φ

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ ∶ ⋆

Equivalently to (2)

(5) Θ, i ∶ S; ∆ ⊧ Φ

By IH on (3) using (5)

(6) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆

Goal follows by K-IExists on (6)

▸ Case 10: AK-TForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∀α ∶K.τ ∶ ⋆ ⇒ Φ

(2) Θ; ∆ ⊧ Φ

(3) Ψ, α ∶K; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ
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▸ Goal:

Ψ; Θ; ∆ ⊢ ∀α ∶K.τ ∶ ⋆

By IH on (3)

(4) Ψ, α ∶K; Θ; ∆ ⊢ τ ∶ ⋆

Goal follows by K-TForall on (5)

▸ Case 11: AK-List.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ LIτ ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ1

(4) Θ; ∆ ⊢ I ∶ N⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ LIτ ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

By Theorem A.17 on (4)

(6) Θ; ∆ ⊢ I ∶ N

Goal follows by K-List on (5) and (6)

▸ Case 12: AK-Conj.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ Φ&τ ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ1

(4) Θ; ∆ ⊢ Φ wf⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ Φ&τ ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

By Theorem A.18 on (4)
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(6) Θ; ∆ ⊢ Φ wf

Goal follows by K-Conj on (5) and (6)

▸ Case 13: AK-Impl.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ Φ Ô⇒ τ ∶ ⋆ ⇒ Φ1 ∧ (Φ→ Φ2)

(2) Θ; ∆ ⊧ Φ1 ∧ (Φ→ Φ2)

(3) Θ; ∆ ⊢ Φ wf⇒ Φ1

(4) Ψ; Θ; ∆,Φ ⊢ τ ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ Φ Ô⇒ τ ∶ ⋆

By Theorem A.18 on (4)

(5) Θ; ∆ ⊢ Φ wf

From (2)

(6) Θ; ∆,Φ ⊧ Φ2

By IH on (4) with (6)

(7) Ψ; Θ; ∆,Φ ⊢ τ ∶ ⋆

Goal follows by K-Impl on (5) and (7)

▸ Case 14: AK-Monad.

▸ Given:

(1) Ψ; Θ; ∆ ⊢M (I, p⃗) τ ∶ ⋆ ⇒ Φ1 ∧Φ2 ∧Φ3

(2) Θ; ∆ ⊧ Φ1 ∧Φ2 ∧Φ3

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ1

(4) Θ; ∆ ⊢ I ∶ N⇒ Φ2

(5) Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ3

▸ Goal:

Ψ; Θ; ∆ ⊢M (I, p⃗) τ ∶ ⋆

By IH on (3)

(6) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

By Theorem A.17 on (4)
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(7) Θ; ∆ ⊢ I ∶ N

By Theorem A.17 on (5)

(8) Θ; ∆ ⊢ p⃗ ∶ R⃗+

Goal follows by K-Monad on (6), (7), and (8)

▸ Case 15: AK-Pot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ [I ∣p⃗] τ ∶ ⋆ ⇒ Φ1 ∧Φ2 ∧Φ3

(2) Θ; ∆ ⊧ Φ1 ∧Φ2 ∧Φ3

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ1

(4) Θ; ∆ ⊢ I ∶ N⇒ Φ2

(5) Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ3

▸ Goal:

Ψ; Θ; ∆ ⊢ [I ∣p⃗] τ ∶ ⋆

By IH on (3)

(6) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

By Theorem A.17 on (4)

(7) Θ; ∆ ⊢ I ∶ N

By Theorem A.17 on (5)

(8) Θ; ∆ ⊢ p⃗ ∶ R⃗+

Goal follows by K-Pot on (6), (7), and (8)

▸ Case 16: AK-ConstPot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ [I] τ ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ1

(4) Θ; ∆ ⊢ I ∶ R⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ [I] τ ∶ ⋆

By IH on (3)
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(5) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

By Theorem A.17 on (4)

(6) Θ; ∆ ⊢ I ∶ R

Goal follows by K-ConstPot on (5), and (6)

▸ Case 17: AK-FamLam.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ λi ∶ S.τ ∶ S →K ⇒ ∀i ∶ S.Φ

(2) Θ; ∆ ⊧ ∀i ∶ S.Φ

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶K ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ λi ∶ S.τ ∶ S →K

Equivalently to (2)

(4) Θ, i ∶ S; ∆ ⊧ Φ

By IH on (3) with (4)

(5) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶K

Goal follows by K-FamLam on (5)

▸ Case 18: AK-FamApp.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ I ∶K ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ ∶ S →K ⇒ Φ1

(4) Θ; ∆ ⊢ I ∶ S ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ τ I ∶K

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ ∶ S →K

By Theorem A.17 on (4)

(6) Θ; ∆ ⊢ I ∶ S

Goal follows by K-FamApp on (5) and (6)
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�

Proof of Theorem A.20

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶K ⇒ Φ

(2) Θ; ∆ ⊧ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶K

▸ Case 1: AS-Unit.

Immediate.

▸ Case 2: AS-Var.

Immediate.

▸ Case 3: AS-Arr.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 <∶nf τ ′1 ⊸ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ ′1 <∶nf τ1 ∶ ⋆ ⇒ Φ1

(4) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 <∶ τ ′1 ⊸ τ ′2 ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ ′1 <∶ τ1 ∶ ⋆

By IH on (4)

(6) Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆

Goal follows by S-Arr on (5) and (6)

▸ Case 4: AS-Tensor.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 <∶nf τ ′1 ⊗ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2



A 205

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ1

(4) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 <∶ τ ′1 ⊗ τ ′2 ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ ′1 <∶ τ1 ∶ ⋆

By IH on (4)

(6) Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆

Goal follows by S-Tensor on (5) and (6)

▸ Case 5: AS-With.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1&τ2 <∶nf τ ′1&τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ1

(4) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1&τ2 <∶ τ ′1&τ ′2 ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ ′1 <∶ τ1 ∶ ⋆

By IH on (4)

(6) Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆

Goal follows by S-With on (5) and (6)

▸ Case 6: AS-Sum.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 <∶nf τ ′1 ⊕ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ1

(4) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

▸ Goal:
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Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 <∶ τ ′1 ⊕ τ ′2 ∶ ⋆

By IH on (3)

(5) Ψ; Θ; ∆ ⊢ τ ′1 <∶ τ1 ∶ ⋆

By IH on (4)

(6) Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆

Goal follows by S-Sum on (5) and (6)

▸ Case 7: AS-Bang.

▸ Given:

(1) Ψ; Θ; ∆ ⊢!τ1 <∶nf!τ2 ∶ ⋆ ⇒ Φ

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢!τ1 <∶!τ2 ∶ ⋆

By IH on (3)

(4) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

Goal follows by S-Bang on (4)

▸ Case 8: AS-IForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ1 <∶nf ∀i ∶ S.τ2 ∶ ⋆ ⇒ ∀i ∶ S.Φ

(2) Θ; ∆ ⊧ ∀i ∶ S.Φ

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ1 <∶ ∀i ∶ S.τ2 ∶ ⋆

Equivalently to (2)

(4) Θ, i ∶ S; ∆ ⊧ Φ

By IH on (3), using (4)

(5) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

Goal follows by S-IForall on (5)

▸ Case 9: AS-IExists.
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▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ1 <∶nf ∃i ∶ S.τ2 ∶ ⋆ ⇒ ∀i ∶ S.Φ

(2) Θ; ∆ ⊧ ∀i ∶ S.Φ

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ1 <∶ ∃i ∶ S.τ2 ∶ ⋆

Equivalently to (2)

(4) Θ, i ∶ S; ∆ ⊧ Φ

By IH on (3), using (4)

(5) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

Goal follows by S-IExists on (5)

▸ Case 10: AS-TForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∀α ∶K.τ1 <∶nf ∀α ∶K.τ2 ∶ ⋆ ⇒ Φ

(2) Θ; ∆ ⊧ Φ

(3) Ψ, α ∶K; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ ∀α ∶K.τ1 <∶ ∀α ∶K.τ2 ∶ ⋆

By IH on (3)

(4) Ψ, α ∶K; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

Goal follows by S-TForall on (4)

▸ Case 11: AS-List.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ LIτ1 <∶nf LJτ2 ∶ ⋆ ⇒ Φ ∧ (I = J)

(2) Θ; ∆ ⊧ Φ ∧ (I = J)

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ LIτ1 <∶ LJτ2 ∶ ⋆
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By IH on (3)

(4) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

From (2)

(5) Θ; ∆ ⊧ I = J

Goal follows by S-List on (4) and (5)

▸ Case 12: AS-Conj.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ Φ1&τ1 <∶nf Φ2&τ2 ∶ ⋆ ⇒ Φ ∧ (Φ1 → Φ2)

(2) Θ; ∆ ⊧ Φ ∧ (Φ1 → Φ2)

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ Φ1&τ1 <∶ Φ2&τ2 ∶ ⋆

By IH on (3)

(4) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

From (2)

(5) Θ; ∆ ⊧ Φ1 → Φ2

Goal follows by S-Conj on (4) and (5)

▸ Case 13: AS-Impl.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ Φ1 Ô⇒ τ1 <∶nf Φ2 Ô⇒ τ2 ∶ ⋆ ⇒ (Φ2 → Φ) ∧ (Φ2 → Φ1)

(2) Θ; ∆ ⊧ (Φ2 → Φ) ∧ (Φ2 → Φ1)

(3) Ψ; Θ; ∆,Φ2 ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ Φ1 Ô⇒ τ1 <∶ Φ2 Ô⇒ τ2 ∶ ⋆

By IH on (3)

(4) Ψ; Θ; ∆,Φ2 ⊢ τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

From (2)

(5) Θ; ∆ ⊧ (Φ2 → Φ) ∧ (Φ2 → Φ1)

Goal follows by S-Impl on (4) and (5)



A 209

▸ Case 14: AS-Monad.

▸ Given:

(1) Ψ; Θ; ∆ ⊢M (I, p⃗) τ1 <∶nf M (J, q⃗) τ2 ∶ ⋆ ⇒ Φ ∧ (I = J) ∧ (p⃗ ≤ q⃗)

(2) Θ; ∆ ⊧ Φ ∧ (I = J) ∧ (p⃗ ≤ q⃗)

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢M (I, p⃗) τ1 <∶M (J, q⃗) τ2 ∶ ⋆

By IH on (3)

(4) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

From (2)

(5) Θ; ∆ ⊧ I = J

(6) Θ; ∆ ⊧ p⃗ ≤ q⃗

Goal follows by S-Monad on (4), (5), and (6)

▸ Case 15: AS-Pot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ [I ∣p⃗] τ1 <∶nf [J ∣q⃗] τ2 ∶ ⋆ ⇒ Φ ∧ (I = J) ∧ (p⃗ ≥ q⃗)

(2) Θ; ∆ ⊧ Φ ∧ (I = J) ∧ (p⃗ ≥ q⃗)

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ [I ∣p⃗] τ1 <∶ [J ∣q⃗] τ2 ∶ ⋆

By IH on (3)

(4) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

From (2)

(5) Θ; ∆ ⊧ I = J

(6) Θ; ∆ ⊧ p⃗ ≥ q⃗

Goal follows by S-Pot on (4), (5), and (6)

▸ Case 16: AS-ConstPot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ [I] τ1 <∶nf [J] τ2 ∶ ⋆ ⇒ Φ ∧ (I ≥ J)
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(2) Θ; ∆ ⊧ Φ ∧ (I ≥ J)

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ [I] τ1 <∶ [J] τ2 ∶ ⋆

By IH on (3)

(4) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆

From (2)

(5) Θ; ∆ ⊧ I ≥ J

Goal follows by S-Const on (4) and (5)

▸ Case 17: AS-FamLam.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ λi ∶ S.τ1 <∶nf λi ∶ S.τ2 ∶ S →K ⇒ ∀i ∶ S.Φ

(2) Θ; ∆ ⊧ ∀i ∶ S.Φ

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶K ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ λi ∶ S.τ1 <∶ λi ∶ S.τ2 ∶ S →K

Equivalently to (2)

(4) Θ, i ∶ S; ∆ ⊧ Φ

By IH on (3), using (4)

(5) Ψ; Θ, i ∶ S ∶ ∆ ⊢ τ1 <∶ τ2 ∶K

Goal follows by S-FamLam on (5)

▸ Case 18: AS-FamApp.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 I <∶nf τ2 J ∶K ⇒ (I = J) ∧Φ

(2) Θ; ∆ ⊧ (I = J) ∧Φ

(3) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ S →K ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 I <∶ τ2 J ∶K

By IH on (3)
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(4) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2;S →K

From (2)

(5) Θ; ∆ ⊧ I = J

Goal follows by S-FamApp on (4) and (5).

�

Proof of Theorem A.24

We prove both claims simultaneously by induction over Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′ and

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ ⇒ Φ,Γ′. For brevity, we will often silently invoke Theorem 8.7 and

Theorem 5.6 silently to build context weakening judgments for T-Weaken.

▸ Case 1: AT-Var-1.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ x ↑ τ ⇒ ⊺,Γ ∖ {x ∶ τ}

(2) Θ; ∆ ⊧ ⊺

(3) x ∶ τ ∈ Γ

▸ Goal:

Ψ; Θ; ∆; Ω;x ∶ τ ⊢ x ∶ τ

Immediate by T-Var-1 on (3)

▸ Case 2: AT-Var-2.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ x ↑ τ ⇒ ⊺,Γ

(2) Θ; ∆ ⊧ ⊺

(3) x ∶ τ ∈ Ω

▸ Goal:

Ψ; Θ; ∆; Ω; ⋅ ⊢ x ∶ τ

Immediate by T-Var-2 on (3)

▸ Case 3: AT-Unit.

Immediate.

▸ Case 4: AT-Base.
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Immediate.

▸ Case 5: AT-Absurd.

Immediate.

▸ Case 6: AT-Nil.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ nil ↓ LIτ ⇒ I = 0,Γ

(2) Θ; ∆ ⊧ I = 0

▸ Goal:

Ψ; Θ; ∆; ⋅ ⊢ nil ∶ LIτ

By T-Nil

(3) Ψ; Θ; ∆; ⋅ ⊢ nil ∶ L0τ

By S-List, S-Refl and (2)

(4) Ψ; Θ; ∆ ⊢ L0τ <∶ LIτ ∶ ⋆

Goal follows by T-Sub on (3) and (4)

▸ Case 7: AT-Cons.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e1 ∶∶ e2 ↓ LIτ ⇒ (I ≥ 1) ∧Φ1 ∧Φ2,Γ2

(2) Θ; ∆ ⊧ (I ≥ 1) ∧Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓ τ ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ LI−1τ ⇒ Φ2,Γ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ2 ⊢ ∣e1∣ ∶∶ ∣e2∣ ∶ LIτ

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e1∣ ∶ τ

By IH on (4)

(6) Ψ; Θ; ∆; Ω; Γ1 ∖ Γ2 ⊢ ∣e2∣ ∶ LI−1τ

By T-Cons on (5), (6)

(7) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ Γ2) ⊢ ∣e1∣ ∶∶ ∣e2∣ ∶ L(I−1)+1 τ

Since Θ; ∆ ⊧ (I − 1) + 1 = I, by S-List
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(8) Ψ; Θ; ∆ ⊢ L(I−1)+1 τ <∶ LI τ ∶ ⋆

By T-Sub on (7) and (8)

(9) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ Γ2) ⊢ ∣e1∣ ∶∶ ∣e2∣ ∶ LI τ

Goal follows by T-Weaken on (9)

▸ Case 8: AT-Match.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ match(e, e1, h.t.e2) ↓ τ ′ ⇒ Φ1 ∧Φbody,Γ
′

(2) Θ; ∆ ⊧ Φ1 ∧Φbody

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ LIτ ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆, I = 0; Ω; Γ1 ⊢ e1 ↓ τ ′ ⇒ Φ2,Γ2

(5) Ψ; Θ; ∆, I ≥ 1; Ω; Γ1, h ∶ τ, t ∶ LI−1τ ⊢ e2 ↓ τ ′ ⇒ Φ3,Γ3

(6) Φbody = (I = 0→ Φ2) ∧ (I ≥ 1→ Φ3)

(7) Γ′ = Γ2 ∩ (Γ3 ∖ {h, t})

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ match(∣e∣, ∣e1∣, h.t.∣e2∣) ∶ τ ′

By IH on (3)

(8) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e∣ ∶ LIτ

By IH on (4)

(9) Ψ; Θ; ∆, I = 0; Ω; Γ1 ∖ Γ2 ⊢ ∣e1∣ ∶ τ ′

By IH on (5)

(10) Ψ; Θ; ∆, I ≥ 1; Ω; (Γ1, h ∶ τ, t ∶ LI−1τ) ∖ Γ3 ⊢ ∣e2∣ ∶ τ ′

By two applications of T-Weaken on (9) and (10)

(11) Ψ; Θ; ∆, I = 0; Ω; Γ1 ∖ Γ′ ⊢ ∣e1∣ ∶ τ ′

(12) Ψ; Θ; ∆, I ≥ 1; Ω; Γ1 ∖ Γ′, h ∶ τ, t ∶ LI−1τ ⊢ ∣e2∣ ∶ τ ′

By T-Match on (8), (11), (12)

(13) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ Γ′) ⊢ match(∣e∣, e1, h.t.∣e2∣) ∶ τ ′

The Goal follows from T-Weakening on (13)

▸ Case 9: AT-ExistI.
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▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ pack[I](e) ↓ ∃i ∶ S.τ ⇒ Φ1 ∧Φ2,Γ
′

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Θ; ∆ ⊢ I ∶ S ⇒ Φ1

(4) Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ[I/i] ⇒ Φ2,Γ
′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ pack[I](∣e∣) ∶ ∃i ∶ S.τ

By Theorem A.17 on (3)

(5) Θ; ∆ ⊢ I ∶ S

By IH on (4)

(6) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ[I/i]

Goal follows by T-ExistI on (5) and (6)

▸ Case 10: AT-ExistE.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ unpack (i, x) = e in e′ ↓ τ ′ ⇒ Φ,Γ2 ∖ {x}

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ ∃i ∶ S.τ ⇒ Φ1,Γ1

(4) Ψ; Θ, i ∶ S; ∆; Ω; Γ1, x ∶ τ ⊢ e′ ↓ τ ′ ⇒ Φ2,Γ2

(5) Φ = Φ1 ∧ (∀i ∶ S.Φ2)

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ (Γ2 ∖ {x}) ⊢ unpack (i, x) = ∣e∣ in ∣e′∣ ∶ τ ′

By IH on (3)

(6) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e∣ ∶ ∃i ∶ S.τ

From (2) and (5)

(7) Θ, i ∶ S; ∆ ⊧ Φ2

By IH on (4) using (7)

(8) Ψ; Θ, i ∶ S; ∆; Ω; (Γ1, x ∶ τ) ∖ Γ2 ⊢ e′ ∶ τ ′

By T-Weaken on (8)

(9) Ψ; Θ, i ∶ S; ∆; Ω; (Γ1 ∖ (Γ2 ∖ {x ∶ τ})), x ∶ τ ⊢ ∣e′∣ ∶ τ ′
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By T-ExistE on (6) and (9)

(10) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ (Γ2 ∖ {x ∶ τ})) ⊢ unpack (i, x) = ∣e∣ in ∣e′∣ ∶ τ ′

Goal follows by T-Weaken on (10)

▸ Case 11: AT-Lam.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ λx.e ↓ τ1 ⊸ τ2 ⇒ Φ,Γ′ ∖ {x ∶ τ1}

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω; Γ, x ∶ τ1 ⊢ e ↓ τ2,⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ (Γ′ ∖ {x ∶ τ1}) ⊢ λx.∣e∣ ∶ τ1 ⊸ τ2

By IH on (2)

(4) Ψ; Θ; ∆; Ω; (Γ, x ∶ τ1) ∖ Γ′ ⊢ ∣e∣ ∶ τ2

By T-Weaken on (4)

(5) Ψ; Θ; ∆; Ω; (Γ ∖ (Γ′ ∖ {x ∶ τ1})), x ∶ τ1 ⊢ ∣e∣ ∶ τ2

Goal follows by T-Lam on (5)

▸ Case 12: AT-App.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e1 e2 ↑ τ2 ⇒ Φ1 ∧Φ2,Γ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ τ1 ⊸ τ2 ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ τ1 ⇒ Φ2,Γ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ2 ⊢ ∣e1∣ ∣e2∣ ∶ τ2

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e1∣ ∶ τ1 ⊸ τ2

By IH on (4)

(6) Ψ; Θ; ∆; Ω; Γ1 ∖ Γ2 ⊢ ∣e2∣ ∶ τ1

By T-App on (5) and (6)

(7) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ Γ2) ⊢ ∣e1∣ ∣e2∣ ∶ τ2
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Goal follows from T-Weaken on (7)

▸ Case 13: AT-TensorI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ ⟪e1, e2⟫ ↓ τ1 ⊗ τ2 ⇒ Φ1 ∧Φ2,Γ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓ τ1 ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ τ2 ⇒ Φ2,Γ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ2 ⊢ ⟪∣e1∣, ∣e2∣⟫ ∶ τ1 ⊗ τ2

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e1∣ ∶ τ1

By IH on (4)

(6) Ψ; Θ; ∆; Ω; Γ1 ∖ Γ2 ⊢ ∣e2∣ ∶ τ2

By T-TensorI on (5) and (6)

(7) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ Γ2) ⊢ ⟪∣e1∣, ∣e2∣⟫ ∶ τ1 ⊗ τ2

Goal follows from T-Weaken on (7)

▸ Case 14: AT-TensorE.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ let ⟪x, y⟫ = e in e′ ↓ τ ′ ⇒ Φ1 ∧Φ2,Γ2 ∖ {x ∶ τ1, y ∶ τ2}

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1 ⊗ τ2 ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1, y ∶ τ2 ⊢ e′ ↓ τ ′ ⇒ Φ2,Γ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ (Γ2 ∖ {x ∶ τ1, y ∶ τ2}) ⊢ let ⟪x, y⟫ = ∣e∣ in ∣e′∣ ∶ τ ′

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e∣ ∶ τ1 ⊗ τ2

By IH on (4)

(6) Ψ; Θ; ∆; Ω; (Γ1, x ∶ τ1, y ∶ τ2) ∖ Γ2 ⊢ ∣e′∣ ∶ τ ′

By T-Weaken on (6)
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(7) Ψ; Θ; ∆; Ω; (Γ1 ∖ (Γ2 ∖ {x ∶ τ1, y ∶ τ2})), x ∶ τ1, y ∶ τ2 ⊢ ∣e′∣ ∶ τ ′

Goal follows by T-TensorE and T-Weaken on (5) and (7)

▸ Case 15: AT-WithI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ (e1, e2) ↓ τ1&τ2 ⇒ Φ1 ∧Φ2,Γ1 ∩ Γ2

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓ τ1 ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω; Γ ⊢ e2 ↓ τ2 ⇒ Φ2,Γ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ (Γ1 ∩ Γ2) ⊢ (∣e1∣, ∣e2∣) ∶ τ1&τ2

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e1∣ ∶ τ1

By IH on (4)

(6) Ψ; Θ; ∆; Ω; Γ ∖ Γ2 ⊢ ∣e2∣ ∶ τ2

By T-Weaken on (5) and (6)

(7) Ψ; Θ; ∆; Ω; Γ ∖ (Γ1 ∩ Γ2) ⊢ ∣e1∣ ∶ τ1

(8) Ψ; Θ; ∆; Ω; Γ ∖ (Γ1 ∩ Γ2) ⊢ ∣e2∣ ∶ τ2

Goal follows by T-WithI on (7) and (8)

▸ Case 16: AT-Fst.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ fst(e) ↑ τ1 ⇒ Φ,Γ′

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1&τ2 ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ fst(∣e∣) ∶ τ1

By IH on (3)

(4) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ1&τ2

Goal follows by T-Fst on (4)

▸ Case 17: AT-Snd.
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Identical to Case 16.

▸ Case 18: AT-Inl.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ inl(e) ↓ τ1 ⊕ τ2 ⇒ Φ,Γ′

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ1 ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ inl(∣e∣) ∶ τ1 ⊕ τ2

By IH on (3)

(4) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ1

Goal follows by T-Inl on (4)

▸ Case 19: AT-Inr.

Identical to Case 18.

▸ Case 20: AT-Case.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ case(e, x.e1, y.e2) ↓ τ ⇒ Φ1 ∧Φ2 ∧Φ3,Γ
′

(2) Θ; ∆ ⊧ Φ1 ∧Φ2 ∧Φ3

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1 ⊕ τ2 ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e1 ↓ τ ⇒ Φ2,Γ2

(5) Ψ; Θ; ∆; Ω; Γ1, y ∶ τ2 ⊢ e2 ↓ τ ⇒ Φ3,Γ3

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ case(∣e∣, x.∣e1∣, y.∣e2∣) ∶ τ

By IH on (3)

(6) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e∣ ∶ τ1 ⊕ τ2

By IH on (4)

(7) Ψ; Θ; ∆; Ω; (Γ1, x ∶ τ1) ∖ Γ2 ⊢ ∣e1∣ ∶ τ

By IH on (5)

(8) Ψ; Θ; ∆; Ω; (Γ1, y ∶ τ2) ∖ Γ2 ⊢ ∣e2∣ ∶ τ

By T-Weaken on (7) and then (8)
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(9) Ψ; Θ; ∆; Ω; Γ1 ∖ Γ′, x ∶ τ1 ⊢ ∣e1∣ ∶ τ

(10) Ψ; Θ; ∆; Ω; Γ1 ∖ Γ′, y ∶ τ2 ⊢ ∣e2∣ ∶ τ

By T-Case on (6), (9), and (10)

(11) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ Γ′) ⊢ case(∣e∣, x.∣e1∣, y.∣e2∣) ∶ τ

Goal follows by T-Weaken on (11)

▸ Case 21: AT-ExpI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢!e ↓!τ ⇒ Φ,Γ

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω; ⋅ ⊢ e ↓ τ ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; ⋅ ⊢!∣e∣ ∶!τ

By IH on (3)

(4) Ψ; Θ; ∆; Ω; ⋅ ⊢ ∣e∣ ∶ τ

Goal follows by T-ExpI on (4)

▸ Case 22: AT-ExpE.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ let !x = e in e′ ↓ τ ′ ⇒ Φ1 ∧Φ2,Γ2

(2) Θ; ∆ ⊧ Φ1Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑!τ ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω, x ∶ τ ; Γ1 ⊢ e′ ↓ τ ′ ⇒ Φ2,Γ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ2 ⊢ let !x = ∣e∣ in ∣e′∣ ∶ τ ′

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e∣ ∶!τ

By IH on (4)

(6) Ψ; Θ; ∆; Ω, x ∶ τ ; Γ1 ∖ Γ2 ⊢ ∣e′∣ ∶ τ ′

By T-ExpE on (5) and (6)

(7) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ Γ2) ⊢ let !x = ∣e∣ in ∣e′∣ ∶ τ ′
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Goal follows by T-Weaken on (7)

▸ Case 23: AT-TAbs.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ Λα.e ↓ ∀α ∶K.τ ⇒ Φ,Γ′

(2) Θ; ∆ ⊧ Φ

(3) Ψ, α ∶K; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ Λα.∣e∣ ∶ ∀α ∶K.τ

By IH on (3)

(4) Ψ, α ∶K; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

Goal follows by T-TAbs on (4)

▸ Case 24: AT-TApp.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e[τ ′] ↑ τ[τ ′/α] ⇒ Φ1 ∧Φ2,Γ
′

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ ∀α ∶K.τ ⇒ Φ1,Γ
′

(4) Ψ; Θ; ∆ ⊢ τ ′ ∶K ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣[τ ′] ∶ τ[τ ′/α]

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ ∀α ∶K.τ

By Theorem A.19 on (5)

(6) Ψ; Θ; ∆ ⊢ τ ′ ∶K

Goal Follows by T-TApp on (5) and (6)

▸ Case 25: AT-TApp.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ Λi.e ↓ ∀i ∶ S.τ ⇒ ∀i ∶ S.Φ,Γ′

(2) Θ; ∆ ⊧ ∀i ∶ S.Φ

(3) Ψ; Θ, i ∶ S; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′
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▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ Λi.∣e∣ ∶ ∀i ∶ S.τ

Equivalently to (2)

(4) Θ, i ∶ S; ∆ ⊧ Φ

By IH on (3)

(5) Ψ; Θ, i ∶ S; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

Goal follows by T-IAbs on (5)

▸ Case 26: AT-IApp.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e[I] ↑ τ[I/i] ⇒ Φ1 ∧Φ2,Γ
′

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ ∀i ∶ S.τ ⇒ Φ1,Γ
′

(4) Θ; ∆ ⊢ I ∶ S ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e[I]∣ ∶ τ[I/i]

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ ∀i ∶ S.τ

By Theorem A.17 on (4)

(6) Θ; ∆ ⊢ I ∶ S

Goal follows by T-IApp on (5) and (6)

▸ Case 27: AT-Fix.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ fix x.e ↓ τ ⇒ Φ,Γ

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω, x ∶ τ ; ⋅ ⊢ e ↓ τ ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; ⋅ ⊢ fix x.∣e∣ ∶ τ

By IH on (3)

(4) Ψ; Θ; ∆; Ω, x ∶ τ ; ⋅ ⊢ ∣e∣ ∶ τ
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Goal follows by T-Fix on (4)

▸ Case 28: AT-Ret.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ ret e ↓M (I, p⃗) τ ⇒ Φ,Γ′

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ret ∣e∣ ∶M (I, p⃗) τ

By IH on (3)

(4) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

By T-Ret on (4)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ret(∣e∣) ∶M (I, 0⃗) τ

By S-Monad and S-Refl using the fact that Θ; ∆ ⊧ p⃗ ≥ 0⃗

(6) Ψ; Θ; ∆ ⊢M (I, 0⃗) τ <∶M (I, p⃗) τ ∶ ⋆

Goal follows by T-Sub on (5) and (6)

▸ Case 29: AT-Bind.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ bind x = e1 in e2 ↓M (I, q⃗) τ2 ⇒ Φ,Γ2 ∖ {x ∶ τ1}

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑M (J, p⃗) τ1 ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e2 ↓M (I, q⃗ − p⃗) τ2 ⇒ Φ2,Γ2

(5) Φ = (q⃗ ≥ p⃗) ∧ (I = J) ∧Φ1 ∧Φ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ (Γ2 ∖ {x ∶ τ1}) ⊢ bind x = ∣e1∣ in ∣e2∣ ∶M (I, q⃗) τ2

By IH on (3)

(6) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e1∣ ∶M (J, p⃗) τ1

By IH on (4)

(7) Ψ; Θ; ∆; Ω; (Γ1, x ∶ τ1) ∖ Γ2 ⊢ ∣e2∣ ∶M (I, q⃗ − p⃗) τ2

From (2) and (5)
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(8) Θ; ∆ ⊧ I = J

By S-Monad and S-Refl, using (8)

(9) Ψ; Θ; ∆ ⊢M(J, p⃗) τ1 <∶M(I, p⃗) τ1 ∶ ⋆

By T-Sub on (6) and (9)

(10) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e1∣ ∶M (I, p⃗) τ1

By T-Weaken on (7)

(11) Ψ; Θ; ∆; Ω; (Γ1 ∖ (Γ2 ∖ {x})), x ∶ τ1 ⊢ ∣e2∣ ∶M (I, q⃗ − p⃗) τ2

By T-Bind on (10) and (11)

(12) Ψ; Θ; ∆; Ω(Γ ∖ Γ1), (Γ1 ∖ (Γ2 ∖ {x})) ⊢ bind x = ∣e1∣ in ∣e2∣ ∶M (I, q⃗ − p⃗ + p⃗) τ2

By S-Monad and S-Refl, using the fact that Θ; ∆ ⊧ (q⃗ − p⃗) + p⃗ = q⃗

(13) Ψ; Θ; ∆ ⊢M (I, q⃗ − p⃗ + p⃗) τ2 <∶M (I, q⃗) τ2 ∶ ⋆

By T-Sub on (12) and (13)

(13) Ψ; Θ; ∆; Ω(Γ ∖ Γ1), (Γ1 ∖ (Γ2 ∖ {x})) ⊢ bind x = ∣e1∣ in ∣e2∣ ∶M (I, q⃗) τ2

Goal follows by T-Weaken on (13)

▸ Case 30: AT-Tick.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ tick[I ∣p⃗] ↑M (I, p⃗)1⇒ Φ1 ∧Φ2,Γ

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Θ; ∆ ⊢ I ∶ N⇒ Φ1

(4) Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ1

▸ Goal:

Ψ; Θ; ∆; Ω; ⋅ ⊢ tick[I ∣p⃗] ∶M (I, p⃗)1

By Theorem A.17 on (3)

(5) Θ; ∆ ⊢ I ∶ N

By Theorem A.17 on (4)

(6) Θ; ∆ ⊢ p⃗ ∶ R⃗+

Goal Follows by T-Tick on (5) and (6)

▸ Case 31: AT-Release.
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▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ release x = e1 in e2 ↓M (I, p⃗) τ2 ⇒ (I = J ∧Φ1∧Φ2),Γ2∖{x}

(2) Θ; ∆ ⊧ (I = J) ∧Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ [J ∣q⃗]τ1 ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e2 ↓M (I, p⃗ + q⃗) τ2 ⇒ Φ2,Γ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ (Γ2 ∖ {x ∶ τ1}) ⊢ release x = ∣e1∣ in ∣e2∣ ∶M (I, p⃗) τ2

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e1∣ ∶ [J ∣q⃗]τ1

By IH on (4)

(6) Ψ; Θ; ∆; Ω; (Γ1, x ∶ τ1) ∖ Γ2 ⊢ ∣e2∣ ∶M (I, p⃗ + q⃗) τ2

From (2)

(7) Θ; ∆ ⊧ I = J

By S-Pot, S-Refl, and (7)

(8) Ψ; Θ; ∆ ⊢ [J ∣q⃗]τ1 <∶ [I ∣q⃗]τ1 ∶ ⋆

By T-Sub on (5) and (8)

(9) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e1∣ ∶ [I ∣q⃗]τ1

By T-Weaken on (6)

(10) Ψ; Θ; ∆; Ω; Γ1 ∖ (Γ2 ∖ x ∶ τ1), x ∶ τ1 ⊢ ∣e2∣ ∶M (I, p⃗ + q⃗) τ2

By T-Release on (9) and (10)

(11) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ (Γ2 ∖ x ∶ τ1)) ⊢ release x = ∣e1∣ in ∣e2∣ ∶M (I, p⃗) τ2

Goal follows by another T-Weaken on (11)

▸ Case 32: AT-Store.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ store[K ∣w⃗](e) ↓M (I, q⃗) ([J ∣p⃗] τ) ⇒ Φ,Γ′

(2) Θ; ∆ ⊧ Φ

(3) Θ; ∆ ⊢K ∶ N⇒ Φ1

(4) Θ; ∆ ⊢ w⃗ ∶ R⃗+ ⇒ Φ2

(5) Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ3,Γ
′
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(6) Φ = Φ1 ∧Φ2 ∧Φ3 ∧ (p⃗ ≤ w⃗ ≤ q⃗) ∧ (I = J =K)

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ store[K ∣w⃗](∣e∣) ∶M (I, q⃗) ([J ∣p⃗] τ)

By Theorem A.17 on (3)

(7) Θ; ∆ ⊢K ∶ N

By Theorem A.17 on (4)

(8) Θ; ∆ ⊢ w⃗ ∶ R⃗+

By IH on (5)

(9) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

By T-Store on (7), (8), (9)

(10) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ store[K ∣w⃗](∣e∣) ∶M (K, w⃗) ([K ∣w⃗] τ)

By S-Monad, S-Pot, and S-Refl using (2), (6)

(11) Ψ; Θ; ∆ ⊢M (K, w⃗) ([K ∣w⃗] τ) <∶M (I, q⃗) ([J ∣p⃗] τ) ∶ ⋆

Goal follows by T-Sub on (10) and (11)

▸ Case 33: AT-StoreConst.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ store[J](e) ↓M (K, p⃗) ([I] τ) ⇒ Φ,Γ′

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ1,Γ
′

(4) Θ; ∆ ⊢ J ↓ R⇒ Φ2

(5) Φ = (const(I) ≤ const(J) ≤ p⃗) ∧Φ1 ∧Φ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ store[J](∣e∣) ∶M (K, p⃗) ([I] τ)

By IH on (3)

(6) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

By Theorem A.17 on (4)

(7) Θ; ∆ ⊢ J ∶ R

By T-StoreConst on (6) and (7)

(8) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ store[J](∣e∣) ∶M (J,const(J)) ([J] τ)
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By (2) and (5)

(9) Θ; ∆ ⊧ const(I) ≤ const(J) ≤ p⃗

By S-Monad, S-Pot, S-Refl, and (9)

(10) Ψ; Θ; ∆ ⊢M (J,const(J)) ([J] τ) <∶M (K, p⃗) ([I] τ)

Goal follows by T-Sub on (8) and (10)

▸ Case 34: AT-ReleaseConst.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ release x = e1 in e2 ↓M (I, p⃗) τ2 ⇒ Φ1 ∧Φ2,Γ2 ∖ {x}

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ [J]τ1 ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e2 ↓M (I, p⃗ + const(J)) τ2 ⇒ Φ2,Γ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ (Γ2 ∖ {x}) ⊢ release x = ∣e1∣ in ∣e2∣ ∶M (I, p⃗) τ2

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e1∣ ∶ [J]τ1

By IH on (4)

(6) Ψ; Θ; ∆; Ω; (Γ1, x ∶ τ1) ∖ Γ2 ⊢ ∣e2∣ ∶M (I, p⃗ + const(J)) τ2

By T-Weaken on (6)

(7) Ψ; Θ; ∆; Ω; (Γ1 ∖ (Γ2 ∖ {x ∶ τ1})), x ∶ τ1 ⊢ ∣e2∣ ∶M (I, p⃗ + const(J)) τ2

By T-ReleaseConst on (5) and (7)

(8) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ (Γ2 ∖ {x})) ⊢ release x = ∣e1∣ in ∣e2∣ ∶M (I, p⃗) τ2

Goal follows by T-Weaken on (8)

▸ Case 35: AT-Shift.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ shift(e) ↓M (I, q⃗) τ ⇒ (I ≥ 1) ∧Φ,Γ′

(2) Θ; ∆ ⊧ (I ≥ 1) ∧Φ

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↓M (I − 1,⊲ q⃗) τ ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ shift(∣e∣) ∶M (I, q⃗) τ
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By IH on (3)

(4) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶M (I − 1,⊲ q⃗) τ

From (2)

(5) Θ; ∆ ⊧ I ≥ 1

Goal follows by T-Shift on (4) and (5)

▸ Case 36: AT-CImpI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ Λ.e ↓ (Φ′ ⇒ τ) ⇒ (Φ′ → Φ),Γ′

(2) Θ; ∆ ⊧ Φ′ → Φ

(3) Ψ; Θ; ∆,Φ′; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ Λ.∣e∣ ∶ Φ′ ⇒ τ

Equivalently to (2)

(4) Θ; ∆,Φ′ ⊧ Φ

By IH on (3)

(5) Ψ; Θ; ∆,Φ′; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

Goal is immediate by T-CImpI on (5)

▸ Case 37: AT-CImpE.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e{} ↑ τ ⇒ Φ ∧Φ′,Γ′

(2) Θ; ∆ ⊧ Φ ∧Φ′

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ (Φ′ ⇒ τ) ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣{} ∶ τ

By IH on (3)

(4) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ (Φ′ ⇒ τ)

From (2)

(5) Θ; ∆ ⊧ Φ′

Goal follows from T-CImpI on (4) and (5)
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▸ Case 38: AT-CAndI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢< e >↓ Φ′&τ ⇒ Φ ∧Φ′,Γ′

(2) Θ; ∆ ⊧ Φ ∧Φ′

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢< ∣e∣ >∶ Φ′&τ

By IH on (3)

(4) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

From (2)

(5) Θ; ∆ ⊧ Φ′

Goal follows from T-CAndI on (4) and (5)

▸ Case 39: AT-CAndE.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ clet x = e in e′ ↓ τ ′ ⇒ Φ1 ∧ (Φ′ → Φ2),Γ2 ∖ {x ∶ τ}

(2) Θ; ∆ ⊧ Φ1 ∧ (Φ′ → Φ2)

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ Φ′&τ ⇒ Φ1,Γ1

(4) Ψ; Θ; ∆,Φ′; Ω; Γ1, x ∶ τ ⊢ e′ ↓ τ ′ ⇒ Φ2,Γ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ (Γ2 ∖ {x ∶ τ}) ⊢ clet x = ∣e∣ in ∣e′∣ ∶ τ ′

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ1 ⊢ ∣e∣ ∶ Φ′&τ

From (2)

(6) Θ; ∆,Φ′ ⊧ Φ2

By IH on (4) using (6)

(7) Ψ; Θ; ∆,Φ′; Ω; (Γ1, x ∶ τ) ∖ Γ2 ⊢ ∣e′∣ ∶ τ ′

By T-Weaken on (7)

(8) Ψ; Θ; ∆,Φ′; Ω; (Γ1 ∖ (Γ2 ∖ {x ∶ τ})), x ∶ τ ⊢ ∣e′∣ ∶ τ ′

By T-CAndE on (5) and (8)
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(9) Ψ; Θ; ∆; Ω; (Γ ∖ Γ1), (Γ1 ∖ (Γ2 ∖ {x ∶ τ})) ⊢ clet x = ∣e∣ in ∣e′∣ ∶ τ ′

Goal follows by T-Weaken on (9)

▸ Case 40: AT-Sub.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ1 ∧Φ2,Γ
′

(2) Θ; ∆ ⊧ Φ1 ∧Φ2

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ ′ ⇒ Φ1,Γ
′

(4) Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

By IH on (3)

(5) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ ′

By Theorem 8.6 on (4)

(6) Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆

Goal follows by T-Sub on (5) and (6)

▸ Case 41: AT-Anno.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ (e ∶ τ) ↑ τ ⇒ Φ,Γ′

(2) Θ; ∆ ⊧ Φ

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′

▸ Goal:

Ψ; Θ; ∆; Ω; Γ ∖ Γ′∖ ⊢ ∣(e ∶ τ)∣ ∶ τ

By IH on (3)

(4) Ψ; Θ; ∆; Ω; Γ ∖ Γ′ ⊢ ∣e∣ ∶ τ

Goal follows immediately by (4) since ∣(e ∶ τ)∣ = ∣e∣

�

Proof. By induction on Θ; ∆ ⊢ I ∶ S.

(I-Var) Immediate by AI-Var with Φ = ⊺.
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(I-Plus) Suppose Θ; ∆ ⊢ I + J ∶ bS from Θ; ∆ ⊢ I ∶ bS and Θ; ∆ ⊢ J ∶ bS. By IH, Θ; ∆ ⊢

I ∶ bS ⇒ Φ1 and Θ; ∆ ⊢ J ∶ bS ⇒ Φ2 with Θ; ∆ ⊧ Φ1 and Θ; ∆ ⊧ Φ2. By AI-Plus,

Θ; ∆ ⊢ I + J ∶ bS ⇒ Φ1 ∧Φ2

(I-Minus) Suppose Θ; ∆ ⊢ I − J ∶ bS from Θ; ∆ ⊢ I ∶ bS and Θ; ∆ ⊢ J ∶ bS, and Θ; ∆ ⊧ I ≥ J . By

IH, Θ; ∆ ⊢ I ∶ bS ⇒ Φ1 and Θ; ∆ ⊢ J ∶ bS ⇒ Φ2 with Θ; ∆ ⊧ Φ1 and Θ; ∆ ⊧ Φ2. By

AI-Minus, Θ; ∆ ⊢ I − J ∶ bS ⇒ Φ1 ∧Φ2 ∧ (I ≥ J)

(I-Times-R)

(I-Times-R⃗)

(I-Times-N)

(I-Shift) Suppose Θ; ∆ ⊢ ⊲ I ∶ R⃗+ from Θ; ∆ ⊢ I ∶ R⃗+. By IH, Θ; ∆ ⊢ I ∶ R⃗+ ⇒ Φ, and Θ; ∆ ⊧ Φ.

By AI-Shift, Θ; ∆ ⊢ ⊲ I ∶ R⃗+ ⇒ Φ, as required.

(I-Lam) Suppose Θ; ∆ ⊢ λi ∶ bS.I ∶ bS → S from Θ, i ∶ bS; ∆ ⊢ I ∶ S. By IH, Θ, i ∶ bS; ∆ ⊢ I ∶ S ⇒

Φ with Θ; ∆ ⊧ Φ. By AI-Lam, Θ; ∆ ⊢ λi ∶ bS.I ∶ bS → S ⇒ Φ.

(I-App)

(I-Sum)

�

Proof of Theorem A.27

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ ∶K

▸ Goal:

Φ; Θ; ∆ ⊢ τ ∶K ⇒ Φ and Θ; ∆ ⊧ Φ

▸ Case 1: K-Var.

Immediate.

▸ Case 2: K-Unit.

Immediate.

▸ Case 3: K-Arr.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 ∶ ⋆
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(2) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 ∶ ⋆ ⇒ Φ′ and Θ; ∆ ⊧ Φ′

By IH on (2) and (3)

(4) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

(6) Θ; ∆ ⊧ Φ1 ∧Φ2

By AK-Arr on (4) and (5)

(7) Ψ; Θ; ∆ ⊢ τ1 ⊸ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

The Goal follows by (6) and (7), with Φ′ = Φ1 ∧Φ2

▸ Case 4: K-Tensor.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 ∶ ⋆ ⇒ Φ′ and Θ; ∆ ⊧ Φ′

By IH on (2) and (3)

(4) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

(6) Θ; ∆ ⊧ Φ1 ∧Φ2

By AK-Tensor on (4) and (5)

(7) Ψ; Θ; ∆ ⊢ τ1 ⊗ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

The Goal follows by (6) and (7), with Φ′ = Φ1 ∧Φ2

▸ Case 5: K-With.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1&τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆
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(3) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1&τ2 ∶ ⋆ ⇒ Φ′ and Θ; ∆ ⊧ Φ′

By IH on (2) and (3)

(4) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

(6) Θ; ∆ ⊧ Φ1 ∧Φ2

By K-With on (4) and (5)

(7) Ψ; Θ; ∆ ⊢ τ1&τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

The Goal follows by (6) and (7), with Φ′ = Φ1 ∧Φ2

▸ Case 6: K-Sum.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 ∶ ⋆ ⇒ Φ′ and Θ; ∆ ⊧ Φ′

By IH on (2) and (3)

(4) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆ ⇒ Φ2

(6) Θ; ∆ ⊧ Φ1 ∧Φ2

By AK-Sum on (4) and (5)

(7) Ψ; Θ; ∆ ⊢ τ1 ⊕ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

The Goal follows by (6) and (7), with Φ′ = Φ1 ∧Φ2

▸ Case 7: K-Bang.

▸ Given:

(1) Ψ; Θ; ∆ ⊢!τ ∶ ⋆ (2) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢!τ ∶ ⋆ ⇒ Φ′ and Θ; ∆ ⊧ Φ′
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By IH on (2)

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ′

(4) Θ; ∆ ⊧ Φ′

By AK-Bang on (3)

(4) Ψ; Θ; ∆ ⊢!τ ∶ ⋆ ⇒ Φ′

▸ Case 8: K-IForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ ∶ ⋆

(2) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

(4) Θ, i ∶ S; ∆ ⊧ Φ

Equivalently to (4)

(5) Θ; ∆ ⊧ ∀i ∶ S.Φ

By AK-IForall on (3)

(6) Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ ∶ ⋆ ⇒ ∀i ∶ S.Φ

▸ Case 9: K-IExists.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ ∶ ⋆

(2) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆ ⇒ Φ

(4) Θ, i ∶ S; ∆ ⊧ Φ

Equivalently to (4)

(5) Θ; ∆ ⊧ ∀i ∶ S.Φ
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By AK-IExists on (3)

(6) Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ ∶ ⋆ ⇒ ∀i ∶ S.Φ
▸ Case 10: K-List.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ LIτ ∶ ⋆

(2) Θ; ∆ ⊢ I ∶ N

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ LIτ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(4) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ1

(5) Θ; ∆ ⊧ Φ1

By Theorem A.25 on (2)

(6) Θ; ∆ ⊢ I ∶ N⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

By AK-List on (4) and (6)

(8) Ψ; Θ; ∆ ⊢ LIτ ∶ ⋆ ⇒ Φ1 ∧Φ2

The goal follows from (5), (7), (8) with Φ = Φ1 ∧Φ2

▸ Case 11: K-Conj.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ Φ&τ ∶ ⋆

(2) Θ; ∆ ⊢ Φ wf

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ Φ&τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By Theorem A.26 on (2)

(4) Θ; ∆ ⊢ Φ wf⇒ Φ1

(5) Θ; ∆ ⊧ Φ!

By IH on (3)
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(6) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

By AK-Conj on (4) and (6)

(8) Ψ; Θ; ∆ ⊢ Φ&τ ∶ ⋆ ⇒ Φ1 ∧Φ2

The Goal follows by (5), (7), (8)

▸ Case 12: K-Impl.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ Φ Ô⇒ τ ∶ ⋆

(2) Θ; ∆ ⊢ Φ wf

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ Φ Ô⇒ τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By Theorem A.26 on (2)

(4) Θ; ∆ ⊢ Φ wf⇒ Φ1

(5) Θ; ∆ ⊧ Φ!

By IH on (3)

(6) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

By AK-Impl on (4) and (6)

(8) Ψ; Θ; ∆ ⊢ Φ Ô⇒ τ ∶ ⋆ ⇒ Φ1 ∧Φ2

The Goal follows by (5), (7), (8)

▸ Case 13: K-Monad.

▸ Given:

(1) Ψ; Θ; ∆ ⊢M(I, p⃗)τ ∶ ⋆

(2) Θ; ∆ ⊢ I ∶ N

(3) Θ; ∆ ⊢ p⃗ ∶ R⃗+

(4) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢M(I, p⃗)τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ
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By Theorem A.25 on (2) and (3)

(5) Θ; ∆ ⊢ I ∶ N⇒ Φ1

(6) Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ1 ∧Φ2

By IH on (4)

(8) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ3

(9) Θ; ∆ ⊧ Φ3

By AK-Monad on (5), (6), (8)

(10) Ψ; Θ; ∆ ⊢M(I, p⃗)τ ∶ ⋆ ⇒ Φ1 ∧Φ2 ∧Φ3

Goal follows by (7), (9), (10)

▸ Case 14: K-Pot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ [I ∣p⃗]τ ∶ ⋆

(2) Θ; ∆ ⊢ I ∶ N

(3) Θ; ∆ ⊢ p⃗ ∶ R⃗+

(4) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ [I ∣p⃗]τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By Theorem A.25 on (2) and (3)

(5) Θ; ∆ ⊢ I ∶ N⇒ Φ1

(6) Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ1 ∧Φ2

By IH on (4)

(8) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ3

(9) Θ; ∆ ⊧ Φ3

By AK-Pot on (5), (6), (8)

(10) Ψ; Θ; ∆ ⊢ [I ∣p⃗]τ ∶ ⋆ ⇒ Φ1 ∧Φ2 ∧Φ3

Goal follows by (7), (9), (10)

▸ Case 15: K-ConstPot.
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▸ Given:

(1) Ψ; Θ; ∆ ⊢ [I] τ ∶ ⋆

(2) Θ; ∆ ⊢ I ∶ R+

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ [I] τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By Theorem A.25 on (2)

(4) Θ; ∆ ⊢ I ∶ R+ ⇒ Φ1

(5) Θ; ∆ ⊧ Φ1

By IH on (3)

(6) Ψ; Θ; ∆ ⊢ τ ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

Applying AK-ConstPot to (4) and (6)

(8) Ψ; Θ; ∆ ⊢ [I] τ ∶ ⋆ ⇒ Φ1 ∧Φ2

Goal follows by (5), (7), (8)

▸ Case 16: K-FamLam.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ λi ∶ S.τ ∶ S →K

(2) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶K

▸ Goal:

Ψ; Θ; ∆ ⊢ λi ∶ S.τ ∶ S →K ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶K ⇒ Φ

(4) Θ, i ∶ S; ∆ ⊧ Φ

By AK-FamLam on (3)

(5) Ψ; Θ; ∆ ⊢ λi ∶ S.τ ∶ S →K ⇒ ∀i ∶ S.Φ

Equivalently to (4)

(6) Θ; ∆ ⊧ ∀i ∶ S.Φ

▸ Case 17: K-FamApp.
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▸ Given:

(1) Ψ; Θ; ∆ ⊢ τ I ∶K

(2) Ψ; Θ; ∆ ⊢ τ ∶ S →K

(3) Θ; ∆ ⊢ I ∶ S

▸ Goal:

Ψ; Θ; ∆ ⊢ τ I ∶K ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢ τ ∶ S →K ⇒ Φ1

(5) Θ; ∆ ⊧ Φ1

By Theorem A.25 on (3)

(6) Θ; ∆ ⊢ I ∶ S ⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

By AK-FamApp on (4) and (6)

(8) Ψ; Θ; ∆ ⊢ τ I ∶K ⇒ Φ1 ∧Φ2

Goal is done by (5), (7), and (8)

�

Proof of Theorem 8.14

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ ∶K

(2) τ nf

▸ Goal:

Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

By induction on (1) and inversion on (2)

▸ Case 1: K-Var.

Immediate

▸ Case 2: K-Unit.

Immediate

▸ Case 3: K-FamApp.
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▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ I ∶K

(2) τ I ne

(3) Ψ; Θ; ∆ ⊢ τ ∶ S →K

(4) Θ; ∆ ⊢ I ∶ S

▸ Goal:

Ψ; Θ; ∆ ⊢p τ I <∶nf τ I ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

By inversion on (2)

(5) τ ne

By IH on (3)

(6) Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶ S →K ⇒ Φ

(7) Θ; ∆ ⊧ Φ

By AK-FamApp on (6)

(8) Ψ; Θ; ∆ ⊢ τ I <∶nf τ I ∶K ⇒ Φ ∧ (I = I)

We re-establish the presupposition for (8) by applying Theorem 8.2 to Θ; ∆ ⊢ I ∶ S from

(1)

(9) Ψ; Θ; ∆ ⊢p τ I <∶nf τ I ∶K ⇒ Φ ∧ (I = I)

By (7), (9), and the fact that Θ; ∆ ⊧ I = I

�

Proof of Theorem 8.15

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ ∶K

(2) τ nf

▸ Goal:

Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶K ⇒ Φ with Θ; ∆ ⊧ Φ

By induction on (1), followed by inversion on (2)

▸ Case 1: K-Var.
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Immediate by Theorem 8.14

▸ Case 2: K-Unit.

Immediate by Theorem 8.14

▸ Case 3: K-Arr.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊸ τ2 ∶ ⋆

(2) τ1 and τ2 nf

(3) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

(4) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 ⊸ τ2 <∶nf τ1 ⊸ τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3) and (4)

(5) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ1 ∶ ⋆ ⇒ Φ1

(6) Ψ; Θ; ∆ ⊢p τ2 <∶nf τ2 ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ1 ∧Φ2

By AS-Arr on (5) and (6)

(8) Ψ; Θ; ∆ ⊢p τ1 ⊸ τ2 <∶nf τ1 ⊸ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

Goal is immediate from (7), (8)

▸ Case 4: K-Tensor.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊗ τ2 ∶ ⋆

(2) τ1 and τ2 nf

(3) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

(4) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 ⊗ τ2 <∶nf τ1 ⊗ τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3) and (4)

(5) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ1 ∶ ⋆ ⇒ Φ1
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(6) Ψ; Θ; ∆ ⊢p τ2 <∶nf τ2 ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ1 ∧Φ2

By AS-Tensor on (5) and (6)

(8) Ψ; Θ; ∆ ⊢p τ1 ⊗ τ2 <∶nf τ1 ⊗ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

Goal is immediate from (7), (8)

▸ Case 5: K-With.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1&τ2 ∶ ⋆

(2) τ1 and τ2 nf

(3) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

(4) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1&τ2 <∶nf τ1&τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3) and (4)

(5) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ1 ∶ ⋆ ⇒ Φ1

(6) Ψ; Θ; ∆ ⊢p τ2 <∶nf τ2 ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ1 ∧Φ2

By AS-With on (5) and (6)

(8) Ψ; Θ; ∆ ⊢p τ1&τ2 <∶nf τ1&τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

Goal is immediate from (7), (8)

▸ Case 6: K-Sum.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊕ τ2 ∶ ⋆

(2) τ1 and τ2 nf

(3) Ψ; Θ; ∆ ⊢ τ1 ∶ ⋆

(4) Ψ; Θ; ∆ ⊢ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 ⊕ τ2 <∶nf τ1 ⊕ τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3) and (4)
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(5) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ1 ∶ ⋆ ⇒ Φ1

(6) Ψ; Θ; ∆ ⊢p τ2 <∶nf τ2 ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ1 ∧Φ2

By AS-Sum on (5) and (6)

(8) Ψ; Θ; ∆ ⊢p τ1 ⊕ τ2 <∶nf τ1 ⊕ τ2 ∶ ⋆ ⇒ Φ1 ∧Φ2

Goal is immediate from (7), (8)

▸ Case 7: K-Bang.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p!τ ∶ ⋆

(2) τ nf

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p!τ <∶nf!τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(4) Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(5) Θ; ∆ ⊧ Φ

By AS-Bang on (4)

(6) Ψ; Θ; ∆ ⊢p!τ <∶nf!τ ∶ ⋆ ⇒ Φ

▸ Case 8: K-IForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ ∶ ⋆

(2) τ nf

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ ∀i ∶ S.τ <∶nf ∀i ∶ S.τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(5) Θ, i ∶ S; ∆ ⊧ Φ

By AS-IForall on (4)
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(6) Ψ; Θ; ∆ ⊢p ∀i ∶ S.τ <∶ ∀i ∶ S.τ ∶ ⋆ ⇒ ∀i ∶ S.Φ

Equivalently to (5)

(7) Θ; ∆ ⊧ ∀i ∶ S.Φ
▸ Case 9: K-IExists.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ ∶ ⋆

(2) τ nf

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ ∃i ∶ S.τ <∶nf ∃i ∶ S.τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(5) Θ, i ∶ S; ∆ ⊧ Φ

By AS-IExists on (4)

(6) Ψ; Θ; ∆ ⊢p ∃i ∶ S.τ <∶ ∃i ∶ S.τ ∶ ⋆ ⇒ ∀i ∶ S.Φ

Equivalently to (5)

(7) Θ; ∆ ⊧ ∀i ∶ S.Φ

▸ Case 10: K-TForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ ∀α ∶K.τ ∶ ⋆

(2) τ nf

(3) Ψ, α ∶K; Θ; ∆ ⊢ τ ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢ ∀α ∶K.τ <∶nf ∀α ∶K.τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(4) Ψ, α ∶K; Θ; ∆ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(5) Θ; ∆ ⊧ Φ

By AS-TForall on (4)

(6) Ψ; Θ; ∆ ⊢ ∀α ∶K.τ <∶nf ∀α ∶K.τ ∶ ⋆ ⇒ Φ

▸ Case 11: K-List.
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▸ Given:

(1) Ψ; Θ; ∆ ⊢p LIτ ∶ ⋆

(2) τ nf

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

(4) Θ; ∆ ⊢ I ∶ N

▸ Goal:

Ψ; Θ; ∆ ⊢ LIτ <∶nf∶ LI⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(5) Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(6) Θ; ∆ ⊧ Φ

By AS-List on (5)

(7) Ψ; Θ; ∆ ⊢ LIτ <∶nf LIτ ∶ ⋆ ⇒ Φ ∧ (I = I)

By ?? applied to (4), we may re-establish the presupposition for (7)

(8) Ψ; Θ; ∆ ⊢p LIτ <∶nf LIτ ∶ ⋆ ⇒ Φ ∧ (I = I)

The goal is immediate from (6), (8), and Θ; ∆ ⊧ I = I

▸ Case 12: K-Conj.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p Φ′&τ ∶ ⋆

(2) τ nf

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

(4) Θ; ∆ ⊢ Φ′ wf

▸ Goal:

Ψ; Θ; ∆ ⊢ Φ′&τ <∶nf Φ′&τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(5) Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(6) Θ; ∆ ⊧ Φ

By AS-Conj on (5)

(7) Ψ; Θ; ∆ ⊢ Φ′&τ <∶nf Φ′&τ ∶ ⋆ ⇒ Φ ∧ (Φ′ → Φ′)
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By Theorem 8.12 on (4), we may re-establish the presupposition for (7)

(8) Ψ; Θ; ∆ ⊢ Φ′&τ <∶nf Φ′&τ ∶ ⋆ ⇒ Φ ∧ (Φ′ → Φ′)

The goal follows from (6), (8), and Θ; ∆ ⊧ Φ′ → Φ′

▸ Case 12: K-Impl.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p Φ′ Ô⇒ τ ∶ ⋆

(2) τ nf

(3) Ψ; Θ; ∆,Φ′ ⊢ τ ∶ ⋆

(4) Θ; ∆ ⊢ Φ′ wf

▸ Goal:

Ψ; Θ; ∆ ⊢ Φ′ Ô⇒ τ <∶nf Φ′ Ô⇒ τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(5) Ψ; Θ; ∆,Φ′ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(6) Θ; ∆,Φ′ ⊧ Φ

By AS-Impl on (5)

(7) Ψ; Θ; ∆ ⊢ Φ′ Ô⇒ τ <∶nf Φ′ Ô⇒ τ ∶ ⋆ ⇒ (Φ′ → Φ) ∧ (Φ′ → Φ′)

By Theorem 8.12 on (4), we may re-establish the presupposition for (7)

(8) Ψ; Θ; ∆ ⊢p Φ′ Ô⇒ τ <∶nf Φ′ Ô⇒ τ ∶ ⋆ ⇒ (Φ′ → Φ) ∧ (Φ′ → Φ′)

The goal follows from (6), (8), and Θ; ∆ ⊧ Φ′ → Φ′

▸ Case 13: K-Monad.

▸ Given:

(1) Ψ; Θ; ∆ ⊢M(I, p⃗)τ ∶ ⋆

(2) τ nf

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

(4) Θ; ∆ ⊢ I ∶ N

(5) Θ; ∆ ⊢ p⃗ ∶ R⃗+

▸ Goal:

Ψ; Θ; ∆ ⊢M(I, p⃗)τ <∶nf M(I, p⃗)τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)
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(6) Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(7) Θ; ∆ ⊧ Φ

By AS-Monad on (6), followed by ?? on (4) and (5) to establish the presuppositions

(8) Ψ; Θ; ∆ ⊢p M(I, p⃗)τ <∶nf M(I, p⃗)τ ∶ ⋆ ⇒ Φ ∧ (I = I) ∧ (p⃗ ≤ p⃗)

Goal is immediate from (7) and (8)

▸ Case 14: K-Pot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢ [I ∣p⃗]τ ∶ ⋆

(2) τ nf

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

(4) Θ; ∆ ⊢ I ∶ N

(5) Θ; ∆ ⊢ p⃗ ∶ R⃗+

▸ Goal:

Ψ; Θ; ∆ ⊢ [I ∣p⃗]τ <∶nf [I ∣p⃗]τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(6) Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(7) Θ; ∆ ⊧ Φ

By AS-Pot on (6), followed by ?? on (4) and (5) to establish the presuppositions

(8) Ψ; Θ; ∆ ⊢p [I ∣p⃗]τ <∶nf [I ∣p⃗]τ ∶ ⋆ ⇒ Φ ∧ (I = I) ∧ (p⃗ ≤ p⃗)

Goal is immediate from (7) and (8)

▸ Case 15: K-ConstPot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p [I] τ ∶ ⋆

(2) τ nf

(3) Ψ; Θ; ∆ ⊢ τ ∶ ⋆

(4) Θ; ∆ ⊢ I ∶ R+

▸ Goal:

Ψ; Θ; ∆ ⊢ [I]τ <∶nf [I]τ ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)
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(5) Ψ; Θ; ∆ ⊢p τ <∶nf τ ∶ ⋆ ⇒ Φ

(6) Θ; ∆ ⊧ Φ

By AS-ConstPot on (5) followed by Theorem 8.10 on (4) to re-establish the presuppo-

sition

(7) Ψ; Θ; ∆ ⊢ [I] τ <∶nf [I] τ ∶ ⋆ ⇒ Φ ∧ (I ≤ I)

Goal is immediate by (7), (6), and Θ; ∆ ⊧ I ≤ I

▸ Case 16: K-FamLam.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p λi ∶ S.τ ∶ S →K

(2) τ nf

(3) Ψ; Θ, i ∶ S; ∆ ⊢ τ ∶K

▸ Goal:

Ψ; Θ; ∆ ⊢ λi ∶ S.τ <∶nf τ ∶ S →K ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (3)

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ <∶nf τ ∶K ⇒ Φ

(5) Θ, i ∶ S; ∆ ⊧ Φ

By AS-FamLam on (4)

(6) Ψ; Θ; ∆ ⊢p λi ∶ S.τ <∶nf λi ∶ Sτ ∶ S →K ⇒ ∀i ∶ S.Φ

Equivalently to (5)

(7) Θ; ∆ ⊧ ∀i ∶ S.Φ

▸ Case 17: K-FamApp.

Immediate by Theorem 8.14

�

Proof of Theorem 8.17

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ2 ∶K ⇒ Φ1

(2) Ψ; Θ; ∆ ⊢p τ2 <∶nf τ3 ∶K ⇒ Φ2

(3) Θ; ∆ ⊧ Φ1 ∧Φ2
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▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶K ⇒ Φ such that Θ; ∆ ⊧ Φ

By strong induction on the sum of the sizes of (1) and (2). We note that for a given choice of

final rule for (1), the final rule for (2) must be the same, by inspection of the rules generating

<∶nf. For this reason, we present the proof as a case analysis over the rules for <∶nf.

▸ Case 1: AS-Unit.

Immediate.

▸ Case 2: AS-Var.

Immediate.

▸ Case 3: AS-Arr.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊸ τ ′1 <∶nf τ2 ⊸ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Ψ; Θ; ∆ ⊢p τ2 ⊸ τ ′2 <∶nf τ3 ⊸ τ ′3 ∶ ⋆ ⇒ Φ3 ∧Φ4

(3) Θ; ∆ ⊢ ⋀4
i=1 Φi

(4) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ1 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ ′1 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

(6) Ψ; Θ; ∆ ⊢ τ3 <∶nf τ2 ∶ ⋆ ⇒ Φ3

(7) Ψ; Θ; ∆ ⊢ τ ′2 <∶nf τ ′3 ∶ ⋆ ⇒ Φ4

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 ⊸ τ ′1 <∶nf τ3 ⊸ τ ′3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4) and (6)

(8) Ψ; Θ; ∆ ⊢p τ3 <∶nf τ1 ∶ ⋆ ⇒ Φ′
1

(9) Θ; ∆ ⊧ Φ′
1

By IH on (5) and (7)

10 Ψ; Θ; ∆ ⊢p τ ′1 <∶nf τ ′3 ∶ ⋆ ⇒ Φ′
2

(11) Θ; ∆ ⊧ Φ′
2

By AS-Arr on (8) and (10)

(12) Ψ; Θ; ∆ ⊢p τ1 ⊸ τ ′1 <∶nf τ3 ⊸ τ ′3 ∶ ⋆ ⇒ Φ′
1 ∧Φ′

2

The Goal follows by (9), (11), and (12)

▸ Case 4: AS-Tensor.
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▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊗ τ ′1 <∶nf τ2 ⊗ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Ψ; Θ; ∆ ⊢p τ2 ⊗ τ ′2 <∶nf τ3 ⊗ τ ′3 ∶ ⋆ ⇒ Φ3 ∧Φ4

(3) Θ; ∆ ⊢ ⋀4
i=1 Φi

(4) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ ′1 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

(6) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ3

(7) Ψ; Θ; ∆ ⊢ τ ′2 <∶nf τ ′3 ∶ ⋆ ⇒ Φ4

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 ⊗ τ ′1 <∶nf τ3 ⊗ τ ′3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4) and (6)

(8) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ′
1

(9) Θ; ∆ ⊧ Φ′
1

By IH on (5) and (7)

10 Ψ; Θ; ∆ ⊢p τ ′1 <∶nf τ ′3 ∶ ⋆ ⇒ Φ′
2

(11) Θ; ∆ ⊧ Φ′
2

By AS-Tensor on (8) and (10)

(12) Ψ; Θ; ∆ ⊢p τ1 ⊗ τ ′1 <∶nf τ3 ⊗ τ ′3 ∶ ⋆ ⇒ Φ′
1 ∧Φ′

2

The Goal follows by (9), (11), and (12)

▸ Case 5: AS-With.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1&τ ′1 <∶nf τ2&τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Ψ; Θ; ∆ ⊢p τ2&τ ′2 <∶nf τ3&τ ′3 ∶ ⋆ ⇒ Φ3 ∧Φ4

(3) Θ; ∆ ⊢ ⋀4
i=1 Φi

(4) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ ′1 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

(6) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ3

(7) Ψ; Θ; ∆ ⊢ τ ′2 <∶nf τ ′3 ∶ ⋆ ⇒ Φ4

▸ Goal:
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Ψ; Θ; ∆ ⊢p τ1&τ ′1 <∶nf τ3&τ ′3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4) and (6)

(8) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ′
1

(9) Θ; ∆ ⊧ Φ′
1

By IH on (5) and (7)

10 Ψ; Θ; ∆ ⊢p τ ′1 <∶nf τ ′3 ∶ ⋆ ⇒ Φ′
2

(11) Θ; ∆ ⊧ Φ′
2

By AS-With on (8) and (10)

(12) Ψ; Θ; ∆ ⊢p τ1&τ ′1 <∶nf τ3&τ ′3 ∶ ⋆ ⇒ Φ′
1 ∧Φ′

2

The Goal follows by (9), (11), and (12)

▸ Case 6: AS-Sum.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊕ τ ′1 <∶nf τ2 ⊕ τ ′2 ∶ ⋆ ⇒ Φ1 ∧Φ2

(2) Ψ; Θ; ∆ ⊢p τ2 ⊕ τ ′2 <∶nf τ3 ⊕ τ ′3 ∶ ⋆ ⇒ Φ3 ∧Φ4

(3) Θ; ∆ ⊢ ⋀4
i=1 Φi

(4) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ ′1 <∶nf τ ′2 ∶ ⋆ ⇒ Φ2

(6) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ3

(7) Ψ; Θ; ∆ ⊢ τ ′2 <∶nf τ ′3 ∶ ⋆ ⇒ Φ4

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 ⊕ τ ′1 <∶nf τ3 ⊕ τ ′3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4) and (6)

(8) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ′
1

(9) Θ; ∆ ⊧ Φ′
1

By IH on (5) and (7)

10 Ψ; Θ; ∆ ⊢p τ ′1 <∶nf τ ′3 ∶ ⋆ ⇒ Φ′
2

(11) Θ; ∆ ⊧ Φ′
2

By AS-Sum on (8) and (10)

(12) Ψ; Θ; ∆ ⊢p τ1 ⊕ τ ′1 <∶nf τ3 ⊕ τ ′3 ∶ ⋆ ⇒ Φ′
1 ∧Φ′

2

The Goal follows by (9), (11), and (12)
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▸ Case 7: AS-Bang.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p!τ1 <∶nf!τ2 ∶ ⋆ ⇒ Φ1

(2) Ψ; Θ; ∆ ⊢p!τ2 <∶nf!τ3 ∶ ⋆ ⇒ Φ2

(3) Θ; ∆ ⊧ Φ1 ∧Φ2

(4) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢p!τ1 <∶nf!τ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4) and (5)

(6) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Phi

(7) Θ; ∆ ⊧ Φ

By AS-Bang on (6)

(8) Ψ; Θ; ∆ ⊢p!τ1 <∶nf!τ3 ∶ ⋆ ⇒ Phi

▸ Case 8: AS-IForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p ∀i ∶ S.τ1 <∶nf ∀i ∶ S.τ2 ∶ ⋆ ⇒ ∀i ∶ S.Φ1

(2) Ψ; Θ; ∆ ⊢p ∀i ∶ S.τ2 <∶nf ∀i ∶ S.τ3 ∶ ⋆ ⇒ ∀i ∶ S.Φ2

(3) Θ; ∆ ⊧ ∀i ∶ S.Φ1 ∧ ∀i ∶ S.Φ2

(4) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ, i ∶ S; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ3

▸ Goal:

Ψ; Θ; ∆ ⊢p ∀i ∶ S.τ1 <∶nf ∀i ∶ S.τ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

Equivalently to (3), Θ, i ∶ S; ∆ ⊧ Φ1 and Θ, i ∶ S; ∆ ⊧ Φ2, and so by IH on (4),(5)

(6) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ

(7) Θ, i ∶ S ∶ ∆ ⊧ Φ

By AS-IForall on (6)

(8) Ψ; Θ; ∆ ⊢p ∀i ∶ S.τ1 <∶nf ∀i ∶ S.τ3 ∶ ⋆ ⇒ ∀i ∶ S.Φ

Equivalently to (7)
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(9) Θ; ∆ ⊧ ∀i ∶ S.Φ

The goal follows by (8) and (9)

▸ Case 9: AS-IExists.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p ∃i ∶ S.τ1 <∶nf ∃i ∶ S.τ2 ∶ ⋆ ⇒ ∀i ∶ S.Φ1

(2) Ψ; Θ; ∆ ⊢p ∃i ∶ S.τ2 <∶nf ∃i ∶ S.τ3 ∶ ⋆ ⇒ ∀i ∶ S.Φ2

(3) Θ; ∆ ⊧ ∀i ∶ S.Φ1 ∧ ∀i ∶ S.Φ2

(4) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ, i ∶ S; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ3

▸ Goal:

Ψ; Θ; ∆ ⊢p ∃i ∶ S.τ1 <∶nf ∃i ∶ S.τ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

Equivalently to (3), Θ, i ∶ S; ∆ ⊧ Φ1 and Θ, i ∶ S; ∆ ⊧ Φ2, and so by IH on (4),(5)

(6) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ

(7) Θ, i ∶ S ∶ ∆ ⊧ Φ

By AS-IExists on (6)

(8) Ψ; Θ; ∆ ⊢p ∃i ∶ S.τ1 <∶nf ∃i ∶ S.τ3 ∶ ⋆ ⇒ ∀i ∶ S.Φ

Equivalently to (7)

(9) Θ; ∆ ⊧ ∀i ∶ S.Φ

The goal follows by (8) and (9)

▸ Case 10: AS-TForall.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p ∀α ∶K.τ1 <∶nf ∀α ∶K.τ2 ∶ ⋆ ⇒ Φ1

(2) Ψ; Θ; ∆ ⊢p ∀α ∶K.τ2 <∶nf ∀α ∶K.τ3 ∶ ⋆ ⇒ Φ2

(3) Θ; ∆ ⊧ Φ1 ∧Φ2

(4) Ψ, α ∶K; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ, α ∶K; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢p ∀α ∶K.τ1 <∶nf ∀α ∶K.τ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4),(5)
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(6) Ψ, α ∶K; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ

(7) Θ; ∆ ⊧ Φ

By AS-TForall on (6)

(8) Ψ; Θ; ∆ ⊢p ∀α ∶K.τ1 <∶nf ∀α ∶K.τ3 ∶ ⋆ ⇒ Φ

▸ Case 11: AS-List.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p LIτ1 <∶nf LJτ2 ∶ ⋆ ⇒ Φ1 ∧ (I = J)

(2) Ψ; Θ; ∆ ⊢p LJτ2 <∶nf LKτ3 ∶ ⋆ ⇒ Φ2 ∧ (J =K)

(3) Θ; ∆ ⊧ Φ1 ∧Φ2 ∧ (I = J) ∧ (J =K)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢p τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢p LIτ1 <∶nf LKτ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4), (5)

(6) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ

(7) Θ; ∆ ⊧ Φ

By AS-List on (7)

(8) Ψ; Θ; ∆ ⊢p τ I1 <∶nf τK3 ∶ ⋆ ⇒ Φ ∧ (I =K)

By (3)

(9) Θ; ∆ ⊧ I =K

The goal follows by (7), (8), (9)

▸ Case 12: AS-Impl.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p Φ1 Ô⇒ τ1 <∶nf Φ2 Ô⇒ τ2 ∶ ⋆ ⇒ (Φ2 → Φ′
1) ∧ (Φ2 → Φ1)

(2) Ψ; Θ; ∆ ⊢p Φ2 Ô⇒ τ2 <∶nf Φ3 Ô⇒ τ3 ∶ ⋆ ⇒ (Φ3 → Φ′
2) ∧ (Φ3 → Φ2)

(3) Θ; ∆ ⊧ Φ′
1 ∧Φ′

2 ∧ (Phi3 → Φ2) ∧ (Phi2 → Φ1)

(4) Ψ; Θ; ∆,Φ2 ⊢p τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ′
1

(5) Ψ; Θ; ∆,Φ3 ⊢p τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ′
2

▸ Goal:
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Ψ; Θ; ∆ ⊢ Φ1 Ô⇒ τ1 <∶nf Φ3 Ô⇒ τ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

FIXME FIXME

By Theorem A.31 on (4)

(6) Ψ; Θ; ∆,Φ3 ⊢p τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ′′
1

(7) Θ; ∆ ⊧ Φ′′
1

By IH on (5), (6)

(8) Ψ; Θ; ∆,Φ3 ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ

(9) Θ; ∆ ⊧ Φ

By AS-Impl on (8)

(10) Ψ; Θ; ∆ ⊢p Φ1 Ô⇒ τ1 <∶nf Φ3 Ô⇒ τ3 ∶ ⋆ ⇒ Φ ∧ (Φ3 → Φ1)

By (3)

(11) Θ; ∆ ⊧ Φ3 → Φ1

The goal follows by (7), (8), (9)

▸ Case 13: AS-Conj.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p Φ1&τ1 <∶nf Φ2&τ2 ∶ ⋆ ⇒ Φ′
1 ∧ (Φ1 → Φ2)

(2) Ψ; Θ; ∆ ⊢p Φ2&τ2 <∶nf Φ3&τ3 ∶ ⋆ ⇒ Φ′
2 ∧ (Φ2 → Φ3)

(3) Θ; ∆ ⊧ Φ′
1 ∧Φ′

2 ∧ (Phi1 → Φ3) ∧ (Phi1 → Φ2)

(4) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ′
1

(5) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ′
2

▸ Goal:

Ψ; Θ; ∆ ⊢ Φ1&τ1 <∶nf Φ3&τ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4), (5)

(6) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ

(7) Θ; ∆ ⊧ Φ

By AS-Conj on (6)

(8) Ψ; Θ; ∆ ⊢p Φ1&τ1 <∶nf Φ3&τ3 ∶ ⋆ ⇒ Φ ∧ (Φ1 → Φ3)

By (3)

(9) Θ; ∆ ⊧ Φ1 → Φ3

The goal follows by (7), (8), (9)
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▸ Case 14: AS-Monad.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p M(I, q⃗)τ1 <∶nf M(J, p⃗)τ2 ∶ ⋆ ⇒ (I = J) ∧ (q⃗ ≤ p⃗) ∧Φ1

(2) Ψ; Θ; ∆ ⊢p M(J, p⃗)τ2 <∶nf M(K, l⃗)τ3 ∶ ⋆ ⇒ (J =K) ∧ (p⃗ ≤ l⃗) ∧Φ2

(3) Θ; ∆ ⊧ (I = J) ∧ (J =K) ∧ (q⃗ ≤ p⃗) ∧ (p⃗ ≤ l⃗) ∧Φ1 ∧Φ2

(4) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢p M(I, q⃗)τ1 <∶nf M(K, l⃗)τ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4), (5)

(7) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ

(8) Θ; ∆ ⊧ Φ

By (3)

(9) Θ; ∆ ⊧ (I =K) ∧ (q⃗ ≤ l⃗)

By AS-Monad on (7)

(10) Ψ; Θ; ∆ ⊢p M(I, q⃗)τ1 <∶nf M(K, p⃗)τ3 ∶ ⋆ ⇒ (I =K) ∧ (q⃗ ≤ l⃗) ∧Φ

Goal follows by (8), (9), (10)

▸ Case 15: AS-Pot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p [I ∣q⃗]τ1 <∶nf [J ∣p⃗]τ2 ∶ ⋆ ⇒ (I = J) ∧ (q⃗ ≥ p⃗) ∧Φ1

(2) Ψ; Θ; ∆ ⊢p [J ∣p⃗]τ2 <∶nf [K ∣l⃗]τ3 ∶ ⋆ ⇒ (J =K) ∧ (p⃗ ≥ l⃗) ∧Φ2

(3) Θ; ∆ ⊧ (I = J) ∧ (J =K) ∧ (q⃗ ≥ p⃗) ∧ (p⃗ ≥ l⃗) ∧Φ1 ∧Φ2

(4) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢p [I ∣q⃗]τ1 <∶nf [K ∣l⃗]τ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4), (5)

(7) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ

(8) Θ; ∆ ⊧ Φ
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By (3)

(9) Θ; ∆ ⊧ (I =K) ∧ (q⃗ ≥ l⃗)

By AS-Pot on (7)

(10) Ψ; Θ; ∆ ⊢p [I ∣q⃗]τ1 <∶nf [K ∣p⃗]τ3 ∶ ⋆ ⇒ (I =K) ∧ (q⃗ ≥ l⃗) ∧Φ

Goal follows by (8), (9), (10)

▸ Case 16: AS-ConstPot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p [I]τ1 <∶nf [J]τ2 ∶ ⋆ ⇒ (I ≤ J) ∧Φ1

(2) Ψ; Θ; ∆ ⊢p [J]τ2 <∶nf [K]τ3 ∶ ⋆ ⇒ (J ≤K) ∧Φ2

(3) Θ; ∆ ⊧ (I ≤ J) ∧ (J ≤K) ∧Φ1 ∧Φ2

(4) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ ⋆ ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢p [I]τ1 <∶nf [K]τ3 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4), (5)

(7) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ ⋆ ⇒ Φ

(8) Θ; ∆ ⊧ Φ

By (3)

(9) Θ; ∆ ⊧ (I ≤K)

By AS-ConstPot on (7)

(10) Ψ; Θ; ∆ ⊢p [I]τ1 <∶nf [K]τ3 ∶ ⋆ ⇒ (I ≤K) ∧Φ

Goal follows by (8), (9), (10)

▸ Case 17: AS-FamLam.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p λi ∶ S.τ1 <∶nf λi ∶ S.τ2 ∶ S →K ⇒ ∀i ∶ S.Φ1

(2) Ψ; Θ; ∆ ⊢p λi ∶ S.τ2 <∶nf λi ∶ S.τ3 ∶ S →K ⇒ ∀i ∶ S.Φ2

(3) Θ; ∆ ⊧ ∀i ∶ S.Φ1 ∧ ∀i ∶ S.Φ2

(4) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶K ⇒ Φ1

(5) Ψ; Θ, i ∶ S; ∆ ⊢ τ2 <∶nf τ3 ∶K ⇒ Φ2
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▸ Goal:

Psi; Θ; ∆ ⊢p λi ∶ S.τ1 <∶nf λi ∶ S.τ3 ∶ S →K ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4) and (5)

(6) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶nf τ3 ∶K ⇒ Φ

(7) Θ, i ∶ S; ∆ ⊧ Φ

By AS-FamLam on (6)

(8) Ψ; Θ; ∆ ⊢p λi ∶ S.τ1 <∶nf λi ∶ S.τ3 ∶ S →K ⇒ ∀i ∶ S.Φ

Equivalently to (7)

(9) Θ; ∆ ⊧ ∀i ∶ S.Φ

The Goal follows from (8) and (9)

▸ Case 18: AS-FamApp.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 I <∶nf τ2 J ∶K ⇒ (I = J) ∧Φ1

(2) Ψ; Θ; ∆ ⊢p τ2 J <∶nf τ3 L ∶K ⇒ (J = L) ∧Φ2

(3) Θ; ∆ ⊧ (I = J) ∧ (J = L) ∧Φ1 ∧Φ2

(4) Ψ; Θ; ∆ ⊢ τ1 <∶nf τ2 ∶ S →K ⇒ Φ1

(5) Ψ; Θ; ∆ ⊢ τ2 <∶nf τ3 ∶ S →K ⇒ Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 I <∶nf τ3 L ∶K ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (4) and (5)

(5) Ψ; Θ; ∆ ⊢p τ1 <∶nf τ3 ∶ S →K ⇒ Φ

(6) Θ; ∆ ⊧ Φ

By (3)

(7) Θ; ∆ ⊧ (I = L)

By AS-FamApp on (5)

(8) Ψ; Θ; ∆ ⊢p τ1 I <∶nf τ3 L ∶K ⇒ (I = L) ∧Φ

The Goal follows by (6),(7),(8)

�

Proof of Theorem 8.19
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▸ Given:

(1) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶nf τ2 ∶K ⇒ Φ

(2) Θ; ∆ ⊧ Φ

(3) Θ ⊢∆ wf

(4) Θ; ∆ ⊢p I ∶ S ⇒ Φ1 with Θ; ∆ ⊧ Φ1

(5) Θ; ∆ ⊢p J ∶ S ⇒ Φ2 with Θ; ∆ ⊧ Φ2

(6) Θ; ∆ ⊧ I = J

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶K ⇒ Φ′ for some Φ′ with Θ; ∆ ⊧ Φ′

In most cases, it suffices to show that Ψ; Θ; ∆ ⊢ τ1[I/i] <∶nf τ2[J/i] ∶ K ⇒ Φ′ for some solvable

Φ′ since Theorem 8.11 on (3), Theorem 7.1 along with the presuppositions for (1) give the pre-

suppositions for the conclusion, using Theorem A.34. When this is not immediate, we manually

reconstruct the presuppositions required.

▸ Case 1: AS-Unit.

Immediate.

▸ Case 2: AS-Var.

Immediate.

▸ Case 3: AS-Arr.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ⊸ τ2 <∶nf τ ′1 ⊸ τ ′2 ∶ ⋆ ⇒ Φ′
1 ∧Φ′

2

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ ′1 <∶nf τ1 ∶ ⋆ ⇒ Φ′
1

(9) Ψ; Θ, i ∶ S; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ′
2

▸ Goal:

Ψ; Θ; ∆ ⊢ (τ1 ⊸ τ2)[I/i] <∶nf (τ ′1 ⊸ τ ′2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By IH on (8) and (9)

(10) Ψ; Θ; ∆ ⊢p τ ′1[J/i] <∶nf τ1[I/i] ∶ ⋆ ⇒ Φ′′
1

(11) Θ; ∆ ⊧ Φ′′
1

(12) Ψ; Θ; ∆ ⊢ τ2[I/i] <∶nf τ ′2[J/i] ∶ ⋆ ⇒ Φ′′
2

(13) Θ; ∆ ⊧ Φ′′
2
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By AS-Arr on (10) and (12)

(14) Ψ; Θ; ∆ ⊢p τ1[I/i] ⊸ τ2[I/i] <∶nf τ ′1[J/i] ⊸ τ ′2[J/i] ∶ ⋆ ⇒ Φ′′
1 ∧Φ′′

2

Goal follows immediately from (14), with Φ′ = Φ′′
1 ∧Φ′′

2

▸ Case 4: AS-Tensor.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ⊗ τ2 <∶nf τ ′1 ⊗ τ ′2 ∶ ⋆ ⇒ Φ′
1 ∧Φ′

2

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ′
1

(9) Ψ; Θ, i ∶ S; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ′
2

▸ Goal:

Ψ; Θ; ∆ ⊢ (τ1 ⊗ τ2)[I/i] <∶nf (τ ′1 ⊗ τ ′2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By IH on (8) and (9)

(10) Ψ; Θ; ∆ ⊢p τ1[J/i] <∶nf τ ′1[I/i] ∶ ⋆ ⇒ Φ′′
1

(11) Θ; ∆ ⊧ Φ′′
1

(12) Ψ; Θ; ∆ ⊢ τ2[I/i] <∶nf τ ′2[J/i] ∶ ⋆ ⇒ Φ′′
2

(13) Θ; ∆ ⊧ Φ′′
2

By AS-Tensor on (10) and (12)

(14) Ψ; Θ; ∆ ⊢p τ1[I/i] ⊗ τ2[I/i] <∶nf τ ′1[J/i] ⊗ τ ′2[J/i] ∶ ⋆ ⇒ Φ′′
1 ∧Φ′′

2

Goal follows immediately from (14), with Φ′ = Φ′′
1 ∧Φ′′

2

▸ Case 5: AS-With.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p τ1&τ2 <∶nf τ ′1&τ ′2 ∶ ⋆ ⇒ Φ′
1 ∧Φ′

2

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ′
1

(9) Ψ; Θ, i ∶ S; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ′
2

▸ Goal:

Ψ; Θ; ∆ ⊢ (τ1&τ2)[I/i] <∶nf (τ ′1&τ ′2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By IH on (8) and (9)

(10) Ψ; Θ; ∆ ⊢p τ1[J/i] <∶nf τ ′1[I/i] ∶ ⋆ ⇒ Φ′′
1

(11) Θ; ∆ ⊧ Φ′′
1

(12) Ψ; Θ; ∆ ⊢ τ2[I/i] <∶nf τ ′2[J/i] ∶ ⋆ ⇒ Φ′′
2
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(13) Θ; ∆ ⊧ Φ′′
2

By AS-With on (10) and (12)

(14) Ψ; Θ; ∆ ⊢p τ1[I/i]&τ2[I/i] <∶nf τ ′1[J/i]&τ ′2[J/i] ∶ ⋆ ⇒ Φ′′
1 ∧Φ′′

2

Goal follows immediately from (14), with Φ′ = Φ′′
1 ∧Φ′′

2

▸ Case 6: AS-Sum.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 ⊕ τ2 <∶nf τ ′1 ⊕ τ ′2 ∶ ⋆ ⇒ Φ′
1 ∧Φ′

2

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ ′1 ∶ ⋆ ⇒ Φ′
1

(9) Ψ; Θ, i ∶ S; ∆ ⊢ τ2 <∶nf τ ′2 ∶ ⋆ ⇒ Φ′
2

▸ Goal:

Ψ; Θ; ∆ ⊢ (τ1 ⊕ τ2)[I/i] <∶nf (τ ′1 ⊕ τ ′2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By IH on (8) and (9)

(10) Ψ; Θ; ∆ ⊢p τ1[J/i] <∶nf τ ′1[I/i] ∶ ⋆ ⇒ Φ′′
1

(11) Θ; ∆ ⊧ Φ′′
1

(12) Ψ; Θ; ∆ ⊢ τ2[I/i] <∶nf τ ′2[J/i] ∶ ⋆ ⇒ Φ′′
2

(13) Θ; ∆ ⊧ Φ′′
2

By AS-Sum on (10) and (12)

(14) Ψ; Θ; ∆ ⊢p τ1[I/i] ⊕ τ2[I/i] <∶nf τ ′1[J/i] ⊕ τ ′2[J/i] ∶ ⋆ ⇒ Φ′′
1 ∧Φ′′

2

Goal follows immediately from (14), with Φ′ = Φ′′
1 ∧Φ′′

2

▸ Case 7: AS-Bang.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p!τ1 <∶nf!τ2 ∶ ⋆ ⇒ Φ

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ (!τ1)[I/i] <∶nf (!τ2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By IH on (8)

(9) Ψ; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶ ⋆ ⇒ Φ′

(10) Θ; ∆ ⊧ Φ′

By AS-Bang on (9)
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(9) Ψ; Θ; ∆ ⊢p!τ1[I/i] <∶nf!τ2[J/i] ∶ ⋆ ⇒ Φ′

Goal follows immediately from (9)

▸ Case 8: AS-IForall.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p ∀j ∶ S′.τ1 <∶nf ∀j ∶ S′.τ2 ∶ ⋆ ⇒ ∀j ∶ S′.Φ

(8) Ψ; Θ, i ∶ S, j ∶ S′; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ (∀j ∶ S′.τ1)[I/i] <∶nf (∀j ∶ S′.τ2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By (2)

(9) Θ, i ∶ S, j ∶ S; ∆ ⊧ Φ

IH on (8)

(10) Ψ; Θj ∶ S′; ∆ ⊢ τ1[I/i] <∶nf τ2[J//i] ∶ ⋆ ⇒ Φ′

(11) Θ, j ∶ S′; ∆ ⊧ Φ′

Equivalently to (11)

(12) Θ; ∆ ⊧ ∀j ∶ S′.Φ′

By AS-IForall on (10)

(13) Psi; Θ; ∆ ⊢ ∀j ∶ S′.τ1[I/i] <∶nf ∀j ∶ S′.τ2[J/i] ∶ ⋆ ⇒ ∀j ∶ S′.Φ′

Goal follows by (12) and (13)

▸ Case 8: AS-IExists.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p ∃j ∶ S′.τ1 <∶nf ∃j ∶ S′.τ2 ∶ ⋆ ⇒ ∀j ∶ S′.Φ

(8) Ψ; Θ, i ∶ S, j ∶ S′; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ (∃j ∶ S′.τ1)[I/i] <∶nf (∃j ∶ S′.τ2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By (2)

(9) Θ, i ∶ S, j ∶ S; ∆ ⊧ Φ

IH on (8)

(10) Ψ; Θj ∶ S′; ∆ ⊢ τ1[I/i] <∶nf τ2[J//i] ∶ ⋆ ⇒ Φ′

(11) Θ, j ∶ S′; ∆ ⊧ Φ′
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Equivalently to (11)

(12) Θ; ∆ ⊧ ∀j ∶ S′.Φ′

By AS-IExists on (10)

(13) Psi; Θ; ∆ ⊢ ∃j ∶ S′.τ1[I/i] <∶nf ∃j ∶ S′.τ2[J/i] ∶ ⋆ ⇒ ∀j ∶ S′.Φ′

Goal follows by (12) and (13)

▸ Case 9: AS-TForall.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p ∀α ∶K.τ1 <∶nf ∀α ∶K.τ2 ∶ ⋆ ⇒ Φ

(8) Ψ, α ∶K; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ (∀α ∶K.τ1)[I/i] <∶nf (∀α ∶K.τ2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By IH on (8)

(9) Ψ, α ∶K; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[I/i] ∶ ⋆ ⇒ Φ′

(10) Θ; ∆ ⊧ Φ′

By AS-TForall on (9)

(11) Ψ; Θ; ∆ ⊢p ∀α ∶K.τ1[I/i] <∶nf ∀α ∶K.τ2[I/i] ∶ ⋆ ⇒ Φ′

Goal follows immediately from (11)

▸ Case 10: AS-List.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p LMτ1 <∶nf LNτ2 ∶ ⋆ ⇒M = N ∧Φ′

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ′

▸ Goal:

Ψ; Θ; ∆ ⊢ (LMτ1)[I/i] <∶nf (LNτ2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By (2)

(9) Θ, i ∶ S; ∆ ⊧M = N

From (9) and (4)

(10) Θ; ∆ ⊧M[I/i] = N[J/i]

By IH on (8)

(11) Ψ; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶ ⋆ ⇒ Φ′′
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(12) Θ; ∆ ⊧ Φ′′

By the presupposition for (7) and two inversions

(13) Θ, i ∶ S; ∆ ⊢M ∶ N⇒ Φ1 with Θ, i ∶ S; ∆ ⊧ Φ1

(14) Θ, i ∶ S; ∆ ⊢ N ∶ N⇒ Φ2 with Θ, i ∶ S; ∆ ⊧ Φ2

By ?? and ?? on (13) (14) (4) (5)

(15) Θ; ∆ ⊢M[I/i] ∶ N⇒ Φ′
1 with Θ; ∆ ⊧ Φ′

1

(16) Θ; ∆ ⊢ N[J/i] ∶ N⇒ Φ′
2 with Θ; ∆ ⊧ Φ′

1

By AS-List on (10) and (11)

(17) Ψ; Θ; ∆ ⊢ LM[I/i]τ1[I/i] <∶nf LN[J/i]τ2[J/i] ∶ ⋆ ⇒ (M[I/i] = N[J/i]) ∧Φ′′

By (15), (16), (17)

(18) Ψ; Θ; ∆ ⊢p LM[I/i]τ1[I/i] <∶nf LN[J/i]τ2[J/i] ∶ ⋆ ⇒ (M[I/i] = N[J/i]) ∧Φ′′

Goal follows from (18), taking Φ′ = (M[I/i] = N[J/i]) ∧Φ′′

▸ Case 11: AS-Conj.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p Φ1&τ1 <∶nf Φ2&τ2 ∶ ⋆ ⇒ Φ ∧ (Phi1 → Φ2)

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ (Φ1&τ1)[I/i] <∶nf (Φ2&τ2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By IH on (8)

(9) Ψ; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶ ⋆ ⇒ Φ′

(10) Θ; ∆ ⊧ Φ′

Inverting the presupposition that Φ1&τ1 and Φ2&τ2 are well-formed types from (1), we

have

(11) Θ, i ∶ S; ∆ ⊢ Φ1 wf⇒ Φ′
1 with Θ, i ∶ S; ∆ ⊧ Φ′

1

(12) Θ, i ∶ S; ∆ ⊢ Φ2 wf⇒ Φ′
2 with Θ, i ∶ S; ∆ ⊧ Φ′

2

By Theorem A.33

(13) Θ; ∆ ⊧ Φ1[I/i] wf⇒ Φ′′
1 with Θ; ∆ ⊧ Φ′′

1

(14) Θ; ∆ ⊧ Φ2[J/i] wf⇒ Φ′′
2 with Θ; ∆ ⊧ Φ′′

2

By AS-Conj on (9)
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(15) Ψ; Θ; ∆ ⊢ Φ1[I/i]&τ1[I/i] <∶nf Φ2[J/i]&τ2[I/i] ⇒ Φ′ ∧ (Φ1[I/i] → Φ2[J/i])

By (11) and (12), the presuppositions for (15) hold

(16) Ψ; Θ; ∆ ⊢p Φ1[I/i]&τ1[I/i] <∶nf Φ2[J/i]&τ2[I/i] ⇒ Φ′ ∧ (Φ1[I/i] → Φ2[J/i])

By (2)

(17) Θ, i ∶ S; ∆ ⊧ Φ1 → Φ2

By (17) and (6)

(18) Θ; ∆ ⊧ Φ1[I/i] → Φ2[J/i]

The result follows by (16) and (18), with Φ′ = Φ′ ∧ (Φ1[I/i] → Φ2[J/i])
▸ Case 12: AS-Impl.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p Φ1 Ô⇒ τ1 <∶nf Φ2 Ô⇒ τ2 ∶ ⋆ ⇒ (Φ2 → Φ) ∧ (Phi2 → Φ1)

(8) Ψ; Θ, i ∶ S; ∆,Φ2 ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ (Φ1 Ô⇒ τ1)[I/i] <∶nf (Φ2&τ2)[J/i] ∶ ⋆ ⇒ Φ′ for some Θ; ∆ ⊧ Φ′

By IH on (8)

(9) Ψ; Θ; ∆,Φ2 ⊢p τ1[I/i] <∶nf τ2[J/i] ∶ ⋆ ⇒ Φ′

(10) Θ; ∆,Φ2 ⊧ Φ′

Inverting the presupposition that Φ1&τ1 and Φ2&τ2 are well-formed types from (1), we

have

(11) Θ, i ∶ S; ∆ ⊢ Φ1 wf⇒ Φ′
1 with Θ, i ∶ S; ∆ ⊧ Φ′

1

(12) Θ, i ∶ S; ∆ ⊢ Φ2 wf⇒ Φ′
2 with Θ, i ∶ S; ∆ ⊧ Φ′

2

By Theorem A.33

(13) Θ; ∆ ⊧ Φ1[I/i] wf⇒ Φ′′
1 with Θ; ∆ ⊧ Φ′′

1

(14) Θ; ∆ ⊧ Φ2[J/i] wf⇒ Φ′′
2 with Θ; ∆ ⊧ Φ′′

2

By AS-Impl on (9)

(15) Ψ; Θ; ∆ ⊢ Φ1[I/i] Ô⇒ τ1[I/i] <∶nf Φ2[J/i] Ô⇒ τ2[I/i] ⇒ (Φ2[J/i] →

Φ′) ∧ (Φ2[J/i] → Φ1[I/i])

By (11) and (12), the presuppositions for (15) hold
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(16) Ψ; Θ; ∆ ⊢p Φ1[I/i] Ô⇒ τ1[I/i] <∶nf Φ2[J/i] Ô⇒ τ2[I/i] ⇒ (Φ2[J/i] →

Φ′) ∧ (Φ2[J/i] → Φ1[I/i])

By (2)

(17) Θ, i ∶ S; ∆ ⊧ Φ2 → Φ1

By (17) and (6)

(18) Θ; ∆ ⊧ Φ2[J/i] → Φ1[I/i]

The result follows by (16) and (18), with Φ′ = (Φ2[J/i] → Φ′) ∧ (Φ2[J/i] → Φ1[I/i])
▸ Case 13: AS-Monad.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p M(M, q⃗)τ1 <∶nf M(N, p⃗)τ2 ∶ ⋆ ⇒ (M = N) ∧ (q⃗ ≤ p⃗) ∧Φ

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ (M(M, q⃗)τ1)[I/i] <∶nf (M(N, p⃗)τ2)[J/i] ∶ ⋆ ⇒ Φ′ and Θ; ∆ ⊧ Φ′

From (2)

(9) Θ, i ∶ S; ∆ ⊧M = N

(10) Θ, i ∶ S; ∆ ⊧ q⃗ ≤ p⃗

By IH on (8)

(11) Ψ; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶ ⋆ ⇒ Φ′

(12) Θ; ∆ ⊧ Φ′

By AS-Monad on (11) and Theorem A.7 on the presuppositions of (1) for M,N, q⃗, p⃗

(13) Ψ; Θ; ∆ ⊢p M(M[I/i], q⃗[I/i]) (τ1[I/i]) <∶nf M(N[J/i], q⃗[J/i]) (τ2[J/i]) ∶ ⋆ ⇒

(M[I/i] = N[J/i]) ∧ (q⃗[I/i] ≤ p⃗[J/i]) ∧Φ′

By (6), (9), and (10)

(14) Θ; ∆ ⊧M[I/i] = N[J/i]

(15) Θ; ∆ ⊧ q⃗[I/i] ≤ p⃗[J/i]

The Goal is immediate from (12), (13), (14), (15)

▸ Case 13: AS-Pot.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p [M ∣q⃗]τ1 <∶nf [N ∣p⃗]τ2 ∶ ⋆ ⇒ (M = N) ∧ (q⃗ ≥ p⃗) ∧Φ
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(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢ ([M ∣q⃗]τ1)[I/i] <∶nf ([N ∣p⃗]τ2)[J/i] ∶ ⋆ ⇒ Φ′ and Θ; ∆ ⊧ Φ′

From (2)

(9) Θ, i ∶ S; ∆ ⊧M = N

(10) Θ, i ∶ S; ∆ ⊧ q⃗ ≥ p⃗

By IH on (8)

(11) Ψ; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶ ⋆ ⇒ Φ′

(12) Θ; ∆ ⊧ Φ′

By AS-Pot on (11) and Theorem A.7 on the presuppositions of (1) for M,N, q⃗, p⃗

(13) Ψ; Θ; ∆ ⊢p [M[I/i]∣q⃗[I/i]] (τ1[I/i]) <∶nf [N[J/i]∣q⃗[J/i]] (τ2[J/i]) ∶ ⋆ ⇒ (M[I/i] =

N[J/i]) ∧ (q⃗[I/i] ≥ p⃗[J/i]) ∧Φ′

By (6), (9), and (10)

(14) Θ; ∆ ⊧M[I/i] = N[J/i]

(15) Θ; ∆ ⊧ q⃗[I/i] ≥ p⃗[J/i]

The Goal is immediate from (12), (13), (14), (15)

▸ Case 14: AS-ConstPot.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p [M] τ1 <∶nf [N] ; τ2 ∶ ⋆ ⇒ Φ ∧ (N ≤M)

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ ⋆ ⇒ Φ

▸ Goal:

Ψ; Θ; ∆;⊢ ([M] τ1)[I/i] <∶nf ([N] τ2)[J/i] ∶ ⋆ ⇒ Φ′ and Θ; ∆ ⊧ Φ′

By (2)

(9) Θ, i ∶ S; ∆ ⊧ N ≤M

By IH on (8)

(10) Ψ; Θ; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶ ⋆ ⇒ Φ′

(11) Θ; ∆ ⊧ Φ′

By AS-ConstPot and Theorem A.7 for M,N
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(12) Ψ; Θ; ∆ ⊢p [M[I/i]] (τ1[I/i]) <∶nf [N[I/i]] (τ2[J/i]) ∶ ⋆ ⇒ Φ′ ∧ (N[J/i] ≤

M[I/i])

By (9) and (6)

(13) Θ; ∆ ⊧ N[J/i] ≤M[I/i]

Goal follows immediately from (11), (12), (13), with Φ′ = Φ′ ∧ (N[J/i] ≤M[I/i])
▸ Case 15: AS-FamLam.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p λj ∶ S′.τ1 <∶nf λj ∶ S′.τ2 ∶ S →K ⇒ ∀j ∶ S.Φ

(8) Ψ; Θ, i ∶ S, j ∶ S′; ∆ ⊢ τ1 <∶nf τ2 ∶K ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢p (λj ∶ S′.τ1)[I/i] <∶nf (λj ∶ S′.τ2)[J/i] ∶ S′ →K ⇒ Φ′ and Θ; ∆ ⊧ Φ′

By IH on (8)

(9) Ψ; Θ, j ∶ S′; ∆ ⊢p τ1[I/i] <∶nf τ2[J/i] ∶K ⇒ Φ′

(10) Θ, j ∶ S′; ∆ ⊧ Φ′

By AT-FamLam on (9)

(11) Ψ; Θ; ∆ ⊢p ∀j ∶ S′.τ1[I/i] <∶nf ∀j ∶ S′.τ2[J/i] ∶K ⇒ ∀j ∶ S′.Φ′

The goal is immediate by (10) and (11)

▸ Case 15: AS-FamApp.

▸ Given:

(7) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 M <∶nf τ2 N ∶K ⇒ Φ ∧ (M = N)

(8) Ψ; Θ, i ∶ S; ∆ ⊢ τ1 <∶nf τ2 ∶ S′ →K ⇒ Φ

▸ Goal:

Ψ; Θ; ∆ ⊢p (τ1 M) [I/i] <∶nf (τ2[J/i]) [J/i] ∶K ⇒ Φ′ and Θ; ∆ ⊧ Φ′

By (2)

(9) Θ, i ∶ S; ∆ ⊧M = N

By (9) and (6)

(10) Θ; ∆ ⊧M[I/i] = N[J/i]

IH on (8)

(11) Ψ; Θ; ∆ ⊢ τ1[I/i] <∶nf τ2[J/i] ∶ S′ →K ⇒ Φ′



A 268

(12) Θ; ∆ ⊧ Φ′

By AS-FamApp on (11) and ?? on the proofs that M,N ∶ S′ in (7)

(13) Ψ; Θ; ∆ ⊢p (τ1[I/i]) M[I/i] <∶nf (τ2[J/i]) N[J/i] ∶ K ⇒ Φ′ ∧ (M[I/i] =

N[J/i])

The Goal follows by (10), (12), (13)

�

Proof of Theorem 8.21

(1) By induction on Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶K.

▸ Case 1: S-Refl.

Immediate by Theorem 8.16.

▸ Case 2: S-Trans.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 <∶ τ3 ∶K

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K

(3) Ψ; Θ; ∆ ⊢p τ2 <∶ τ3 ∶K

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 <∶ τ3 ∶K ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶K ⇒ Φ1

(5) Θ; ∆ ⊧ Φ1

By IH on (3)

(6) Ψ; Θ; ∆ ⊢p τ2 <∶ τ3 ∶K ⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

Goal follows by ?? on (4), (5), (6), (7)

▸ Case 3: S-Arr.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊸ τ2 <∶ τ ′1 ⊸ τ ′2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ ′1 <∶ τ1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢p τ2 <∶ τ ′2 ∶ ⋆
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▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 ⊸ τ2 <∶ τ ′1 ⊸ τ ′2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ ′1 <∶ τ1 ∶ ⋆ ⇒ Φ1

(5) Θ; ∆ ⊧ Φ1

By IH on (3)

(6) Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

Inverting (4) and (6)

(8) Ψ; Θ; ∆ ⊢p eval(τ ′1) <∶nf eval(τ1) ∶ ⋆ ⇒ Φ1

(9) Ψ; Θ; ∆ ⊢p eval(τ2) <∶nf eval(τ ′2) ∶ ⋆ ⇒ Φ2

By AS-Arr on (8) and (9)

(10) Ψ; Θ; ∆ ⊢p eval(τ1) ⊸ eval(τ2) <∶nf eval(τ ′1) ⊸ eval(τ ′2) ∶ ⋆ ⇒ Φ1 ∧Φ2

Goal follows by AS-Normalize on (10), taking Φ = Φ1 ∧Φ2

▸ Case 4: S-Tensor.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊗ τ2 <∶ τ ′1 ⊗ τ ′2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ ′1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢p τ2 <∶ τ ′2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 ⊗ τ2 <∶ τ ′1 ⊗ τ ′2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶ τ ′1 ∶ ⋆ ⇒ Φ1

(5) Θ; ∆ ⊧ Φ1

By IH on (3)

(6) Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

Inverting (4) and (6)

(8) Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf eval(τ ′1) ∶ ⋆ ⇒ Φ1
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(9) Ψ; Θ; ∆ ⊢p eval(τ2) <∶nf eval(τ ′2) ∶ ⋆ ⇒ Φ2

By AS-Tensor on (8) and (9)

(10) Ψ; Θ; ∆ ⊢p eval(τ1) ⊗ eval(τ2) <∶nf eval(τ ′1) ⊗ eval(τ ′2) ∶ ⋆ ⇒ Φ1 ∧Φ2

Goal follows by AS-Normalize on (10), taking Φ = Φ1 ∧Φ2

▸ Case 5: S-With.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1&τ2 <∶ τ ′1&τ ′2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ ′1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢p τ2 <∶ τ ′2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1&τ2 <∶ τ ′1&τ ′2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶ τ ′1 ∶ ⋆ ⇒ Φ1

(5) Θ; ∆ ⊧ Φ1

By IH on (3)

(6) Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

Inverting (4) and (6)

(8) Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf eval(τ ′1) ∶ ⋆ ⇒ Φ1

(9) Ψ; Θ; ∆ ⊢p eval(τ2) <∶nf eval(τ ′2) ∶ ⋆ ⇒ Φ2

By AS-With on (8) and (9)

(10) Ψ; Θ; ∆ ⊢p eval(τ1)&eval(τ2) <∶nf eval(τ ′1)&eval(τ ′2) ∶ ⋆ ⇒ Φ1 ∧Φ2

Goal follows by AS-Normalize on (10), taking Φ = Φ1 ∧Φ2

▸ Case 6: S-Sum.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 ⊕ τ2 <∶ τ ′1 ⊕ τ ′2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ ′1 ∶ ⋆

(3) Ψ; Θ; ∆ ⊢p τ2 <∶ τ ′2 ∶ ⋆

▸ Goal:
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Ψ; Θ; ∆ ⊢p τ1 ⊕ τ2 <∶ τ ′1 ⊕ τ ′2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶ τ ′1 ∶ ⋆ ⇒ Φ1

(5) Θ; ∆ ⊧ Φ1

By IH on (3)

(6) Ψ; Θ; ∆ ⊢ τ2 <∶ τ ′2 ∶ ⋆ ⇒ Φ2

(7) Θ; ∆ ⊧ Φ2

Inverting (4) and (6)

(8) Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf eval(τ ′1) ∶ ⋆ ⇒ Φ1

(9) Ψ; Θ; ∆ ⊢p eval(τ2) <∶nf eval(τ ′2) ∶ ⋆ ⇒ Φ2

By AS-Sum on (8) and (9)

(10) Ψ; Θ; ∆ ⊢p eval(τ1) ⊕ eval(τ2) <∶nf eval(τ ′1) ⊕ eval(τ ′2) ∶ ⋆ ⇒ Φ1 ∧Φ2

Goal follows by AS-Normalize on (10), taking Φ = Φ1 ∧Φ2

▸ Case 7: S-Bang.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p!τ1 <∶!τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p!τ1 <∶!τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(5) Θ; ∆ ⊧ Φ

Inverting (5)

(6) Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-Bang on (6)

(7) Ψ; Θ; ∆ ⊢p!eval(τ1) <∶nf!eval(τ2) ∶ ⋆ ⇒ Φ

Goal follows by AS-Normalize on (7)

▸ Case 8: S-IForall.
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▸ Given:

(1) Ψ; Θ; ∆ ⊢p ∀i ∶ S.τ1 <∶ ∀i ∶ S.τ2 ∶ ⋆

(2) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p ∀i ∶ S.τ1 <∶ ∀i ∶ S.τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(5) Θ, i ∶ S; ∆ ⊧ Φ

Inverting (5)

(6) Ψ; Θ, i ∶ S; ∆ ⊢p eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-IForall on (6)

(7) Ψ; Θ; ∆ ⊢p ∀i ∶ S.eval(τ1) <∶nf ∀i ∶ S.eval(τ2) ∶ ⋆ ⇒ ∀i ∶ S.Φ

Goal follows by AS-Normalize on (7)

▸ Case 9: S-IExists.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p ∃i ∶ S.τ1 <∶ ∃i ∶ S.τ2 ∶ ⋆

(2) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p ∃i ∶ S.τ1 <∶ ∃i ∶ S.τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(5) Θ, i ∶ S; ∆ ⊧ Φ

Inverting (5)

(6) Ψ; Θ, i ∶ S; ∆ ⊢p eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-IExists on (6)

(7) Ψ; Θ; ∆ ⊢p ∃i ∶ S.eval(τ1) <∶nf ∃i ∶ S.eval(τ2) ∶ ⋆ ⇒ ∀i ∶ S.Φ

Goal follows by AS-Normalize on (7)

▸ Case 10: S-TForall.
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▸ Given:

(1) Ψ; Θ; ∆ ⊢p ∀α ∶K.τ1 <∶ ∀α ∶K.τ2 ∶ ⋆

(2) Ψ, α ∶K; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p ∀α ∶K.τ1 <∶ ∀α ∶K.τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ, α ∶K; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(5) Θ; ∆ ⊧ Φ

Inverting (5)

(6) Ψ, α ∶K; Θ; ∆ ⊢p eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-IForall on (6)

(7) Ψ; Θ; ∆ ⊢p ∀α ∶K.eval(τ1) <∶nf ∀α ∶K.eval(τ2) ∶ ⋆ ⇒ Φ

Goal follows by AS-Normalize on (7)

▸ Case 11: S-List.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p LIτ1 <∶ LJτ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

(3) Θ; ∆ ⊧ I = J

▸ Goal:

Ψ; Θ; ∆ ⊢p LIτ1 <∶ LJτ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(5) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(6) Θ; ∆ ⊧ Φ

By (3) and (6)

(7) Θ; ∆ ⊧ Φ ∧ (I = J)

By inversion on (5)

(8) Ψ; Θ; ∆ ⊢ eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-List on (8)

(9) Ψ; Θ; ∆ ⊢ LIeval(τ1) <∶nf LJeval(τ2) ∶ ⋆ ⇒ Φ ∧ (I = J)



A 274

Goal follows by AS-Normalize on (9)

▸ Case 12: S-Impl.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p Φ1 Ô⇒ τ1 <∶ Φ2 Ô⇒ τ2 ∶ ⋆

(2) Ψ; Θ; ∆,Φ2 ⊢p τ1 <∶ τ2 ∶ ⋆

(3) Θ; ∆ ⊧ Φ2 → Φ1

▸ Goal:

Ψ; Θ; ∆ ⊢p Φ1 Ô⇒ τ1 <∶ Φ2 Ô⇒ τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆,Φ2 ⊢ τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(5) Θ; ∆,Φ2 ⊧ Φ

By (3) and (5)

(6) Θ; ∆ ⊧ (Φ2 → Φ) ∧ (Φ2 → Φ1)

Inverting (4)

(7) Ψ; Θ; ∆,Φ2 ⊢ eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-Impl on (7)

(8) Ψ; Θ; ∆ ⊢ Φ1 Ô⇒ eval(τ1) <∶nf Φ2 Ô⇒ eval(τ2) ∶ ⋆ ⇒ (Φ2 → Φ) ∧ (Φ2 → Φ1)

(Goal follows by AS-Normalize on (8))

▸ Case 13: S-Conj.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p Φ1&τ1 <∶ Φ2&τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

(3) Θ; ∆ ⊧ Φ1 → Φ2

▸ Goal:

Ψ; Θ; ∆ ⊢p Φ1&τ1 <∶ Φ2&τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢ τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(5) Θ; ∆ ⊧ Φ

By (3) and (5)
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(6) Θ; ∆ ⊧ Φ ∧ (Φ1 → Φ2)

Inverting (4)

(7) Ψ; Θ; ∆ ⊢ eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-Conj on (7)

(8) Ψ; Θ; ∆ ⊢ Φ1&eval(τ1) <∶nf Φ2&eval(τ2) ∶ ⋆ ⇒ Φ ∧ (Φ1 → Φ2)

(Goal follows by AS-Normalize on (8))

▸ Case 14: S-Monad.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p M(I, q⃗)τ1 <∶M(J, p⃗)τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

(3) Θ; ∆ ⊧ (I = J) ∧ (q⃗ ≤ p⃗)

▸ Goal:

Ψ; Θ; ∆ ⊢p M(I, q⃗)τ1 <∶M(J, p⃗)τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(5) Θ; ∆ ⊧ Φ

From (3) and (5)

(6) Θ; ∆ ⊧ Φ ∧ (I = J) ∧ (q⃗ ≤ p⃗)

By inversion on (4)

(7) Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-Monad on (7)

(8) Ψ; Θ; ∆ ⊢p M(I, q⃗)eval(τ1) <∶nf M(J, p⃗)eval(τ2) ∶ ⋆ ⇒ Φ ∧ (I = J) ∧ (q⃗ ≤ p⃗)

Goal follows by AS-Normalize on (8)

▸ Case 15: S-Pot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p [I ∣q⃗] τ1 <∶ [J ∣p⃗] τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

(3) Θ; ∆ ⊧ (I = J) ∧ (q⃗ ≥ p⃗)

▸ Goal:
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Ψ; Θ; ∆ ⊢p [I ∣q⃗] τ1 <∶ [J ∣p⃗] τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(5) Θ; ∆ ⊧ Φ

From (3) and (5)

(6) Θ; ∆ ⊧ Φ ∧ (I = J) ∧ (q⃗ ≥ p⃗)

By inversion on (4)

(7) Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-Pot on (7)

(8) Ψ; Θ; ∆ ⊢p [I ∣q⃗]eval(τ1) <∶nf [J ∣p⃗]eval(τ2) ∶ ⋆ ⇒ Φ ∧ (I = J) ∧ (q⃗ ≥ p⃗)

Goal follows by AS-Normalize on (8)

▸ Case 16: S-ConstPot.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p [I] τ1 <∶ [J] τ2 ∶ ⋆

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

(3) Θ; ∆ ⊧ (I ≥ J)

▸ Goal:

Ψ; Θ; ∆ ⊢p [I] τ1 <∶ [J] τ2 ∶ ⋆ ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆ ⇒ Φ

(5) Θ; ∆ ⊧ Φ

From (3) and (5)

(6) Θ; ∆ ⊧ Φ ∧ (I ≥ J)

By inversion on (4)

(7) Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf eval(τ2) ∶ ⋆ ⇒ Φ

By AS-ConstPot on (7)

(8) Ψ; Θ; ∆ ⊢p [I]eval(τ1) <∶nf [J]eval(τ2) ∶ ⋆ ⇒ Φ ∧ (I ≥ J)

Goal follows by AS-Normalize on (8)

▸ Case 17: S-FamLam.
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▸ Given:

(1) Ψ; Θ; ∆ ⊢p λi ∶ S.τ1 <∶ λi ∶ S.τ2 ∶ S →K

(2) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶ τ2 ∶ ⋆

▸ Goal:

Ψ; Θ; ∆ ⊢p λi ∶ S.τ1 <∶ λi ∶ S.τ2 ∶ S →K ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(3) Ψ; Θ, i ∶ S; ∆ ⊢p τ1 <∶ τ2 ∶K ⇒ Φ

(4) Θ, i ∶ S; ∆ ⊧ Φ

Equivalently to (4)

(5) Theta;Delta ⊧ ∀i ∶ S.Φ

By inversion on (3)

(6) Ψ; Θ, i ∶ S; ∆ ⊢p eval(τ1) <∶nf eval(τ2) ∶K ⇒ Φ

By AS-FamLam on (6)

(7) Ψ; Θ; ∆ ⊢p λi ∶ S.eval(τ1) <∶nf λi ∶ S.eval(τ2) ∶ S →K ⇒ ∀i ∶ S.Φ

Goal follows by AS-Noramlize on (7)

▸ Case 18: S-FamApp.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p τ1 I <∶ τ2 J ∶K

(2) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ S →K

(3) Θ; ∆ ⊧ I = J

▸ Goal:

Ψ; Θ; ∆ ⊢p τ1 I <∶ τ2 J ∶K ⇒ Φ and Θ; ∆ ⊧ Φ

By IH on (2)

(4) Ψ; Θ; ∆ ⊢p τ1 <∶ τ2 ∶ S →K ⇒ Φ

(5) Θ; ∆ ⊧ Φ

Inverting (4)

(6) Ψ; Θ; ∆ ⊢p eval(τ1) <∶nf eval(τ2) ∶ S →K ⇒ Φ

By Theorem 8.20 on (3) and (6)
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(7) Ψ; Θ; ∆ ⊢p eval(τ1 I) <∶nf eval(τ2 J) ∶K ⇒ Φ′

(8) Θ; ∆ ⊧ Φ′

Goal follows from AS-Normalize on (7)

▸ Case 19: S-Fam-Beta1.

▸ Given:

(1) Ψ; Θ; ∆ ⊢p (λi ∶ S.τ) J <∶ τ[J/i] ∶K

▸ Goal:

Ψ; Θ; ∆ ⊢ (λi ∶ S.τ) J <∶ τ[J/i] ∶K ⇒ Φ and Θ; ∆ ⊧ Φ

By the presupposition for (1)

(2) Ψ; Θ; ∆ ⊢p τ[J/i] ∶K

By Theorem 7.3 on (2)

(3) Ψ; Θ; ∆ ⊢p eval(τ[J/i]) ∶K

(4) eval(τ[J/i]) nf

By Theorem 8.15 on (3) and (4)

(5) Ψ; Θ; ∆ ⊢p eval(τ[J/i]) <∶nf eval(τ[J/i]) ∶K ⇒ Φ

(6) Θ; ∆ ⊧ Φ

By Theorem 7.4

(7) eval(τ[J/i]) = eval(τ)[J/i]

By definition of eval

(8) eval(τ)[J/i] = eval((λi ∶ S.τ) J)

Combining (7) and (8) in (5)

(9) Ψ; Θ; ∆ ⊢p eval((λi ∶ S.τ) J) <∶nf eval(τ[J/i]) ∶K ⇒ Φ

Goal follows by AS-Normalize on (9)

▸ Case 20: S-Fam-Beta2.

Identical to case 19

�

Proof. By a mutual induction on the premises of both cases. We will write this as a case

analysis over the AT-* rules. We will use Theorem 5.6 liberally, sometimes silently.
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(AT-Var-1) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ x ↑ τ ⇒ ⊺,Γ ∖ {x ∶ τ} from x ∶ τ ∈ Γ. By Theorem 5.6, there is

some τ ′ so that Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆, and x ∶ τ ′ ∈ Γ′. By AT-Var-1, Ψ; Θ; ∆; Ω′; Γ′ ⊢ x ↑

τ ′ ⇒ ⊺,Γ′ ∖ {x ∶ τ ′}. By Theorem 8.21, Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆ ⇒ Φ with Θ; ∆ ⊧ Φ, and

so by AT-Sub, Ψ; Θ; ∆; Ω′; Γ′ ⊢ x ↓ τ ⇒ ⊺ ∧Φ,Γ′ ∖ {x ∶ τ ′}. Finally, Ψ; Θ; ∆ ⊢ Γ′ ∖ {x ∶

τ ′} ⊑ Γ′ ∖Γ and Ψ; Θ; ∆ ⊢ Γ′ ∖{x ∶ τ ′} ⊑ Γ∖{x ∶ τ} since x ∶ τ ∈ Γ, and Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ,

which proves (1). For (2), one use of AT-Anno gives Ψ; Θ; ∆; Ω′; Γ′ ⊢ (x ∶ τ) ↑ τ ⇒

⊺∧Φ,Γ′ ∖ {x ∶ τ ′}. But, ∣(x ∶ τ)∣ = x, and so we are done.

(AT-Var-2) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ x ↑ τ ⇒ ⊺,Γ from x ∶ τ ∈ Ω, with Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω with

Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ. By Theorem 5.6, there is some τ ′ so that x ∶ τ ′ ∈ Ω′ and Φ; Θ; ∆ ⊢

τ ′ <∶ τ ∶ ⋆. By Theorem 8.21, Φ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆ ⇒ Φ with Θ; ∆ ⊧ Φ. By AT-Var-2,

Ψ; Θ; ∆; Ω′; Γ′ ⊢ x ↑ τ ′ ⇒ ⊺,Γ′. By AT-Sub, Ψ; Θ; ∆; Ω′; Γ′ ⊢ x ↓ τ ⇒ ⊺ ∧ Φ,Γ′, which

proves (2). For (1), we apply AT-Anno and note that ∣(x ∶ τ)∣ = x.

(AT-Unit) Immediate.

(AT-Base) Immediate.

(AT-Absurd) Immediate.

(AT-Nil) Immediate.

(AT-Cons) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ e1 ∶∶ e2 ↓ LIτ ⇒ (I ≥ 1) ∧Φ1 ∧Φ2,Γ2 from Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓

τ ⇒ Φ1,Γ1 and Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ LI−1τ ⇒ Φ2,Γ2 with Θ; ∆ ⊧ (I ≥ 1) ∧ Φ1 ∧ Φ2,

Ψ; Θ; ∆ ⊧ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′1, Φ′
1, Γ′1 such that ∣e′1∣ = ∣e1∣,

Θ; ∆ ⊧ Φ′
1, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ↓ τ ⇒

Φ′
1,Γ

′
1. By IH, there are e′2, Φ′

2, Γ′2 such that ∣e′2∣ = ∣e2∣, Θ; ∆ ⊧ Φ′
2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑

Γ′1 ∖ Γ1, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2, and Ψ; Θ; ∆; Ω′; Γ′1 ⊢ e′2 ↓ LI−1τ ⇒ Φ′
2,Γ

′
2. By AT-Cons,

Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ∶∶ e′2 ↓ LIτ ⇒ (I ≥ 1) ∧Φ′
1 ∧Φ′

2,Γ
′
2. Since Θ; ∆ ⊧ I ≥ 1, we have that

Θ; ∆ ⊧ (I ≥ 1) ∧ Φ′
1 ∧ Φ′

2. Further, ∣e′1 ∶∶ e′2∣ = ∣e′1∣ ∶∶ ∣e′2∣ = ∣e1∣ ∶∶ ∣e2∣ = ∣e1 ∶∶ e2∣. Finally,

Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2 by the second IH, and Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′∖Γ by Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′1∖Γ1

and Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ using Theorem 5.6, which completes (1). For (2), AT-Anno

gives Ψ; Θ; ∆; Ω′; Γ′ ⊢ (e′1 ∶∶ e′2 ∶ LI) ↑ LIτ ⇒ (I ≥ 1) ∧Φ′
1 ∧Φ′

2,Γ
′
2, as required.

(AT-Match) Suppose

Ψ; Θ; ∆; Ω; Γ ⊢ match(e, e1, h.t.e2) ↓ τ ′ ⇒ Φ1 ∧ (I = 0→ Φ2) ∧ (I ≥ 1→ Φ3),Γ2 ∩ (Γ3 ∖ {h, t}
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from

Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ LIτ ⇒ Φ1,Γ1

,

Ψ; Θ; ∆, I = 0; Ω; Γ1 ⊢ e1 ↓ τ ′ ⇒ Φ2,Γ2

Ψ; Θ; ∆, I ≥ 1; Ω; Γ1, h ∶ τ, t ∶ LI−1τ ⊢ e2 ↓ τ ′ ⇒ Φ3,Γ3

with

Θ; ∆ ⊧ Φ1 ∧ (I = 0→ Φ2) ∧ (I ≥ 1→ Φ3)

Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω

Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ

By IH, there are e′, Φ′
1, Γ′1 with ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′

1, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢

Γ′1 ⊑ Γ1, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↑ LIτ ⇒ Φ′
1,Γ

′
1. By IH, there are e′1, Φ′

2, Γ′2 with

∣e′1∣ = ∣e1∣, Θ; ∆, I = 0 ⊧ Φ′
2, Ψ; Θ; ∆, I = 0 ⊢ Γ′2 ⊑ Γ′1 ∖ Γ1, Ψ; Θ; ∆, I = 0 ⊢ Γ′2 ⊑ Γ2,

and Ψ; Θ; ∆; Ω′; Γ′1 ⊢ e′1 ↓ τ ′ ⇒ Φ′
2,Γ

′
2. Since Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, we have that

Ψ; Θ; ∆ ⊢ Γ′1, h ∶ τ, t ∶ LI−1τ ⊑ Γ1, h ∶ τ, t ∶ LI−1τ , and so by IH, there are e′2, Φ′
3, Γ′3

such that ∣e′2∣ = ∣e2∣, Θ; ∆, I ≥ 1 ⊧ Φ′
3, Ψ; Θ; ∆, I ≥ 1 ⊢ Γ′3 ⊑ (Γ′1, h ∶ τ, t ∶ LI−1τ) ∖ (Γ1, h ∶

τ, t ∶ LI−1τ), Ψ; Θ; ∆, I ≥ 1 ⊢ Γ′3 ⊑ Γ3, and Ψ; Θ; ∆; Ω′; Γ′1, h ∶ τ, t ∶ LI−1τ ⊢ e′2 ↓

τ ′ ⇒ Φ′
3,Γ

′
3. By AT-Match, Ψ; Θ; ∆; Ω′; Γ′ ⊢ match(e′, e1′, h.t.e′2) ↓ τ ′ ⇒ Φ′

1 ∧ (I =

0 → Φ′
2) ∧ (I ≥ 1 → Φ′

3),Γ′2 ∩ (Γ′3 ∖ {h, t}) Firstly, we note that ∣match(e′, e1′, h.t.e′2)∣ =

match(∣e′∣, ∣e′1∣, h.t.∣e′2∣) = match(∣e∣, ∣e1∣, h.t.∣e2∣) = match(e, e1, h.t.e2). Then, since Θ; ∆ ⊧

I = 0 → Φ′
2 and Θ; ∆ ⊧ I ≥ 1 → Φ′

3, we have Θ; ∆ ⊧ Φ′
1 ∧ (I = 0 → Φ′

2) ∧ (I ≥ 1 → Φ′
3).

Then, Φ; Θ; ∆ ⊢ Γ′2 ∩ (Γ′3 ∖ {h, t}) ⊑ Γ′ ∖ Γ because of Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢

Γ′2 ⊑ Γ′1 ∖ Γ1, and Ψ; Θ; ∆, I ≥ 1 ⊢ Γ′3 ⊑ Γ′1 ∖ Γ1, making heavy use of Theorem 5.6.

Finally, we have Φ; Θ; ∆ ⊢ Γ′2 ∩ (Γ′3 ∖ {h, t}) ⊑ Γ2 ∩ (Γ3 ∖ {h, t} since Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2

and Ψ; Θ; ∆ ⊢ Γ′3 ⊑ Γ3. We may strengthen away the assumptions in ∆ because of the

presuppositions of well-formedness all contexts involved. This completes (1). For (2),

we apply AT-Anno to get Ψ; Θ; ∆; Ω′; Γ′ ⊢ (match(e′, e1′, h.t.e′2) ∶ τ ′) ↑ τ ′ ⇒ Φ′
1 ∧ (I =

0→ Φ′
2) ∧ (I ≥ 1→ Φ′

3),Γ′2 ∩ (Γ′3 ∖ {h, t}), and we are done.

(AT-ExistI) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ pack[I](e) ↓ ∃i ∶ S.τ ⇒ Φ1 ∧ Φ2,Γ
′′ from Θ; ∆ ⊢ I ∶ S ⇒ Φ1

and Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ[I/i] ⇒ Φ2,Γ
′′, with Θ; ∆ ⊧ Φ1 ∧ Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ,
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and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′, Φ′
2, Γ′′′ such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′

2,

Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ, and Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↓ τ[I/i] ⇒

Φ′
2,Γ

′′′. By AT-ExistI, Ψ; Θ; ∆; Ω′; Γ′ ⊢ pack[I](e′) ↓ ∃i ∶ S.τ[I/i] ⇒ Φ1 ∧ Φ′
2,Γ

′′′.

Since ∣pack[I](e′)∣ = pack[I](∣e′∣) = pack[I](∣e∣) = ∣pack[I](e)∣ and Θ; ∆ ⊧ Φ1 ∧ Φ′
2,

this completes (1). For (2), one application of AT-Anno suffices.

(AT-ExistE) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ unpack (i, x) = e1 in e2 ↓ τ ′ ⇒ Φ1 ∧ (∀i ∶ S.Φ2),Γ2 ∖ {x ∶ τ}

from Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ ∃i ∶ S.τ ⇒ Φ1,Γ1 and Ψ; Θ, i ∶ S; ∆; Ω; Γ1, x ∶ τ ⊢ e2 ↓ τ ′ ⇒

Φ2,Γ2 with Θ; ∆ ⊧ Φ1 ∧Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are

e′1, Φ′
1, Γ′1 such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′

1, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1,

and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ↑ ∃i ∶ S.τ ⇒ Φ′
1,Γ

′
1. Since Θ; ∆ ⊧ Φ1 ∧ (∀i ∶ S.Φ2), we have

Θ, i ∶ S; ∆ ⊧ Φ2. We also have Ψ; Θ; ∆ ⊢ Γ′1, x ∶ τ ⊑ Γ1, x ∶ τ . From these two

facts we have by IH that there are e′2, Φ′
2, Γ′2 such that ∣e′2∣ = ∣e2∣, Θ, i ∶ S; ∆ ⊧ Φ′

2,

Ψ; Θ, i ∶ S; ∆ ⊢ Γ′2 ⊑ (Γ′1, x ∶ τ) ∖ (Γ1, x ∶ τ), Ψ; Θ, i ∶ S; ∆ ⊢ Γ′2 ⊑ Γ2, and that Ψ; Θ, i ∶

S; ∆; Ω′; Γ′1, x ∶ τ ⊢ e′2 ↓ τ ′ ⇒ Φ′
2,Γ

′
2. By AT-ExistE, Ψ; Θ; ∆; Ω′; Γ′ ⊢ unpack (i, x) =

e′1 in e′2 ↓ τ ′ ⇒ Φ′
1 ∧ (∀i ∶ S.Φ′

2),Γ′2. Since Θ; ∆ ⊧ Φ′
1 and Θ, i ∶ S; ∆ ⊧ Φ′

2, we have

Θ; ∆ ⊧ Φ′
1∧(∀i ∶ S.Φ′

2). Next, we note that ∣unpack (i, x) = e′1 in e′2∣ = unpack (i, x) =

∣e′1∣ in ∣e′2∣ = unpack (i, x) = ∣e1∣ in ∣e2∣ = ∣unpack (i, x) = e1 in e2∣. Ψ; Θ, i ∶ S; ∆ ⊢

Γ′2 ⊑ Γ2 is immediate from the second IH, and the fact that Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′∖Γ follows

from Theorem 5.6. This completes (1), and (2) follows immediately from AT-Anno.

(AT-Lam) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ λx.e ↓ τ1 ⊸ τ2 ⇒ Φ,Γ′′ ∖ {x ∶ τ1} from Ψ; Θ; ∆; Ω; Γ, x ∶ τ1 ⊢

e ↓ τ2,⇒ Φ,Γ′′, with Θ; ∆ ⊧ Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. Since

Ψ; Θ; ∆ ⊢ Γ′, x ∶ τ1 ⊑ Γ, x ∶ τ1, by IH there are Φ′, e′, Γ′′′ so that Θ; ∆ ⊧ Φ′, ∣e′∣ = ∣e∣,

Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ ∖ Γ′, and Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and

Ψ; Θ; ∆; Ω′; Γ′, x ∶ τ1 ⊢ e′ ∶ τ2 ⇒ Φ′,Γ′′′

. By AT-Lam, Ψ; Θ; ∆; Ω′; Γ′ ⊢ λx.e′ ∶ τ1 ⊸ τ2 ⇒ Φ′,Γ′′′ ∖ {x ∶ τ1}. Then, ∣λx.e′∣ =

λx.∣e′∣ = λx.∣e∣ = ∣λx.e∣. Finally, Ψ; Θ; ∆ ⊢ Γ′′′ ∖ {x ∶ τ1} ⊑ Γ′ ∖Γ and Ψ; Θ; ∆ ⊢ Γ′′′ ∖ {x ∶

τ1} ⊑ Γ′′ ∖ {x ∶ τ1}, which proves (1). For (2), one use of AT-Anno suffices.

(AT-App) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ e1 e2 ↑ τ2 ⇒ Φ1 ∧ Φ2,Γ2 from Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ τ1 ⊸ τ2 ⇒

Φ1,Γ1 and Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ τ1 ⇒ Φ2,Γ2, with Θ; ∆ ⊧ Φ1 ∧ Φ2, Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω,

and Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ. By IH, there are e′1, Φ′
1, and Γ′1 such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′

1,
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Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ↑ τ1 ⊸ τ2 ⇒ Φ′
1,Γ

′
1.

Since Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, we have by IH that there are e′2, Φ′
2, Γ′2 such that ∣e′2∣ = ∣e2∣,

Θ; ∆ ⊧ Φ′
2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′1 ∖ Γ1, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2, and Ψ; Θ; ∆; Ω′; Γ′1 ⊢ e′2 ↓

τ1 ⇒ Φ′
2,Γ

′
2. By AT-App, we have Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 e′2 ↑ τ2 ⇒ Φ′

1 ∧ Φ′
2,Γ

′
2. This

completes (2). For (1), we invoke Theorem 8.16 to get that Ψ; Θ; ∆ ⊢ τ2 <∶ τ2 ∶ ⋆ ⇒ Φ′

with Θ; ∆ ⊧ Φ′. By AT-Sub, we have Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 e′2 ↑ τ2 ⇒ Φ′
1 ∧ Φ′

2 ∧ Φ′,Γ′2,

completing (1).

(AT-TensorI) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ ⟪e1, e2⟫ ↓ τ1 ⊗ τ2 ⇒ Φ1 ∧Φ2,Γ2 from Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓ τ1 ⇒

Φ1,Γ1 and Ψ; Θ; ∆; Ω; Γ1 ⊢ e2 ↓ τ2 ⇒ Φ2,Γ2, with Θ; ∆ ⊧ Φ1 ∧ Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ,

and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are Φ′
1, e′1, and Γ′1 such that Θ; ∆ ⊧ Φ′

1, ∣e′1∣ = ∣e1∣,

Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1,

Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ∶ τ1 ⇒ Φ′
1,Γ

′
1

. Since Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, we also have by IH that there are Φ′
2, e′2, Γ′2 such that

Θ; ∆ ⊧ Φ′
2, ∣e′2∣ = ∣e2∣, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′1 ∖ Γ1, and Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2 such that

Ψ; Θ; ∆; Ω′; Γ′1 ⊢ e′2 ∶ τ2 ⇒ Φ′
2,Γ

′
2

. By AT-TensorI, Ψ; Θ; ∆; Ω′; Γ′ ⊢ ⟪e′1, e′2⟫ ∶ τ1 ⊗ τ2 ⇒ (Φ′
1 ∧ Φ′

2),Γ′2. We have that

Θ; ∆ ⊧ Φ′
1 ∧Φ′

2 and ∣ ⟪e′1, e′2⟫ ∣ = ⟪∣e′1∣, ∣e′2∣⟫ = ⟪∣e1∣, ∣e2∣⟫ = ∣ ⟪e1, e2⟫ ∣. Finally, Ψ; Θ; ∆ ⊢

Γ′2 ⊑ Γ′ ∖ Γ since Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′1 ∖ Γ1 and Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ by Theorem 5.6,

completing (1). For (2), a single use of AT-Anno gives Ψ; Θ; ∆; Ω′; Γ′ ⊢ (⟪e′1, e′2⟫ ∶

τ1 ⊗ τ2) ∶ τ1 ⊗ τ2 ↑ (Φ′
1 ∧Φ′

2),Γ′2, as required.

(AT-TensorE) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ let ⟪x, y⟫ = e1 in e2 ↓ τ ′ ⇒ Φ1 ∧ Φ2,Γ2 ∖ {x, y} from

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ τ1 ⊗ τ2 ⇒ Φ1,Γ1 and Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1, y ∶ τ2 ⊢ e2 ↓ τ ′ ⇒ Φ2,Γ2,

with Θ; ∆ ⊧ Φ1 ∧ Φ2, Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ. By IH, there are e′1,

Φ′
1, Γ′1 such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′

1, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1,

and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ↑ τ1 ⊗ τ2 ⇒ Φ′
1,Γ

′
1. Then, since Ψ; Θ; ∆ ⊢ Γ′1, x ∶ τ1, y ∶

τ2 ⊑ Γ1, x ∶ τ1, y ∶ τ2, we have by IH that there are e′2, Φ′
2, Γ′2 such that ∣e′2∣ = ∣e2∣,

Θ; ∆ ⊧ Φ′
2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ (Γ′1, x ∶ τ1, y ∶ τ2) ∖ (Γ1, x ∶ τ1, y ∶ τ2), Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2,

and Ψ; Θ; ∆; Ω′; Γ′1, x ∶ τ1, y ∶ τ2 ⊢ e′2 ↓ τ2 ⇒ Φ′
2,Γ

′
2. By AT-TensorE, Ψ; Θ; ∆; Ω′; Γ′ ⊢

let ⟪x, y⟫ = e′1 in e′2 ↓ τ ′ ⇒ Φ′
1∧Φ′

2,Γ
′
2∖{x, y}. Of course, ∣let ⟪x, y⟫ = e′1 in e′2∣ =
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∣let ⟪x, y⟫ = e1 in e2∣ and Θ; ∆ ⊧ Φ′
1 ∧Φ′

2 as usual, and Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2 is immedi-

ate by IH. The fact that Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′ ∖ Γ follows from considering the weakening

judgments from both IHs, and liberally applying Theorem 5.6. This completes (1).

For (2), we simply apply AT-Anno, and are done.

(AT-WithI) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ (e1, e2) ↓ τ1&τ2 ⇒ Φ1 ∧ Φ2,Γ1 ∩ Γ2 from Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↓

τ1 ⇒ Φ1,Γ1 and Ψ; Θ; ∆; Ω; Γ ⊢ e2 ↓ τ2 ⇒ Φ2,Γ2 with Θ; ∆ ⊧ Φ1∧Φ2, Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω,

and Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ. By IH, there are e′1, Φ′
1, Γ′1 such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′

1,

Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ↓ τ1 ⇒ Φ′
1,Γ

′
1.

Again by IH, there are e′2, Φ′
2, Γ′2 such that ∣e′2∣ = ∣e2∣, Θ; ∆ ⊧ Φ′

2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑

Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′2 ↓ τ2 ⇒ Φ′
2,Γ

′
2. Then, by AT-WithI,

Ψ; Θ; ∆; Ω′; Γ′ ⊢ (e′1, e′2) ↓ τ1&τ2 ⇒ Φ′
1 ∧ Φ′

2,Γ
′
1 ∩ Γ′2. Then, by Theorem 5.6, we have

that Ψ; Θ; ∆ ⊢ Γ′1 ∩ Γ′2 ⊑ Γ1 ∩ Γ2, and that Ψ; Θ; ∆ ⊢ Γ′1 ∩ Γ′2 ⊑ Γ′ ∖ Γ. This completes

(1), and (2) follows by AT-Anno.

(AT-Fst) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ fst(e) ↑ τ1 ⇒ Φ,Γ′′ by way of Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1&τ2 ⇒

Φ,Γ′′ with Θ; ∆ ⊧ Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, we have e′,

Φ′, Γ′′′ such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and

Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↑ τ1&τ2 ⇒ Φ′,Γ′′′. By AT-Fst, Ψ; Θ; ∆; Ω′; Γ′ ⊢ fst(e′) ↑ τ1 ⇒

Φ′,Γ′′′, which completes (2), since ∣fst(e′)∣ = fst(∣e′∣) = fst(∣e∣) = ∣fst(e)∣. For (1),

by Theorem 8.16, there is Φ′′ such that Ψ; Θ; ∆ ⊢ τ1 <∶ τ1 ∶ ⋆ ⇒ Φ′′ with Θ; ∆ ⊧ Φ′′.

By AT-Sub, Ψ; Θ; ∆; Ω′; Γ′ ⊢ fst(e′) ↓ τ1 ⇒ Φ′,Γ′′′, completing (1).

(AT-Snd) Identical to AT-Fst.

(AT-Inl) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ inl(e) ↓ τ1 ⊕ τ2 ⇒ Φ,Γ′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ1 ⇒ Φ,Γ′′,

and Θ; ∆ ⊧ Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′, Φ′, Γ′′′ such

that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′∖Γ, and Ψ; Θ; ∆; Ω′; Γ′ ⊢

e′ ↓ τ1 ⇒ Φ′,Γ′′′. By AT-Inl, we have Ψ; Θ; ∆; Ω′; Γ′ ⊢ inl(e′) ↓ τ1 ⊕ τ2 ⇒ Φ′,Φ′′′,

which completes (1), and (2) is done by AT-Anno.

(AT-Inr) Identical to AT-Inl.

(AT-Case) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ case(e, x.e1, y.e2) ↓ τ ⇒ Φ1 ∧ Φ2 ∧ Φ3, (Γ2 ∖ {x ∶ τ1}) ∩ (Γ3 ∖

{y ∶ τ2}) from Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ1 ⊕ τ2 ⇒ Φ1,Γ1, Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e1 ↓ τ ⇒

Φ2,Γ2, and Ψ; Θ; ∆; Ω; Γ1, y ∶ τ2 ⊢ e2 ↓ τ ⇒ Φ3,Γ3, and also that Θ; ∆ ⊧ Φ1 ∧Φ2 ∧Φ3,
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Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, we have e′, Φ′
1, Γ′1 such that ∣e′∣ = ∣e∣,

Θ; ∆ ⊧ Φ′
1, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↑ τ1 ⊕ τ2 ⇒

Φ′
1,Γ

′
1. Then, since Ψ; Θ; ∆ ⊢ Γ′1, x ∶ τ1 ⊑ Γ1, x ∶ τ1, we have by IH e′1. Φ′

2. Γ′2

such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′
2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′1 ∖ Γ1, and

Ψ; Θ; ∆; Ω′; Γ′, x ∶ τ1 ⊢ e′1 ↓ τ ⇒ Φ′
2,Γ

′
2. Similarly, since Ψ; Θ; ∆ ⊢ Γ′1, y ∶ τ2 ⊑ Γ1, y ∶ τ2,

we have by IH e′2. Φ′
3. Γ′3 such that ∣e′2∣ = ∣e2∣, Θ; ∆ ⊧ Φ′

3, Ψ; Θ; ∆ ⊢ Γ′3 ⊑ Γ3,

Ψ; Θ; ∆ ⊢ Γ′3 ⊑ Γ′1 ∖ Γ1, and Ψ; Θ; ∆; Ω′; Γ′, x ∶ τ2 ⊢ e′2 ↓ τ ⇒ Φ′
3,Γ

′
3. Then, by AT-

Case, we have Ψ; Θ; ∆; Ω′; Γ′ ⊢ case(e′, x.e′1, y.e′2) ↓ τ ⇒ Φ′
1 ∧Φ′

2 ∧Φ′
3, (Γ′2 ∖ {x ∶ τ1}) ∩

(Γ′3 ∖ {y ∶ τ2}). Of course, ∣case(e′, x.e′1, y.e′2)∣ = ∣case(e, x.e1, y.e2)∣ since ∣e′∣ = ∣e∣,

∣e′1∣ = ∣e1∣, and ∣e′2∣ = ∣e2∣. Similarly, Θ; ∆ ⊧ Φ′
1 ∧ Φ′

2 ∧ Φ′
3. It remains to show that

Ψ; Θ; ∆ ⊢ (Γ′2 ∖ {x ∶ τ1}) ∩ (Γ′3 ∖ {y ∶ τ2}) ⊑ (Γ2 ∖ {x ∶ τ1}) ∩ (Γ3 ∖ {y ∶ τ2}) and

Ψ; Θ; ∆ ⊢ (Γ′2 ∖ {x ∶ τ1}) ∩ (Γ′3 ∖ {y ∶ τ2}) ⊑ Γ′ ∖ Γ, but both follow from the six

weakening judgments and a few applications of Theorem 5.6. This completes (1), and

(2) follows immediately by AT-Anno.

(AT-Sub) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ1 ∧ Φ2,Γ
′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ ′ ⇒ Φ1,Γ

′′ and

Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆ ⇒ Φ2, and Θ; ∆ ⊧ Φ1 ∧Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω.

By IH, there are e′,Φ′
1, and Γ′′′ such that ∣e∣ = ∣e′∣, Θ; ∆ ⊧ Φ′

1, Ψ; Θ; ∆ ⊧ Γ′′′ ⊑ Γ′ ∖ Γ,

Ψ; Θ; ∆ ⊧ Γ′′′ ⊑ Γ′′, and Ψ; Θ; ∆; Ω′Γ′ ⊢ e′ ↑ τ ′ ⇒ Φ′
1,Γ

′′′. by AT-Sub, Ψ; Θ; ∆; Ω′; Γ′ ⊢

e′ ↓ τ ⇒ Φ′
1 ∧Φ2,Γ

′′′, which proves (1). For (2), we again use AT-Anno.

(AT-ExpI) Suppose Ψ; Θ; ∆; Ω; Γ ⊢!e ↓!τ ⇒ Φ,Γ from Ψ; Θ; ∆; Ω; ⋅ ⊢ e ↓ τ ⇒ Φ,Γ′′, and Θ; ∆ ⊧ Φ,

Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH (not weakening the empty affine

environment) there are e′, Φ′, Γ′′′ such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′, and Ψ; Θ; ∆; Ω′; ⋅ ⊢ e′ ↓

τ ⇒ Φ′,Γ′′′. By AT-ExpI, Ψ; Θ; ∆; Ω′; Γ′ ⊢!e′ ↓ τ ⇒ Φ′,Γ′. This completes (1), since

∣!e′∣ = ∣!e∣, Θ; ∆ ⊧ Φ′, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ′ and Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ′ ∖ Γ as consequences of

Theorem 5.6.

(AT-ExpE) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ let !x = e1 in e2 ↓ τ ′ ⇒ Φ1 ∧Φ2,Γ2 from Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑

!τ ⇒ Φ1,Γ1 and Ψ; Θ; ∆; Ω, x ∶ τ ; Γ1 ⊢ e2 ↓ τ ′ ⇒ Φ2,Γ2, with Θ; ∆ ⊧ Φ1 ∧Φ2, Ψ; Θ; ∆ ⊢

Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′1, Φ′
1, Γ′1 such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′

1,

Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ′, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ↑!τ ⇒ Φ′
1,Γ

′
1. Since

Ψ; Θ; ∆ ⊢ Ω′, x ∶ τ ⊑ Ω, x ∶ τ , we have by IH we have e′2, Φ′
2, Γ′2 such that ∣e′2∣ = ∣e2∣,
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Θ; ∆ ⊧ Φ′
2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′1 ∖ Γ1, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′2, and Ψ; Θ; ∆; Ω′, x ∶ τ ; Γ′1 ⊢ e′2 ↓

τ ′ ⇒ Φ′
2,Γ

′
2. By AT-ExpE, Ψ; Θ; ∆; Ω′; Γ′ ⊢ let !x = e′1 in e′2 ↓ τ ′ ⇒ Φ′

1 ∧ Φ′
2,Γ

′
2.

Applying Theorem 5.6 to the inductive hypotheses gives us that Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′ ∖Γ,

completing (1). For (2), one application of AT-Anno suffices.

(AT-TAbs) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ Λα.e ↓ ∀α ∶ K.τ ⇒ Φ,Γ′′ from Ψ, α ∶ K; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒

Φ,Γ′′, and Θ; ∆ ⊧ Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, we have e′, Φ′, Γ′′′

such that ∣e′∣ = ∣e∣, Θ; ∆ ⊢ Φ′, Ψ, α ∶K; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′∖Γ Ψ, α ∶K; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and

Ψ, α ∶ K; Θ; ∆; Ω′; Γ′ ⊢ e′ ↓ τ ⇒ Φ′,Γ′′′. By AT-TAbs, Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↓ ∀α ∶ K.τ ⇒

Φ′,Γ′′′. By Theorem 4, we have that Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ and Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′,

which completes (1). For (2), one use of AT-Anno suffices.

(AT-TApp) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ e[τ ′] ↑ τ[τ ′/α] ⇒ Φ1 ∧ Φ2,Γ
′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ ∀α ∶

K.τ ⇒ Φ1,Γ
′′ and Ψ; Θ; ∆ ⊢ τ ′ ∶ K ⇒ Φ2, with Θ; ∆ ⊧ Φ1 ∧ Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ,

and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′, Φ′
1, Γ′′′ such that ∣e′∣ = ∣e′∣, Θ; ∆ ⊧ Φ′

1,

Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖Γ, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↑ ∀α ∶K.τ ⇒ Φ′
1,Γ

′′′.

By AT-TApp, Ψ; Θ; ∆; Ω; Γ ⊢ e′[τ ′] ↑ τ[τ ′/α] ⇒ Φ′
1 ∧Φ2,Γ

′′′. Since ∣e′[τ ′]∣ = ∣e′∣[τ ′] =

∣e[τ ′]∣ and Θ; ∆ ⊧ Φ′
1 ∧ Φ2, we are done with (1). For (2), a single use of AT-Anno

completes the proof.

(AT-IAbs) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ Λi.e ↓ ∀i ∶ S.τ ⇒ ∀i ∶ S.Φ,Γ′′ from Ψ; Θ, i ∶ S; ∆; Ω; Γ ⊢ e ↓

τ ⇒ Φ,Γ′′, with Θ; ∆ ⊧ Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By Theorem A.14,

Ψ; Θ, i ∶ S; ∆ ⊢ Γ′ ⊑ Γ and Ψ; Θ, i ∶ S; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′, Φ′, Γ′′′ such

that ∣e′∣ = ∣e∣, Θ, i ∶ S; ∆ ⊧ Φ′, Ψ; Θ, i ∶ S; ∆ ⊢ Γ′′ ⊑ Γ′ ∖ Γ, Ψ; Θ, i ∶ S; ∆ ⊢ Γ′′ ⊑ Γ′′, and

Ψ; Θ, i ∶ S; ∆; Ω′; Γ′ ⊢ e′ ∶ τ ⇒ Φ′,Γ′′′. By AT-IAbs, Ψ; Θ; ∆; Ω′; Γ′ ⊢ Λi.e′ ∶ τ ⇒ ∀i ∶

S.Φ′,Γ′′′. By Theorem 4, Ψ; Θ; ∆ ⊢ Γ′′ ⊑ Γ′ ∖ Γ and Ψ; Θ; ∆ ⊢ Γ′′ ⊑ Γ′′. Finally, the

fact that Θ; ∆ ⊧ ∀i ∶ S.Φ′ completes the proof of (1). For (2), AT-Anno suffices.

(AT-IApp) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ e[I] ↑ τ[I/i] ⇒ Φ1 ∧ Φ2,Γ
′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ ∀i ∶

S.τ ⇒ Φ1,Γ
′′ and Θ; ∆ ⊢ I ∶ S ⇒ Φ2, with Θ; ∆ ⊧ Φ1 ∧ Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and

Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′, Φ′
1, Γ′′′ such that ∣e∣ = ∣e′∣, Θ; ∆ ⊧ Φ′

1, Ψ; Θ; ∆ ⊢

Γ′′′ ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e ↑ ∀i ∶ S.τ ⇒ Φ′
1,Γ

′′′. By

AT-IApp, Ψ; Θ; ∆; Ω′; Γ′ ⊢ e[I] ↑ τ[I/i] ⇒ Φ′
1 ∧ Φ2,Γ

′′′. Since Θ; ∆ ⊧ Φ′
1 ∧ Φ2 and

∣e[I]∣ = ∣e∣[I] = ∣e′∣[I] = ∣e′[I]∣, this completes (2). For (1), we have by Theorem 8.16
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some Φ3 such that Ψ; Θ; ∆ ⊢ τ[I/i] <∶ τ[I/i] ∶ ⋆ ⇒ Φ3 and Θ; ∆ ⊧ Φ3. By AT-Sub, we

have that Ψ; Θ; ∆; Ω′; Γ′ ⊢ e[I] ↓ τ[I/i] ⇒ Φ′
1 ∧Φ2 ∧Φ3,Γ

′′′, as required for (1).

(AT-Fix) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ fix x.e ↓ τ ⇒ Φ,Γ by way of Ψ; Θ; ∆; Ω, x ∶ τ ; ⋅ ⊢ e ↓ τ ⇒ Φ,Γ′′,

with Θ; ∆ ⊧ Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. Then, Ψ; Θ; ∆ ⊢ Ω′, x ∶ τ ⊑

Ω, x ∶ τ . By IH, there are e′, Φ′, Γ′′ such that ∣e∣ = ∣e′∣, Θ; ∆ ⊧ Φ′, and Ψ; Θ; ∆; Ω′, x ∶

τ ; ⋅ ⊢ e′ ↓ τ ⇒ Φ′,Γ′′′. By AT-Fix, Ψ; Θ; ∆; Ω′; Γ′ ⊢ fix x.e′ ↓ τ ⇒ Φ′,Γ′. Of course,

∣fix x.e′∣ = fix x.∣e′∣ = fix x.∣e∣ = ∣fix x.e∣. Further, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ′ ∖ Γ by

Theorem 5.6, and Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ by one of the premises. This completes (1), and (2)

follows by AT-Anno.

(AT-Ret) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ ret e ↓Mφ(I, p⃗) τ ⇒ Φ,Γ′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′′,

with Θ; ∆ ⊢ Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′, Φ′,

Γ′′′ such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and

Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↓ τ ⇒ Φ′,Γ′′′. By AT-Ret, Ψ; Θ; ∆; Ω′; Γ′ ⊢ ret e′ ↓ Mφ(I, p⃗) τ ⇒

Φ′,Γ′′′, completing (1). (2) follows by AT-Anno.

(AT-Bind) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ bind x = e1 in e2 ↓ Mφ(I, q⃗) τ2 ⇒ (q⃗ ≥ p⃗) ∧ (I = J) ∧ Φ1 ∧

Φ2,Γ2 ∖ {x ∶ τ1} from Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ Mφ(J, p⃗) τ1 ⇒ Φ1,Γ1 and Ψ; Θ; ∆; Ω; Γ1, x ∶

τ1 ⊢ e2 ↓Mφ(I, q⃗− p⃗) τ2 ⇒ Φ2,Γ2 with Θ; ∆ ⊧ (q⃗ ≥ p⃗)∧(I = J)∧Φ1∧Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑

Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′1, Φ′
1, Γ′1 such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′

1,

Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ↑ Mφ(J, p⃗) τ1 ⇒

Φ1,
′ Γ′1. We note that Ψ; Θ; ∆ ⊢ Γ′1, x ∶ τ1 ⊑ Γ1, x ∶ τ1, and so by IH, there are e′2, Φ′

2,

Γ′2 such that ∣e′2∣ = ∣e2∣, Θ; ∆ ⊧ Φ′
2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ′1 ∖ Γ1, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2, and

Ψ; Θ; ∆; Ω′; Γ′1, x ∶ τ1 ⊢ e′2 ↓ Mφ(I, q⃗ − p⃗) τ2 ⇒ Φ′
2,Γ

′
2. By AT-Bind, Ψ; Θ; ∆; Ω′; Γ′ ⊢

bind x = e′1 in e′2 ↓Mφ(I, q⃗) τ2 ⇒ (q⃗ ≥ p⃗) ∧ (I = J) ∧Φ′
1 ∧Φ′

2,Γ
′
2 ∖ {x ∶ τ1}. Of course,

∣bind x = e1 in e2∣ = ∣bind x = e′1 in e′2∣. Since Θ; ∆ ⊧ (q⃗ ≥ p⃗) ∧ (I = J), we also

have that Θ; ∆ ⊧ (q⃗ ≥ p⃗) ∧ (I = J) ∧ Φ′
1 ∧ Φ′

2. We have Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2 by IH, and

Ψ; Θ; ∆ ⊢ Γ′2 ∖ {x ∶ τ1} ⊑ Γ′ ∖ Γ follows by applying Theorem 5.6 to the rest of the

weakening premises. This completes (1), and (2) follows by AT-Anno.

(AT-Tick) Immediate.

(AT-Release) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ release x = e1 in e2 ↓Mφ(I, p⃗) τ2 ⇒ (I = J) ∧Φ1 ∧Φ2,Γ2 ∖

{x} from Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ [J ∣q⃗]τ1 ⇒ Φ1,Γ1 and Ψ; Θ; ∆; Ω; Γ1, x ∶ τ ⊢ e2 ↓Mφ(I, p⃗+
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q⃗) τ2 ⇒ Φ2,Γ2, with Θ; ∆ ⊧ (I = J)∧Φ1∧Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By

IH, there are e′1, Φ′
1, Γ′1 such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′

1, Ψ; Θ; ∆ ⊧ Γ′1 ⊑ Γ′∖Γ, Ψ; Θ; ∆ ⊧

Γ′1 ⊑ Γ1, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ↑ [J ∣q⃗]τ1 ⇒ Φ′
1,Γ

′
1. Since Ψ; Θ; ∆ ⊧ Γ′1, x ∶ τ ⊑ Γ1, x ∶ τ ,

we have by IH that there are e′2, Φ′
2, Γ′2 such that ∣e′2∣ = ∣e2∣, Θ; ∆ ⊧ Φ′

2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑

Γ′1 ∖ Γ1, Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2, and Ψ; Θ; ∆; Ω′; Γ′1, x ∶ τ ⊢ e′2 ↓ Mφ(I, p⃗ + q⃗) τ2 ⇒ Φ′
2,Γ

′
2.

By AT-Release, Ψ; Θ; ∆; Ω′; Γ′ ⊢ release x = e′1 in e′2 ↓ Mφ(I, p⃗) τ2 ⇒ (I = J) ∧

Φ′
1 ∧Φ′

2,Γ2 ∖ {x}. Of course, ∣release x = e′1 in e′2∣ = ∣release x = e1 in e2∣. Since

Θ; ∆ ⊧ I = J , we have Θ; ∆ ⊧ (I = J) ∧Φ′
1 ∧Φ′

2. Ψ; Θ; ∆ ⊢ Γ′2 ∖ {x} ⊑ Γ2{x} is implied

by Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2, and Ψ; Θ; ∆ ⊢ Γ′2 ∖ {x} ⊑ Γ′ ∖ Γ follows from Theorem 5.6. This

completes (1), and (2) follows from AT-Anno.

(AT-Store) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ store[K ∣w⃗](e) ↓Mφ(I, q⃗) ([J ∣p⃗] τ) ⇒ Φ1 ∧Φ2 ∧Φ3 ∧ (p⃗ ≤ w⃗ ≤

q⃗) ∧ (I = J =K),Γ′′ by way of Θ; ∆ ⊢K ∶ N⇒ Φ1, Θ; ∆ ⊢ w⃗ ∶ R⃗+ ⇒ Φ2, Ψ; Θ; ∆; Ω; Γ ⊢

e ↓ τ ⇒ Φ3,Γ
′′, with Θ; ∆ ⊧ Φ1 ∧Φ2 ∧Φ3 ∧ (p⃗ ≤ w⃗ ≤ q⃗) ∧ (I = J = K), Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ,

and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′, Γ′′′, Φ′
3 such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′

3,

Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↓ τ ⇒ Φ′
3,Γ

′′′. By

AT-Store, Ψ; Θ; ∆; Ω′; Γ′ ⊢ store[K ∣w⃗](e′) ↓Mφ(I, q⃗) ([J ∣p⃗] τ) ⇒ Φ1 ∧Φ2 ∧Φ′
3 ∧ (p⃗ ≤

w⃗ ≤ q⃗) ∧ (I = J =K),Γ′′′, which completes (1). For (2), AT-Anno suffices.

(AT-StoreConst) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ store[J](e) ↓ Mφ(K, p⃗) ([I] τ) ⇒ (const(I) ≤ const(J) ≤

p⃗) ∧ Φ1 ∧ Φ2,Γ
′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ1,Γ

′′ and Θ; ∆ ⊢ J ∶ R ⇒ Φ2, with

Θ; ∆ ⊧ (const(I) ≤ const(J) ≤ p⃗)∧Φ1∧Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By

IH, there are e′, Φ′
1, Γ′′′ such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′

1, Φ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖Γ, Φ; Θ; ∆ ⊢

Γ′′′ ⊑ Γ′′, and Φ; Θ; ∆; Ω′; Θ′ ⊢ e′ ↓ τ ⇒ Φ′
1,Γ

′′′. By AT-StoreConst, Ψ; Θ; ∆; Ω′; Γ ⊢

store[J](e′) ↓ Mφ(K, p⃗) ([I] τ) ⇒ (const(I) ≤ const(J) ≤ p⃗) ∧ Φ′
1 ∧ Φ2,Γ

′′, which

completes (1). For (2), we use AT-Anno.

(AT-ReleaseConst) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ release x = e1 in e2 ↓ Mφ(I, p⃗) τ2 ⇒ Φ1 ∧ Φ2,Γ2 ∖ {x}

from Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ [J]τ1 ⇒ Φ1,Γ1, and Ψ; Θ; ∆; Ω; Γ1, x ∶ τ1 ⊢ e2 ↓ Mφ(I, p⃗ +

const(J)) τ2 ⇒ Φ2,Γ2, with Θ; ∆ ⊧ Φ1∧Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By

IH, there are e′1, Γ′1, Φ′
1 such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′

1, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′∖Γ, Ψ; Θ; ∆ ⊢

Γ′1 ⊑ Γ1, and Ψ; Θ; ∆; Ω; Γ′ ⊢ e′1 ↑ [J]τ1 ⇒ Φ′
1,Γ

′
1. Since Ψ; Θ; ∆ ⊢ Γ′1, x ∶ τ1 ⊑ Γ1, x ∶ τ1,

we have by IH that there are e′2, Φ′
2, Γ′2 such that ∣e′2∣ = ∣e2∣, Θ; ∆ ⊧ Φ′

2, Ψ; Θ; ∆ ⊢ Γ′2 ⊑
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(Γ′1, x ∶ τ1) ∖ (Γ1, x ∶ τ1), Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2, and Ψ; Θ; ∆; Ω′; Γ′1, x ∶ τ1 ⊢ e′2 ↓Mφ(I, p⃗ +

const(J)) τ2 ⇒ Φ′
2,Γ

′
2. By AT-ReleaseCont, Ψ; Θ; ∆; Ω′; Γ′ ⊢ release x = e′1 in e′2 ↓

Mφ(I, p⃗) τ2 ⇒ Φ′
1 ∧ Φ′

2,Γ
′
2 ∖ {x}. Of course, ∣release x = e′1 in e′2∣ = release x =

∣e′1∣ in ∣e′2∣ = release x = ∣e1∣ in ∣e2∣ = ∣release x = e1 in e2∣. Also, Θ; ∆ ⊧ Φ′
1∧Φ′

2.

Ψ; Θ; ∆ ⊢ Γ′2 ⊑ Γ2 holds by IH. It remains to show that Ψ; Θ; ∆ ⊢ Γ′2 ∖ {x} ⊑ Γ′ ∖ Γ.

This follows by considering the remaining weakening judgments from the IHs with

Theorem 5.6. This completes (1). For (2), as usual, we apply AT-Anno.

(AT-Shift) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ shift(e) ↓Mφ(I, q⃗) τ ⇒ (I ≥ 1)∧Φ,Γ′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↓

Mφ(I − 1,⊲ q⃗) τ ⇒ Φ,Γ′′, with Θ; ∆ ⊧ (I ≥ 1) ∧Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω.

By IH, there are e′, Φ′, Γ′′′ such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ,

Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↓ Mφ(I − 1,⊲ q⃗) τ ⇒ Φ′,Γ′′′. By AT-Shift,

Ψ; Θ; ∆; Ω′; Γ′ ⊢ shift(e′) ↓ Mφ(I, q⃗) τ ⇒ (I ≥ 1) ∧ Φ′,Γ′′′, which completes (1). For

(2), we apply AT-Anno.

(AT-CImpI) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ Λ.e ↓ (Φ′ ⇒ τ) ⇒ (Φ′ → Φ),Γ′′ from Ψ; Θ; ∆,Φ′; Ω; Γ ⊢ e ↓

τ ⇒ Φ,Γ′′, with Θ; ∆ ⊧ Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. Using ??, we have

by IH that there are e′, Φ′′, Γ′′′, ∣e′∣ = ∣e∣, Θ; ∆,Φ′ ⊧ Φ′′, Ψ; Θ; ∆,Φ′ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ,

Ψ; Θ; ∆,Φ′ ⊢ Γ′′′ ⊑ Γ′′, and Ψ; Θ; ∆,Φ′; Ω′; Γ′ ⊢ e ↓ τ ⇒ Φ′′,Γ′′′. By AT-CImpI,

Ψ; Θ; ∆; Ω′; Γ′ ⊢ Λ.e′ ↓ (Φ′ ⇒ τ) ⇒ (Φ′ → Φ′′),Γ′′′. By definition, ∣Λ.e′∣ = Λ.∣e′∣ = Λ.∣e∣ =

∣Λ.e∣. Next, since Θ; ∆,Φ′ ⊧ Φ′′, we have Θ; ∆ ⊧ Φ′ → Φ′′. The two weakenings again

follow by Theorem 5.6. This completes (1), and (2) follows by AT-Anno.

(AT-CImpE) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ e{} ↑ τ ⇒ Φ∧Φ′,Γ′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ (Φ′ ⇒ τ) ⇒ Φ,Γ′′,

with Θ; ∆ ⊧ Φ ∧ Φ′, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′,

Φ′′. Γ′′′ such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′′. Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′,

and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↑ (Φ′ ⇒ τ) ⇒ Φ′′,Γ′′′. By AT-CImpE, Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′{} ↑

τ ⇒ Φ′′ ∧ Φ′,Γ′′′, which completes the proof of (2). For (1), we use Theorem 8.16 to

get some Φ1 with Θ; ∆ ⊧ Φ1 such that Ψ; Θ; ∆ ⊢ τ <∶ τ ∶ ⋆ ⇒ Φ1. Then, by AT-Sub,

Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′{} ↓ τ ⇒ Φ′′ ∧Φ′ ∧Φ3,Γ
′′′, as required.

(AT-CAndI) Suppose Ψ; Θ; ∆; Ω; Γ ⊢< e >↓ Φ′&τ ⇒ Φ ∧ Φ′,Γ′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′′,

with Θ; ∆ ⊧ Φ ∧ Φ′, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′,

Φ′′, Γ′′′ such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′′, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′,
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and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↓ τ ⇒ Φ′′,Γ′′′. By AT-CAndI, Ψ; Θ; ∆; Ω′; Γ′ ⊢< e′ >↓ Φ′&τ ⇒

Φ′′ ∧Φ′,Γ′′′, which completes (1). For (2), one use of AT-Anno suffices.

(AT-CAndE) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ clet x = e1 in e2 ↓ τ ′ ⇒ Φ1 ∧ (Φ → Φ2),Γ2 ∖ {x ∶ τ} from

Ψ; Θ; ∆; Ω; Γ ⊢ e1 ↑ Φ&τ ⇒ Φ1,Γ1 and Ψ; Θ; ∆,Φ; Ω; Γ1, x ∶ τ ⊢ e2 ↓ τ ′ ⇒ Φ2,Γ2, with

Θ; ∆ ⊧ Φ1 ∧ (Φ → Φ2), Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are

e′1, Φ′
1, Γ′1 such that ∣e′1∣ = ∣e1∣, Θ; ∆ ⊧ Φ′

1, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1,

and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′1 ↑ Φ&τ ⇒ Φ′
1,Γ

′
1. Since Ψ; Θ; ∆ ⊢ Γ′1 ⊑ Γ1, we also have by

Theorem A.14 Ψ; Θ; ∆,Φ ⊢ Γ′1, x ∶ τ ⊑ Γ1, x ∶ τ , and so by IH, there are e′2, Φ′
2, Γ′2

such that ∣e′2∣ = ∣e2∣, Θ; ∆,Φ ⊧ Φ′
2, Ψ; Θ; ∆,Φ ⊢ Γ′2 ⊑ Γ′1 ∖ Γ1, Ψ; Θ; ∆,Φ ⊢ Γ′2 ⊑ Γ2, and

Ψ; Θ; ∆,Φ; Ω′; Γ′1, x ∶ τ ⊢ e′2 ↓ τ ′ ⇒ Φ′
2,Γ

′
2. By AT-CAndE, Ψ; Θ; ∆; Ω′; Γ′ ⊢ clet x =

e′1 in e′2 ↓ τ ′ ⇒ Φ′
1 ∧ (Φ → Φ′

2),Γ′2 ∖ {x ∶ τ}. As usual, we have that ∣clet x =

e′1 in e′2∣ = ∣clet x = e1 in e2∣. Combining the satisfactions from the premises, we

have that Θ; ∆ ⊧ Φ′
1 ∧ (Φ→ Φ′

2). The fact that Ψ; Θ; ∆,Φ ⊢ Γ′2 ⊑ Γ2 is immediate from

IH, and Ψ; Θ; ∆,Φ ⊢ Γ′2 ⊑ Γ′∖Γ follows as usual by considering the rest of the weakening

judgments with Theorem 5.6. This completes (1). For (2), we apply AT-Anno.

(AT-Sub) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ1 ∧ Φ2,Γ
′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ τ ′ ⇒ Φ1,Γ

′′ and

Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆ ⇒ Φ2, with Θ; ∆ ⊧ Φ1 ∧Φ2, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω.

By IH, there are e′, Φ′
1, Γ′′′ such that ∣e′∣ = ∣e∣, Θ; ∆ ⊧ Φ′

1, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ,

Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↑ τ ′ ⇒ Φ′
1,Γ

′′′. By AT-Sub, Ψ; Θ; ∆; Ω′; Γ′ ⊢

e′ ↓ τ ⇒ Φ′
1 ∧Φ2,Γ

′′′, which completes (1). For (2), one use of AT-Anno suffices.

(AT-Anno) Suppose Ψ; Θ; ∆; Ω; Γ ⊢ (e ∶ τ) ↑ τ ⇒ Φ,Γ′′ from Ψ; Θ; ∆; Ω; Γ ⊢ e ↓ τ ⇒ Φ,Γ′′ with

Θ; ∆ ⊧ Φ, Ψ; Θ; ∆ ⊢ Γ′ ⊑ Γ, and Ψ; Θ; ∆ ⊢ Ω′ ⊑ Ω. By IH, there are e′, Φ′, Γ′′′ such that

∣e∣ = ∣e′∣, Θ; ∆ ⊧ Φ′, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′ ∖ Γ, Ψ; Θ; ∆ ⊢ Γ′′′ ⊑ Γ′′, and Ψ; Θ; ∆; Ω′; Γ′ ⊢ e′ ↓

τ ⇒ Φ′,Γ′′′. By AT-Anno, Ψ; Θ; ∆; Ω′; Γ′ ⊢ (e′ ∶ τ) ↑ τ ⇒ Φ′,Γ′′′, which completes (2)

since ∣(e′ ∶ τ)∣ = ∣e′∣ = ∣e∣ = ∣(e ∶ τ)∣. For (1), we use Theorem 8.16 to get that Ψ; Θ; ∆ ⊢

τ <∶ τ ∶ ⋆ ⇒ Φ′′ with Θ; ∆ ⊧ Φ′′, and so by AT-Sub, we have that Ψ; Θ; ∆; Ω′; Γ′ ⊢ (e′ ∶

τ) ↓ τ ⇒ Φ′ ∧Φ′′,Γ′′′, completing (1).

�

Proof of Theorem 8.23
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By induction on the derivation of Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ , we prove both claims simultaneously.

In each case, we will only prove one of the two conclusions, based on the direction of the

corresponding algorithmic rule. In cases where the rule is checking claim (2) follows immediately

by AT-Anno. In cases where the rule is inferring, (1) follows by Theorem 8.16 and then AT-Sub.

In all cases, the erasure property is immediate from the inductive hypotheses– we will elide this

bit of the proof.

▸ Case 1: T-Var-1.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ x ∶ τ

(2) x ∶ τ ∈ Γ

▸ There exist e′, Φ′, Γ′ such that:

▸ Goal 1:

∣e′∣ = x

▸ Goal 2:

Ψ; Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↑ τ ⇒ Φ,Γ′

Immediate

▸ Case 2: T-Var-2.

Immediate

▸ Case 3: T-Unit.

Immediate

▸ Case 4: T-Base.

Immediate

▸ Case 5: T-Absurd.

Immediate

▸ Case 6: T-Nil.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢p nil ∶ LIτ

(2) Θ; ∆ ⊢ I ∶ N
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(3) Θ; ∆ ⊧ I = 0

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = nil

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ LIτ ⇒ Φ′,Γ′

By Theorem 8.10, there is a Φ such that

(4) Θ; ∆ ⊢ I ∶ N⇒ Φ

(5) Θ; ∆ ⊧ Φ

Goals follow by AT-Nil, letting e′ = nil, Φ′ = Φ ∧ (I = 0), and Γ′ = Γ

▸ Case 7: T-Cons.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e1 ∶∶ e2 ∶ LIτ

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢p e1 ∶ τ

(3) Ψ; Θ; ∆; Ω; Γ2 ⊢p e2 ∶ LI−1τ

(4) Θ; ∆ ⊧ I ≥ 1

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = e1 ∶∶ e2

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓ LIτ ⇒ Φ′,Γ′

By IH, on (2) there are e′1, Φ1, Γ′1 such that

(5) ∣e′1∣ = e1

(6) Θ; ∆ ⊧ Φ′
1

(7) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↓ τ ⇒ Φ1,Γ
′
1

By Theorem 8.22 on (7), there are e′′1 , Φ′
1, Γ′′1 such that
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(8) ∣e′′1 ∣ = ∣e′1∣

(9) Θ; ∆ ⊧ Φ′
1

(10) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ (Γ1,Γ2) ∖ Γ1

(11) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ↓ τ ⇒ Φ′
1,Γ

′′
1

By IH, there are e′2, Φ2, Γ′2 such that

(12) ∣e′2∣ = e2

(13) Θ; ∆ ⊧ Φ2

(14) Ψ; Θ; ∆; Ω; Γ2 ⊢ e′2 ↓ LI−1τ ⇒ Φ2,Γ
′
2

Again by Theorem 8.22 on (14), we have e′′2 , Φ′
2, Γ′′2 such that

(15) ∣e′′2 ∣ = ∣e′2∣

(16) Θ; ∆ ⊧ Φ′
2

(17) Ψ; Θ; ∆; Ω; Γ′′1 ⊢ e′′2 ↓ LI−1τ ⇒ Φ′
2,Γ

′′
2

By AT-Cons on (11) and (17)

(18) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ∶∶ e′′2 ↓ LIτ ⇒ Φ′
1 ∧Φ′

2 ∧ (I ≥ 1),Γ′′2

Goals follow by e′ = e′′1 ∶∶ e′′2 , Φ′ = Φ′
1 ∧Φ′

2 ∧ (I ≥ 1), and Γ′ = Γ′′2

▸ Case 8: T-Match.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ match(e, e1, h.t.e2) ∶ τ ′

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶ LIτ

(3) Ψ; Θ; ∆, I = 0; Ω; Γ2 ⊢ e1 ∶ τ ′

(4) Ψ; Θ; ∆, I ≥ 1; Ω; Γ2, h ∶ τ, t ∶ LIτ ⊢ e2 ∶ τ ′

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = match(e, e1, h.t.e2)

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓ τ ′ ⇒ Φ′,Γ′

By IH on (2)

(5) ∣e′∣ = e
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(6) Θ; ∆ ⊧ Φ

(7) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′ ↑ LIτ ⇒ Φ,Γ′1

By Theorem 8.22 on (7), there are e′′, Φ′, Γ′′1 such that

(8) ∣e′′∣ = ∣e′∣

(9) Θ; ∆ ⊧ Φ′

(10) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ Γ2

(11) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′ ↑ LIτ ⇒ Φ′,Γ′′1

By IH on (3) there are e′1, Φ1, Γ′2 such that

(12) ∣e′1∣ = e1

(13) Θ; ∆, I = 0 ⊧ Φ1

(14) Ψ; Θ; ∆, I = 0; Ω; Γ2 ⊢ e′1 ↓ τ ′ ⇒ Φ1,Γ
′
2

By Theorem A.14 on (10)

(15) Ψ; Θ; ∆, I = 0 ⊢ Γ′′1 ⊑ Γ2.

Then, by Theorem 8.22, there are e′′1 , Φ′
1, Γ′′2 such that

(16) ∣e′′1 ∣ = ∣e′1∣,

(17) Θ; ∆, I = 0 ⊧ Φ′
1

(18) Ψ; Θ; ∆, I = 0; Ω; Γ′′1 ⊢ e′′1 ↓ τ ′ ⇒ Φ′
1,Γ

′′
2

By IH again on (3) we have e′2, Φ2, Γ′3 such that

(19) ∣e′2∣ = e2

(20) Θ; ∆, I ≥ 1 ⊢ Φ2

(21) Ψ; Θ; ∆, I ≥ 1; Ω; Γ2, h ∶ τ, t ∶ LIτ ⊢ e′2 ↓ τ ′ ⇒ Φ2,Γ
′
3

By ?? and Theorem 5.6

(22) Ψ; Θ; ∆, I ≥ 1 ⊢ Γ′′1 , h ∶ τ, t ∶ LIτ ⊑ Γ2, h ∶ τ, t ∶ LIτ

By Theorem 8.22 on (21) and (22), there are are e′′2 , Φ′
2, Γ′′3 such that

(23) ∣e′′2 ∣ = ∣e′2∣

(24) Θ; ∆, I ≥ 1 ⊧ Φ′
2

(25) Ψ; Θ; ∆, I ≥ 1; Ω; Γ′′1 , h ∶ τ, t ∶ LIτ ⊢ e′′2 ↓ τ ′ ⇒ Φ′
2,Γ

′′
3

Goals follow by AT-Match on (11), (18), (25)

▸ Case 9: T-ExistI.
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▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢p pack[I](e) ∶ ∃i ∶ S.τ

(2) Θ; ∆ ⊢ I ∶ S

(3) Ψ; Θ; ∆; Ω; Γ ⊢p e ∶ τ[I/i]

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = pack[I](e)

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ ∃i ∶ S.τ ⇒ Φ′,Γ′

By Theorem 8.10 on (2) , there is a Φ1 such that

(4) Θ; ∆ ⊢ I ∶ S ⇒ Φ1

(5) Θ; ∆ ⊧ Φ1

By IH on (3), there are e′, Φ2, Γ′ such that

(6) ∣e′∣ = e

(7) Θ; ∆ ⊧ Φ2

(8) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↓ τ[I/i] ⇒ Φ2,Γ
′

Goals follow by AT-ExistI on (4) and (8)

▸ Case 10: T-ExistE.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ unpack (i, x) = e1 in e2 ∶ τ ′

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ ∃i ∶ S.τ

(3) Ψ; Θ, i ∶ S; ∆; Ω; Γ2, x ∶ τ ⊢ e2 ∶ τ ′

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = unpack (i, x) = e1 in e2

▸ Goal 2:

Θ; ∆ ⊧ Φ′
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▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓ τ ′ ⇒ Φ′,Γ′

By IH on (2), there are e′1, Φ1, Γ′1 such that

(4) ∣e′1∣ = e1

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↑ ∃i ∶ S.τ ⇒ Φ1,Γ
′
1

By Theorem 8.22 there are e′′1 , Φ′
1, Γ′′1 such that

(7) ∣e′′1 ∣ = ∣e′1∣

(8) Θ; ∆ ⊧ Φ′
1

(9) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ Γ2

(10) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ↑ ∃i ∶ S.τ ⇒ Φ′
1,Γ

′′
1

By IH on (3), there are e′2, Φ2, Γ′2 such that

(11) ∣e′2∣ = e2

(12) Θ, i ∶ S; ∆ ⊧ Φ2

(13) Ψ; Θ, i ∶ S; ∆; Ω; Γ2, x ∶ τ ⊢ e′2 ↓ τ ′ ⇒ Φ2,Γ
′
2.

By Theorem 5.6 and Theorem 8.22 on (9) and (13) there are e′′2 , Φ′
2, Γ′′2 such that

(14) ∣e′′2 ∣ = ∣e′2∣

(15) Θ, i ∶ S; ∆ ⊧ Φ′
2

(16) Ψ; Θ, i ∶ S; ∆; Ω; Γ′′1 , x ∶ τ ⊢ e′′2 ↓ τ ′ ⇒ Φ′
2,Γ

′′
2

Goals follow by AT-ExistE on (10) and (16)

▸ Case 11: T-Lam.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ λx.e ∶ τ1 ⊸ τ2

(2) Ψ; Θ; ∆; Ω; Γ, x ∶ τ1 ⊢ e ∶ τ2

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = λx.e

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:
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Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ ′ ⇒ Φ′,Γ′

By IH on (2) there are e′, Φ, Γ′ so that

(3) ∣e′∣ = e

(4) Θ; ∆ ⊧ Φ

(5) Ψ; Θ; ∆; Ω; Γ, x ∶ τ1 ⊢ e′ ↓ τ2 ⇒ Φ,Γ′

Goals are immediate by AT-Lam

▸ Case 12: T-App.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e1 e2 ∶ τ2

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ τ1 ⊸ τ2

(3) Ψ; Θ; ∆; Ω; Γ2 ⊢ e2 ∶ τ1

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = e1 e2

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↑ τ ′ ⇒ Φ′,Γ′

By IH on (2) there are e′1, Γ′1, Φ1 such that

(4) ∣e′1∣ = e1

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↑ τ1 ⊸ τ2 ⇒ Φ1,Γ
′
1

By Theorem 8.22 on (6), there are e′′1 , Φ′
1, Γ′′1 such that

(7) ∣e′′1 ∣ = ∣e′1∣

(8) Θ; ∆ ⊧ Φ′
1

(9) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ Γ2

(10) Ψ; Θ; ∆; Ω; Γ1,Γ1 ⊢ e′′1 ↑ τ1 ⊸ τ2 ⇒ Φ′
1,Γ

′′
1

By IH on (3), there are e′2, Γ′2, and Φ2 such that

(11) ∣e′2∣ = e2

(12) Θ; ∆ ⊧ Φ2
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(13) Ψ; Θ; ∆; Ω; Γ2 ⊢ e′2 ↓ τ1 ⇒ Φ2,Γ
′
2

By Theorem 8.22 on (9) and (13), there are e′′2 , Γ′′2 , and Φ′
2 such that

(14) ∣e′′2 ∣ = ∣e′2∣

(15) Θ; ∆ ⊧ Φ′
2

(16) Ψ; Θ; ∆; Ω; Γ′′1 ⊢ e′′2 ↓ τ1 ⇒ Φ′
2,Γ

′′
2

Goals follow by AT-App on (10) and (16)

▸ Case 13: T-TensorI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ ⟪e1, e2⟫ ; τ1 ⊗ τ2

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ τ1

(3) Ψ; Θ; ∆; Ω; Γ2 ⊢ e2 ∶ τ2

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = ⟪e1, e2⟫

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓ τ ′ ⇒ Φ′,Γ′

By IH on (2), there are e′1, Φ1, Γ′1 such that

(4) ∣e′1∣ = e1

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↓ τ1 ⇒ Φ1,Γ
′
1

By Theorem 8.22 on (6), there are e′′1 , Φ′
1, Γ′′1 such that

(7) ∣e′′1 ∣ = ∣e′1∣

(8) Θ; ∆ ⊧ Φ′
1

(9) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ (Γ1,Γ2) ∖ Γ1

(10) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ↓ τ2 ⇒ Φ′
1,Γ

′′
1 .

By IH on (3), there are e′2, Φ2, Γ′2 such that

(11) ∣e′2∣ = e2

(12) Θ; ∆ ⊧ Φ2
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(13) Ψ; Θ; ∆; Ω; Γ2 ⊢ e′2 ↓ τ2 ⇒ Φ2,Γ
′
2

But by Theorem 8.22 on (13) and (9), there are e′′2 , Φ′
2, Γ′′2 such that

(14) ∣e′′2 ∣ = ∣e′2∣

(15) Θ; ∆ ⊧ Φ′
2

(16) Ψ; Θ; ∆; Ω; Γ′′1 ⊢ e′′2 ↓ τ2 ⇒ Φ′
2,Γ

′′
2

Goals follow by AT-TensorI on (16)

▸ Case 14: T-TensorE.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ let ⟪x, y⟫ = e1 in e2 ∶ τ ′

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ τ1 ⊗ τ2

(3) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1, y ∶ τ2 ⊢ e2 ∶ τ ′

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = let ⟪x, y⟫ = e1 in e2

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓ τ ′ ⇒ Φ′,Γ′

By IH on (2), there are e′1, Φ1, Γ′1 such that

(4) ∣e′1∣ = e1

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↑ τ1 ⊗ τ2 ⇒ Φ1,Γ
′
1

By Theorem 8.22 that there are e′′1 , Φ′
1, Γ′′1 such that

(7) ∣e′′1 ∣ = ∣e′1∣

(8) Θ; ∆ ⊧ Φ′
1

(9) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ (Γ1,Γ2 ∖ Γ1)

(10) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ↑ τ1 ⊗ τ2 ⇒ Φ′
1,Γ

′′
1 .

By IH on (3), there are e′2, Φ2, Γ′2 such that

(11) ∣e′2∣ = e2

(12) Θ; ∆ ⊧ Φ2
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(13) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1, y ∶ τ2 ⊢ e′2 ↓ τ ′ ⇒ Φ2,Γ
′
2

By Theorem 5.6 on (9) Theorem 8.22 on (13), there are e′′2 , Φ′
2, Γ′′2 such that

(14) ∣e′′2 ∣ = ∣e′2∣

(15) Θ; ∆ ⊧ Φ′
2

(16) Ψ; Θ; ∆,Γ′′1 , x ∶ τ1, y ∶ τ2 ⊢ e′′2 ↓ τ ′ ⇒ Φ′
2,Γ

′′
2

Goals follow by AT-TensorE on (10) and (16)

▸ Case 15: T-WithI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ (e1, e2) ∶ τ1&τ2

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e1 ∶ τ1

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e2 ∶ τ2.

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = (e1, e2)

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ1&τ2 ⇒ Φ′,Γ′

By IH on (2), we have e′1, Φ1, Γ1 such that

(4) ∣e′1∣ = e1

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ ⊢ e′1 ∶ τ1 ⇒ Φ1,Γ1.

By IH on (3), we have e′2, Φ2, Γ2 such that

(4) ∣e′2∣ = e2

(5) Θ; ∆ ⊧ Φ2

(6) Ψ; Θ; ∆; Ω; Γ ⊢ e′2 ∶ τ2 ⇒ Φ2,Γ2.

Goals follow by AT-WithI

▸ Case 16: T-Fst.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ fst(e) ∶ τ1
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(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ1&τ2

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = fst(e)

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↑ τ1 ⇒ Φ′,Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(3) ∣e′∣ = e

(4) Θ; ∆ ⊧ Φ

(5) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↑ τ1&τ2 ⇒ Φ,Γ′

Goals follow by AT-Fst

▸ Case 17: T-Snd.

Identical to case (16)

▸ Case 18: T-Inl.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γvdashinl(e) ∶ τ1 ⊕ τ2

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ1

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = inl(e)

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ1 ⊕ τ2 ⇒ Φ′,Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(3) ∣e′∣ = e

(4) Θ; ∆ ⊧ Φ

(5) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↓ τ1 ⇒ Φ,Γ′
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Goals follow by AT-Inl

▸ Case 19: T-Snd.

Identical to case (18)

▸ Case 20: T-Case.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ case(e, x.e1, y.e2) ∶ τ

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e ∶ τ1 ⊕ τ2

(3) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1 ⊢ e1 ∶ τ

(4) Ψ; Θ; ∆; Ω; Γ2, y ∶ τ2 ⊢ e2 ∶ τ

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = case(e, x.e1, y.e2)

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓ τ ⇒ Φ′,Γ′

By IH on (2), there are e′, Φ, Γ′1

(5) ∣e′∣ = e

(6) Θ; ∆ ⊧ Φ

(7) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′ ↑ τ1 ⊕ τ2 ⇒ Φ,Γ′1

By Theorem 8.22 there are e′′, Φ′, Γ′′1 such that

(8) ∣e′′∣ = ∣e′∣

(9) Θ; ∆ ⊧ Φ′

(10) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ (Γ1,Γ2) ∖ Γ1

(11) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′ ↑ τ1 ⊕ τ2 ⇒ Φ′,Γ′′1 .

By IH on (3), there are e′1, Φ1, Γ′2 such that

(12) ∣e′1∣ = e1

(13) Θ; ∆ ⊧ Φ1

(14) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1 ⊢ e′1 ↓ τ ⇒ Φ1,Γ
′
2

By Theorem 5.6 and Theorem 8.22 on (10) and (14), there are e′′1 , Φ′
1, Γ′′2 such that
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(15) ∣e′′1 ∣ = ∣e′1∣

(16) Θ; ∆ ⊧ Φ′
1

(17) Ψ; Θ; ∆; Ω; Γ′′1 , x ∶ τ1 ⊢ e′′1 ↓ τ ⇒ Φ′
1,Γ

′′
2

By IH on (4), we have e′2, Φ2, Γ′3 such that

(18) ∣e′2∣ = e2

(19) Θ; ∆ ⊧ Φ2

(20) Ψ; Θ; ∆; Ω; Γ2, y ∶ τ2 ⊢ e′2 ↓ τ ⇒ Φ2,Γ
′
3

By Theorem 5.6 and Theorem 8.22 on (10) and (20), there are e′′2 , Φ′
2, Γ′′3 such that

(21) ∣e′′2 ∣ = ∣e′2∣

(22) Θ; ∆ ⊧ Φ′
2

(23) Ψ; Θ; ∆; Ω; Γ′′1 , y ∶ τ2 ⊢ e′′2 ↓ τ ⇒ Φ′
2,Γ

′′
3

Goals follow by AT-Case on (11), (17), and (23)

▸ Case 21: T-ExpI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢!e ∶!τ

(2) Ψ; Θ; ∆; Ω; ⋅ ⊢ e ∶ τ

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ =!e

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ1 ⇒ Φ′,Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(3) ∣e′∣ = e

(4) Θ; ∆ ⊧ Φ

(5) Ψ; Θ; ∆; Ω; ⋅ ⊢ e′ ↓ τ ⇒ Φ,Γ′

Goals follow by AT-ExpI on (5)

▸ Case 22: T-ExpE.
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▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ let !x = e1 in e2 ∶ τ ′

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶!τ

(3) Ψ; Θ; ∆; Ω, x ∶ τ ; Γ2 ⊢ e2 ∶ τ ′.

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = let !x = e1 in e2

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓ τ ′ ⇒ Φ′,Γ′

By IH on (2), there are e′1, Φ1, Γ′1 such that

(4) ∣e′1∣ = e1

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↑!τ ⇒ Φ1,Γ
′
1.

By Theorem 8.22, there are e′′1 , Φ′
1, Γ′′1 such thato

(7) ∣e′′1 ∣ = ∣e′1∣

(8) Θ; ∆ ⊧ Φ′
1

(9) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ (Γ1,Γ2) ∖ Γ1

(10) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ↑!τ ⇒ Φ′
1,Γ

′′
1

By IH on (3), there are e′2, Φ2, Γ′2 such that

(11) ∣e′2∣ = e2

(12) Θ; ∆ ⊧ Φ2

(13) Ψ; Θ; ∆; Ω, x ∶ τ ; Γ2 ⊢ e′2 ↓ τ ′ ⇒ Φ2,Γ
′
2

By ?? on (9) and (13), there are e′′2 , Φ′
2, Γ′′2 such that

(14) ∣e′′2 ∣ = ∣e2∣

(15) Θ; ∆ ⊧ Φ′
2

(16) Ψ; Θ; ∆; Ω, x ∶ τ ; Γ′′1 ⊢ e′′2 ↓ τ ′ ⇒ Φ′
2,Γ

′′
2

Goals follow by AT-ExpE on (10) and (16)

▸ Case 23: T-TAbs.
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▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ Λα.e ∶ ∀α ∶K.τ

(2) Ψ, α ∶K; Θ; ∆; Ω; Γ ⊢ e ∶ τ

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = Λα.e

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ ∀α ∶K.τ ⇒ Φ′,Γ′

By IH on (2), there are e′,Φ, Γ′ such that

(3) ∣e′∣ = e

(4) Θ; ∆ ⊧ Φ

(5) Ψ, α ∶K; Θ; ∆; Ω; Γ ⊢ e′ ↓ τ ⇒ Φ,Γ′

Goals follow by AT-TAbs

▸ Case 24: T-TApp.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e[τ ′] ∶ τ[τ ′/α]

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ ∀α ∶K.τ

(3) Ψ; Θ; ∆ ⊢ τ ′ ∶K.

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = e [τ]

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↑ τ[τ ′/α] ⇒ Φ′,Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(4) ∣e′∣ = e
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(5) Θ; ∆ ⊧ Φ

(6) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↑ ∀α ∶K.τ ⇒ Φ,Γ′

By Theorem 8.13 on (3), there is some Φ′ such that

(7) Θ; ∆ ⊧ Φ′

(8) Ψ; Θ; ∆ ⊢ τ ′ ∶K ⇒ Φ′

Goals follow by AT-TApp on (6) and (8)

▸ Case 25: T-IAbs.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ Λi.e ∶ ∀i ∶ S.τ

(2) Ψ; Θ, i ∶ S; ∆; Ω; Γ ⊢ e ∶ τ

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = Λı.e

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ ∀α ∶K.τ ⇒ Φ′,Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(3) ∣e′∣ = e

(4) Θ, i ∶ S; ∆ ⊧ Φ

(5) Ψ; Θ, i ∶ S; ∆; Ω; Γ ⊢ e′ ↓ τ ⇒ Φ,Γ′

Goals follow by AT-IAbs on (5)

▸ Case 26: T-IApp.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e[I] ∶ τ[I/i]

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ ∀i ∶ S.τ

(3) Θ; ∆ ⊢ I ∶ S

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:
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∣e′∣ = e [I]

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↑ τ[I/i] ⇒ Φ′,Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(4) ∣e′∣ = e

(5) Θ; ∆ ⊧ Φ

(6) Ψ; Θ; ∆; Ω; Γ ⊢ e ↑ ∀i ∶ S.τ ⇒ Φ,Γ′

By Theorem 8.10 on (3), there is some Φ′ such that

(7) Θ; ∆ ⊧ Φ′

(8) Θ; ∆ ⊢ I ∶ S ⇒ Φ′

Goals follow by AT-IApp on (6) and (8)

▸ Case 27: T-Fix.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ fix x.e ∶ τ

(2) Ψ; Θ; ∆; Ω, x ∶ τ ; ⋅ ⊢ e ∶ τ

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = fix x.e

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ ⇒ Φ′,Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(3) ∣e′∣ = e

(4) Θ; ∆ ⊧ Φ

(5) Ψ; Θ; ∆; Ω, x ∶ τ ; ⋅ ⊢ e′ ↓ τ ⇒ Φ,Γ′

Goals follow by AT-Fix on (5)

▸ Case 28: T-Ret.
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▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ ret e ∶M (I, p⃗) τ by way of

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ .

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = ret e

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ ⇒ Φ′,Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(3) ∣e′∣ = e

(4) Θ; ∆ ⊧ Φ

(5) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↓M (I, p⃗) τ ⇒ Φ,Γ′

Goals follow by AT-Ret on (5)

▸ Case 29: T-Bind.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ bind x = e1 in e2 ∶Mφ(I, p⃗ + q⃗) τ2

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶Mφ(I, p⃗) τ1

(3) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1 ⊢ e2 ∶Mφ(I, q⃗) τ2

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = bind x = e1 in e2

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓Mφ(I, p⃗ + q⃗) τ2 ⇒ Φ′,Γ′

By IH on (2), there are e′1, Φ1, Γ′1 such that

(4) ∣e′1∣ = e1
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(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↓Mφ(I, p⃗) τ1 ⇒ Φ1,Γ
′
1

By Theorem 8.22 on (6), there are e′′1 , Γ′′1 , Φ′
1 such that

(7) ∣e′′1 ∣ = ∣e′1∣

(8) Θ; ∆ ⊧ Φ′
1

(9) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ (Γ1,Γ2) ∖ Γ1

(10) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ↓Mφ(I, p⃗) τ1 ⇒ Φ′
1,Γ

′′
1

By IH on (3), there are e′2, Φ2, Γ′2 such that

(11) ∣e′2∣ = e2

(12) Θ; ∆ ⊧ Φ2

(13) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ1 ⊢ e′2 ↓Mφ(I, q⃗) τ2 ⇒ Φ2,Γ
′
2

By Theorem 8.22 on (9) and (11), there are e′′2 , Γ′′2 , Φ′
2 such that

(14) ∣e′′2 ∣ = ∣e′2∣

(15) Θ; ∆ ⊧ Φ′
2

(16) Ψ; Θ; ∆; Ω; Γ′′1 , x ∶ τ1 ⊢ e′′2 ↑Mφ(I, q⃗) τ2 ⇒ Φ′
2,Γ

′′
2

By Theorem 8.16, there is some Φ3 such that Θ; ∆ ⊧ Φ3 and

(17) Ψ; Θ; ∆ ⊢ τ2 <∶ τ2 ∶ ⋆ ⇒ Φ3.

By AS-Monad on (17)

(18) Ψ; Θ; ∆ ⊢Mφ(I, q⃗) τ2 <∶Mφ(I, (p⃗+ q⃗)− p⃗) τ2 ∶ ⋆ ⇒ Φ3 ∧(I = I)∧(q⃗ ≤ (p⃗+ q⃗)− p⃗)

By AT-Sub on (16) and (18)

(19) Ψ; Θ; ∆; Ω; Γ′′1 , x ∶ τ1 ⊢ e′′2 ↓ Mφ(I, (p⃗ + q⃗) − p⃗) τ2 ⇒ Φ′
2 ∧ Φ3 ∧ (I = I) ∧ (q⃗ ≤

(p⃗ + q⃗) − p⃗),Γ′′2 .

Goals follow by AT-Bind on (10) and (19)

▸ Case 30: T-Tick.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ tick[I ∣p⃗] ∶Mφ(I, p⃗)1

(2) Θ; ∆ ⊢ I ∶ N

(3) Θ; ∆ ⊢ p⃗ ∶ R⃗+

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:



A 309

∣e′∣ = tick[I ∣p⃗]

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↑Mφ(I, p⃗)1⇒ Φ′,Γ′

By Theorem 8.10 on (2), there is some Φ1 such that

(4) Θ; ∆ ⊧ Φ1

(5) Θ; ∆ ⊢ I ∶ N⇒ Φ1

By Theorem 8.10 on (3), there is some Φ2 such that

(6) Θ; ∆ ⊧ Φ2, and

(7) Θ; ∆ ⊢ p⃗ ∶ R⃗+.

Goals follow by AT-Tick on (5) and (7)

▸ Case 31: T-Release.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ release x = e1 in e2 ∶M (I, p⃗) τ2

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ [I ∣q⃗]τ1

(3) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ ⊢ e2 ∶Mφ(I, p⃗ + q⃗) τ2

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = release x = e1 in e2

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓M (I, p⃗) τ2 ⇒ Φ′,Γ′

By IH on (2), there are e′1, Φ1, Γ′1 such that

(4) ∣e′1∣ = e1

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↑ [I ∣q⃗]τ1 ⇒ Φ1,Γ
′
1

By Theorem 8.22 on (6) there are e′′1 , Φ′
1, Γ′′1 such that

(7) ∣e′′1 ∣ = ∣e′1∣
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(8) Θ; ∆ ⊧ Φ′
1

(9) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ (Γ1,Γ2) ∖ Γ1

(10) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ↑ [I ∣q⃗]τ1 ⇒ Φ′
1,Γ

′′
1

By IH on (3), there are e′2, Φ2, Γ′2 such that

(11) ∣e′2∣ = e2

(12) Θ; ∆ ⊧ Φ2

(13) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ ⊢ e′2 ↓Mφ(I, p⃗ + q⃗) τ2 ⇒ Φ2,Γ
′
2

By Theorem 8.22 on (9) and (13), there are e′′2 , Φ′
2, Γ′′2 such that

(14) ∣e′′2 ∣ = ∣e′2∣

(15) Θ; ∆ ⊧ Φ′
2

(16) Ψ; Θ; ∆; Ω; Γ′′1 , x ∶ τ ⊢ e′′2 ↓Mφ(I, p⃗ + q⃗) τ ⇒ Φ′
2,Γ

′′
2

Goals follow by AT-Release on (10) and (16)

▸ Case 32: T-Store.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ store[I ∣p⃗](e) ∶Mφ(I, p⃗) ([I ∣p⃗] τ)

(2) Θ; ∆ ⊢ I ∶ N

(3) Θ; ∆ ⊢ p⃗ ∶ R⃗+

(4) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = store[I ∣p⃗](e)

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓Mφ(I, p⃗) ([I ∣p⃗] τ) ⇒ Φ′,Γ′

By Theorem 8.10 on (2), there is Φ1 such that

(5) Θ; ∆ ⊢ I ∶ N⇒ Φ1

(6) Θ; ∆ ⊧ Φ1

By Theorem 8.10 on (3), there is Φ2 such that

(7) Θ; ∆ ⊢ p⃗ ∶ R⃗+ ⇒ Φ2
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(8) Θ; ∆ ⊧ Φ2

By IH on (4), there are e′, Φ3, Γ′ such that

(9) ∣e′∣ = e

(10) Θ; ∆ ⊧ Φ3

(11) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↓ τ ⇒ Φ3,Γ
′

Goals follow by AT-Store on (6), (8), and (11)

▸ Case 33: T-StoreConst.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ store[I](e) ∶M (K,const(I)) ([I] τ)

(2) Θ; ∆ ⊢ I ∶ N

(3) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ .

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = store[I](e)

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓M (K,const(I)) ([I] τ)Φ′,Γ′

By Theorem 8.10, there is some Φ1 such that

(4) Θ; ∆ ⊧ Φ1

(5) Θ; ∆ ⊢ I ∶ N⇒ Φ1

By IH on (3), there are e′, Φ2, and Γ′ such that

(6) ∣e′∣ = e

(7) Θ; ∆ ⊧ Φ2

(8) Ψ; Θ; ∆ ⊢ e′ ↓ τ ⇒ Φ2,Γ
′

Goals follow immediately from AT-StoreConst on (5) and (8)

▸ Case 34: T-ReleaseConst.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ release x = e1 in e2 ∶M (I, p⃗) τ2

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ [J]τ1
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(3) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ ⊢ e2 ∶Mφ(I, p⃗ + const(J)) τ2

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = release x = e1 in e2

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓M (I, p⃗) τ2,Γ′

By IH on (2), there are e′1, Φ1, Γ′1 such that

(4) ∣e′1∣ = e1

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↑ [J]τ1 ⇒ Φ1,Γ
′
1

By Theorem 8.22 there are e′′1 , Φ′
1, Γ′′1 such that

(7) ∣e′′1 ∣ = ∣e′1∣

(8) Θ; ∆ ⊧ Φ′
1

(9) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ Γ2

(10) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ↑ [J]τ1 ⇒ Φ′
1,Γ

′′
1

By IH on (3), there are e′2, Φ2, Γ′2 such that

(11) ∣e′2∣ = e2

(12) Θ; ∆ ⊧ Φ2

(13) Ψ; Θ; ∆; Ω; Γ2, x ∶ τ ⊢ e′2 ↓M (I, p⃗ + const(J)) τ2 ⇒ Φ2,Γ
′
2

By Theorem 5.6 and Theorem 8.22 on (10) and (13), there are e′′2 , Φ′
2, Γ′′2 such that

(14) ∣e′′2 ∣ = ∣e′2∣

(15) Θ; ∆ ⊧ Φ′
2

(16) Ψ; Θ; ∆; Ω; Γ′′1 , x ∶ τ ⊢ e′′2 ↓M (I, p⃗ + const(J)) τ2 ⇒ Φ′
2,Γ

′′
2

Goals follow by AT-ReleaseConst on (10) and (16)

▸ Case 35: T-Shift.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ shift(e) ∶M (I, p⃗) τ

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶M (I − 1,⊲ p⃗) τ
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(3) Θ; ∆ ⊧ I ≥ 1

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = shift(e)

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓M (I, p⃗) τ,Γ′

By IH on (2), there are e′, Φ, Γ′ such thato

(4) ∣e′∣ = e

(5) Θ; ∆ ⊧ Φ

(6) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↓M (I − 1,⊲ p⃗) τ ⇒ Φ,Γ′

Goals follow by AT-Shift on (6)

▸ Case 36: T-CImpI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ Λ.e ∶ (Φ′ ⇒ τ)

(2) Ψ; Θ; ∆,Φ′; Ω; Γ ⊢ e ∶ τ

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = Λ.e

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ (Φ′ ⇒ τ),Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(3) ∣e′∣ = e

(4) Θ; ∆,Φ′ ⊧ Φ

(5) Ψ; Θ; ∆,Φ′; Ω; Γ ⊢ e′ ↓ τ ⇒ Φ,Γ′

Goals follow by AT-CImpI on (5)

▸ Case 37: T-CImpE.
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▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e{} ∶ τ

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ Φ′ ⇒ τ

(3) Θ; ∆ ⊧ Φ′

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = e{}

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↑ τ,Γ′

By IH on (2), there are e′, Φ, Γ′ such that

(4) ∣e′∣ = e

(5) Θ; ∆ ⊧ Φ

(6) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↑ τ ⇒ Φ,Γ′

Goals follow by AT-CImpE on (6)

▸ Case 38: T-CAndI.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢< e >∶ Φ′&τ

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

(3) Θ; ∆ ⊧ Φ′

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ =< e >

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ Φ′&τ,Γ′

By IH on (2), there are e′, Φ, Γ′ such that



A 315

(4) ∣e′∣ = e

(5) Θ; ∆ ⊧ Φ

(6) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↓ τ ⇒ Φ,Γ′.

Goals follow by AT-CAndI on (6)

▸ Case 39: T=CAndE.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ clet x = e1 in e2 ∶ τ ′

(2) Ψ; Θ; ∆; Ω; Γ1 ⊢ e1 ∶ Φ′&τ

(3) Ψ; Θ; ∆,Φ′; Ω; Γ2, x ∶ τ ⊢ e2 ∶ τ ′

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = clet x = e1 in e2

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢p e′ ↓ τ ′,Γ′

By IH on (2), there are e′1, Φ1, Γ′1 such that

(4) ∣e′1∣ = e1

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ1 ⊢ e′1 ↑ Φ′&τ ⇒ Φ1,Γ
′
1

By Theorem 8.22 on (6), there are e′′1 , Φ′
1, Γ′′1 such that

(7) ∣e′′1 ∣ = ∣e′1∣

(8) Θ; ∆ ⊧ Φ′
1

(9) Ψ; Θ; ∆ ⊢ Γ′′1 ⊑ (Γ1,Γ2) ∖ Γ1

(10) Ψ; Θ; ∆; Ω; Γ1,Γ2 ⊢ e′′1 ↑ Φ′&τ ⇒ Φ′
1,Γ

′′
1

By IH on (3), there are e′2, Φ2, Γ′2 such that

(11) ∣e′2∣ = e2

(12) Θ; ∆,Φ′ ⊧ Φ2

(13) Ψ; Θ; ∆,Φ′; Ω; Γ2, x ∶ τ ⊢ e′2 ↓ τ ′ ⇒ Φ2,Γ
′
2

By Theorem 5.6 and Theorem A.14 on (10)
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(14) Ψ; Θ; ∆,Φ′ ⊢ Γ′′1 , x ∶ τ ⊑ Γ2, x ∶ τ

So, by Theorem 8.22 on (14) and (14) there are e′′2 , Φ′
2, Γ′′2 such that

(15) ∣e′′2 ∣ = ∣e′2∣

(16) Θ; ∆,Φ′ ⊧ Φ′
2

(17) Ψ; Θ; ∆,Φ′; Ω; Γ′′1 , x ∶ τ ⊢ e′′2 ↓ τ ′ ⇒ Φ′
2,Γ

′′
2

Goals follow by AT-CAndE on (10) and (17)

▸ Case 40: T-Sub.

▸ Given:

(1) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ ′

(3) Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆.

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = e

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ,Γ′

By IH on (2), there are e′,Φ1,Γ
′ so that

(4) ∣e′∣ = e

(5) Θ; ∆ ⊧ Φ1

(6) Ψ; Θ; ∆; Ω; Γ ⊢ e′ ↑ τ ′ ⇒ Φ1,Γ
′

By Theorem 8.21 on (3), there is Φ2 such that

(7) Θ; ∆ ⊧ Φ2

(8) Ψ; Θ; ∆ ⊢ τ ′ <∶ τ ∶ ⋆ ⇒ Φ2

Goals follow by AT-Sub on (6) and (8)

▸ Case 41: T-Weaken.

▸ Given:

(1) Ψ; Θ; ∆; Ω′; Γ′ ⊢ e ∶ τ

(2) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ
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(3) Θ; ∆ ⊢ Ω′ ⊑ Ω

(4) Θ; ∆ ⊢ Γ′ ⊑ Γ

▸ There exist e′, Φ′,Γ′ such that:

▸ Goal 1:

∣e′∣ = e

▸ Goal 2:

Θ; ∆ ⊧ Φ′

▸ Goal 3:

Ψ; Θ; ∆; Ω; Γ ⊢p e′ ↓ τ,Γ′

By IH on (2), there are e′, Φ, Γ′′ so that

(5) ∣e′∣ = e

(6) Θ; ∆ ⊧ Φ

(7) Ψ; Θ; ∆; Ω; Γ ⊢ e ∶ τ ⇒ Φ,Γ′′

Goals follow by Theorem 8.22 on (7)

�
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Theorem 2.1 (Admissible structural rules).

● Resource Weakening: Write g ≥ f for the coefficient-wise partial order on resource

terms (a1x1 + a2x2 + . . . + ` ≥ b1x1 + b2x2 + . . . + `′ iff ai ≥ bi for all i and ` ≥ `′). Then

if Γ ⊢f M ∶ A and g ≥ f then Γ ⊢g M ∶ A.

● Variable Weakening: If Γ ⊢f M ∶ A and y does not occur in Γ, then Γ, y ∶ B ⊢f+0y M ∶

A.

● Substitution: If Γ ⊢f M ∶ A and Γ, x ∶ A ⊢g N ∶ B, then Γ ⊢g[f/x] N[M/x] ∶ B

Proof. All follow by straightforward induction on judgments. �

Theorem 2.2 (Fusion Laws).

(1) !k1k2`1+k1⋅`2A ⊣⊢ !k1`1 !k2`2A

(2) !k`1+`2(A⊗B) ⊣⊢ !k`1A⊗!k`1B

(3) !k` (A⊕B) ⊣⊢ !k`A⊕!k`B

Proof. We present terms going in both directions for each caes.

(1) x ∶!k1k2`1+k1`2 ⊢x transfer1 !k1k2`1+k1`2 y = x to savek1`1 (savek2`2 y) ∶!
k1
`1

!k2`2A and x ∶!k1`1 !k2`2A ⊢x

transfer1 !k1`1 y = x to transferk1 !k2`2 z = y to save
k1k2
`1+k1`2 z ∶!

k1k2
`1+k1`2

(2) x ∶!k`1+`2(A ⊗B) ⊢x transfer1 !k`1+`2 y = x to splitk′(y, z1.z2.(savek`1 z1,save
k
`2
z2)) ∶

!k`1A⊗!k`1B and x ∶!k`1A⊗!k`2B ⊢x split1(x, z1.z2.transfer1 !k`1 y1 = z1 to transfer1 !k`2 y2 =

z2 to save
k
`1+`2 (y1, y2)) ∶!k`1+`2(A⊗B).

(3) x ∶!k` (A⊕B) ⊢x transfer1 !k` y = x to casek (y, z1.inl (savek` z1) , z2.inr (savek` z2)) ∶

!k`A⊕!k`B and x ∶!k`A⊕!k`B ⊢x case1 (x, z1.transfer1 !k` y = z1 to save
k
` (inl y) , z2.transfer1 !k` y =

z2 to save
k
` (inr y)) ∶!k` (A⊕B)

�

Theorem 2.3 (Preservation Bound). If ⋅ ⊢a M ∶ A and M ↓(n,r) v, then a + r ≥ 0 and

⋅ ⊢a+r v ∶ A.

Proof. By induction on M ↓ v.

● (Values): Suppose ⋅ ⊢a v ∶ A and v ↓(0,0) v. Then, a + 0 ≥ 0 (because a ≥ 0), and

⋅ ⊢a+0=a v ∶ A.
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● (Tick): Immediate by IH.

● (!-I): Suppose ⋅ ⊢b savekl M ∶!kl A, and savekl M ↓( ,kr) savekl v. We must show that

b + kr ≥ 0 and that ⋅ ⊢b+kr savekl v ∶!kl A. Inverting the rules, we have that ⋅ ⊢a M ∶ A

with ka + l ≤ b, and that M ↓(n,r) v. By IH, ⋅ ⊢a+r v ∶ A with a + r ≥ 0. Since k, l ≥ 0,

0 ≤ k(a + r) + l = ka + l + kr, which, since ka + l ≤ b, is less than or equal to b + kr. So,

b + kr ≥ 0 and ⋅ ⊢b+kr savekl v ∶!kl A, as required.

● (!-E): For this case, suppose ⋅ ⊢k′a+b transferk′ !kl x =M to N ∶ C, and transferk′ !
k
l x =

M to N ↓( ,k′r1+r2) v. We want to show that: k′a+b+k′r1+r2 ≥ 0 and ⋅ ⊢k′a+b+k′r1+r2 v ∶

C. By inversion, ⋅ ⊢a M ∶!kl A, and x ∶ A ⊢b+k′(kx+l) N ∶ C, as well as M ↓( ,r1) savekl v1

and N[v1/x] ↓( ,r2) v. By IH, we know that ⋅ ⊢a+r1 savekl v1 ∶!kl A and a + r1 ≥ 0, so by

inversion, there is a d such that kd+ l ≤ a+r1, and ⋅ ⊢d v1 ∶ A, and so substitution gives

that ⋅ ⊢b+k′(kd+l) N[v1/x] ∶ C. But kd + l ≤ a + r1, so by structural weakening we have

⋅ ⊢b+k′a+k′r1 N[v1/x] ∶ C. Again by IH, ⋅ ⊢b+r2+k′a+k′r1 v ∶ C and b + r2 + k′a + k′r1 ≥ 0,

as required.

● (create): Suppose ⋅ ⊢a createl M ∶ A and createl M ↓(n,r+l) v. Inverting, we have

⋅ ⊢a+l M ∶ A, and M ↓(n,r) v. By IH, we have that a + l + r ≥ 0, and ⋅ ⊢a+r+l v. But, we

wanted to show that a + r + l ≥ 0 and that ⋅ ⊢a+r+l v ∶ A, and so we are done.

● (spend): Suppose ⋅ ⊢a+l spendl M ∶ A, and spendl M ↓( ,r−l) v. We want to show that

a + l + r − l = a + r ≥ 0, and that ⋅ ⊢a+l+r−l=a+r v Inverting, we have that ⋅ ⊢a M ∶ A and

M ↓(n,r) v. By IH, a + r ≥ 0 and ⋅ ⊢a+r v ∶ A, as required.

● (⊗-I): For this case, let ⋅ ⊢a+b (M,N) ∶ A⊗B, and (M,N) ↓( ,k1+k2) (v1, v2). We must

show that a + b + k1 + k2 ≥ 0, and that ⋅ ⊢a+b+k1+k2 (v1, v2) Inverting, we get the four

premises ⋅ ⊢a M ∶ A, ⋅ ⊢b N ∶ B, and M ↓( ,k1) v1 and N ↓( ,k2) v2. Using the IH on

these two pairs, we get that a + k1 ≥ 0, b + k2 ≥ 0, ⋅ ⊢a+k1 v1 ∶ A, and ⋅ ⊢b+k2 v2 ∶ B.

Adding the two inequalities and applying ⊗-I to the judgments gives the desired result.

● (⊕-E): Suppose ⋅ ⊢a+b1+b2 casek′ (M, x.N1 , y.N2) ∶ C and casek′ (M, x.N1 , y.N2) ↓( ,k′r1+r2)

v. Inverting the typing judgment, ⋅ ⊢a M ∶ A ⊕ B, x ∶ A ⊢b1+k′x N1 ∶ C and

y ∶ B ⊢b2+k′ N2 ∶ C. Inverting the evaluation judgment gives two symmetric cases,

so suppose that M ↓( ,r1) inl v1 and N1[v1/x] ↓( ,r2) v. By IH, ⋅ ⊢a+r1 inl v1 ∶ A⊕B

and a + r1 ≥ 0. So, ⋅ ⊢a+r1 v1 ∶ A. By substitution, ⋅ ⊢b1+k′(a+r1) N1[v1/x] ∶ C. By IH,
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⋅ ⊢k′a+b1+k′r1+r2 v ∶ C and k′a+ b1 + k′r1 + r2 ≥ 0. Since b2 ≥ 0, by structural weakening,

⋅ ⊢k′a+b1+b2+k′r1+r2 v ∶ C and k′a + b1 + b2 + k′r1 + r2 ≥ 0, as required.

● (⊸-E): Let ⋅ ⊢a+b MN ∶ B, and MN ↓( ,k1+k2+k3) v. We want to show that a +

b + k1 + k2 + k3 ≥ 0, and that ⋅ ⊢a+b+k1+k2+k3 v ∶ B. We invert both judgments to

get ⋅ ⊢a M ∶ A ⊸ B, and ⋅ ⊢b N ∶ A, and M ↓( ,k1) λx.M ′, and N ↓( ,k2) v1, and

that M ′[v1/x] ↓( ,k3) v. Applying the IH to the first evaluation, we have that ⋅ ⊢a+k1

λx.M ′ ∶ A⊸ B. Inverting the proof of that judgment, we get that x ∶ A ⊢a+k1+x M ′ ∶ B.

By IH again, ⋅ ⊢b+k2 v1 ∶ A, and by substitution, ⋅ ⊢a+b+k1+k2 M ′[v1/x]. By IH once

more, a + b + k1 + k2 + k3 ≥ 0, and ⋅ ⊢a+b+k1+k2+k3 v ∶ B, as required.

● (N-E) Suppose ⋅ ⊢a+b1+b2 nrec (M,N1,N2) ∶ C. By inversion, ⋅ ⊢a M ∶ N, ⋅ ⊢b1 N1 ∶ 1⊸

C, and ⋅ ⊢b2 N2 ∶!∞0 (N⊗ (1⊸ C) ⊸ C). We have two evaluation cases to consider.

– Suppose nrec (M,N1,N2) ↓( ,r1+r2+r3+r3) v by way of M ↓( ,r1) 0 ∶ N, N1 ↓( ,r2)

λx.N ′
1, N2 ↓( ,r3) , and N ′

1[()/x] ↓( ,r4) v. Then, by IH, we have the following:

∗ ⋅ ⊢a+r1 0 ∶ N, and a + r1 ≥ 0

∗ ⋅ ⊢b1+r2 λx.N ′
1 ∶ 1⊸ C, b1 + r2 ≥ 0.

∗ b2 + r3 ≥ 0

Since ⋅ ⊢0 () ∶ 1, ⋅ ⊢b1+r1 N ′
1[()/x] ∶ C. By IH, ⋅ ⊢b1+r2+r4 v ∶ C. By structural

weakening, ⋅ ⊢a+b1+b2+r1+r2+r3+r4 v ∶ C, as required.

– Suppose nrec (M,N1,N2) ↓( ,r1+r2+r3+r3) v by way ofM ↓( ,r1) S(v1) ∶ N, N1 ↓( ,r2)

λx.N ′
1, N2 ↓( ,r3) save∞0 (λx.N ′

2), andN ′
2[(v1, λz.nrec (v1, λx.N

′
1,save

∞
0 (λx.N ′

2)))/x] ↓( ,r4)

v. Then, by IH we have:

∗ ⋅ ⊢a+r1 S(v1) ∶ N, a + r1 ≥ 0

∗ ⋅ ⊢b1+r2 λx.N ′
1 ∶ 1⊸ C, b1 + r2 ≥ 0

∗ ⋅ ⊢b2+r3 save∞0 (λx.N ′
2) ∶!∞0 (N⊗ (1⊸ C) ⊸ C), and b2 + r3 ≥ 0.

By N-strengthening, ⋅ ⊢0 S(v1) ∶ N, and so ⋅ ⊢0 v1 ∶ N. Since ⋅ ⊢b2+r3 save∞0 (λx.N ′
2) ∶

!∞0 (N ⊗ (1 ⊸ C) ⊸ C), there is a c ≥ 0 so that ∞ ⋅ c ≤ b2 + r3 with ⋅ ⊢c λx.N ′
2 ∶

N⊗(1⊸ C) ⊸ C. Then, ⋅ ⊢b1+r3+∞⋅c nrec (v1, λx.N
′
1,save

∞
0 (λx.N ′

2)) ∶ C, and so

⋅ ⊢a+b1+r1+r2+∞⋅c (v1, λz.nrec (v1, λx.N
′
1,save

∞
0 (λx.N ′

2))) ∶ N ⊗ (1 ⊸ C). Thus,

since x ∶ N⊗ (1⊸ C) ⊢x+c N ′
2 ∶ C,

⋅ ⊢a+b1+r1+r2+∞⋅c N
′
2[(v1, λz.nrec (v1, λx.N

′
1,save

∞
0 (λx.N ′

2)))/x] ∶ C
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since ∞⋅c+c = ∞⋅c. So, by IH, ⋅ ⊢a+b1+r1+r2+∞⋅c+r4 v ∶ C, and because ∞⋅c ≤ b2+r3,

we have by weakening that ⋅ ⊢a+b1+b2+r1+r2+r3+r4 v ∶ C as required.

● ([A]-E) Suppose ⋅ ⊢a+b1+b2 lrec (M,N1,N2) ∶ C. Then, ⋅ ⊢a M ∶ A, ⋅ ⊢b1 N1 ∶ 1 → C,

and ⋅ ⊢b2 ∶ N2 ∶!∞0 (A⊗ ([A]&C) ⊸ C). We have two evaluation cases to consider.

Firstly, suppose lrec (M,N1,N2) ↓( ,r1+r2+r3+r4) v by way ofM ↓( ,r1) v, N1 ↓( ,r2)

λx.N ′
1, N2 ↓( ,r3) v′, and N ′

1[()/x] ↓( ,r4) v. Then, by IH, a + r1 ≥ 0, which means

that ⋅ ⊢a+r1 () ∶ 1. By IH, ⋅ ⊢b1+r2 λx.N ′
1 and b1 + r2 ≥ 0. So, by inversion and

then substitution, ⋅ ⊢a+b1+r1+r2 N ′
1[()/x] ∶ C. By IH, b2 + r3 ≥ 0, so by weakening,

⋅ ⊢a+b1+b2+r1+r2+r3 N ′
1[()/x]. Finally, by IH, a + b1 + b2 + r1 + r2 + r3 + r4 ≥ 0 and

⋅ ⊢a+b1+b2+r1+r2+r3+r4 v ∶ C.

Now, suppose lrec (M,N1,N2) ↓( ,r1+r2+r3+r4) v by way of

M ↓( ,r1) v1 ∶∶ v2, N1 ↓( ,r2) λx.N ′
1, N2 ↓( ,r3) save∞0 (λx.N ′

2), and

N ′
2[(v1, ⟨v2,lrec (v2, λx.N

′
1,save

∞
0 (λx.N ′

2))⟩)/x] ↓( ,r4) v. By IH, ⋅ ⊢a+r1 v1 ∶∶

v2 ∶ [A] and a + r1 ≥ 0. By inversion, there are d1, d2 ≥ 0 so that a + r1 = d1 + d2

and ⋅ ⊢d1 v1 ∶ A and ⋅ ⊢d2 v2 ∶ [A]. By two more applications of the IH,

⋅ ⊢b1+r2 λx.N ′
1 ∶ 1 ⊸ C, ⋅ ⊢b2+r3 save∞0 (λx.N ′

2) ∶!∞0 (A ⊗ ([A]&C) ⊸ C), with

b1 + r2 ≥ 0 and b2 + r3 ≥ 0. By inversion, there is some c ≥ 0 with ∞ ⋅ c ≤ b2 + r3 such

that ⋅ ⊢c λx.N ′
2 ∶ A⊗ ([A]&C) ⊸ C. Next,

⋅ ⊢d2 v2 ∶ [A] ⋅ ⊢b1+r2 λx.N ′
1 ∶ 1⊸ C ⋅ ⊢∞⋅c save

∞
0 (λx.N ′

2) ∶!∞0 (A⊗ ([A]&C) ⊸ C)
⋅ ⊢d2+b1+r2+∞⋅c lrec (v2, λx.N

′
1,save

∞
0 (λx.N ′

2)) ∶ C

then, with ⋅ ⊢d2+b1+r2+∞⋅c v2 ∶ [A], we have that

⋅ ⊢d2+b1+r2+∞⋅c ⟨v2,lrec (v2, λx.N
′
1,save

∞
0 (λx.N ′

2))⟩ ∶ [A]&C

and since ⋅ ⊢d1 v1 ∶ A,

⋅ ⊢a+r1+b1+r2+∞⋅c (v1, ⟨v2,lrec (v2, λx.N
′
1,save

∞
0 (λx.N ′

2))⟩) ∶ A⊗ ([A]&C)

and so by substitution, and using the fact that c + ∞ ⋅ c = ∞ ⋅ c, ⋅ ⊢a+b1+r1+r2+∞⋅c

N ′
2[(v1, ⟨v2,lrec (v2, λx.N

′
1,save

∞
0 (λx.N ′

2))⟩)/x] ∶ C. By weakening, since ∞⋅ c ≤ b2 +

r3, ⋅ ⊢a+b1+b2+r1+r2+r3 N ′
2[(v1, ⟨v2,lrec (v2, λx.N

′
1,save

∞
0 (λx.N ′

2))⟩)/x] ∶ C. Finally,

by IH, ⋅ ⊢a+b1+b2+r1+r2+r3+r4 v ∶ C, and a + b1 + b2 + r1 + r2 + r3 + r4 ≥ 0, as required.

● (&-I): Immediate.
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● (&-E): By symmetry, it suffices to only consider the π1 case. Let ⋅ ⊢a π1M ∶ A and

π1M ↓( ,r1+r2) v. By inversion, we have that ⋅ ⊢a M ∶ A&B, and that M ↓( ,r1)

⟨N1,N2⟩ and N1 ↓( ,r2). We must show that ⋅ ⊢a+r1+r2 v ∶ A, and that a + r1 + r2 ≥ 0.

By IH, ⋅ ⊢a+r1 ⟨N1,N2⟩ ∶ A&B. Inverting this, we get that ⋅ ⊢a+r1 N1 ∶ A, and so again

by IH, ⋅a+r1+r2v ∶ A, and a + r1 + r2 ≥ 0, as required.

�

Theorem 2.4. If v is a value, and v ↓(n,r) v, then n = r = 0.

Proof. By inspection of cases. �

Theorem 2.5 (Resource strengthening for N). If ⋅ ⊢a v ∶ N, then ⋅ ⊢0 v ∶ N

Proof. By canonical forms, v = n, proceed by induction on n. �

Theorem 3.1 (Extraction Preserves Types). If Γ ⊢a M ∶ A then ⟪Γ⟫ ⊢ ∥M∥ ∶ ∥A∥

Proof. By induction on Γ ⊢f M ∶ A �

Theorem 3.3 (Weakening).

(1) If M ⊑A,a E, and E ≤∥A∥ E
′, then M ⊑A,a E′

(2) If v ⊑A,aval E, and E ≤⟪A⟫ E
′, then v ⊑A,aval E

′

Proof. We prove 1 and 2 simultaneously by induction on A.

(1) Suppose M ⊑A,a E, and E ≤C×⟪A⟫ E
′. We need to show that M ⊑A,a E′. Suppose

M ↓(n,r) v. We need to show:

● n ≤ E′
c − r

● v ⊑A,a+rval E′
p

But, since M ⊑A,a E

● n ≤ Ec − r

● v ⊑A,a+rval Ep

so, it suffices to show that Ec ≤C E′
c and Ep ≤⟪A⟫ E

′
p, which is true by the π1(−) and

π2(−) congruences, recalling that (−)c and (−)p are simply π1 and π2.

(2) Let E ≤⟪A⟫ E
′. We have a few cases to consider.
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(!) Suppose savekl v ⊑
!kl A,a
val E. We must show that savekl v ⊑

!kl A,a
val E′. We know that

there is a d ≥ 0 such that ka+ l ≤ d, and v ⊑A,dval E. So, by IH, v ⊑A,dval E
′, and hence

savekl v ⊑
!kl A,a
val E′, as required.

(⊸) Suppose λx.M ⊑A⊸B,aval E. We need to show that λx.M ⊑A⊸B,aval E′. Let v ⊑A,bval

Ev. Then, M[v/x] ⊑B,a+b E Ev. Using the application congruence and 1,

M[v/x] ⊑B,a+b E′ Ev. Since v, b,Ev were chosen arbitrarily, λx.M ⊑A⊸B,aval E′

as required.

(⊗) Suppose (v1, v2) ⊑A1⊗A2,a
val E. Then, there are a1, a2 such that a1 + a2 = a, and

vi ⊑Ai,ai
val πiE, and so by πi-congruence and the IH, vi ⊑Ai,ai

val πiE
′, so (v1, v2) ⊑A1⊗A2,a

val

E′, as required.

([A]) Both cases are immediate by transitivity.

(N) Both cases are immediate by transitivity.

(⊕) Both cases are immediate by transitivity.

(A&B) Suppose ⟨M1,M2⟩ ⊑A1&A2,a
val E. Then, for i ∈ {1,2}, Mi ⊑Ai,a πiE. By πi-

congruence, πiE ≤∥A∥ πiE
′, and so by IH from 1, we know that Mi ⊑Ai,a πiE

′,

and are done.

�

Theorem 3.4 (Credit Weakening). If a1 ≤ a2, then:

(1) If M ⊑A,a1 E, then M ⊑A,a2 E

(2) If v ⊑A,a1val E, then v ⊑A,a2val E

Proof. We prove the two claims simultaneously.

(1) Suppose M ⊑A,a1 E. To show M ⊑A,a2 E, suppose M ↓(n,r) v. We must show that

such that

● n ≤ Ec − r

● v ⊑A,a2+rval Ep

But, since M ⊑A,a1 E, we have

● n ≤ Ec − r

● v ⊑A,a1+rval Ep

Since a1 ≤ a2, a1 + r ≤ a2 + r, so we are done by (2).
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(2) By lexicographic induction on first A and then the size of v.

(!) Let savekl v ⊑
!kl A,a1
val E. Then, there is a d ≥ 0 such that kd + l ≤ a1 and v ⊑A,dval E.

But kd + l ≤ a1 ≤ a2, and so savekl v ⊑
!kl A,a2
val E

(⊸) Let λx.M ⊑A⊸B,a1val E. Suppose v ⊑A,bval E
′. Then, M[v/x] ⊑B,a1+b E E′, and so by

(1), M[v/x] ⊑B,a2+b E E′. Since v was chosen arbitrarily, λx.M ⊑A⊸B,a2val E, as

required.

(⊗) Let (v1, v2) ⊑A1⊗A2,a1
val E. Then, there are b1, b2 with b1 + b2 such that b1 + b2 = a1,

and vi ⊑Ai,a1
val πiE for i ∈ {1,2}. By the IH on v1, we have that v1 ⊑A1,b1+a2−a1

val π1E,

and so (v1, v2) ⊑A1⊗A2,a2
val E, as required.

([A]) The empty case is immediate. Suppose v1 ∶∶ v2 ⊑[A],a1
val E. Then, there are

E1,E2, b1, b2 such that b1 + b2 = a1, E1 ∶∶ E2 ≤ E, v1 ⊑A,b1val E1, and v1 ⊑[A],b2
val E2.

By IH, v1 ⊑A,b1+a2−a1val E1, and so v1 ∶∶ v2 ⊑[A],a2
val E.

(N) The zero case is immediate. Suppose S(v) ⊑N,a1val E. Then, there is E′ such that

S(E′) ≤ E, and v ⊑N,a1val E′. Since v is a smaller term than S(v), we can apply the

IH to see that v ⊑N,a2val E′, and so S(v) ⊑N,a2val E, as desired.

(⊕) The two cases are symmetric, so we present only one. Suppose inl v ⊑A⊕B,a1val E.

Then we have E′ such that inlE′ ≤ E, and v ⊑A,a1val E′, which, by IH, means that

v ⊑A,a2val E′, and so inl v ⊑A⊕B,a2val E.

(A&B) Immediate by IH.

�

Theorem 3.5 (N-Recursor). If λx.N ′
1 ⊑

1⊸C,c3
val E1, λx.N ′

2 ⊑
N⊗(1⊸C)⊸C,d
val E2 with d ≥ 0, then

∀n ≥ 0, if n ⊑N,0val E, then nrec (n,λx.N ′
1,save

∞
0 (λx.N ′

2)) ⊑C,c3+∞⋅d nrec (E,E1, λp.E2 (π1p, λz.π2p))

Proof. Proceed by induction on n.

For notational simplicity, let E∗
2 = λp.E2(π1p, (λz.π2p))

● (n = 0): To show nrec (0, λx.N ′
1,save

∞
0 (λx.N ′

2)) ⊑C,c3+∞⋅d nrec (E,E1,E
∗
2 ), suppose

that nrec (0, λx.N ′
1,save

∞
0 (λx.N ′

2)) ↓(n,r) v by way of N ′
1[()/x] ↓(n,r).

We must show that :

– n ≤ nrec (E,E1,E
∗
2 )c − r

– v ⊑C,c3+∞⋅d
val nrec (E,E1,E

∗
2 )p
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We know N1[()/x] ⊑C,c3 E1 (), since () ⊑1,0
val (), and so:

– n ≤ (E1 ())c − r

– v ⊑C,c3val (E1 ())p

Since 0 ⊑N,0val E, 0 ≤N E, and so E1 () ≤ nrec (0,E1,E
∗
2 ) ≤ nrec (E,E1,E

∗
2 ).

● (n > 0): Suppose that nrec (S(n), λx.N ′
1,save

∞
0 (λx.N ′

2)) ↓(n
′,r) v by way of

N ′
2[(n,λz.nrec (n,λx.N ′

1,save
∞
0 (λx.N ′

2)))] ↓(n
′,r) v.

We must show that:

– n′ ≤ nrec (E,E1,E
∗
2 )c − r;

– v ⊑C,c3+∞⋅d+r
val nrec (E,E1,E

∗
2 )p.

Since S(n) ⊑N,0val E, there is an E′ so that S(E′) ≤N E, and n ⊑N,0val

E′. For notational convenience, let E∗ = (E′,nrec (E′,E1,E
∗
2 )).

Note that E′ ≤ π1E
∗, and that nrec (E′,E1,E

∗
2 ) ≤ π2E

∗. By IH,

nrec (n,λx.N ′
1,save

∞
0 (λx.N ′

2)) ⊑C,c3+∞⋅d nrec (E′,E1,E
∗
2 ), and thus by weak-

ening nrec (n,λx.N ′
1,save

∞
0 (λx.N ′

2)) ⊑C,c3+∞⋅d π2E
∗. For some variable z not free in

the term on the left, λz.nrec (n,λx.N ′
1,save

∞
0 (λx.N ′

2)) ⊑
1⊸C,c3+∞⋅d
val λz.π2E

∗, and so

(n,λz.nrec (n,λx.N ′
1,save

∞
0 (λx.N ′

2))) ⊑N⊗(1⊸C),c3+∞⋅d
val (π1E

∗, λz.π2E
∗s), and since

λx.N ′
2 ⊑

N×(1⊸C)⊸C,d
val E2, using the fact that ∞ ⋅ d + d = ∞ ⋅ d

N ′
2[(n,λz.nrec (n,λx.N ′

1,save
∞
0 (λx.N ′

2)))/x] ⊑C,c3+∞⋅d E2 (π1E
∗, λz.π2E

∗)

but,

E2 (π1E
∗, λz.π2E

∗) ≤ (λp.E2 (π1p, λz.π2p))E∗

= E∗
2 (E′,nrec (E′,E1,E

∗
2 ))

≤ nrec (S(E′),E1,E
∗
2 )

≤ nrec (E,E1,E
∗
2 )

and so we are done by weakening.

�

Theorem 3.6 ([A]-Recursor). If λx.N ′
1 ⊑1⊸C,c1

val E1 and λx.N ′
2 ⊑A⊗([A]&C)⊸C,c2

val E2, then

for all values ⋅ ⊢d v ∶ [A] such that v ⊑[A],d
val E, we have that

lrec (v, λx.N ′
1,save

∞
0 (λx.N ′

2)) ⊑C,c1+d+∞⋅c2 lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x)))



B 327

Proof. We proceed by induction on the derivation of ⋅ ⊢d v ∶ [A]. First, suppose v = []. To

show that lrec ([], λx.N ′
1,save

∞
0 (λx.N ′

2)) ⊑C,c1+d+∞⋅c2 lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x))),

assume that lrec ([], λx.N ′
1,save

∞
0 (λx.N ′

2)) ↓(n,r) v. By inversion, it was by way ofN ′
1[()/x] ↓(n,r)

v. It suffices to show

● n ≤ lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x)))c − r

● v ⊑C,c1+d+∞⋅c2+r
val lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x)))p

Since () ≤1 (), () ⊑1,d
val (), so N ′

1[()/x] ⊑C,c1+d E1 (), and so

● n ≤ (E1 ())c − r

● v ⊑C,c1+d+rval (E1 ())p

But, ∞⋅ c2 > 0 since c2 > 0, and so by credit weakening, v ⊑C,c1+d+∞⋅c2+r
val (E1 ())p. Note that, by

assumption, [] ⊑1,d
val E, which means that [] ≤[⟪A⟫] E. So,

E1 () ≤ lrec ([],E1, λx.E2(π1x, ((0, π1π2x), π2π2x))) ≤ lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x)))

and so we are done by weakening.

Otherwise, suppose v = v1 ∶∶ v2. To show that lrec (v1 ∶∶ v2, λx.N
′
1,save

∞
0 (λx.N ′

2)) ⊑C,c1+d+∞⋅c2

lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x))), suppose lrec (v1 ∶∶ v2, λx.N
′
1,save

∞
0 (λx.N ′

2)) ↓(n,r)

v. By inversion, it was by N ′
2[(v1, ⟨v2,lrec (v2, λx.N

′
1,save

∞
0 (λx.N ′

2))⟩)/x] ↓(n,r) v. It suffices

to show:

● n ≤ lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x)))c − r

● v ⊑C,c1+d+∞⋅c2+r
val lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x)))p

Since v1 ∶∶ v2 ⊑[A],d
val E, there are d1, d2 ≥ 0 such that d1 +d2 = d, along with E′,E′′ such that

v1 ⊑A,d1val E′ and v2 ⊑[A],d2
val E′′, and E′ ∶∶ E′′ ≤ E

By IH, lrec (v2, λx.N
′
1,save

∞
0 (λx.N ′

2)) ⊑C,c1+d2+∞⋅c2 lrec (E′′,E1, . . .). Since v2 ⊑[A],d2
val

E′′, v2 ⊑[A],d2 (0,E′′), and since c1+∞⋅c2 ≥ 0, we have by credit weakening that v2 ⊑[A],c1+d2+∞⋅c2

(0,E′′). So, ⟨v2,lrec (v2, λx.N
′
1,save

∞
0 (λx.N ′

2))⟩ ⊑
[A]&C,c1+d2+∞⋅c2
val ((0,E′′),lrec (E′′,E1, . . .)).

Further, using the fact that d1 + d2 = d,

(v1, ⟨v2,lrec (v2, λx.N
′
1,save

∞
0 (λx.N ′

2))⟩) ⊑
A⊗([A]&C),c1+d+∞⋅c2
val

(E′, ((0,E′′),lrec (E′′,E1, . . .)))
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Thus, since λx.N ′
2 ⊑

A⊗([A]&C)⊸C,c2
val E2, we have (using the fact that c2 +∞ ⋅ c2 = ∞ ⋅ c2)

N ′
2[(v1, ⟨v2,lrec (v2, λx.N

′
1,save

∞
0 (λx.N ′

2))⟩)/x] ⊑C,c1+d+∞⋅c2 E2 (E′, ((0,E′′),lrec (E′′,E1, . . .)))

By definition, this means that

● n ≤ (E2 (E′, ((0,E′′),lrec (E′′,E1, . . .))))c − r

● v ⊑c1+d+∞⋅c2+r
val (E2 (E′, ((0,E′′),lrec (E′′,E1, . . .))))p

We then compute:

E2 (E′, ((0,E′′),lrec (E′′,E1, . . .)))

≤ (λx.E2(π1x, ((0, π1π2x), π2π2x))) (E′, (E′′,lrec (E′′,E1, λx.E2(π1x, ((0, π1π2x), π2π2x)))))

≤ lrec (E′ ∶∶ E′′,E1, λx.E2(π1x, ((0, π1π2x), π2π2x))s)

≤ lrec (E,E1, λx.E2(π1x, ((0, π1π2x), π2π2x)))

and hence we are done by weakening. �

Theorem 3.7 (Bounding Theorem). If Γ ⊢f M ∶ A, then M ⊑A ∥M∥

Proof. By induction on Γ ⊢f M ∶ A.

(!-I) Let Γ ⊢g savekl M ∶!kl A. By inversion, we have Γ ⊢f M ∶ A with kf + l ≤ g.

Let θ ⊑Γ,σ
sub Θ. To show savekl M[θ] ⊑!kl A,g[σ] (k ∥M∥ [Θ]c, ∥M∥ [Θ]p), it suffices to

show savekl M[θ] ⊑!kl A,kf[σ]+l (k ∥M∥ [Θ]c, ∥M∥ [Θ]p) by credit weakening. So, let

savekl M ↓(n,kr) savekl v by way of M ↓(n,r) v. It suffices to show, using the fact that

kf[σ] + l + kr = k(f[σ] + r) + l

– n ≤ k ∥M∥ [Θ]c − kr

– savekl v ⊑
!kl A,k(f[σ]+r)+l
val ∥M∥ [Θ]p

To show savekl v ⊑!kl A,k(f[σ]+r)+l
val ∥M∥ [Θ]p, it suffices to provide d ≥ 0 such that

kd + l ≤ k(f[σ] + r) + l, and v ⊑A,dval ∥M∥ [Θ]p. By IH, M[θ] ⊑A,f[σ] ∥M∥ [Θ], which

means that

– n ≤ ∥M∥ [Θ]c − r

– v ⊑A,f[σ]+rval ∥M∥ [Θ]p

So, d = f[σ]+ r, and the inequality n ≤ kn ≤ k ∥M∥ [Θ]c −kr follows by multiplying the

above one by k (since k ≥ 1).
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(!-E) Let Γ ⊢k′f+g transferk′ !
k
l x = M to N ∶ C. By inversion, we have that Γ ⊢f M ∶

!kl A, as well as Γ, x ∶ A ⊢g+k′(kx+l) N ∶ C. Suppose θ ⊑Γ,σ
sub Θ. We need to show

that transferk′ !
k
l x = M[θ] to N[θ] ⊑C,k

′f[σ]+g[σ] ∥M∥ [Θ]c +c ∥N∥ [Θ, ∥M∥ [Θ]p/x].

Suppose transferk′ !
k
l x = M[θ] to N[θ] ↓(n1+n2,k

′r1+r2) v. By inversion, it was by

M[θ] ↓(n1,r1) savekl v1 and N[θ, v1/x] ↓(n2,r2) v. It suffices to show that

– n1 + n2 ≤ k′ ∥M∥ [Θ]c + ∥N∥ [Θ, ∥M∥ [Θ]p/x]c − (k′r1 + r2)

– v ⊑C,k
′f[σ]+g[σ]+k′r1+r2

val ∥N∥ [Θ, ∥M∥ [Θ]p/x]p

By IH, we have that M[θ] ⊑!kl A,f[σ] ∥M∥ [Θ], which means that there are b1, c1 with

b1 + c1 = f[σ] and

– n1 ≤ ∥M∥ [Θ]c − r1

– savekl v1 ⊑
!kl A,f[σ]+r1
val ∥M∥ [Θ]p

Since savekl v1 ⊑!kl A,f[σ]+r1
val ∥M∥ [Θ]p, there is a d ≥ 0 such that kd + l ≤ f[σ] + r1,

and v1 ⊑A,dval ∥M∥ [Θ]p. Thus, (θ, v1/x) ⊑(Γ,x∶A),(σ,x↦d)
sub (Θ, ∥M∥ [Θ]p/x), and so by IH,

N[θ, v1/x] ⊑C,g[σ]+k
′(kd+l) ∥N∥ [Θ, ∥M∥ [Θ]p/x]. By credit weakening, since kd + l ≤

f[σ] + r1, N[θ, v1/x] ⊑C,g[σ]+k
′(f[σ]+r1) ∥N∥ [Θ, ∥M∥ [Θ]p/x]. This gives us that

– n2 ≤ ∥N∥ [Θ, ∥M∥ [Θ]p/x]c − r2

– v ⊑C,g[σ]+k
′(f[σ]+r1)+r2

val ∥N∥ [Θ, ∥M∥ [Θ]p/x]p

To establish the desired inequality, we multiply the first inequality by k′, to find that

k′n1 ≤ k′ ∥M∥ [Θ]c −k′r1. But k′ ≥ 1, so n1 ≤ k′n1 ≤ k′ ∥M∥ [Θ]c −k′r1. Therefore, n1 +

n2 ≤ k′ ∥M∥ [Θ]c + ∥N∥ [Θ, ∥M∥ [Θ]p/x]c − (k′r1 + r2) as required. For value bounding,

we note that g[σ] + k′(f[σ] + r1) + r2 = k′f[σ] + g[σ] + k′r1 + r2, and are done.

(spend) Let Γ ⊢f+l spendl M ∶ A. By inversion, Γ ⊢f M ∶ A. To show spendl M ⊑A (−l) +c

∥M∥, suppose θ ⊑Γ,σ
sub Θ. To show spendl M[θ] ⊑A,f[σ]+l (−l) +c ∥M∥ [Θ], suppose

spendl M[θ] ↓(n,r−l) v. By inversion we also have that M[θ] ↓(n,r) v. It suffices to

show

– n ≤ −l + ∥M∥ [Θ]c − (r − l)

– v ⊑A,f[σ]+l+r−lval ∥M∥ [Θ]p

or, canceling, it suffices to show n ≤ ∥M∥ [Θ]c − r and v ⊑A,f[σ]+rval ∥M∥ [Θ]p, which is

precisely what we get from the IH.
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(create) Let Γ ⊢f createl M ∶ A. By inversion, Γ ⊢f+l M ∶ A. To show createl M ⊑A

l +c ∥M∥, suppose θ ⊑Γ,σ
sub Θ, to show createl M[θ] ⊑A,f[σ] l +c ∥M∥ [Θ], suppose

createl M[θ] ↓(n,r+l) v. By inversion, M[θ] ↓(n,r) v. It suffices to show

– n ≤ l + ∥M∥ [θ]c − (r + l)

– v ⊑f[σ]+r+lval

By IH, we have that M[θ] ⊑A,f[σ]+l ∥M∥ [Θ], so

– n ≤ ∥M∥ [Θ]c − r

– v ⊑A,f[σ]+l+rval

and so we are done, canceling the ls in the first inequality.

(tick) Immediate from IH, canceling 1s.

(⊸-I) Let Γ ⊢f λx.M ∶ A ⊸ B. By inversion, Γ, x ∶ A ⊢f+x M ∶ B. Let θ ⊑Γ,σ
sub Θ. To

show λx.M[θ] ⊑A⊸B,f[σ] (0, λx. ∥M∥ [Θ]), let λx.M[θ] ↓(0,0) λx.M[θ]. The first con-

dition is trivial (0 ≤ 0). We need to show that λx.M ⊑f[σ]val λx. ∥M∥ [Θ]. Let v ⊑A,dval

E. We must show that M[θ, v/x] ⊑B,f[σ]+d (λx. ∥M∥ [Θ])E, or by weakening, that

M[θ, v/x] ⊑B,f[σ]+d ∥M∥ [Θ,E/x]. But, since v ⊑A,dval E, we have (θ, v/x) ⊑(Γ,x∶A),(σ,x↦d)
sub

(Θ,E/x), and so by IH, M[θ, v/x] ⊑B,f[σ]+d ∥M∥ [Θ,E/x], as required.

(⊸-E) Let Γ ⊢f+g MN ∶ B. Inversion gives Γ ⊢f M ∶ A ⊸ B and Γ ⊢g N ∶ A. Let θ ⊑Γ,σ
sub Θ.

We must show M[θ]N[θ] ⊑B,f[σ]+g[σ] (∥M∥ [Θ]c + ∥N∥ [Θ]c) +c ∥M∥ [Θ]p ∥N∥ [Θ]p.

Suppose M[θ]N[θ] ↓(n1+n2+n3,r1+r2+r3) v. Inversion gives us that M[θ] ↓(n1,r1) λx.M ′,

N[θ] ↓(n2,r2) v1, and M ′[v1/x] ↓(n3,r3) v. It remains to show that

– n1 + n2 + n3 ≤ ∥M∥ [Θ]c + ∥N∥ [Θ]c + (∥M∥ [Θ]p ∥N∥ [Θ]p)c − (r1 + r2 + r3)

– v ⊑B,f[σ]+g[σ]+r1+r2+r3val (∥M∥ [Θ]p ∥N∥ [Θ]p)p

By the IH applied to Γ ⊢f M ∶ A⊸ B, we know that M[θ] ⊑A⊸B,f[σ] ∥M∥ [Θ], so

– n1 ≤ ∥M∥ [Θ]c − r1

– λx.M ′ ⊑A⊸B,f[σ]+r1val ∥M∥ [Θ]p.

Again applying the IH to Γ ⊢g N ∶ A, we know N[θ] ⊑A,g[σ] ∥N∥ [Θ], so

– n2 ≤ ∥N∥ [Θ]c − r2

– v1 ⊑
A,g[σ]+r2
val ∥N∥ [Θ]p

But since λx.M ′ ⊑A⊸B,f[σ]+r1val ∥M∥ [Θ]p and v1 ⊑A,g[σ]+r2val ∥N∥ [Θ]p, we have

M ′[v1/x] ⊑B,f[σ]+g[σ]+r1+r2 ∥M∥ [Θ]p ∥N∥ [Θ]p, which means that:
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– n3 ≤ (∥M∥ [Θ]p ∥N∥ [Θ]p)c − r3

– v ⊑B,f[σ]+g[σ]+r1+r2+r3val (∥M∥ [Θ]p ∥N∥ [Θ]p)p

We add the inequalities together, and are done.

(⊗-I) Let Γ ⊢f1+g1 (M1,M2) ∶ A1 ⊗ A2. By inversion, we have that Γ ⊢fi Mi ∶ Ai for

i = 1,2. Let θ ⊑Γ,σ
sub Θ. Towards proving (M1[θ],M2[θ]) ⊑A1⊗A2,f1[σ]+f2[σ] (∥M1∥ [Θ]c +

∥M2∥ [Θ]c, (∥M1∥ [Θ]p, ∥M2∥ [Θ]p)), assume (M1[θ],M2[θ]) ↓(n1+n2,r1+r2) (v1, v2). By

inversion, it must also be that Mi[θ] ↓(ni,ri) vi for i = 1,2. If suffices to show:

– n1 + n2 ≤ ∥M1∥ [Θ]c + ∥M2∥ [Θ] − (r1 + r2)

– (v1, v2) ⊑A1⊗A2,f1[σ]+f2[σ]+r1+r2
val (∥M1∥ [Θ]p, ∥M2∥ [Θ]p)

By IH, we have that, for i ∈ {1,2}

– ni ≤ ∥Mi∥ [Θ]c − ri

– vi ⊑Ai,f[σ]i+ri
val ∥Mi∥ [Θ]p

Adding the two inequalities and applying the definition of value bounding at ⊗, we are

done.

(⊗-E) Let Γ ⊢k′f+g splitk′(M, x.y.N) ∶ C. Inversion gives Γ ⊢f M ∶ A ⊗B, and Γ, x ∶ A,y ∶

B ⊢g+k′(x+y) N ∶ C. Let θ ⊑Γ,σ
sub Θ. We must show that

splitk′(M[θ], x.y.N[θ]) ⊑C,k
′f[σ]+g[σ] k′ ∥M∥ [Θ]c +c ∥N∥ [Θ, π1 ∥M∥ [Θ]p/x,π2 ∥M∥ [Θ]p/y]

Suppose that splitk′(M[θ], x.y.N[θ]) ↓(n1+n2,k
′r1+r2) v by way ofM[θ] ↓(n1,r1) (v1, v2)

and N[θ, v1/x, v2/y] ↓(n2,r2) v. It remains to show that

– n1 + n2 ≤ k′ ∥M∥ [Θ]c + ∥N∥ [Θ, π1 ∥M∥ [Θ]p/x,π2 ∥M∥ [Θ]p/y]c − (k′r1 + r2)

– v ⊑C,k
′f[σ]+g[σ]+k′r1+r2

val ∥N∥ [Θ, π1 ∥M∥ [Θ]p/x,π2 ∥M∥ [Θ]p/y]p

By IH, M[θ] ⊑A⊗B,f[σ] ∥M∥ [Θ], so

– n1 ≤ ∥M∥ [Θ]c − r1

– (v1, v2) ⊑A⊗B,f[σ]+r1val ∥M∥ [Θ]p

and so there are c1, c2 ≥ 0 so that c1+c2 = f[σ]+r1 and v1 ⊑A,c1val π1 ∥M∥ [Θ]p and v2 ⊑B,c2val

π2 ∥M∥ [Θ]p. So, (θ, v1/x, v2/y) ⊑(Γ,x∶A,y∶B),(σ,x↦c1,y↦c2)
sub (Θ, π1 ∥M∥ [Θ]p/x,π2 ∥M∥ [Θ]p/y).

So, by IH, N[θ, v1/x, v2/y] ⊑C,g[σ]+k
′(f[σ]+r1) ∥N∥ [Θ, π1 ∥M∥ [Θ]p/x,π2 ∥M∥ [Θ]p/y],

so

– n2 ≤ ∥N∥ [Θ, π1 ∥M∥ [Θ]p/x,π2 ∥M∥ [Θ]p/y]c − r2

– v ⊑C,k
′f[σ]+g[σ]+k′r1+r2

val ∥N∥ [Θ, π1 ∥M∥ [Θ]p/x,π2 ∥M∥ [Θ]p/y]p
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Then,

n1 + n2 ≤ k′n1 + n2

≤ k′ ∥M∥ [Θ]c + ∥N∥ [Θ, π1 ∥M∥ [Θ]p/x,π2 ∥M∥ [Θ]p/y]c − (k′r1 + r2)

as required.

(⊕-E) Let Γ ⊢k′f+g1+g2 casek′ (M, x.N1 , y.N2) ∶ C. By inversion, Γ ⊢f M ∶ A ⊕ B, Γ, x ∶

A ⊢g1+k′x N1 ∶ C, and Γ, y ∶ B ⊢g2+k′y N2 ∶ C. Let θ ⊑Γ,σ
sub Θ. We must show that

casek′ (M[θ], x.N1[θ] , y.N2[θ]) ⊑C,k
′f[σ]+g1[σ]+g2[σ] k′ ∥M∥ [Θ]c+ccase (∥M∥ [Θ]p, x. ∥N1∥ , y. ∥N2∥)

Because the two cases are symmetric, we consider only the following evaluation:

casek′ (M[θ], x.N1[θ] , y.N2[θ]) ↓(n1+n2,k
′r1+r2) v by way of M[θ] ↓(n1,r1) inl v1 and

N1[θ, v1/x] ↓(n2,r2) v. We must show that

– n1 + n2 ≤ k′ ∥M∥ [Θ]c + case (∥M∥ [Θ]p, x. ∥N1∥ , y. ∥N2∥)c − (k′r1 + r2)

– v ⊑C,k
′f[σ]+g1[σ]+g2[σ]+k′r1+r2

val case (∥M∥ [Θ]p, x. ∥N1∥ , y. ∥N2∥)p

By IH, M[θ] ⊑A⊕B,f[σ] ∥M∥ [Θ], so

– n1 ≤ ∥M∥ [Θ]c − r1

– inl v1 ⊑A⊕B,f[σ]+r1val ∥M∥ [Θ]p

so there is an E such that inlE ≤⟪A⟫+⟪B⟫ ∥M∥ [Θ]p and v1 ⊑A,f[σ]+r1val E. So,

(θ, v1/x) ⊑(Γ,x∶A),(σ,x↦f[σ]+r1)
sub (Θ,E/x) and hence by IH, N1[θ, v1/x] ⊑g1[σ]+k

′(f[σ]+r!)

∥N1∥ [Θ,E/x], so

– n2 ≤ ∥N1∥ [Θ,E/x]c − r2

– v ⊑C,k
′f[σ]+g1[σ]+k′r1+r2

val ∥N1∥ [Θ,E/x]p

Since g2[σ] ≥ 0, we have by credit weakening that v ⊑C,k
′f[σ]+g1[σ]+g2[σ]+k′r1+r2

val

∥N1∥ [Θ,E/x]p. Then, we compute:

∥N1∥ [Θ,E/x] ≤∥C∥ case (inlE, x. ∥N1∥ [Θ] , y. ∥N2∥ [Θ])

≤ case (∥M∥ [Θ]p, x. ∥N1∥ [Θ] , y. ∥N2∥ [Θ])

which gives us the value bounding condition, and again compute:

n1 + n2 ≤ k′n1 + n2

≤ k′ ∥M∥ [Θ]c + case (∥M∥ [Θ]p, x. ∥N1∥ , y. ∥N2∥)c − (k′r1 + r2)

which gives us the cost bounding condition.
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(⊕-I) The cases for inlM and inrM are symmetric, so we let Γ ⊢f inlM ∶ A ⊕ B.

Inversion gives Γ ⊢f M ∶ A. Let θ ⊑Γ,σ
sub Θ. To show that inlM[θ] ⊑A⊕B,f[σ]

(∥M∥ [Θ]c,inl ∥M∥ [Θ]p), we let inlM[θ] ↓(n,r) inl v. Inverting, we have M[θ] ↓(n,r)

v. It suffices to show that n ≤ ∥M∥ [Θ]c − r, and that inl v ⊑A⊕B,f[σ]+rval inl ∥M∥ [Θ]p.

By IH we have n ≤ ∥M∥ [Θ]c − r, and v ⊑A,f[σ]+rval ∥M∥ [Θ]p. So we are done by the

definition of value bounding at ⊕ for inl.

([A]-I, cons) Let Γ ⊢f+g M ∶∶ N ∶ [A]. By inversion, Γ ⊢f M ∶ A and Γ ⊢g N ∶ [A]. Let θ ⊑Γ,σ
sub Θ.

To show that M ∶∶ N ⊑[A],f[σ]+g[σ] (∥M∥ [Θ]c + ∥N∥ [Θ]c, ∥M∥ [Θ]p ∶∶ ∥N∥ [Θ]p), let

M ∶∶ N ↓(n1+n2,r1+r2) v1 ∶∶ v2. By inversion, M ↓(n1,r1) v1 and N ↓(n2,r2) v2. It suffices

to provide b, c where c ≥ 0 and b + c = f[σ] + g[σ] and that

– n1 + n2 ≤ ∥M∥ [Θ]c + ∥N∥ [Θ]c − (r1 + r2)

– v1 ∶∶ v2 ⊑[A],f[σ]+g[σ]+r1+r2
val ∥M∥ [Θ]p ∶∶ ∥N∥ [Θ]p.

By IH,

– n1 ≤ ∥M∥ [Θ]c − r1

– v1 ⊑A,f[σ]+r1val ∥M∥ [Θ]p

and by IH on N , there are b2, c2 with c2 ≥ 0 and b2 + c2 = g[σ] such that

– n2 ≤ ∥N∥ [Θ]c − r2

– v2 ⊑[A],g[σ]+r2
val ∥N∥ [Θ]p

Thus, the desired inequality follows from adding the two inductively computed ones,

and the value bounding relation for v1 ∶∶ v2 is immediate by the definition.

([A]-E) Suppose Γ ⊢f+g1+g2 lrec (M,N1,N2) ∶ C. By inversion, Γ ⊢f M ∶ [A], Γ ⊢g1 N1 ∶ 1⊸

C, Γ ⊢g2 N2 ∶!∞0 (A⊗ ([A]&C) ⊸ C). Let θ ⊑Γ,σ
sub Θ. To show that

lrec (M[θ],N1[θ],N2[θ]) ⊑C,f[σ]+g1[σ]+g2[σ](∥M∥ [Θ]c + ∥N1∥ [Θ]c + ∥N2∥ [Θ]c)+c

lrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, λ(a, (as, r)). ∥N2∥ [Θ]p (a, ((0, as), r)))

we break into the two evaluation cases. Firstly, suppose that

lrec (M[θ],N1[θ],N2[θ]) ↓(n1+n2+n3+n4,r1+r2+r3+r4) v by way of M[θ] ↓(n1,r1) [],

N1[θ] ↓(n2,r2) λx.N ′
1, N2[θ] ↓(n3,r3) save∞0 (λx.N ′

2), and N ′
1[()/x] ↓(n4,r4) v. From

here, denote we denote λx. ∥N2∥ [Θ]p(π1x, ((0, π1π2x), π2π2x)) as ∥N2∥∗.

It suffices to show that:
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– n1 + n2 + n3 + n4 ≤ ∥M∥ [Θ]c + ∥N1∥ [Θ]c + ∥N2∥ [Θ]c +

lrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥∗)c − (r1 + r2 + r3 + r4)

– v ⊑C,f[σ]+g1[σ]+g2[σ]+r1+r2+r3+r4val lrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥∗)p
By IH, M[θ] ⊑[A],f[σ] ∥M∥ [Θ], so

– n1 ≤ ∥M∥ [Θ]c − r1

– [] ⊑f[σ]+r1val ∥M∥ [Θ]p

The second condition tells us that [] ≤ ∥M∥ [Θ]p. Again by IH,

N2[θ] ⊑!∞0 (A⊗([A]&C)⊸C),g2[σ] ∥N2∥ [Θ], so

– n3 ≤ ∥N2∥ [Θ]p − r3

– save∞0 (λx.N ′
2) ⊑

!∞0 (A⊗([A]&C)⊸C),g2[σ]+r3
val ∥N2∥ [Θ]p

In particular, by preservation, g2[σ]+r3 ≥ 0. Thirdly by IH, N1[θ] ⊑1⊸C,g1[σ] ∥N1∥ [Θ],

which means

– n2 ≤ ∥N1∥ [Θ]c − r2

– λx.N ′
1 ⊑

1⊸C,g1[σ]+r2
val ∥N1∥ [Θ]p

Since () ≤ (), () ⊑1,f[σ]+r1
val (). Hence, N ′

2[()/x] ⊑C,g1[σ]+f[σ]+r1+r2 ∥N1∥ [Θ]p (). This

means that

– n4 ≤ (∥N1∥ [Θ]p ())c − r4

– v ⊑C,f[σ]+g1[σ]+r1+r2+r4val (∥N1∥ [Θ]p ())p

But by credit weakening, since g2[σ] + r3 ≥ 0, we have v ⊑C,f[σ]+g1[σ]+g2[σ]+r1+r2+r3+r4val

(∥N1∥ [Θ]p ())p. But, we can compute:

∥N1∥ [Θ]p () ≤ lrec ([], ∥N1∥ [Θ]p, ∥N2∥ [Θ]p) ≤ lrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥∗)

and we are done by weakening.

Otherwise, assume M[θ] ↓(n1,r1) v1 ∶∶ v2, N2[θ] ↓(n2,r2) save∞0 (λx.N ′
2),

N1[θ] ↓(n3,r3) λx.N ′
1, and

N ′
2[(v1, ⟨v2,lrec (v2, λx.N

′
1,save

∞
0 (λx.N ′

2))⟩)] ↓(n4,r4) v

. Just like the previous case, it suffices to show

– n1 + n2 + n3 + n4 ≤ ∥M∥ [Θ]c + ∥N1∥ [Θ]c + ∥N2∥ [Θ]c +

lrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥∗)c − (r1 + r2 + r3 + r4)
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– v ⊑C,f[σ]+g1[σ]+g2[σ]+r1+r2+r3+r4val lrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥ [Θ]p)p
By IH, M[θ] ⊑[A],f[σ] ∥M∥ [Θ], so

– n1 ≤ ∥M∥ [Θ]c − r1

– v1 ∶∶ v2 ⊑[A],f[σ]+r1
val ∥M∥ [Θ]p

By the second condition, we know that there are d1, d2 ≥ 0 with d1 + d2 = f[σ] + r1,

and E1,E2 with E1 ∶∶ E2 ≤ ∥M∥ [Θ]p such that v1 ⊑A,d1val E1, and v2 ⊑[A],d2
val E2. By IH,

N1[θ] ⊑1⊸C,g1[σ] ∥N1∥ [Θ], so

– n3 ≤ ∥N1∥ [Θ]c − r3

– λx.N ′
1 ⊑

1⊸C,g1[σ]+r3
val ∥N1∥ [Θ]p

Again by IH, N2[θ] ⊑!∞0 (A⊗([A]&C)⊸C),g2[σ] ∥N2∥ [Θ], which means that

– n2 ≤ ∥N2∥ [θ]c − r2

– save∞0 (λx.N ′
2) ⊑

!∞0(A⊗([A]&C)⊸C),g2[σ]+r2
val ∥N2∥ [Θ]p

The second condition means by definition that there is a c ≥ 0 such that ∞⋅c ≤ g2[σ]+r2,

and λx.N ′
2 ⊑

A⊗([A]&C)⊸C,c
val ∥N2∥ [Θ]p. We claim that

N ′
2[(v1, ⟨v2,lrec (v2, λx.N

′
2,save

∞
0 (λx.N ′

2))⟩)] ⊑f[σ]+g1[σ]+g2[σ]+r1+r2+r3

∥N2∥ (E1, ((0,E2),lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗)))

To prove this claim, we split into cases on the finitude of g2[σ] + r2.

– Suppose g2[σ] + r2 is finite. Then c = 0, and g2[σ] + r2 = 0, and so by the list

recursor lemma with E1 = ∥N1∥ [Θ]p, E2 = ∥N2∥ [Θ]p, and E = E2, we have

that lrec (v2, λx.N
′
1,save

∞
0 (λx.N ′

2)) ⊑C,d2+g1[σ]+r3 lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗).

Since v2 ⊑[A],d2
val E2, we have that v2 ⊑[A],d2 (0,E2), and by credit weakening,

since g1[σ] + r3 ≥ 0, v2 ⊑[A],d2+g1[σ]+r3 (0,E2). Thus:

⟨v2,lrec (v2, λx.N
′
1,save

∞
0 (λx.N ′

2))⟩ ⊑[A]&C,d2+g1[σ]+r3

((0,E2),lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗))

Next, since v1 ⊑A,d1val E1, d1 + d2 = f[σ] + r1, and λx.N ′
2 ⊑

A⊗([A]&C),0
val ∥N2∥ [Θ]p,

N ′
2[(v1, ⟨v2,lrec (v2, λx.N

′
1,save

∞
0 (λx.N ′

2))⟩)/x] ⊑f[σ]+g1[σ]+r1+r3

∥N2∥ [Θ]p (E1, ((0,E2),lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗)))

Which is exactly what we wanted to show, since g2[σ] + r2 = 0.



B 336

– Suppose g2[σ] + r2 = ∞. Then, there is a c ≥ 0 such that ∞ ⋅ c ≤ ∞, and

λx.N ′
2 ⊑A⊗([A]&C)⊸C,c ∥N2∥ [Θ]p By credit weakening, we may assume c > 0.

By the list recursor lemma, lrec (v2, λx.N
′
1,save

∞
0 (λx.N ′

2)) ⊑C,d2+g1[σ]+r3+∞⋅c

lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗). By the same reasoning as in the previous case,

(v1, ⟨v2,lrec (v2, λx.N
′
1,save

∞
0 (λx.N ′

2))⟩) ⊑A⊗([A]&C),f[σ]+g1[σ]+r1+r3

(E1, ((0,E2),lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗)))

Then, since ∞ ⋅ c + c = ∞ ⋅ c,

N ′
2[(v1, ⟨v2,lrec (v2, λx.N

′
1,save

∞
0 (λx.N ′

2))⟩)/x] ⊑C,f[σ]+g1[σ]+r1+r3+∞⋅c

∥N2∥ [Θ]p (E1, ((0,E2),lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗)))

which, ∞ ⋅ c ≤ g2[σ] + r2, gives us our goal by credit weakening.

From this result, we have by definition that

– n4 ≤ (∥N2∥ [Θ]p (E1, ((0,E2),lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗))))c − r4

– v ⊑C,f[σ]+g1[σ]+g2[σ]+r1+r2+r3+r4val (∥N2∥ [Θ]p (E1, ((0,E2),lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗))))p

Then we can compute:

∥N2∥ [Θ]p (E1, ((0,E2),lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗))) ≤ ∥N2∥∗ (E1, (E2,lrec (E2, ∥N1∥ [Θ]p, ∥N2∥∗)))

≤ lrec (E1 ∶∶ E2, ∥N1∥ [Θ]p, ∥N2∥∗)

≤ lrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥∗)

and so we are done by weakening.

(N-E) Suppose Γ ⊢f+g1+g2 nrec (M,N1,N2) ∶ C. By inversion, we have that Γ ⊢f M ∶ N,

Γ ⊢g1 N1 ∶ 1⊸ C, and Γ ⊢g2 N2 ∶!∞0 (N⊗(1⊸ C) ⊸ C). Let θ ⊑Γ,σ
sub Θ. For convenience,

let ∥N2∥ [Θ]∗p = λp. ∥N2∥ [Θ]p(π1p, λz.π2p). We must show:

nrec (M[θ],N1[θ],N2[θ]) ⊑C,f[σ]+g1[σ]+g2[σ]

(∥M∥ [Θ]c + ∥N1∥ [Θ]c + ∥N2∥ [Θ]c) +c nrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p)

In order to show this, we have two evaluation cases to consider. Suppose

nrec (M[θ],N1[θ],N2[θ]) ↓(n1+n2+n3+n4,r1+r2+r3+r4) v

by way of M[θ] ↓(n1,r1) 0, N1[θ] ↓(n2,r2) λx.N ′
1, N2[θ] ↓(n3,r3) v′, and N ′

1[()/x] ↓(n4,r4)

v. It suffices to show that:

– n1 + n2 + n3 + n4 ≤ b + ∥M∥ [Θ]c + ∥N1∥ [Θ]c + ∥N2∥ [Θ]c +

nrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p)c − (r1 + r2 + r3 + r4)
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– v ⊑C,f[σ]+g1[σ]+g2[σ]+r1+r2+r3+r4val nrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p)p
By IH, M[θ] ⊑N,f[σ] ∥M∥ [Θ], so

– n1 ≤ ∥M∥ [Θ]c − r1

– 0 ⊑N,f[σ]+r1val ∥M∥ [Θ]p

since 0 ⊑N,f[σ]+r1val ∥M∥ [Θ]p, 0 ≤N ∥M∥ [Θ]p. By IH, N1[θ] ⊑1⊸C,g1[σ] ∥N1∥ [Θ], so

– n2 ≤ ∥N1∥ [Θ]c − r2

– λx.N ′
1 ⊑

1⊸C,g1[σ]+r2
val ∥N1∥ [Θ]p

By IH, N2[θ] ⊑!∞0 (⋯),g2[σ] ∥N2∥ [Θ], and so

– n3 ≤ ∥N2∥ [Θ]c − r3

We omit the value bounding condition since it does not factor into the rest of the proof.

Since () ≤1 (), () ⊑1,f[σ]+r1
val (). So: N ′

1[()/x] ⊑C,f[σ]+g1[σ]+r1+r2 ∥N1∥ [Θ] (). Thus,

– n4 ≤ (∥N1∥ [Θ] ())c − r4

– v ⊑C,f[σ]+g1[σ]+r1+r2+r4val (∥N1∥ [Θ] ())p

Since g2[σ] + r3 ≥ 0, we know by credit weakening, v ⊑C,f[σ]+g1[σ]+g2[σ]+r1+r2+r3+r4val

(∥N1∥ [Θ] ())p. Since 0 ≤ ∥M∥ [Θ]p, we compute:

∥N1∥ [Θ] () ≤C nrec (0, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p)

≤ nrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p)

So we are done by weakening.

Suppose nrec (M[θ],N1[θ],N2[θ]) ↓(n1+n2+n3+n4,r1+r2+r3+r4) v by way of

M[θ] ↓(n1,r1) S(v1), N2[θ] ↓(n2,r2) save∞0 λx.N ′
2, N1[θ] ↓(n3,r3) λx.N ′

1, and

N ′
2[(v1,nrec (v1, λz.(nrec (v1, λx.N

′
1,save

∞
0 λx.N ′

2)), )) /x] ↓(n4,r4) v

– n1 + n2 + n3 + n4 ≤ b + ∥M∥ [Θ]c + ∥N1∥ [Θ]c + ∥N2∥ [Θ] +

nrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p)c − (r1 + r2 + r3 + r4)

– v ⊑C,f[σ]+g1[σ]+g2[σ]+r1+r2+r3+r4val nrec (∥M∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p)p
By IH, M[θ] ⊑N,f[σ] ∥M∥ [Θ], so

– n1 ≤ ∥M∥ [Θ]c − r1

– S(v1) ⊑N,f[σ]+r1val ∥M∥ [Θ]p
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Since S(v1) ⊑N,f[σ]+r1val ∥M∥ [Θ]p, there is an E such that v1 ⊑N,f[σ]+r1val E, and S(E) ≤

∥M∥ [Θ]p.

By IH, N1[θ] ⊑1⊸C,g1[σ] ∥N1∥ [Θ], and so

– n3 ≤ ∥N1∥ [Θ]c − r3

– λx.N ′
1 ⊑

1⊸C,g1[σ]+r3
val ∥N1[Θ]∥p

By IH, N2[θ] ⊑!∞0 (N⊗(1⊸C)⊸C),g2[σ] ∥N2∥ [Θ], so by definition,

– n2 ≤ ∥N2∥ [Θ]c − r2

– save∞0 λx.N ′
2 ⊑

!∞0 (N⊗(1⊸C)⊸C),g2[σ]+r2
val ∥N2∥ [Θ]p

and so there is a d ≥ 0 so that λx.N ′
2 ⊑N⊗(1⊸C)⊸C,d

val ∥N2∥ [Θ]p, and ∞ ⋅ d ≤

g2[σ] + r3. By the N-recursor lemma, nrec (v1, λx.N
′
1,save

∞
0 (λx.N ′

2)) ⊑C,g1[σ]+r2+∞⋅d

nrec (E, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p). Let E∗ = (E,nrec (E, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p)). Note

that v1 ⊑N,f[σ]+r1val π1E
∗ and

λz.nrec (v1, λx.N
′
1,save

∞
0 (λx.N ′

2)) ⊑
1⊸C,g1[σ]+r2+∞⋅d
val λz.π2E

∗

, and so:

(v1, λz.nrec (v1, λx.N
′
1,save

∞
0 (λx.N ′

2))) ⊑
N⊗(1⊸C),f[σ]+g1[σ]+∞⋅d+r1+r2
val (π1E

∗, λz.π2E
∗)

.

Thus, because λz.N ′
2 ⊑

N⊗(1⊸C)⊸C,d
val ∥N2∥ [Θ]p, and ∞ ⋅ d + d = ∞ ⋅ d

N ′
2[(v1, λz.nrec (v1, λx.N

′
1,save

∞
0 (λx.N ′

2)))] ⊑C,f[σ]+g1[σ]+∞⋅d+r1+r2 ∥N2∥ [Θ]p(π1E
∗, λz.π2E

∗)

and so:

– n4 ≤ (∥N2∥ [Θ]p (π1E
∗, λz.π2E

∗))c − r4

– v ⊑C,f[σ]+g1[σ]+∞⋅d+r1+r2+r4
val (∥N2∥ [Θ]p (π1E

∗, λz.π2E
∗))p

but, ∞ ⋅ d ≤ g2[σ] + r3, and

∥N2∥ [Θ]p (π1E
∗, λz.π2E

∗) ≤ (λp. ∥N2∥ [Θ]p(π1p, λz.π2p))E∗

≤ ∥N2∥ [Θ]∗p (E,nrec (E, ∥N1∥ [Θ]p, ∥N2∥ [Θ]∗p))

≤ nrec (S(E), ∥N1∥ [Θ]p, ∥N2∥ [Θ]p)

≤ nrec (∥N1∥ [Θ]p, ∥N1∥ [Θ]p, ∥N2∥ [Θ]p)

and so we are done by weakening and credit weakening.
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(&-I) Suppose Γ ⊢f ⟨M,N⟩ ∶ A&B, and let θ ⊑Γ,σ
sub Θ. We can invert to find that

Γ ⊢f M ∶ A and Γ ⊢f N ∶ B. Since ⟨M[θ],N[θ]⟩ ↓(0,0) ⟨M[θ],N[θ]⟩, to show that

⟨M[θ],N[θ]⟩ ⊑A&B,f[σ] (0, (∥M∥ [Θ], ∥N∥ [Θ])) we must show that 0 ≤ 0 (done!) and

that ⟨M[θ],N[θ]⟩ ⊑A&B,f[σ]
val (∥M∥ [Θ], ∥N∥ [Θ]). For this, it suffices by weakening to

show that M[θ] ⊑A,f[σ] ∥M∥ [Θ] and N[θ] ⊑B,f[σ] ∥N∥ [Θ], which are precisely the

inductive hypotheses.

(&-E) By symmetry, it suffices to present the pi1 case. Suppose Γ ⊢f π1M ∶ A. By inversion,

Γ ⊢f M ∶ A&B. Let θ ⊑Γ,σ
sub Θ. To show that π1M[θ] ⊑A,f[σ] ∥M∥ [Θ]c+cπ1(∥M∥ [Θ]p),

assume π1M[θ] ↓(n1+n2,r1+r2) v. By inversion, it was by way of M[θ] ↓(n1,r1) ⟨N1,N2⟩

and N1 ↓(n2,r2) v. We must show that:

– n1 + n2 ≤ ∥M∥ [Θ]c + (π1 ∥M∥ [Θ]p)c − (r1 + r2)

– v ⊑A,f[σ]+r1+r2val (π1 ∥M∥ [Θ]p)p

By IH, M[θ] ⊑A&B,f[σ] ∥M∥ [Θ], so

– n1 ≤ ∥M∥ [Θ]c − r1

– ⟨N1,N2⟩ ⊑A&B,f[σ]+r1
val ∥M∥ [Θ]p

where the second condition means, in particular, that N1 ⊑A,f[σ]+r1 π1 ∥M∥ [Θ]p. So,

since N1 ↓(n2,r2) v,

– n2 ≤ (π1 ∥M∥ [Θ]p)c − r2

– v ⊑A,f[σ]+r1+r2val (π1 ∥M∥ [Θ]p)p

as required.

(var) Suppose Γ, x ∶ A ⊢x+f x ∶ A. Let (θ, v/x) ⊑(Γ,x∶A),(σ,x↦a)
sub (Θ,E/x). We know that

v ⊑A,aval E. We must show that v ⊑A,a+f[σ] (0,E). We know that v ↓(0,0) v. Of course,

0 ≤ 0. Since f[σ] ≥ 0, we are done by credit weakening.

�

Theorem 4.1. For any posets A,B,C,G with ∞ and ∨,

(1) snrec ∈ HomPoset ((C1)G × (CN×C)G,CG×N)

(2) slrec ∈ HomPoset ((C1)G × (CA×(N×C))G,CG×N)

(3) scase ∈ HomPoset (CG×A ×CG×B ,CG×(A+B))
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Proof. Let A,B,C,G be posets. Note that these are not required to be in the image of

J⋅K. For each case we must show two statements: the function is in fact montonic, and that the

functions in its image (an exponential poset) are themselves monotonic.

(1) Suppose (f, g) ≤ (f ′, g′) as elements of (C1)G × (CN×C)G. To show that snrec(f, g) ≤

snrec(f ′, g′), it suffices to show that for all γ,n, that snrec(f, g)(γ,n) ≤ snrec(f ′, g′)(γ,n).

Proceed by induction on n.

● n = 0. By the definition of snrec, it suffices to show that f(γ)() ≤ f ′(γ)(), which

is true since f ≤ f ′.

● n+1 By definition of snrec, it suffces to show g(γ)(n,snrec(f, g)(γ,n))∨f(γ)() ≤

g′(γ)(n,snrec(f ′, g′)(γ,n)) ∨ f(γ)(). We have already shown that f(γ)() ≤

f ′(γ)(), so it remains to show g(γ)(n,snrec(f, g)(γ,n)) ≤ g′(γ)(n,snrec(f ′, g′)(γ,n)).

Since g ≤ g′, g(γ) ≤ g′(γ). By reflexivity, n ≤ n. By IH, snrec(f, g)(γ,n) ≤

snrec(f ′, g′)(γ)(n), and so we are done.

Now, let (f, g) ∈ (C1)G×(CN×C)G. We must show that if (γ,n) ≤ (γ′, n′) in G×N,

then snrec(f, g)(γ,n) ≤ snrec(f, g)(γ′, n′). Proceed by induction on n. We have

three cases to consider.

– n = n′ = 0. By definition of snrec, it suffices to show that f(γ)() ≤ f(γ′)(),

which is true since γ ≤ γ′.

– n = 0, n′ + 1: By the definition of snrec, we must show that f(γ)() ≤

g(γ′)(n′,snrec(f, g)(γ′, n′))∨f(γ′)(), for which it suffices to show f(γ)() ≤

f(γ′)(), which we already argued was true.

– n + 1, n′ + 1. Expanding definitions again and simplifying, it suffices to

show that g(γ)(n,snrec(f, g)(γ,n)) ≤ g(γ′)(n′,snrec(f, g)(γ′, n′)). Since

g is monotonic, g(γ) ≤ g(γ′). Since n + 1 ≤ n′ + 1, n ≤ n′. By IH,

snrec(f, g)(γ,n) ≤ snrec(f, g)(γ′, n′), and so g(γ)(n,snrec(f, g)(γ,n)) ≤

g(γ′)(n′,snrec(f, g)(γ′, n′)), as required.

(2) Let (f, g) ≤ (f ′, g) ∈ (C1)G × (CA×(N×C))G. We want to show that slrec(f, g) ≤

slrec(f ′, g′). Fix γ ∈ G, we prove by induction on n that for all n ∈ N, slrec(f, g)(γ,n) ≤

slrec(f ′, g′)(γ,n).
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● n = 0: expanding the definition of slrec, we must show that f(γ)() ≤ f ′(γ)(),

which is true because f ≤ f ′.

● n > 0. It suffices to show that g(γ)(∞, (n,slrec(f, g)(γ,n))) ≤ g′(γ)(∞, (n,slrec(f ′, g′)(γ,n))).

Since g ≤ g′, g(γ) ≤ g′(γ). Further, ∞ ≤ ∞, n ≤ n, and by IH, slrec(f, g)(γ,n) ≤

slrec(f ′, g′)(γ,n), as required.

Now, let (f, g) ∈ (C1)G × (CA×(N×C))G. We must show that if (γ,n) ≤ (γ′, n′),

slrec(f, g)(γ,n) ≤ slrec(f, g)(γ,n′). We again prove this by induction on n. There

are three cases we must consider.

● n = n′ = 0. Immediate.

● n = 0, n′ > 0. Identical to the similar case for snrec.

● n,n′ > 0. To show that

g(γ)(∞, (n,snrec(f, g)(γ,n))) ∨ f(γ)() ≤ g(γ′)(∞, (n′,snrec(f, g)(γ′, n))) ∨ f(γ′)()

it suffices to show that f(γ) ≤ f(γ′) (which is true because γ ≤ γ′ and f is mono-

tonic) and g(γ)(∞, (n,snrec(f, g)(γ,n))) ≤ g(γ′)(∞, (n′,snrec(f, g)(γ′, n′))).

Since n + 1 ≤ n′ + 1, n ≤ n′, and so the desired result follows from IH and the fact

that g(γ)

(3) Let (f, g) ≤ (f ′, g′) ∈ CG×A ×CG×B . We must show that scase(f, g) ≤ scase(f ′, g′) in

CG×(A+B) Let (γ, x) ∈ G×(A+B). The two cases for x are symmetrical, so we consider

when x = inla. Then,

scase(f, g)(γ,inla) = f(γ, a) ∨ g(γ,∞)

≤ f ′(γ, a) ∨ g(γ,∞)

= scase(f ′, g′)(γ,inla)

as required.

Now, fix (f, g) ∈ CG×A × CG×B . We must show that for all (γ, x) ≤ (γ′, y),

scase(f, g)(γ, x) ≤ scase(f, g)(γ′, y). We have two symmetric cases to consider, so
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we present the case where x = inla and y = inla′. Then,

scase(f, g)(γ,inla) = f(γ, a) ∨ g(γ,∞)

≤ f(γ′, a′) ∨ g(γ′,∞)

= scase(f, g)(γ′,inla′)

as required.

�

Theorem 4.2 (Compositionality). If Γ, x ∶ T1 ⊢ E ∶ T2, and Γ ⊢ E′ ∶ T1, then JΓ ⊢ E[E′/x] ∶

T2K = (1JΓK, JΓ ⊢ E′ ∶ T1K) ; JΓ, x ∶ T1 ⊢ E ∶ T2K

Proof. By induction on Γ, x ∶ T1 ⊢ E ∶ T2.

● (nrec): Suppose Γ, x ∶ T1 ⊢ nrec (E,E1,E2) ∶ T2. By inversion, Γx ∶ T1 ⊢ E ∶ N,

Γ, x ∶ T1 ⊢ E1 ∶ 1→ T2, and Γ, x ∶ T1 ⊢ E2 ∶ N × T2 → T2. By IH,

– JΓ ⊢ E[E′/x] ∶ NK = (1JΓK, JΓ ⊢ E′ ∶ T1K); JΓ, x ∶ T1 ⊢ E ∶ NK

– JΓ ⊢ E1[E′/x] ∶ 1→ T2K = (1JΓK, JΓ ⊢ E′ ∶ T1K); JΓ, x ∶ T1 ⊢ E1 ∶ 1→ T2K

– JΓ ⊢ E2[E′/x] ∶ N × T2 → T2K = (1JΓK, JΓ ⊢ E′ ∶ T1K); JΓ, x ∶ T1 ⊢ E2 ∶ N × T2 → T2K

. For ease of notation, we let f = JΓ ⊢ E′ ∶ T1K, g = JΓ, x ∶ T1 ⊢ E ∶ NK, h1 = JΓ, x ∶ T1 ⊢

E1 ∶ 1→ T2K, and h2 = JΓ, x ∶ T1 ⊢ E2 ∶ N × T2 → T2K. Then, we compute:

JΓ ⊢ (nrec (E,E1,E2)) [E′/x] ∶ T2K

= JΓ ⊢ nrec (E[E′/x],E1[E′/x],E2[E′/x])K

= (1JΓK, JΓ ⊢ E[E′/x] ∶ NK);snrec(JΓ ⊢ E1[E′/x] ∶ 1→ T2K, JΓ ⊢ E2[E′/x] ∶ N × T2 → T2K)

= (1JΓK, (1JΓK, f); g);snrec((1JΓK, f);h1, (1JΓK, f);h2)

It remains to show that

(1JΓK, (1JΓK, f); g);snrec((1JΓK, f);h1, (1JΓK, f);h2) = (1JΓK, f); (1JΓ,x∶T1K, g);snrec(h1, h2)

Let γ ∈ JΓK. Applying the left hand side to γ, we get

snrec((1JΓK, f);h1, (1JΓK, f);h1)(γ, g(γ, f(γ)))

and on the right:

snrec(h1, h2)((γ, f(γ)), g(γ, f(γ)))
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Letting γ′ = (γ, f(γ)), we must show that snrec((1JΓK, f);h1, (1JΓK, f);h1)(γ, g(γ′)) =

snrec(h1, h2)(γ′, g(γ′)). We proceed by induction on n = g(γ′).

– n = 0.

snrec((1JΓK, f);h1, (1JΓK, f);h1)(γ,0) = ((1JΓK, f);h1)(γ)()

= h1(γ, f(γ))()

= h1(γ′)()

snrec(h1, h2)(γ′,0) = h1(γ′)()

as required.

– n + 1:

snrec((1JΓK, f);h1, (1JΓK, f);h1)(γ,n + 1)

= ((1JΓK, f);h1)(γ)(n,snrec((1JΓK, f);h1, (1JΓK, f);h1)(γ,n)) ∨ h1(γ′)()

= h1(γ′)(n,snrec(h1, h2)(γ′, n)) ∨ h1(γ′)()

= snrec(h1, h2)(γ′, n + 1)

● (lrec): Suppose Γ, x ∶ T1 ⊢ lrec (E′,E1,E2) ∶ T2, and Γ ⊢ E ∶ T1. By inversion,

Γ, x ∶ T1 ⊢ E ∶ [T], Γ, x ∶ T1 ⊢ E1 ∶ 1 → T2, and Γ, x ∶ T1 ⊢ E2 ∶ T × ([T] × T2) → T2. By

IH, we have that:

– JΓ ⊢ E′[E/x] ∶ [T]K = (1JΓK, JΓ ⊢ E ∶ T1K); JΓ, x ∶ T1 ⊢ E ∶ [T]K

– JΓ ⊢ E1[E/x] ∶ 1→ T2K = (1JΓK, JΓ ⊢ E ∶ T1K); JΓ, x ∶ T1 ⊢ E1 ∶ 1→ TK

– JΓ ⊢ E2[E/x] ∶ T × ([T] × T2) → T2K = (1JΓK, JΓ ⊢ E ∶ T1K); JΓ, x ∶ T1 ⊢ E2 ∶

T × ([T] × T2) → T2K

Let f = JΓ ⊢ E ∶ T1K, g = JΓ, x ∶ T1 ⊢ E′ ∶ [T]K, h1 = JΓ, x ∶ T1 ⊢ E1 ∶ 1 → T2K, and

h2 = JΓ, x ∶ T1 ⊢ E ∶ T × ([T] × T2) → T2K

We must show that

(1JΓK, f); (1JΓK×JT1K, g);slrec(h1, h2) = (1JΓK, (1JΓK, f); g);slrec((1JγK, f);h1, (1JγK, f);h2)

Let γ ∈ JΓK, and let γ′ = (γ, f(γ)). We must then show that

slrec(h1, h2)(γ′, g(γ′)) = slrec((1JγK, f);h1, (1JγK, f);h2)(γ, g(γ′))
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We proceed by induction on n = g(γ′).

– (n = 0): The LHS is slrec(h1, h2)(γ′,0) = h1(γ′)(), and the RHS is

slrec((1JγK, f);h1, (1JγK, f);h2)(γ,0) = h1(γ, f(γ))() = h1(γ′)()

.

– (n > 0): The LHS is:

slrec(h1, h2)(γ′, n + 1)

= h2(γ′)(∞, (n,slrec(h1, h2)(γ′, n))) ∨ h1(γ′)()

and the RHS (applying the IH in the 2nd step) is

slrec((1JΓK, f);h1, (1JΓK, f);h2)(γ,n + 1)

= h2(γ′)(∞, (n,slrec((1JΓK, f);h1, (1JΓK, f);h2)(γ,n))) ∨ h1(γ′)()

= h2(γ′)(γ, (n,slrec(h1, h2)(γ′, n))) ∨ h1(γ′)()

as required.

�

Proof. By induction on Γ ⊢ E ∶ T .

● (nrec): Let Γ ⊢ nrec (E,E1,E2) ∶ T . By inversion, Γ ⊢ E ∶ N, Γ ⊢ E1 ∶ 1 → T ,

and Γ ⊢ E2 ∶ N × C → C. By IH, JΓ ⊢ E ∶ NK ∈ Hom(JΓK,N). Then, (1Γ, JΓ ⊢

E ∶ NK) ∈ Hom(JΓK, JΓK × N). By IH, JΓ ⊢ E1 ∶ 1 → T K ∈ Hom(JΓK, JT K1) and JΓ ⊢

E2 ∶ N × T → T K ∈ Hom(JΓK, JT KN×JT K). Then, by Theorem 4.1 and composition,

(1Γ, JΓ ⊢ E ∶ NK);snrec(JΓ ⊢ E1 ∶ 1 → T K, JΓ ⊢ E2 ∶ N × T → T K) ∈ Hom(JΓK, JT K), as

required.

● (lrec): Let Γ ⊢ lrec (E,E1,E2) ∶ T . By inversion, Γ ⊢ E ∶ [T ′], Γ ⊢ E2 ∶ 1 → T ,

and Γ ⊢ E2 ∶ T ′ × ([T ′] × T ) → T . Applying the IH to all of these premises, we

have that JΓ ⊢ E ∶ [T ′]K ∈ Hom(JΓK,N), JΓ ⊢ E2 ∶ 1 → T K ∈ Hom(JΓK, JT K1), and

JΓ ⊢ E2 ∶ T ′ × ([T ′] × T ) → T K ∈ Hom(JΓK, JT KJT ′K×(N×JT K)). By Theorem 4.1 and

composition, (1JΓK, JΓ ⊢ E ∶ [T ′]K);slrec(JΓ ⊢ E2 ∶ 1→ T K, JΓ ⊢ E2 ∶ T ′ ×([T ′]×T ) →

T K) ∈ Hom(JΓK, JT K) as required.

�
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Theorem 4.4 (Soundness (Inequality)). If Γ ⊢ E ≤ E′, then for all γ ∈ JΓK, JΓ ⊢ E ∶ T K(γ) ≤

JΓ ⊢ E′ ∶ T K(γ)

Proof. By induction on Γ ⊢ E ≤ E′. The new cases (snrec and slrec) follow easily from

the definitions. �

Theorem 5.1 (Substitution).

● If ∆ ⊢ c credit and ∆, α ⊢ c′ credit, then ∆ ⊢ c′[c/α] credit

● If ∆ ⊢ c credit and ∆, α∣Γ ⊢f M ∶ A, then ∆∣Γ[c/α] ⊢f[c/α] M[c/α] ∶ A[c/α]

Proof. By induction on ∆, α ⊢ c′ credit and ∆, α∣Γ ⊢f M ∶ A, respectively. �

Theorem 5.2 (Preservation). If ⋅∣⋅ ⊢a M ∶ A and M ↓(n,r) v, then a+r ≥ 0 and ⋅∣⋅ ⊢a+r v ∶ A.

Proof. The cases for all pre-existing rules are identical– the only new cases are for pack,

unpack, and trec. We present only the final case of trec, as it is the most illustritive.

● (pack): Suppose that ⋅∣⋅ ⊢a packα=`M ∶ ∃α and packα=`M ↓(n,r) packα=`v by way of

⋅∣⋅ ⊢a M ∶ A[`/α] and M ↓(n,r) v. By IH, ⋅∣⋅ ⊢a+r v ∶ A[`/α] and a + r ≥ 0. By the rule

for pack, ⋅∣⋅ ⊢a+r packα=`v ∶ ∃α.A, as required.

● (unpack): Suppose that ⋅∣⋅ ⊢a+b unpack (α,x) =M in N ∶ C by way of ⋅∣⋅ ⊢a M ∶ ∃α.A

and α∣x ∶ A ⊢b+x N ∶ C with ∆ ⊢ C, and that unpack (α,x) =M in N ↓(n1+n2,r1+r2) v

by way of M ↓(n1,r1) packα=`v1 and N[`/α, v1/x] ↓(n2,r2) v. By IH, ⋅∣⋅ ⊢a+r1 v1 ∶ A[`/α].

By credit variable substituion, ⋅∣x ∶ A[`/α] ⊢b+x N[`/α] ∶ C. By substitution, ⋅∣⋅ ⊢b+a+r1

N[`/α, v1/x]LC By IH, ⋅∣⋅ ⊢a+b+r1+r2 v ∶ C and a + b + r1 + r2 ≥ 0 as required.

● (trec): Suppose:

⋅∣⋅ ⊢f M ∶ tree (A)

⋅∣⋅ ⊢b1 N1 ∶!∞0 (1⊸ C)

⋅∣⋅ ⊢b2 N2 ∶!∞0 (A⊸ C)

⋅∣⋅ ⊢b3 N3 ∶!∞0 (A⊗N⊗A⊗N ⊗ (tree (A)&C)2 ⊸ C)

⋅∣⋅ ⊢b4 N4 ∶!∞0 (A⊗N⊗A⊗N ⊗ (tree (A)&C)2 ⊸ C)

⋅∣⋅ ⊢b5 N5 ∶!∞0 (A⊗N⊗A⊗N ⊗A⊗N(tree (A)&C)4 ⊸ C)

⋅∣⋅ ⊢a+∑ bi trec (M,N1,N2,N3,N4,N4)
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and

M ↓(n0,r0) N(v1, n1,N(v2, n2, t00, t01),N(v3, n7, t10, t11))

Ni ↓(ni,ri) save∞0 v′i (1 ≤ i ≤ 4)

N5 ↓(n5,r5) save∞0 (λx.N ′
5)

N ′
5[(v1, n1, v2, n2, v3, n3, ⟨t00,trec(t00,save

∞
0 v′1, . . .,save

∞
0 (λx.N ′

5)), , ⟩ . . . )/x]

trec (M,N1,N2,N3,N4,N5) ↓(∑ni,∑ ri) v

By IH, ⋅∣⋅ ⊢a+r0 N(. . . ). Hence, there are d1, . . . , dn, all non-negative, so that ∑di =

a + r0, and ⋅∣⋅ ⊢di wi ∶ Ai where wi is the ith value in the value which M evaluates to

(in particular, ⋅∣⋅ ⊢d1 v1 ∶ A, and ⋅∣⋅ ⊢d6 t00 ∶ tree (A)). Again by IH, there are c1, . . . , c5

so that ∞ci ≤ bi + ri, with ⋅∣⋅ ⊢ci v′i. Thus, ⋅∣⋅ ⊢d6+∑ ci ⟨t00,trec(t00,save∞0 v′1, . . . )⟩,

and similarly for the rest of the subtrees. This immediately implies

⋅∣⋅ ⊢∑di+4∑ ci (v1, n1, v2, n2, v3, n3, ⟨t00,trec(t00,save∞0 v′1, . . . )⟩, . . . ) ∶ (A⊗N)3⊗(tree (A)&C)4

then by substitution

⋅∣⋅ ⊢∑di+c5+4∑ ci N
′
5[(v1, n1, v2, n2, v3, n3, ⟨t00,trec(t00,save∞0 v′1, . . . )⟩, . . . )/x] ∶ C

The result follows immediately by weakening (∞ci ≤ bi + ri) and IH.

�

Theorem 5.3 (Extraction Preserves Types). If ∆∣Γ ⊢f M ∶ A, then ⟪∆⟫ ,⟪Γ⟫ ⊢ ∥M∥ ∶ ∥A∥

Proof. By induction on ∆∣Γ ⊢f M ∶ A. �

Theorem 5.4 (Bounding Theorem). If ∆∣Γ ⊢f M ∶ A, then M ⊑A ∥M∥

Proof.

● (pack): Suppose ∆∣Γ ⊢f packα=cM ∶ ∃α.A by way of ∆∣Γ ⊢f M ∶ A[c/α]. Let

ω ⊑∆
credit Ω and θ ⊑Γ[ω],σ

sub Θ. We must show that packα=c[ω]M[ω, θ] ⊑∃α.A[ω],f[ω,σ]

(∥M∥c [Ω,Θ], (c[Ω], ∥M∥p [Ω,Θ])). Suppose packα=c[ω]M[ω, θ] ↓(n,r) packα=c[ω]v by

way of M[ω, θ] ↓(n,r) v. It suffices to show

– n + r ≤ ∥M∥c [Ω,Θ]

– packα=c[ω]v ⊑
∃α.A[ω],f[ω,σ]+r
val (c[Ω], ∥M∥p [Ω,Θ])
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The second item is equivalent to proving that c[ω] ≤ c[Ω] (which is true because

credit terms are monotone), and that v ⊑A[c/α,ω],f[ω,σ]+r
val ∥M∥p [Ω,Θ], which follows

immediately by IH.

● (unpack): Suppose that ∆∣Γ ⊢f+g unpack (α,x) = M in N ∶ C by way of ∆∣Γ ⊢f

M ∶ ∃α.A and ∆, α∣Γ, x ∶ A ⊢g+x N ∶ C with α not free in C. Let ω ⊑∆
credit Ω and

θ ⊑Γ[ω],σ
sub Θ. Suppose unpack (α,x) = M[ω, θ] in N[ω, θ] ↓(n1+n2,r1+r2) v by way of

M[ω, θ] ↓(n1,r1) packα=`v1 and N[ω, θ, `/α, v1/x] ↓(n2,r2) v. It suffices to show that

– n1 + n2 + r1 + r2 ≤ ∥M∥c [Ω,Θ] + ∥N∥c [Ω,Θ, π1 ∥M∥p [Ω,Θ]α,π2 ∥M∥p [Ω,Θ]/x]

– v ⊑C[ω],f[ω,σ]+g[ω,σ]+r1+r2
val ∥N∥p [Ω,Θ, π1 ∥M∥p [Ω,Θ]α,π2 ∥M∥p [Ω,Θ]/x]

By IH, M[ω, θ] ⊑∃α.A[ω],f[ω,σ] ∥M∥ [Ω,Θ], and so

– n1 + r1 ≤ ∥M∥c [Ω,Θ]

– packα=`v1 ⊑∃α.A[omega],f[ω,σ]+r1
val ∥M∥p [Ω, Theta]

which means that ` ≤ π1 ∥M∥p [Ω, Theta] and that v1 ⊑A[ω,`/α],f[ω,σ]+r1
val π2 ∥M∥p [Ω, Theta].

Hence, (ω, `/α) ⊑∆,α
credit (Ω, π1 ∥M∥p [Ω,Θ]/α), and (θ, v1/x) ⊑Γ[ω],x∶A[`/α],σ,x↦f[ω,σ]+r1

sub

(Θ, π2 ∥M∥p [Ω,Θ]/x). Thus, by IH,

N[ω, θ, `/α, v1/x] ⊑C[ω],g[ω,σ]+f[ω,σ]+r1 ∥N∥ [Ω,Θ, π1 ∥M∥p [Ω,Θ]/α,π2 ∥M∥p [Ω,Θ]/x]

By definition,

– n2 + r2 ≤ ∥N∥c [Ω,Θ, π1 ∥M∥p [Ω,Θ]/α,π2 ∥M∥p [Ω,Θ]/x]

– v ⊑C[ω],f[ω,σ]+g[ω,σ]+r1+r2
val ∥N∥p [Ω,Θ, π1 ∥M∥p [Ω,Θ]/α,π2 ∥M∥p [Ω,Θ]/x]

as required.

�
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λA rules: ∆∣Γ ⊢f Emp ∶ tree (A)

∆∣Γ ⊢f1 M1 ∶ A ∆∣Γ ⊢f2 M2 ∶ N ∆∣Γ ⊢g1 N1 ∶ tree (A) ∆∣Γ ⊢g2 N2 ∶ tree (A)
∆∣Γ ⊢f1+f2+g1+g2 N(M1,M2,N1,N2) ∶ tree (A)

∆∣Γ ⊢f M ∶ tree (A)

∆∣Γ ⊢g1 N1 ∶!∞0 (1⊸ C)

∆∣Γ ⊢g2 N2 ∶!∞0 (A⊸ C)

∆∣Γ ⊢g3 N3 ∶!∞0 (A⊗N⊗A⊗N ⊗ (tree (A)&C)2 ⊸ C)

∆∣Γ ⊢g4 N4 ∶!∞0 (A⊗N⊗A⊗N ⊗ (tree (A)&C)2 ⊸ C)

∆∣Γ ⊢g5 N5 ∶!∞0 (A⊗N⊗A⊗N ⊗A⊗N(tree (A)&C)4 ⊸ C)

∆∣Γ ⊢f+∑5
i=1 gi

trec (M,N1,N2,N3,N4,N5) ∶ C

M ↓(n1,r1) N(v1, n1,N(v2, n2, t00, t01),N(v3, n3, t10, t11))

N1 ↓(n2,r2) v′1

N2 ↓(n3,r3) v′2

N3 ↓(n4,r4) v′3

N4 ↓(n5,r5) v′4

N5 ↓(n6,r6) save∞0 λx.N ′
5

N ′
5 [(v1, n1, v2, n2, v3, n3, ⟨t00,trec (t00, v

′
1, v

′
2, v

′
3, v

′
4,save

∞
0 λx.N ′

5)⟩, . . . ) /x] ↓(n7,r7) v

trec (M,N1,N2,N3,N4,N5) ↓(∑
7
i=1 ni,∑7

i=1 ri) v

λC rules: Γ ⊢ Emp ∶ tree (T )

Γ ⊢ E1 ∶ T Γ ⊢ E2 ∶ N Γ ⊢ E′
1 ∶ tree (T ) Γ ⊢ E′

2 ∶ tree (T )
Γ ⊢ N(E1,E2,E

′
1,E

′
2) ∶ tree (T )

Γ ⊢ E ∶ tree (T )

Γ ⊢ E1 ∶ 1→ T ′

Γ ⊢ E2 ∶ T → T ′

Γ ⊢ E3 ∶ A ×N ×A ×N × (tree (T ) × T ′)2 → T ′

Γ ⊢ E4 ∶ A ×N ×A ×N × (tree (T ) × T ′)2 → T ′

Γ ⊢ E5 ∶ A ×N ×A ×N ×A ×N × (tree (T ) × T ′)4 → T ′

Γ ⊢ trec (E,E1,E2,E3,E4,E5) ∶ T ′

∥trec (M,N1,N2,N3,N4,N5)∥ = (∥M∥c +∑
5
i=1 ∥Ni∥c)+c

trec(∥M∥p , ∥N1∥p , ∥N2∥p , λ(x,n1, y, n2, (r1, t1), (r2, t2)). ∥N3∥p (x1, n1, y, n2, ((0, r1), t1), ((0, r2), t2)), . . . )

Figure B.1. λA and λC tree extension, and recurrence extraction
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