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Abstract
In this extended abstract, we present amethod for structuring
type soundness proofs in Dafny to improve proof stability. As
a case study, we apply the method to proving type soundness
for a small expression language, and demonstrate empirically
how it improves resource usage metrics known to correlate
with stability. Our method can scale to realistic proofs, as
demonstrated by its use in the type soundness proof of the
Cedar language.
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1 Introduction
Type soundness proofs for strongly-typed programming lan-
guages are often carried out in type-theory based proof
assistants like Coq or Agda. However, recent small-scale
experiements [4] and large-scale mechanized metatheory
developments [7]. have shown that Dafny can also encode
type soundness proofs. In these developments, Dafny serves
both as the host language in which the target language is im-
plemented, and a program verifier in which the mechanized
proof is completed.
The target language semantics is implemented in Dafny

is by way of a definitional interpreter [5], a function eval
which takes a term e in the target language, and returns
either an error, or the value v the term evaluates to. In prin-
ciple, this implements some abstract semantics defined by
inference rules on paper: a semantic judgment e ↓ v holds if
and only if eval(e) = Ok(v).
The other half of a language implementation is a type-

checker: a boolean function check that takes a term e and a
type t, and returns true or false if e has type t. Again, this
implements some abstract typing judgment ⊢ e : t, which is
defined by way of inference rules on paper.

The goal of a type soundness proof is then to demonstrate
that well-typed programs do not go wrong:

⊢ e : t =⇒ ∃v. (e ↓ v ∧ v : t)
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for some value v of type t. When proven on paper, this proof
proceeds by an induction on the typing derivation of ⊢ e : t.
For each rule defining the typing judgment, we prove that
if the premises do not go wrong, then the conclusion also
does not go wrong. Meanwhile, a mechanized proof of this
fact in Dafny takes the form of a lemma which requires
check(e,t), and ensures that eval(e) = Ok(v) and that v
has type t. The proof of this lemma necessarily looks like a
pattern-match on the term e, making recursive calls on the
subterms to establish the inductive hyoptheses. For syntax-
directed type systems of the sort we will consider in this
extended abstract1, the structure of these two kinds of proofs
are the same: each case of the pattern match encodes the
proof case for the typing rule of the corresponding syntactic
form.
The size of a type soundness proof in Dafny grows lin-

early with the size of the language; more language features
and more expressions mean more cases. This can make it
hard to ensure that the proof is stable. Unlike mechanized
metatheory developments in tools backed by a type-theoretic
proof checker, Dafny’s SMT-backed verification can be un-
stable: the result of verifying the type soundness theorem
can change, from verified to unverified, due to minor (and
even unrelated) changes to the code. Unfortunately, folowing
the proof structure described above leads to very unstable
proofs in Dafny. Anecdotally, we have found it impossible to
scale this kind of proof to anything approximating a realistic
language without encountering enormous proof instability
barriers.

In this extended abstract, we give a recipe for mechanized
type soundness proofs in Dafny which ensures proof stabil-
ity. By giving partial specifications of the evaluator and type
checker, and proving type soundness relative to those speci-
fications, we can eliminate much of the variance in resource
usage. Our technique also scales to realistic-size languages,
as witnessed by its use to verify the type soundness proof of
the Cedar language [6].

In Section 2, we present the technique by walking through
a traditional-style proof of type soundness in Dafny. Then
in Section 3, we evaluate the technique comparing empirical

1Strictly speaking, this is not a restriction of our technique. By far the most
common way to implement a non-syntax-directed type system is to build
a syntax-directed version, prove the two versions equivalent, and then
implement the syntax-directed one.
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function eval(env : Env , e : Term) :
Result <Val ,EvErr>

{
match e {

...
case Add(e1,e2) =>

var n1 :- evalInt(env ,e1);
var n2 :- evalInt(env ,e2);
Ok(IntVal(n1 + n2))

}
}

Figure 1. The eval function, with the case for Add

metrics of proof stability against other methods of struc-
turing type soundness proofs, and other ways of writing a
typechecker. Lastly, in Section 4, we discuss how our tech-
nique has been deployed in practice, speculate about how it
can be applied to even more complex languages including
Cedar, and discuss the limitations and drawbacks.

2 Stable Type Soundness Proofs
For a running example, let’s consider the first-order expres-
sion language we use for our evaluation in Section 3. The
full language definition, as well as the interpreter and all of
the different typecheckers we evaluate can be found in the
attached supplementary materials. The language has types
for integers, booleans, and records, all given as the Dafny
type Ty. For terms, we have variables (represented as strings,
since the langauge has no binders), addition, subtraction,
division, and, or, conditionals, and record expressions and
projections. These are all represented by a Dafny ADT Term,
which has a variant for each syntactic form. To demonstrate
how the language works, and how our technique applies, we
focus on just the behavior of the addition operation.
The language’s semantics is implemented by a function

eval(env,e) which takes an environment mapping vari-
ables to their values and a term, and returns either (a) the
value the term evaluates to, or (b) an evaluation error, which
can be a division by zero error or a runtime type error.
The function header for the eval function is shown in

Figure 1. The function evalInt is a helper that calls eval,
and then pattern matches on the result, returning n if it was
IntVal(n), and throwing a runtime type error otherwise.
Terms are typed in a context mapping variables to their

types, with a typechecking implemented by a program check(ctx,e,t)
which calls an inference function infer, and then checks
if the result is equal to t. Code for check and the Add case
for infer are shown in Figure 2, where inferIntTy calls
infer, and throws a type error if the result is anything but
IntTy.

function check(ctx : Ctx , e : Term , t : Ty)
: Result <(),TckErr > {

var t' :- infer(ctx ,e);
if t == t' then Ok(()) else Err(TckErr)

}

function infer(ctx : Ctx , e : Term) :
Result <Ty,TckErr > {

match e {
...
case Add(e1,e2) =>

var _ :- inferIntTy(ctx ,e1);
var _ :- inferIntTy(ctx ,e2);
Ok(IntTy)

}
}

Figure 2. The check and infer functions, with the case for
Add

A First Cut
For this language, type soundness means the following. If
e checks against t in context ctx and the environment env
agrees with the context ctx, then e either evaluates under
the environment env to a value of type t, or it results in a
division by zero error (but not a runtime type error). This
lemma is encoded in dafny as the sound lemma in Figure 3,
along with auxiliary definitions: envHasCtx is the predicate
saying that the environment agrees with the context, and
isSafe(env,e,t) encodes the conclusion of the theorem.

To prove the sound lemma, we induct on the term e. The
case of sound for Add(e1,e2) is illustrative. We make two
recursive calls to the lemma to introduce the inductive hy-
potheses, and the solver takes care of the rest.
The reasoning that the solver takes care of under the

hood is somewhat involved. Getting from the assumption
check(ctx,Add(e1,e2),t).Some? to the IH preconditions
check(ctx,e1,IntTy).Some? and check(ctx,e2,IntTy).Some?
requires reasoning about the (potentially complex) code
for check and infer. Similarly, getting from the IH results
isSafe(env,e1,IntTy) and isSafe(env,e2,IntTy) to the
conclusion isSafe(env,Add(e1,e2),t) requires reasoning
through the code for eval to determine the possible ways
Add(e1,e2) evaluates when e1 and e2might either evaluate
to values or raise division-by-zero errors.

Finding Stability
Unfortunately, as we’ll see in Section 3, this proof approach
is not stable. We realized this while attemping to scale this
style of proof up to a realistic language. With enough opera-
tions and language features, the proof resource usage varies
wildly between runs, enough that the verification will fail
unpredictably. At its core, this instability arises from all of
the afformentioned unguided reasoning the solver has to
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lemma sound(env : Env , ctx : Ctx , e : term ,
t : Ty)

requires envHasCtx(env ,ctx)
requires check(ctx ,e,t).Some?
ensures isSafe(env ,e,t)

{
match e {

...
case Add(e1,e2) =>

sound(env ,ctx ,e1,IntTy);
sound(env ,ctx ,e2,IntTy);

}
}

predicate envHasCtx(env : Env , ctx : Ctx) {
forall x :: x in ctx ==>

x in env &&
valHasType(env[x],ctx[x])

}

predicate isSafe(env : Env , e : Term , t :
Ty){

(eval(env ,e).Ok? &&
valHasType(eval(env ,e).value ,t))

||
(eval(env ,e).Err? && eval(env ,e).error ==

DivByZero)
}

Figure 3. The sound lemma with the case for Add, and aux-
iliary definitions

do about the code of the typechecker and evaluator, to get
from the premise of the lemma to the premises of the IH,
and then from the conclusions of the IH to the conclusion
of the case. A patchwork solution is to add guidance in the
form of assertions around the recursive calls, to spell out the
intermediate steps more directly.
The common solution to dealing with proof instability

is to specify the functions involved in the proof, and then
make the functions themselves opaque. This way, the solver
can only interact with the functions though the specifica-
tion, cutting down the search space of possible proofs and
hence improving stability. Moreover, if the specifications are
written in the form of separate lemmas, the programmer can
control how and when different parts of the function’s sep-
cification is revealed to the solver. In this case, the dilemma
is that it’s not at all clear which functions to make opaque,
and how we should specify them.

Inspiration comes from noticing that sound depends only
on facts about the safety predicate isSafe, and not directly
on facts about evaluation. In fact, the only facts it needs
about isSafe are that in every case, the results of the IH
calls jointly imply the conclusion. To illustrate, the addi-
tion case for type soundness holds for any safety predicate

lemma addIsSafe(env : Env , e1 : Expr , e2 :
Expr)

requires isSafe(env ,e1,IntTy)
requires isSafe(env ,e2,IntTy)
ensures isSafe(env ,Add(e1,e2),IntTy)

{reveal isSafe (); ...}

Figure 4. Add Compatibility Lemma

ctx ⊢ e1 : IntTy ctx ⊢ e2 : IntTy
ctx ⊢ Add(e1,e2) : IntTy

isSafe(env,e1,IntTy) isSafe(env,e1,IntTy)

isSafe(env,Add(e1,e2),IntTy)
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

Figure 5. Addition Typing Rule, and the Corresponding
Compatibility Lemma

isSafe — even an opaque one — which has the property
that isSafe(env,e1,IntTy) and isSafe(env,e2,IntTy)
together imply isSafe(env,Add(e1,e2),IntTy).
This lemma, shown as addIsSafe in Figure 4 is a kind

of “compatibility lemma”, stating that safe terms can be
built from smaller safe terms. The upshot from this is that if
we make the isSafe predicate opaque, the Add case of the
soundess theorem goes through with only minor modifica-
tion, adding a call to addIsSafe after the uses of IH.

lemma sound(env : Env , ctx : Ctx , e : term ,
t : Ty)

requires envHasCtx(env ,ctx)
requires check(ctx ,e,t).Some?
ensures isSafe(env ,e,t)

{
match e {

...
case Add(e1,e2) =>

sound(env ,ctx ,e1,IntTy);
sound(env ,ctx ,e2,IntTy);
addIsSafe(env ,e1,e2);

}
}

One way of thinking about the addIsSafe lemma is that
it says that the safety predicate interprets the typing rule for
addition. By replacing all instances of the typing judgent in
the rule for Addition that the case of infer for Add(e1,e2)
implements, we arrive at the required addIsSafe compati-
bility lemma: this is demonstrated in Figure 5. In short, all
that’s required for a given safety predicate to hold for every
well-typed term is that it interprets every typing rule in the
language. This suggests the following technique:
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lemma invertAddCheck(ctx : Ctx , e1 :
Term , e2 : Term)

requires invert(ctx ,Add(e1,e2),t).Ok?
ensures check(ctx ,e1,IntTy).Ok?
ensures check(ctx ,e2,IntTy).Ok?
ensures t == IntTy

{ reveal infer(); reveal check(); }

Figure 6. Inversion Lemma for Addition

1. Make the safety predicate opaque, preventing the solver
from directly reasoning about the interpreter in the
type safety proof.

2. Prove “safety compatibility lemmas” for every typing
rule, demonstrating that if the safety predicate holds
of all the premises, it holds of the conclusion.

3. Write the type soundness proof, inserting calls to each
case’s corresponding compatibility lemma, just after
the recursive calls to IH.

Going Further with Inversion Lemmas
Even with this modification, the type soundness proof still
requires the solver to do complex reasoning about the code
of the typechecker. To eliminate this unguided reasoning,
we must find a way to specify the typechecker enough to
make it opaque, and have the main soundness proof refer
only to the specification lemmas.
Our solution again comes from an analysis of what the

solver needs to know about check in each case. In the Add(e1,e2)
case, the solvermust reason from check(ctx,Add(e1,e2),t).Ok?
to check(ctx,e1,IntTy).Ok? and check(ctx,e2,IntTy).Ok?
for the preconditions of the IH to hold, essentially running
the code of infer and check in reverse. This kind of reason-
ing corresponds to what’s known in the type systems litera-
ture as inversion principles: theorems that state that if the a
compound syntactic form (like Add(e1,e2)) is well-typed,
then its component forms (here, e1 and e2) are well-typed.
Moreover, this inversion lemma, shown in Figure 6 is slightly
stronger, saying that the type t in question must have been
IntTy.
This then allows us to make the check and infer func-

tions opaque, andmodify the proof of the soundness theorem
once more to add a call to this inversion lemma before the
calls to IH.
lemma sound(env : Env , ctx : Ctx , e : term ,

t : Ty)
requires envHasCtx(env ,ctx)
requires check(ctx ,e,t).Some?
ensures isSafe(env ,e,t)

{
match e {

...
case Add(e1,e2) =>

invertAddCheck(ctx ,e1,e2);

sound(env ,ctx ,e1,IntTy);
sound(env ,ctx ,e2,IntTy);
addIsSafe(env ,e1,e2);

}
}

This gives us the final recipe for our technique:
1. Make the safety predicate opaque, preventing the solver

from directly reasoning about the interpreter in the
type safety proof.

2. Prove safety compatibility lemmas for every typing
rule, demonstrating that if the safety predicate holds
of all the premises, it holds of the conclusion.

3. Make the typechecker opaque
4. Prove inversion lemmas for every typing rule, showing

that if the typechecker can compute that the concluson
holds, it must also be able to compute that the premises.

5. Write the type soundness proof, inserting calls to the
inversion lemmas before IH calls, and inserting calls
to the compatibility lemma after.

3 Evaluation
In this section, we demonstrate empirically that our tech-
nique as described in Section 2 does yield more stable type
soundness proofs. As a quantative proxy for stability, we
measure the resource usage of our proofs. If a proof is expen-
sive, or its cost varies wildly between runs, this can be an
indicator for future proof instability [3] [9]. While resource
usage is the most important indicator of future proof instabil-
ity, we also base our conclusions on how much verification
duration — the wall-clock time it takes for the solver to prove
the VCs — varies between runs.

Experimental Setup
We evaluate five different typecheckers and type soundness
proofs for the same language to compare their proof stability.
The code for these typecheckers, proofs, and the language’s
evaluator, can be found in the supplementary materials. The
five different typecheckers, as well as the contents of the rest
of the files, are described below.

• (lang.dfy): The langauge and type definitions, com-
mon to all typecheckers and the evaluator.

• (eval.dfy): Contains the evaluator for our expres-
siong language. All of the type soundness proofs are
relative to this evaluator.

• (basic.dfy): This is the typechecker and type safety
proof described in the first part of Section 2. The type-
checker uses one main method infer and some helper
functions to infer a type for a term, and then checks
that it’s equal to the given type.

• (unfolded.dfy): This is the same as the typechecker in
basic.dfy, with all of the syntactic sugar for Result-
binds (:-) unfolded, and all of the helper functions
inlined. We include this file to measure the degree to
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which adding layers of abstraction hurts proof stabil-
ity. The proof is essentially the same as the one in
basic.dfy.

• (bidirectional.dfy): This typechecker is written in
the same style as the typechecker in basic.dfy. The
typing relation that it impelents is slightly different,
however, including a subtyping rule which implements
record width and depth subtyping. The type sound-
ness proof changes to include calls to reflexivity and
transitivity lemmas about subtyping, which cannot be
inferred by the solver.

• (opaque-safe.dfy): This file implements the first half
of our technique, making the safety property opaque,
proving compatability lemmas about the evaluator, and
calling them in the soundness proof. The typechecker
is identical to the one in bidirectional.dfy.

• (opaque-safe-invert.dfy): This file implements the
full stabilizing technique, adding inversion lemmas to
the code in opaque-safe.dfy, and making the type-
checker itself opaque.

• (std.dfy and util.dfy): Auxiliary functions and def-
initions not specific to the language’s evaluator or
typechecker.

We run the experiment by running the built-in dafny
measure-complexity command on the files containing each
type soundness proof, with the flags –iterations:250 and
–log-format csv. Each invocation of measure-complexity
command verifies the file 250 times, and dumps the verifi-
cation results, durations, and resource usages to a CSV file.
We then parse and analyze the CSV file with a python script,
which computes the means and standard deviations of ver-
ification duration and resource usage for the solver’s task
of proving correctness of the VCs in the file’s main sound-
ness theorem. The experiments were run on a 2023 MacBook
Pro with an Apple Silicon M2 processor, and 32GB memory,
runnning Dafny v4.3.0, and z3 v4.12.1.

Results
The graph in Figure 8 shows the mean verification resource
usage (and standard deviation, with whiskers), over the 250
verifications of each soundness theorem, while the graph in
Figure 7 shows verification durations, in miliseconds. The
two graphs tell essentially the same story. The highest cost
and highest variance proof in all cases is the soundness proof
for the typechecker in basic.dfy. It strikes an unfortunate
balance of being complicated code — heavy use of monadic
bind and lots of helper functions — with little guidance in the
proof. The typechecker in unfolded.dfy is slightly cheaper
to verify than the one in basic.dfy, but it still has enormous
variance. The cost seems to be lower because of all of the
inlined definitions, meaning that the verifier must reason
about fewer functions while proving soundness. The proof
for the typechecker in bidirectional.dfy is cheaper and

Figure 7. Verification Duration

Figure 8. Verification Resource Usages

has lower variance than either of the previous two. This
may be because while the bidirectionality increases the com-
plexity of the typechecking algorithm, this complexity re-
quires further guidance to the verifier for it to accept the
proof at all, thereby improving stability on the whole. As
expected, the two proofs using the first and second halves
of our technique are by far the best. The soundness theorem
using the fully specified typechecker and safety property
(opaque-safe-invert.dfy) is the best of all, with negliga-
ble variance in resource usage between runs of the verifier.

4 Discussion
Scaling It Up. A version of this proof technique was de-
veloped for the purposes of mechanizing the proof of type
soundness of the Cedar language [6] the language which
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underlies the Amazon Verified Permissions serivce 2. The
technique described in this abstract is currently used in the
type soundness proof of the reference typechecker with re-
spect to the reference interpreter. In Cedar, programs express
access control policies, and the evaluator outputs an autho-
rization decision: allow or deny. Cedar’s type system is a
great deal more complex than that of our toy langauge, and
includes a number of advanced type system features like
ocurrence typing [8] and singleton types [2].
Semantically though, Cedar is not all that much more

complex to model than the toy language we evaluate for this
extended abstract. Like our toy language, Cedar’s evaluator
is simplified by the fact that it is terminating, first order,
and has no binders. Although we have not tested it, our
technique should scale to languages with nontermination —
by step-indexing the evaluator and proving type-safety with
failure to converge in 𝑛 steps being considered “safe” [1] —
and higher-order functions — by applying standard tricks to
handle variable binding.

Manual Effort & Benefit. All of this benefit does come at
the cost of some of the automation that Dafny users expect.
In taking possible work away from the solver to make the
proof more stable, we are necessarily creating more work
for ourselves! As we saw in the previous section, the type
soundness proofs in the last two cases spell out many more
steps along the way. Anecdotally, however, we have found it
practically impossible to scale a proof that doesn’t use this
technique. So while this technique does require more manual
effort, we have found it to be the only way to structure a
type soundness proof that does not encounter impassable
instability obstacles.
For language simpler than the one we evaluate here, the

benefit of using this technique decreases. In particular, in
languages where the safety property does not include a dis-
junction — safety means that every term evaluates to a value
of the right type — the benefit shrinks dramatically. The kind
of straight-line reasoning required when every term can only
evaluate in one way seems to be much easier for the verifier.
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