Making the Best of a Bad Situation
Inferring Random Generators for Numerical Properties with Multi-Armed Bandits

Joseph W. Cutler
jwc@seas.upenn.edu
University of Pennsylvania
USA

ABSTRACT
Property-Based Testing in the style of QuickCheck has proven to be a very powerful and useful generalization of traditional software testing techniques such as unit testing. This power comes at the cost of requiring users to occasionally write generators: programs which emit random data satisfying the invariants assumed by the program under test. While some work exists to derive these generators directly from the invariants in question, this work is mostly focused on highly structured data, and often fails to handle the kinds of numerical invariants that occur commonly in systems programming tasks. In this extended abstract, we present an approach to inferring generators for a restricted class of numerical properties.

1 MOTIVATION
Property-Based Testing (PBT) [2] is a program testing method which tests logical properties of functions by randomly generating thousands of inputs, and ensuring that the the properties hold at each concrete value. Given a property \(\forall x. P(x) \Rightarrow Q(x) \), we generate values satisfying \(P \), and check that they satisfy \(Q \). While this process is highly automated and requires no user input, users must occasionally write generators: programs which emit random data that satisfies the premise \(P \).

Much of the time, this burden can be mitigated by automation, such as when the data structure being generated is composed entirely of structures that already have generators, or \(P \) is described as an inductive relation [7]. However, the case of inferring generators for numerical properties—those involving constraints over numbers—is not well handled by prior work. Numerical properties appear regularly in systems programming tasks [5] where structured data described by inductive invariants is rare, inputs regularly take the form of pointers and integers, and many function preconditions amount to bounds-checking or ensuring that certain fields in different inputs are equal.

In this extended abstract, we develop a method for inferring random generators for a small class of numerical properties akin to the kind commonly found in systems programming. Because manual generator-writing for numerical properties is especially tedious, our goal is to infer generators that are comparable to ones that a user might write as a first cut. The method proceeds by developing a number of generator “candidates”, expressed in a DSL we call ALuck, described in Section 2. These candidates mimic the way that a human might write a generator for numerical preconditions: by randomly choosing values one variable at a time, constraining subsequent choices by the previous values chosen. In Section 3, we show how candidates are chosen from the space of possible ALuck generators. As we will see, it is sometimes the case that none of the candidates are all that good. In this case, we must make the best of a bad situation, and discover the best candidate among the

2 SYNTAX OF PROPOSITIONS AND ALUCK
The syntax of propositions that we handle are shown in Figure 1. The variables range over the arguments of the function under test. The allowable expressions in these inequalities are essentially multilinear functions, where each variable occurs with degree at most one. While this form is restrictive, we have found empirically that this covers a wide range of preconditions in systems verification. Moreover, there appears to be no inherent difficulty to extending the technique to handle other numerical operators (div, mod), and constraints over structured types like lists: we present the algorithm as-is to simplify the discussion.

To make the generator inference problem tractable, we fix the syntactic form of the generators. Our generators are written in a language called ALuck (for arithmetic Luck) inspired by Luck [6]. Generators written ALuck run by sequentially constraining and concretizing variables. Every variable in an ALuck generator begins as a symbolic variable. Constraints over these variables are then added. Variables can then be concretized, wherein they are replaced by a random value satisfying the constraints on that variable that have been accumulated thusfar. The final result of the generator is a map from variables to their (randomly) chosen values.

More concretely, generators in ALuck are sequences of “concretize” operations, written ‘!x’, and “constraint” operations, written simply as the constraint to be added. This syntax is shown in Figure 1. These sequences are then evaluated from left to right while maintaining a pair of mappings: one from concretized variables to their values, and the other from yet-unconcretized variables to the set of constraints that have accumulated on them. When a “constraint” operation \(c \) is encountered, the constraint \(c \) is added to the constraint sets of all of the variables it mentions. If a constraint mentions no variables, it is checked for validity: if the constraint is not valid, the generator fails.

When a “concretize” operation \(!x \) is encountered, a value is randomly sampled from the uniform distribution on the set of possible values\(^1\) denoted by the constraints on \(x \). This semantics is shown

\(^{1}\) Because integers are bounded by machine word lengths, the “uniform distribution” does make sense here, even for unconstrained variables.
in Figure 2, where the judgment $V, C + s \Downarrow V', C'$ means that the
script s evaluates under concretized-variable-map V and constraint
map C, and returns updated variable and constraint maps V' and C'. We
note that this semantics is partial, as generators can fail when
attempting to concretize a variable whose constraints are unsatisfi-
able. This is crucial: different generators for the same property can
fail more or less often, and we would like to infer generators which
fail infrequently.

To make the sampling step tractable, we enforce that our ALUck
programs be "well-concretized": when x occurs, all variables which
occur in constraints with x must already have been concretized.

3 GENERATOR CANDIDATE INFERENCE

The first step in our algorithm is to infer a set of generators from a
given predicate. We begin by noting that every ordering of the
variables in a property immediately determines a well-concretized
generator: this procedure is shown in the Appendix in Algorithm 1.
In essence, the procedure works by placing all of the constraints
that could possibly appear before a concretization immediately
before it.

Because of this, to infer generators for a property P, it suffices to
generate orderings of its variables. Unfortunately, for a property
P with n free variables, there are $n!$ such orderings. We can prune
this search space by only looking for "relevant" orderings. If some
variables are not related to others, the well-concretization condition
won't care about the relative order in which they're generated.

To operationalize this insight, we build a graph $G(P)$ whose
nodes are variables with an edge (x, y) when x and y both occur in
one of the conjuncts of P. In this graph, "unrelated" variables live in
different connected components. Then, to generate a concretization
ordering, we depth-first search $G(P)$, randomly choosing the next
neighbor to explore, and list variables in the order that they're
visited in the graph. Since different connected components are
listed separately, concretizations of unrelated variables will not
occur together.

To generate our set of generator candidates, we repeatedly run
this random DFS procedure. This may give repeated generators, and
so we filter the result for uniqueness. The number of generators
in our set requires a careful balance. Too few and the set may
not contain a generator which succeeds often enough to rapidly
generate our desired number of unique inputs. Too many and the
learning algorithm will converge too slowly to the best generator in
the set. Empirically, we have found that n^2 (where n is the number of
variables in P) is a number of generators to take.

4 GENERATOR LEARNING WITH BANDITS ALGORITHMS

With our bag of generators in hand, we now need to find the best
one. The approach we take will be inspired by the Multi-Armed
short, the Multi-Armed Bandits problem describes a game where
an algorithm is repeatedly presented a fixed set of choices. Each
choice gives a different (random) reward, and the goal of the game is
to maximize the total reward. Solving this optimization problem
online is too difficult in an adversarial setting, so algorithms for the
multi-armed bandits problem aim to instead minimize regret: how
much worse their total reward was than the total reward from the
best single choice in hindsight. To achieve this, bandit algorithms
learn which actions have historically given more reward, and play
those more frequently. In our setting, the "choices" are our generator
candidates, and the rewards are given by success or failure of a
generator to yield a value. Under this analogy, an algorithm for the
Multi-Armed Bandits problem will let us learn which generators
give the best results while simultaneously generating a stream of
valid inputs for the function.

The algorithm we will use is called UCB1 [1]. While more so-
plicated algorithms exist, this one is sufficient for our purposes.
When given a list of generators g_1, \ldots, g_K, and a number of
rounds T to run for, UCB1 runs the generators g_i in a way that
attempts to learn which generator succeeds the most frequently, while
also attempting to not waste time by running failing generators too
much. In the end, UCB1 emits the $m \leq T$ successfully-generated
values over the course of its run. The main upshot is that the ratio
success ratio $\frac{m}{T}$ of this derived generator should, in the limit, be
no worse than the best generator the algorithm was given.

Theorem 4.1. Fix a property P and generators g_1, \ldots, g_K, where
g_i succeeds with probability at least p_i. Then,

$$\lim_{T \to \infty} \frac{1}{T} \left| \text{ucb1}(g_1, \ldots, g_K, P, T) \right| \geq \max_i p_i$$

In other words, the stream of values emitted by an "infinite run"
of UCB1 acts like a generator for P which succeeds with probability
at least $\max_i p_i$.

5 IMPLEMENTATION, RESULTS, AND
FUTURE WORK

I have implemented the generator inference algorithm described in
this abstract, as well as a deductive program verifier (a la Dafny or
Frama-C [3, 9]) for the IMP language which uses these generators
as a verification backend. The code is available here.

In Table ??, we present some results. In each trial, we run the
generation algorithm on the specified constraint five times for
$T = 1000$ iterations. The largest issue is the performance differences
between the runs on the proposition $0 \leq x \leq y \leq 100$ with and
without explicitly including the implicand $x \leq 100$. The "best"
generator for the proposition without it samples an arbitrary $x \geq 0$,
which is very unlikely to leave room for some y satisfying $x \leq y \leq
100$. Including the added constraint ensures that we leave space
with our initial choice of x. We leave resolving this to future work.

\footnote{In theory, the difference $\frac{1}{T} \left| \text{ucb1} \right| - \max_i p_i$ converges like $O \left(\frac{\log T}{T} \right)$ [1, Theo-
rem 1]. Empirically, we have found this to be quite rapid.}
Making the Best of a Bad Situation

\[
x = y + z \land x, y, z \geq 0
\]
\[
x = y + z \land x \geq y \land x, y, z \geq 0
\]
\[
x - y \leq 3 \land x - y \leq 10 \land y - z \leq 2
\]
\[
0 \leq x \leq y \leq 100
\]
\[
0 \leq x \leq y \leq 100 \land x \leq 100
\]

Table 1: Results. \(K \) = average number of unique scripts, \(R \) = average number of failed draws, \(U \) = average number of unique values generated.
REFERENCES

APPENDIX

Algorithm 1 Generator from an ordering

function constructGenerator(xs,P)
 P Const ← conjuncts in P mentioning only one variable
 P ← P without P Const
 s ← P Const
 y s ← []
 for x ∈ xs do
 P′ ← conjuncts in P mentioning x and variables in ys
 s ← append(s,append(c!,x))
 P ← P without P'
 ys ← append(ys,x)
 end for
 s ← append(s,P)
 return s
end function

Bandits and UCB1

The Multi-Armed Bandits problem is described as the following repeated game: at each round t, the player plays an action a t ∈ [K], and receives a reward X A t , which is a [0,1]-valued random variable. The random variables X A t are IID for fixed i, and independent for fixed t. We write the mean of the i-th reward variable (for all t) µ i. The goal of the game is to maximize one’s reward, and so the goal of a bandits learning algorithm is to learn an adaptive policy, which takes a history of play up until state t (all actions a t and received rewards X A t , t’ for t’ < t), and produces a new action a t. The metric by which we compare bandits algorithms is regret: how much worse they do than the best policy in hindsight.

Definition 1 (Regret). Define i* = arg max i µ i, and write µ* = µ i*. The regret R(A) of an algorithm A over T rounds is defined as

R(A) = T µ* − E \left[\sum_{t=1}^{T} X_{A(t),t} \right]

Theorem 4.1. Fix a property P and generators g 1 , . . . , g K , where g i succeeds with probability at least p i. Then,

\lim_{T→∞} E \left[\frac{1}{T} \left| ucb1(g 1 , . . . , g K , P,T) \right| \right] ≥ \max_{i} p i

Proof. We begin by noting that r t = 1 in an iteration if and only if an element is added to the output list in stage t. Therefore, the length of the output |ucb1(g 1 , . . . , g K , P,T)| is precisely the sum of the ((0,1)-valued) r t, Σ t=1 r t. In the notation of the bandit problem, r t is the (revealed) value of the random variable X A(t), and so

E \left[|ucb1(g 1 , . . . , g K , P,T)| \right] = E \left[\sum_{t=1}^{T} r t \right] = E \left[\sum_{t=1}^{T} X_{ucb1(t),t} \right]

But then by the definition of regret,

E \left[\sum_{t=1}^{T} X_{ucb1(t),t} \right] = T µ* − R(ucb1)

Algorithm 2 Learn a Generator

function ucb1 (generators g 1 , . . . , g K , property P, rounds T)
 for i = 1..K do
 x i ← sample(g i)
 \hat{µ} i ← 1 if P(x i), 0 otherwise
 n i ← 1
 end for
 for t = 1..T do
 j ← arg max \hat{µ} j + \sqrt{\frac{2 log T}{n j}}
 x ← sample(g j)
 if P(x) then
 \hat{r} t ← 1
 X ← snoc(X,x)
 else
 \hat{r} t ← 0
 end if
 \hat{µ} j ← \hat{µ} j + \hat{r} t
 n j ← n j + 1
 end for
end function

The regret bound for UCB1 [8, Theorem 7.2] states that R(ucb1) ∈ O(√KT log T).

Then, dividing through by T, using the regret bound for UCB1, and the fact that p i ≥ µ i, we have that:

E \left[\frac{1}{T} \sum_{t=1}^{T} X_{ucb1(t),t} \right] = µ* − \frac{R(ucb1)}{T} ≥ µ* − O \left(\sqrt{\frac{K log T}{T}} \right) ≥ \max_{i} p i − O \left(\sqrt{\frac{K log T}{T}} \right)

which approaches max i p i as T → ∞. □