
Making the Best of a Bad Situation
Inferring Random Generators for Numerical Properties with Multi-Armed Bandits

Joseph W. Cutler

jwc@seas.upenn.edu

University of Pennsylvania

USA

ABSTRACT
Property-Based Testing in the style of QuickCheck has proven to

be a very powerful and useful generalization of traditional software

testing techniques such as unit testing. This power comes at the

cost of requiring users to occasionally write generators: programs

which emit random data satisfying the invariants assumed by the

program under test. While some work exists to derive these gener-

ators directly from the invariants in question, this work is mostly

focused on highly structured data, and often fails to handle the

kinds of numerical invariants that occur commonly in systems pro-

gramming tasks. In this extended abstract, we present an approach

to inferring generators for a restricted class of numerical properties.

1 MOTIVATION
Property-Based Testing (PBT) [2] is a program testing method

which tests logical properties of functions by randomly generating

thousands of inputs, and ensuring that the the properties hold at

each concrete value. Given a property ∀x .P (x ) =⇒ Q (x ), we
generate values satisfying P , and check that they satisfy Q . While

this process is highly automated and requires no user input, users

must occasionally write generators: programs which emit random

data that satisfies the premise P .
Much of the time, this burden can be mitigated by automation,

such as when the data structure being generated is composed en-

tirely of structures that already have generators, or P is described

as an inductive relation [7]. However, the case of inferring gener-

ators for numerical properties—those involving constriants over

numbers— is not well handled by prior work. Numerical properties

appear regularly in systems programming tasks [5] where struc-

tured data described by inductive invariants is rare, inputs regularly

take the form of pointers and integers, and many function precon-

ditions amount to bounds-checking or ensuring that certain fields

in different inputs are equal.

In this extended abstract, we develop a method for inferring

random generators for a small class of numerical properties akin

to the kind commonly found in systems programming. Because

manual generator-writing for numerical properties is especially

tedious, our goal is to infer generators that are comparable to ones

that a user might write as a first cut. The method proceeds by devel-

oping a number of generator “candidates”, expressed in a DSL we

call ALuck, described in Section 2. These candidates mimic the way

that a human might write a generator for numerical preconditions:

by randomly choosing values one variable at a time, constraining

subsequent choices by the previous values chosen. In Section 3, we

show how candidates are chosen from the space of possible ALuck
generators. As we will see, it is sometimes the case that none of
the candidates are all that good. In this case, we must make the

best of a bad situation, and discover the best candidate among the

Figure 1: Syntax of Propositions and Generator Scripts
Expressions e ::= x | e + e | − e | e ∗ e
Relations R ::= = | ≤ | <

Propositions P ::= P ∧ P | eRe

Generator Actions a ::= !x | eRe
Generator Scripts s ::= [] | a :: s

set. A method for this based on the multi-armed bandits problem

[8] is presented in Section 4. Finally, in Section 5, we describe our

implementation of this algorithm and present benchmarks.

2 SYNTAX OF PROPOSITIONS AND ALUCK
The syntax of propositions that we handle are shown in Figure 1.

The variables range over the arguments of the function under test.

The allowable expressions in these inequalities are essentially multi-

linear functions, where each variable occurs with degree at most

one. While this form is restrictive, we have found empirically that

this covers a wide range of preconditions in systems verification.

Moreover, there appears to be no inherent difficulty to extending

the technique to handle other numerical operators (div, mod), and

constraints over structured types like lists: we present the algorithm

as-is to simplify the discussion.

To make the generator inference problem tractable, we fix the

syntactic form of the generators. Our generators are written in a

language called ALuck (for arithmetic Luck) inspired by Luck [6].

Generators written ALuck run by sequentially constraining and

concretizing variables. Every variable in an ALuck generator begins

as a symbolic variable. Constraints over these variables are then

added. Variables can then be concretized, wherein they are replaced

by a random value satisfying the constraints on that variable that

have been accumulated thusfar. The final result of the generator is

a map from variables to their (randomly) chosen values.

More concretely, generators in ALuck are sequences of “con-

cretize" operations, written !x , and “constrain" operations, written

simply as the constraint to be added. This syntax is shown in Fig-

ure 1. These sequences are then evaluated from left to right while

maintaining a pair of mappings: one from concretized variables to

their values, and the other from yet-unconcretized variables to the

set of constraints that have accumulated on them. When a “con-

strain" operation c is encountered, the constraint c is added to the

constraint sets of all of the variables it mentions. If a constraint

mentions no variables, it is checked for valdity: if the constraint is

not valid, the generator fails.

When a “concretize" operation !x is encountered, a value is ran-

domly sampled from the uniform distribution on the set of possible

values
1
denoted by the constraints on x . This semantics is shown

1
Because integers are bounded by machine word lengths, the “uniform distribution"

does make sense here, even for unconstrained variables.



Cutler

Figure 2: Generation Semantics
v ∼ U (⟦C (x )⟧) V {x 7→ v},C ⊢ s ⇓ V ′,C ′

V ,C ⊢!x :: s ⇓ V ′,C ′

C ′(x ) = C (x ) ∪ {c} V ,C ′ ⊢ s ⇓ V ′,C ′′

V ,C ⊢ c (x ) :: s ⇓ V ′,C ′′
V ⊨ c V ,C ⊢ s ⇓ V ′,C ′

V ,C ⊢ c :: s ⇓ V ′,C ′

in Figure 2, where the judgment V ,C ⊢ s ⇓ V ′,C ′ means that the

script s evaluates under concretized-variable-mapV and constraint

mapC , and returns updated variable and constraint mapsV ′ andC ′.
We note that this semantics is partial, as generators can fail when

attempting to concretize a variable whose constraints are unsatisfi-

able. This is crucial: different generators for the same property can

fail more or less often, and we would like to infer generators which

fail infrequently.

To make the sampling step tractable, we enforce that our ALuck
programs be “well-concretized": when !x occurs, all variables which

occur in constraints with x must already have been concretized.

3 GENERATOR CANDIDATE INFERENCE
The first step in our algorithm is to infer a set of generators from

a given predicate. We begin by noting that every ordering of the

variables in a property immediately determines a well-concretized

generator: this procedure is shown in the Appendix in Algorithm 1.

In essence, the procedure works by placing all of the constraints

that could possibly appear before a concretization immediately

before it.

Because of this, to infer generators for a property P , it suffices

to generate orderings of its variables. Unfortunately, for a property

P with n free variables, there are n! such orderings. We can prune

this search space by only looking for “relevant" orderings. If some

variables are not related to others, the well-concretization condition

won’t care about the relative order in which they’re generated.

To operationalize this insight, we build a graph G (P ) whose
nodes are variables with an edge (x ,y) when x and y both occur in

one of the conjuncts of P . In this graph, “unrelated” variables live in

different connected components. Then, to generate a concretization

ordering, we depth-first search G (P ), randomly choosing the next

neighbor to explore, and list variables in the order that they’re

visited in the graph. Since different connected components are

listed separately, concretizations of unrelated variables will not

occur together.

To generate our set of generator candidates, we repeatedly run

this randomDFS procedure. This may give repeated generators, and

so we filter the result for uniqueness. The number of generators

in our set requires a careful balance. Too few and the set may

not contain a generator which succeeds often enough to rapidly

generate our desired number of unique inputs. Too many and the

learning algorithm will converge too slowly to the best generator in

the set. Empirically, we have found that n2 (where n is the number

of variables in P ) is a number of generators to take.

4 GENERATOR LEARNINGWITH BANDITS
ALGORITHMS

With our bag of generators in hand, we now need to find the best

one. The approach we take will be inspired by the Multi-Armed

Bandits [4] problem from the theory of reinforcement learning. In

short, the Multi-Armed Bandits problem describes a game where

an algorithm is repeatedly presented a fixed set of choices. Each

choice gives a different (random) reward, and the goal of the game

is to maximize the total reward. Solving this optimization problem

online is too difficult in an adversarial setting, so algorithms for the

multi-armed bandits problem aim to instead minimize regret: how
much worse their total reward was than the total reward from the

best single choice in hindsight. To achieve this, bandits algorithms

learn which actions have historically given more reward, and play

thosemore frequently. In our setting, the “choices" are our generator

candidates, and the rewards are given by success or failure of a

generator to yield a value. Under this analogy, an algorithm for the

Multi-Armed Bandits problem will let us learn which generators

give the best results while simultaneously generating a stream of

valid inputs for the function.

The algorithm we will use is called UCB1 [1]. While more so-

phisticated bandits algorithms exist, this one is sufficient for our

purposes. When given a list of generators д1, . . .дk and a number

of roundsT to run for, UCB1 runs the generators дi in a way that at-

tempts to learn which generator succeds the most frequently, while

also attempting to not waste time by running failing generators too

much. In the end, UCB1 emits them ≤ T successfully-generated

values over the course of its run. The main upshot is that the ratio

success ratio
m
T of this derived generator should, in the limit, be no

worse than the best generator the algorithm was given.

Theorem 4.1. Fix a property P and generators д1, . . . ,дK , where
дi succeeds with probability at least pi . Then,

lim

T→∞
E
[
1

T
��ucb1(д1, . . . ,дK , P ,T )��

]
≥ max

i
pi

In other words, the stream of values emitted by an “infinite run"

of UCB1 acts like
2
a generator for P which succeeds with probability

at least maxi pi .

5 IMPLEMENTATION, RESULTS, AND
FUTUREWORK

I have implemented the generator inference algorithm described in

this abstract, as well as a deductive program verifier (a la Dafny or

Frama-C [3, 9]) for the IMP language which uses these generators

as a verification backend. The code is available here.

In Table ??, we present some results. In each trial, we run the

generration algorithm on the specified constraint five times for

T = 1000 iterations. The largest issue is the performance differences

between the runs on the proposition 0 ≤ x ≤ y ≤ 100 with and

without explicitly including the implicand x ≤ 100. The “best"

generator for the proposition without it samples an arbitrary x ≥ 0,

which is very unlikely to leave room for some y satisfying x ≤ y ≤
100. Including the added constraint ensures that we leave space

with our initial choice of x . We leave resolving this to future work.

2
In theory, the difference

���
1

T E [ |ucb1 |] −maxi pi
��� converges likeO

(
logT
T

)
[1, Theo-

rem 1]. Empirically, we have found this to be quite rapid.

https://github.com/jdublu10/triple-testing


Making the Best of a Bad Situation

Constraint K R U

x = y + z ∧ x ,y, z ≥ 0 5 506 494

x = y + z ∧ x ≥ y ∧ x ,y, z ≥ 0 4 48.6 951.4

x − y ≤ 5 ∧ x − y ≤ 10 ∧ y − z ≤ 2 3.8 26.2 831

0 ≤ x ≤ y ≤ 100 2 993.4 6.6

0 ≤ x ≤ y ≤ 100 ∧ x ≤ 100 2 11 831

Table 1: Results. K = average number of unique scripts, R
= average number of failed draws, U = average number of
unique values generated.



Cutler

REFERENCES
[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the

multiarmed bandit problem. Machine learning, 47(2):235–256, 2002.
[2] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random

testing of haskell programs. SIGPLAN Not., 35(9):268–279, sep 2000.

[3] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,

and Boris Yakobowski. Frama-c. In George Eleftherakis, Mike Hinchey, and

Mike Holcombe, editors, Software Engineering and Formal Methods, pages 233–247,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[4] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the
Royal Statistical Society: Series B (Methodological), 41(2):148–164, 1979.

[5] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving practical

distributed systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, page 1–17, New York, NY, USA, 2015. Association for

Computing Machinery.

[6] Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Ben-

jamin C. Pierce, and Li-yao Xia. Beginner’s Luck: a language for property-based

generators. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages
114–129, 2017.

[7] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. Generat-

ing good generators for inductive relations. Proc. ACM Program. Lang., 2(POPL),
dec 2017.

[8] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University

Press, 2020.

[9] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-

ness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, pages 348–370, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.



Making the Best of a Bad Situation

APPENDIX

Algorithm 1 Generator from an ordering

function constructGenerator(xs ,P )
Pconst ← conjuncts in P mentioning only one variable

P ← P without Pconst
s ← Pconst
ys ← []

for x ∈ xs do
P ′ ← conjuncts in P mentioning x and variables in ys
s ← append(s ,append(c ′,!x ))
P ← P without P ′

ys ← append(ys ,x )
end for
s ← append(s ,P )
return s

end function

Bandits and UCB1
The Multi-Armed Bandits problem is described as the following

repeated game: at each round t , the player plays an action at ∈ [K],
and receives a reward Xat ,t , which is a {0, 1}-valued random vari-

able. The random variables Xi,t are IID for fixed i , and independent
for fixed t . We write the mean of the ith reward variable (for all t )
µi . The goal of the game is to maximize one’s reward, and so the

goal of a bandits learning algorithm is to learn an adaptive policy,

which takes a history of play up until state t (all actions at ′ and
received rewards Xat ′,t ′ for t

′ < t ), and produces a new action at .
The metric by which we compare bandits algorthms is regret: how
much worse they do than the best policy in hindsight.

Definition 1 (Regret). Define i⋆ = argmaxi µi , and write µ⋆ =
µi⋆ . The regret R (A) of an algorithm A over T rounds is defined as

R (A) = T µ⋆ − E


T∑
t=1

XA(t ),t



Theorem 4.1. Fix a property P and generators д1, . . . ,дK , where
дi succeeds with probability at least pi . Then,

lim

T→∞
E
[
1

T
��ucb1(д1, . . . ,дK , P ,T )��

]
≥ max

i
pi

Proof. We begin by noting that rt = 1 in an iteration if and only

if an element is added to the output list in stage t . Therefore, the
length of the output

��ucb1(д1, . . . ,дK , P ,T )�� is precisely the sum of

the ({0, 1}-valued) rt ,
∑T
t=1 rt . In the notation of the bandit problem,

rt is the (revealed) value of the random variable XA(t ),t , and so

E [��ucb1(д1, . . . ,дK , P ,T )��] = E


T∑
t=1

rt


= E



T∑
t=1

Xucb1(t ),t


.

But then by the definition of regret,

E


T∑
t=1

Xucb1(t ),t


= T µ⋆ − R (ucb1)

Algorithm 2 Learn a Generator

function ucb1(generators д1, . . . ,дK , property P , rounds T )
for i = 1...K do

xi ← sample(дi )
µ̂i ← 1 if P (xi ), 0 otherwise
ni ← 1

end for
X ← []

for t = 1...T do
j ← argmaxi µ̂i +

√
2 log t
ni

x ← sample(дj )
if P (x ) then

rt ← 1

X ← snoc(X ,x )
else

rt ← 0

end if
µ̂ j ← µ̂ j + rt
nj ← nj + 1

end for
end function

The regret bound for UCB1 [8, Theorem 7.2] states thatR (ucb1) ∈

O
(√

KT logT
)
.

Then, dividing through by T , using the regret bound for UCB1,

and the fact that pi ≥ µi , we have that:

E


1

T

T∑
t=1

Xucb1(t ),t


= µ⋆ −

R (ucb1)

T

≥ µ⋆ −O *
,

√
K logT

T
+
-

≥ max

i
pi −O *

,

√
K logT

T
+
-

which approaches maxi pi as T → ∞. □


	Abstract
	1 Motivation
	2 Syntax of Propositions and ALuck
	3 Generator Candidate Inference
	4 Generator Learning with Bandits Algorithms
	5 Implementation, Results, and Future Work
	References

