
University of Pennsylvania
ScholarlyCommons

Publicly accessible Penn Dissertations

5-16-2011

Holistic Shape-Based Object Recognition Using
Bottom-Up Image Structures
Praveen Srinivasan
University of Pennsylvania, psrin@seas.upenn.edu

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/307
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Srinivasan, Praveen, "Holistic Shape-Based Object Recognition Using Bottom-Up Image Structures" (2011). Publicly accessible Penn
Dissertations. Paper 307.
http://repository.upenn.edu/edissertations/307

http://repository.upenn.edu
http://repository.upenn.edu/edissertations
http://repository.upenn.edu/edissertations/307
mailto:repository@pobox.upenn.edu


HOLISTIC SHAPE-BASED OBJECT RECOGNITION

USING BOTTOM-UP IMAGE STRUCTURES

Praveen Srinivasan

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2011

Supervisor of Dissertation

Jianbo Shi
Associate Professor

Computer and Information Science

Graduate Group Chairperson

Jianbo Shi
Associate Professor

Computer and Information Science

Dissertation Committee
Kostas Daniilidis Professor of Computer and Information Science

Camillo J. Taylor Associate Professor of Computer and Information Science

Pedro Felzenszwalb Associate Professor of Computer Science, Univ. of Chicago

Ben Taskar Assistant Professor of Computer and Information Science



HOLISTIC SHAPE-BASED OBJECT RECOGNITION

USING BOTTOM-UP IMAGE STRUCTURES

COPYRIGHT

2011

Praveen Srinivasan



Acknowledgements

No thesis is ever completed in isolation. While many people have played an important

role in my thesis, there are some who deserve special recognition. My parents,

Sampurna and Cidambi Srinivasan, without whose care I never would have come

this far, deserve first billing. From the time I took my first step to receiving my

first diploma, they have been there for me, unwavering in their love and support.

My sister Priyanka, Aunt Uma, Uncle Jayaraman, and my cousins Arun and Vivek

round out my family supporters.

Of course, without a good advisor research can be aimless and mediocre. Thus I

also thank deeply Jianbo Shi, my advisor. His blunt feedback, good and bad, has

critically shaped both my work and my work ethic, pushing me to never settle for

easy answers, to never blindly trod the well-worn path. Also worth mentioning

are Ramesh Gupta and Drago Anguelov, who provided me with some of my first

experiences in academic research.

An ideal academic environment is one with free exchange of ideas, criticisms and

encouragement. Only with a diverse and committed set of fellow students can such an

ideal be fulfilled. My colleagues Timothee Cour, Qihui Zhu, Weiyu Zhang, Katerina

Fragkiadaki, Roy Anati, Gang Song, Ben Sapp, Alex Toshev, Elena Bernardis, Sandy

Patterson, Abhinav Gupta, Yang Wu, Liming Wang, and Spring Berman to name

just a few, have all contributed. Late night discussions, last-minute deadline pushes

and helpful favors from them have also made my life much easier. Qihui deserves

special mention for having done important groundwork in many-to-many matching

iii



and extraction of image contours, and Weiyu has been a tireless worker in pushing

the efforts in this thesis still further.

My committee members, Kostas Daniilidis, Ben Taskar, C.J. Taylor and Pedro

Felzenszwalb were very helpful in shaping my thesis work and therefore I am in-

debted to them as well.

iv



ABSTRACT

HOLISTIC SHAPE-BASED OBJECT RECOGNITION USING BOTTOM-UP

IMAGE STRUCTURES

Praveen Srinivasan

Jianbo Shi, Associate Professor of Computer and Information Science

Object recognition performance that rivals human ability is one of the primary goals

of computer vision research. While recognition may take many forms, key tasks

include detection, estimating object pose, and segmenting the object from the back-

ground. This thesis explores the use of holistic shape matching for recognition using

bottom-up image structures such as image segments and contours for all of these

tasks. Holistic shape matching utilizes global information about object shape for

matching, rather than local image features which often contain too little information

to match reliably to the object model. By examining different tasks related to object

recognition, we demonstrate the value of holistic shape matching in a broad range of

problems, including perceptual grouping, human pose estimation, and object recog-

nition.

First, we introduce a method for perceptual grouping of contours in an image into

larger groups that uses holistic shape matching to estimate the motion of image

contours to a second, related image and group them according to similarties in

motion. Holistic shape matching provides scoring for different motion hypotheses,

and the final grouping is achieved using a min-cut graph cut to infer the cluster

assignment for each contour.

Secondly, we describe a method for human pose estimation using image segments

that incrementally merges segments into hypotheses for increasingly larger regions

of the human body. These hypotheses are verified by matching against a set of

shape exemplars using a shape matching method that is articulation-invariant and

incorporates holistic shape information.

Lastly, we present a two-step method for automatically learning an object detector
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for an object category from positive and negative images annotated with bounding

boxes. In the first step, the object shape is learned from bottom-up image contours

extracted in the positive images by searching for “lucky” contours that can explain

large portions of the shape of positive examples. Given the learned shape, the second

step trains a discriminative object detector that matches the shape against contours,

emphasizing shape features that provide good detection performance. We compare

against baselines and previous work that do not use holistic evaluation of shape

features to demonstrate its value.
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Chapter 1

Introduction

1.1 Object Recognition

A long-held goal of computer vision has been recognition of a wide variety of objects

in complex, cluttered images, an everyday task humans perform with ease. Although

there are many different tasks that comprise the recognition problem, three impor-

tant tasks (Figure 1.1) include detection, alignment and segmentation:

• Detection: indicating the presence or absence of an object at a particular

location in the image.

• Alignment: determining the pose of an object by corresponding it to a shape

model.

• Segmentation: in order to understand how to manipulate or interact with an

object, we must be able to determine the boundaries of the object.

There are many different applications that can benefit from accurate object recog-

nition, including robot navigation, web image search, video analysis and medical

image understanding. However, despite substantial progress, the problem remains

unsolved. One promising area of focus concerns the use of object shape to recog-

nize objects. Shape is a critical cue for recognition, as it is sufficiently invariant to
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Detect Align SegmentTest image

Figure 1.1: Three goals of recognition: detection, alignment and segmenting object
boundaries.

represent commonalities of different instances of a particular object category, while

preserving enough detail about objects in order to differentiate them from each other

or the background. It also varies systematically with 3D viewpoint, enabling esti-

mation of the object pose from shape, and segmentation is exactly determining the

object shape boundary. While there are many different approaches to using object

shape for recognition, there are two difficulties faced by nearly all approaches: object

pose variation and the presence of background clutter.

• Background clutter: nearby regions or edges in the image may belong to objects

in the background. Shape feature descriptors computed on the boundary of

the object can therefore be corrupted by these background objects.

• Object pose variation: many objects, such as articulated objects (e.g. humans),

or deformable objects vary in appearance according to pose. As a result, the

relative positions of important shape features may vary substantially.

Given these challenges, we can characterize the recognition problem into four cate-

gories based on their presence or absence:
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No pose variation, no background clutter: Object shape features appear clearly

in this scenario, and discriminatively trained object detectors can identify clear fore-

ground shape features to detect objects.

Pose variation, no background clutter: When only pose variation is present,

bottom-up image segmentation can yield clear foreground segments with large por-

tions of the object boundary shape. These segments can be used to infer the artic-

ulated pose of the object and achieve articulation invariant recognition.

No pose variation, background clutter: If background clutter is present with-

out pose variation, relative spatial relationships between foreground shape features

and background clutter areas remain consistent. Therefore, discriminatively trained

detectors can emphasize areas that consistently contain foreground object shape

features while simultaneously ignoring areas that consistently contain background

clutter.

Pose variation, background clutter: This case is in a separate category from

the rest, as the spatial relationships of shape features and clutter vary along with

the object pose. Therefore, bottom-up image segmentation fragments unpredictably,

while the relative positions of shape features and background clutter vary with object

pose. As a result, none of the previous assumptions necessary for applying the

aforementioned strategies are satisfied.

In complex, real-world images, the last case is the norm and not the exception.

Focusing on this setting of recognition, we can analyze different approaches to shape-

based object recognition in terms of how they address these two problems.

1.2 Shape for recognition

There are three important areas that must be addressed in using shape for object

recognition: representation of the shape model, shape features used for matching,

and the method of matching the shape features with the image. All of these choices
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come with different trade-offs among computational efficiency, tractability of good

approximate or exact inference, and learnability of good cost functions for recogni-

tion, as well as addressing the recognition challenges outlined above.

1.2.1 Model Representation

On the model side, there are many different methods for representing object shape.

Broadly speaking, representations in the early history of computer vision research

tended towards greater abstraction, representing objects in terms of high-level con-

cepts such as geometric shapes (2-D primitives such as lines and curves, and 3-D

primitives such as rectangular prisms and conic sections) or other semantic categories

(e.g., an airport is composed of a runway and a terminal building). Unfortunately,

the semantic gap between these abstract representations and the image pixels has

proven to be difficult to bridge directly. As a result, vision research in recent years

has focused on much simpler template representations of objects. Templates do not

capture the same general properties of object shape, but are much easier to compare

against image features than abstract representations. However, because they are not

as general template models are not as compact as abstract representations (e.g., for

viewpoint invariant recognition, Basri et al. [4] used multiple 2-D templates). We

discuss examples of the two types of model representations:

Abstract Representations

Generalized cylinders: Consisting of a set of cross-sectional shapes and a path

that joins their centers of gravity, the generalized cylinder is the shape formed by

resulting volume formed from the cross-sectional shapes. Proposed by Binford ([9]),

generalized cylinders can represent a wide variety of different object shapes.

Geons: Biederman ([8]) proposed geons, a set of simple 3-D geometric shapes that

can be combined together to form a wide variety of 3-D object shapes, similar to the

children’s puzzle, tangrams, in 2-D. There are three important characteristics that
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all geons possess - view-invariance: each geon can be identified when seen from any

viewpoint; stability: under occlusion or deformation, geons are still recognizable; and

discriminability: two different geons can be visually distinguished from one another,

regardless of viewpoint or occlusion.

AND-OR Graphs: To address some of the issues of previous abstract models,

AND-OR graphs [13] were proposed as an object model that contains multiple levels

of abstraction, from the image pixels all the way up to abstract parts of objects.

Specifically, AND-OR graphs are a type of graph with two types of nodes: AND

nodes and OR nodes. AND nodes represent inclusion of all children nodes as part of

the object, while at each OR node, one child is selected to be part of the object. As

a result, AND-OR graphs can compactly represent substantial object variation in a

single model. For example, a chair may be composed of a back, base and bottom;

each of these can have multiple different appearances depending on the specific type

of chair, and each may decompose further into object subparts.

Template Representations

Deformable 2D templates: A simple form of object representation, the 2D tem-

plate may consist of a set of contours or weights on histogram bins (a histogram

computed on either the outline of the shape or gradients of image examples of the

object) to represent the shape of an object from a single view, in a single pose. By

combining a collection of 2D templates of an object imaged from different viewpoints,

3D object recognition can be achieved as demonstrated by Basri [4].

Articulated templates: For articulated objects, a simple deformable template

is insufficient to capture all of the possible deformations of the object. Instead, a

model that explicitly takes into account the articulated nature of the object can help.

The most popular example is the pictorial structures model of Fischler & Elschlager

[27], popularized by Felzenszwalb and Huttenlocher [24], which consists of a set of

rigid object parts that are related by pairwise geometric potentials that penalize
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non-articulated deformations. An efficient inference method for pictorial structures

models was proposed in [24] and was used to estimate the pose of the human body

(locating the limbs) and faces (locating the eyes, nose mouth).

In this thesis, we focus on template representations of objects, using bottom-up image

structures as a mid-level representation between the object model and the image.

Future work would include introducing increasingly abstract model representations

using perceptual structures such as image segments, contours and junctions as a

mid-level representation between the abstract representations and the image.

1.2.2 Features

In order to use object shape for recognition, we require a method for computing

statistics about the shape that can be compared with the image in order to find

shape matches in the image. These image features allow us to compare the template

models of objects against bottom-up image structures. Various shape features have

been proposed to address this problem:

Shape context: Belongie et al. ([5]) introduced the shape context descriptor for

matching of rigid templates in 2-D images. The shape context is a log-polar spatial

histogram over the location of edges in an image. Smaller bins near the center of the

descriptor capture local, precise shape details, while larger bins further away capture

more general statistics about the overall object shape. Multiple shape contexts can

be computed at different locations in the image and model, and then these shape

contexts can be matched by a variety of methods, including the Hungarian method.

However, clutter may corrupt the descriptor in complex scenes, resulting in poor

match scores despite the actual object of interest being present.

Inner-distance shape context: Related to the shape context, the inner-distance

shape context (IDSC) proposed by Ling et al. ([41]) is again a histogram over the

locations of object boundary points, but is computed in a way as to be invariant to

articulation using shortest paths between two points on the boundary of the shape
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through the interior. The length of this path and the local orientation of the object

shape at each of the boundary points are used to compute an articulation-invariant

descriptor (described in further detail in Chapter 2). The IDSC was used for shape

matching of silhouette images for shape retrieval in [41], and was also used for human

pose estimation in [62].

HOG feature: The Histogram of Oriented Gradients, or HOG feature ([18]), is

a histogram over gradient orientations in a particular region of the image. These

gradients can capture local shape features of an object, for example the shape of a

person’s head, or the appearance of a body limb. Similar to the shape context, the

descriptor can be corrupted by background clutter. For this reason, the descriptor

support is typically very small relative to the overall object size, limiting the scale

of shape features that can be represented. The descriptors are often scored using

a set of linear weights learned discriminatively, e.g. from a support vector machine

(SVM), that emphasize the important local features of object shape for good de-

tection performance. The HOG feature was applied to pedestrian detection by [18],

where weights on the individual features were learned via linear SVM from positive

and negative instances of pedestrians in a dataset of outdoor street scenes.

1.2.3 Matching

Given shape features in the image, these features must be matched against the object

shape model in order to achieve recognition. This typically involves at least align-

ment of the model to the image, and may also include segmentation of the object.

Many different methods for shape matching have been developed, implementing a

variety of different cost functions with corresponding trade-offs in computational

complexity and detection accuracy.
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Template Matching Using Local Features

Chamfer matching/Distance transform: Given a template representation of

an object consisting of a set of points that represent the object boundary, chamfer

matching using the distance transform can be used to evaluate the matching of

the template at a particular location in the image. A placement (represented by a

translation) of a 2D object template in an image can be scored by computing the

distance of each point in the template to the closest edge in the image, under the

specific placement. These distances can be summed to provide a score for placing an

object at a particular location in the image. The distance transform of [23] can be

used to efficiently compute this score at all possible placements of the template in

the image. While chamfer matching is a very fast method for computing a matching

score at many locations in an image, clutter in the image can cause many false

matches since the more image edges that are present, the more likely a point in the

template will have an image edge nearby. Active shape models ([14]) have a similar

cost function for matching, but allow for deformation of the model shape via a linear

basis for the shape learned from training example shapes.

Local features + pairwise geometric constraints: Another simple method for

shape matching is using local image features, computed by the similarity of a set

of model weights with a set of image features extracted at a particular location in

the image, measured by correlation. For example, the image features might be HOG

features, while the weights may have been learnt through a discriminative procedure,

as in [18]. Multiple object parts can be detected in the image using this method and

their scores can be combined via voting for the object center using the known spatial

relationships of the parts relative to the object center, as in [22]. Arbitrary pair-wise

relationships can also be incorporated, as did Coughlan and Ferreira ([15]), using

loopy belief propagation for inference.
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Abstract Representation Matching

Interpretation tree: The interpretation tree, introduced by Gatson and Lozano-

Perez in [29], is a formalism for structuring the search space of correspondences

between an image and a set of object models. Each edge in the tree represents

an additional correspondence of image points to the object model, and typically

edges emanating from the ith level of the tree represent possible correspondences of

the ith point to different points on the various object models. A leaf in the tree

represents an interpretation, or assignment of image points to object models. Not

all leaves represent valid interpretations; for example, in rigid object recognition

from range images, there must exist plausible 3-D transformations that can align

the object models with the corresponded image points. The interpretation tree is

very general, and is capable of matching any image against virtually any object

type of object model. Unfortunately the number of possible interpretations is in

general exponential in the number of image points, making interpretation tree search

(exploration of all possible leaves) impractical for complex scenes with many image

points/object models.

Holistic Matching

Many-to-many matching: Bottom-up image segmentation can yield important

image structures that are useful for object recognition. However, these image struc-

tures may fragment in unpredictable ways, resulting in no possible one-to-one cor-

respondence between image structures and object parts. Several researchers have

explored the concept of many-to-many matching as a way of dealing with this frag-

mentation problem. Demirci et al. [19] formulated the many-to-many matching

problem between two graphs by first finding an embedding of nodes of each graph

using a low-distortion graph embedding technique, followed by solving an Earth

Mover’s Distance (EMD; [55]) problem where the flows between nodes were inter-

preted as the many-to-many matching. They applied their method to match shock
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graphs of silhouette images for shape matching.

Zhu et al. [73] developed an alternative approach for many-to-many matching based

on linear programming. Given two sets of contours, the goal was to find a sub-

set of contours in each that had similar shape. Shape similarity was measured by

comparing shape contexts computed over the selected subsets of contours, and a

computationally efficient approximation to this combinatorial problem was formu-

lated as a linear program. The many-to-many matching was used to detect object

parts in the image, which were then combined via a voting scheme to provide object

detection scores. The approach was evaluated on the ETHZ Shape Classes dataset

from [25], and showed good detection performance.

Many-to-one matching: Discussed further in Chapter 4, this thesis introduces a

method for many-to-one matching of image segments to an object model, specifically

for human pose estimation. For the human body, different shape exemplars were

specified for different regions of the body. Because the human body is compositional

in nature, proposals for a particular body region were created by combining proposals

from subregions. For example, to form a proposal for the lower body, a single

segment could be taken, two proposals for legs could be combined, or a proposal for

three-fourths of the lower body and a lower leg (the remaining one-fourth) could be

combined. Because these proposals consist of image segments, a region of the body

could be formed by combining one or more image segments together. Evaluation of

the proposals was achieved by shape matching of these proposals to shape exemplars

via the inner-distance shape context to achieve articulation invariant matching.

1.3 Layout and Contributions

From the above discussion, it is clear there are many different possible approaches

to object recognition, using one or more of the previous ideas. In this thesis, we

focus on holistic evaluation of object shape via many-to-one and many-to-many
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matching of bottom-up image structures such as contours and segments to an object

shape model. In particular, holistic evaluation of bottom-up image structures is

well suited to addressing the challenges of pose variation and background clutter.

We demonstrate the application of these ideas to a variety of different problems in

recognition, as well as superior performance due to the use of holistic evaluation of

shape:

• Chapter 2 reviews several different methods for holistic evaluation of object

shape, including the works of Zhu et al. [73], many-to-many matching, and

Ling et al. [41], articulation-invariant shape evaluation.

• Chapter 3 discusses perceptual grouping. We introduce a method for grouping

of image contours into larger clusters using many-to-many matching to estab-

lish accurate correspondences, thereby estimating the motion of contours and

grouping contours with similar motions into the same group. Final group as-

signment is achieved using a min-cut graph cut that derives its unary scores

from the many-to-many matching score of a contour in one image to another

under a specific motion hypothesis.

• Chapter 4 studies human pose estimation. In this chapter a method for esti-

mating human pose using bottom-up parsing of image segments is described.

The overall cost function for evaluating human pose hypotheses is non-additive,

allowing for evaluation of holistic shape properties of groups of image segments

that cannot be observed from the individual segments. Proposals for regions

of the human body are evaluated by matching against shape exemplars using

an articulation-invariant shape matching method; as a result, few exemplars

are needed to be able to match a wide range of articulated human shapes.

• Chapter 5 addresses generic object recognition. For a specific object category,

object shape is automatically learned from the image contours of positive ex-

amples and a shape-based object detector is trained discriminatively using the

11



learned shape model and the contours of positive and negative images. The re-

sult is a fully automatic system for learning an object detector that can detect

a specific object category in a new image using bottom-up image contours. A

key characteristic of both the shape learning as well as the object detection

is the use of many-to-one matching for holistic shape evaluation of detection

hypotheses as well as candidate image contours for constructing the model

shape.

• Chapter 6 concludes with a summary of the work in this thesis as well as a

discussion on directions for future work.

12



Chapter 2

Background

2.1 Bottom-up Image Structures

One of the key themes of this thesis is the use of bottom-up image structures for

grouping and recognition. Such structures naturally capture long-range grouping

constraints between pixels or edges that can constrain and improve both tasks. There

are two primary types of structures, image segments and image contours. An image

segment consists of a subset of the pixels in the image, typically contiguous, and

may often correspond to a portion of an object. For extracting segments, we use

the method of Cour et al. ([16]), which uses the normalized cuts algorithm ([57]) to

partition a graph over image pixels into multiple regions. The graph includes both

short-range and long-range connections, where connection weights are determined

using the intervening contour cue (the magnitude of the strongest edge that lies

between two pixels). Multiple image segmentations can be produced by varying

parameters such as the number of segments produced by the segmentation method,

representing different hypotheses for groupings of image pixels.

An image contour is an ordered set of edge pixels in an image. Long contours often

contain important information about the figure-ground boundary of an object or its

interior shape. To extract contours, we use the untangling cycles method of Zhu

13
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Figure 2.1: Recognizing an object by shape using image contours requires matching
a subset of image contours against an object model. From an image (a) bottom-up
contours are extracted (b), which then need to be matched against a shape model
(c). Most of the image contours do not correspond to the object of interest, and
those that do fragment unpredictably.

et al. ([72]). The approach first begins with edge detection in the image, keeping

edges above a low threshold on the edge strength. A directed graph is formed

over these edges, where the graph weights are determined by geometric consistency

of neighboring edges (edges with similar orientations have stronger connections).

Complex eigenvectors are computed from the weighted adjacency matrix for the

graph, and for each of these eigenvectors, cycles are traced in the complex plane to

find individual contours. The resulting contours may overlap, representing different

grouping hypotheses at junctions in the image.

2.2 Matching Image Structures

Given a set of image structures, recognition typically requires matching these struc-

tures against an object model. For example, Figure 2.1 shows an image with ex-

tracted contours that we wish to match against an outline model of the object.

There has been substantial work on this topic, but we focus here on two types of

methods for matching, one-to-one matching and many-to-one matching, that have

become popular for addressing the matching problem.

14



2.2.1 One-to-one Matching

One of the most common approaches to matching is one-to-one matching, where each

model structure is matched to at most one image structure. There have been many

approaches ([17, 40, 65, 31, 5]) which minimize similar cost functions that typically

consist of unary terms indicating the direct compatibility of a match, and pairwise

terms indicating the compatibility of pairs of matches. Because of the nature of

these cost functions, only local relationships relating to a small region of the object

or pairs of small regions are captured. Holistic characteristics of the object shape are

not easily captured with one-to-one matching cost functions. Figure 2.1 illustrates

an example of one-to-one matching being insufficient for matching image contours

to an object shape model. Because the contours of different instances of a particular

object category may fragment very differently in the image, there is no one-to-one

correspondence of these contours to the object model, and keeping around all possible

fragmentations of object contours is intractable.

2.2.2 Many-to-Many Matching

Because one-to-one matching is insufficiently flexible to handle the matching of

bottom-up structures that fragment unpredictably, researchers have developed meth-

ods for many-to-many matching. A many-to-many matching maps subsets of a set

A to subsets of a set B. The advantage of many-to-many matching is that groups of

image structures can be holistically matched to the object model without regard to

their specific fragmentation. The contours corresponding to the outline of the object

in the image could be fragmented arbitrarily, yet many-to-many matching would

be able to match them to the object shape model with the same cost. Demirci et

al. [19] formulated the many-to-many matching problem between two graphs by first

finding an embedding of nodes of each graph using a low-distortion graph embedding

technique, followed by solving an Earth Mover’s Distance (EMD) problem where the

flows between nodes are interpreted as the many-to-many matching. They applied
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Figure 2.2: Overview of the many-to-many matching process. Top: two sets of
contours M and C are provided as input. An aligning transformation T transforms
contours C such that some object(s) align between the two sets of contours. A
histogram function H operates on the contours M and transformed contours T (C),
producing a histogram for each contour, which appears as a column of matrices
GM and HT(C). Middle: our goal is to infer indicator vectors xsel,ysel that specify
a specific subset of contours in the two sets such that the two subsets have similar
histograms (and hence shape). To compare histograms, we use histogram comparison
features K(T,xsel,ysel), a function of the transformation T and the contour subsets.
Bottom: our goal is to maximize the similarity of the two histograms over the choices
of subsets of contours to match the contours of the common aligned object (a car
in this instance). The two quantities xsel

∗ and ysel
∗ together are the optimal solution

(subsets of image contours) to the many-to-many matching problem.
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their method to match shock graphs of silhouette images for shape matching.

Zhu et al. [73] developed an alternative approach for many-to-many matching based

on linear programming. Given two sets of contours, the goal is to find a subset of con-

tours in each that had similar shape. Shape similarity was measured by comparing

shape contexts computed over the selected subsets of contours, and a computation-

ally efficient approximation to this combinatorial problem was formulated as a linear

program. The many-to-many matching was used to detect object parts in the image,

which were then combined via a voting scheme to provide object detection scores.

The approach was evaluated on the ETHZ Shape Classes dataset from [25], and

showed good detection performance. An advantage of this approach over [19] is that

it does not require explicit specification of a distance between contours in the two

sets, which can be difficult to specify when one contour overlaps only partially with

the other.

2.2.3 Many-to-Many Matching Formulation

Following Zhu et al. [73], we formulate a computational solution to the many-to-

many matching problem for matching object shape. In the contour setting, we are

given a set of model contours M and image contours C, and wish to find a subset

of each such that the overall shapes of the two subsets is similar. To characterize

the shape of the subsets, we can use any spatial histogram, such as one or more

shape contexts [6], or a grid histogram. Figure 2.2 shows an example with several

different shape contexts used together as a single histogram. During matching, we

must find both the subsets of contours in the model and the image as well as an

aligning transformation that aligns the image contours to the object shape model so

that shape similarity can be measured accurately. These quantities can be defined

as:

• T ∈ R2: a transformation that describes the alignment of the image contours

to the model contours.
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• xsel ∈ {0, 1}|C|: an indicator vector that defines which image contours are

selected for matching to the model. Contour Ci is selected if and only if

xsel
i == 1.

• ysel ∈ {0, 1}|M|: an indicator vector that defines which model contours are

selected for matching to the image. Contour Mi is selected if and only if

ysel
i == 1.

Figure 2.2, top, shows a set of contours in two images as input to the matching;

an aligning transformation T aligns the two sets of contours. We define a spatial

histogram of dimension dm over the edge points of image contours selected by xsel

and transformed by T as: hT(C),xsel . Any type of spatial histogram is allowed,

including grid histograms (as used in [18]) or log-polar radial histograms (as in [6]).

We encapsulate this property via a histogram function H, which maps a point in

R2 to a vector in Rdm , or H : R2 → Rdm . In general, any possible histogram is

permitted as long as it satisfies the following property: given two sets R and S and

the histogram function H, we require: H(R ∪ S) + H(R ∩ S) == H(R) + H(S).

Specifically in this case, a histogram over the points of several contours is equivalent

to summing the histograms computed for each contour individually, first noted in

[73], and also depicted in Figure 2.3. This means that histogram hT(C),xsel can be

represented as a linear function of xsel as shown in Figure 2.3. We introduce the

per-contour histogram matrix HT(C) (Figures 2.2 and 2.3) and write the histogram

over selected-contours hT(C),xsel as a linear function of xsel:

HT(C) ∈ Rdm×|C| hT(C),xsel ⇐⇒ HT(C)x
sel (2.1)

The k-th column of HT(C) is a histogram over the points in contour Ck. Similarly,

we can also represent the model contour shape contexts with a matrix GM , where

each column is a shape context for a model contour. To compare the histograms that

result from selecting only a subset of the image and model contours, we measure two
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Figure 2.3: Encoding of contours for many-to-one matching. Left, two contours,
are shown with associated histograms (any histogram, grid or shape context, is
possible), which are combined to form matrixHT(C) (center). Right, different choices
of selection vector xsel lead to different histograms; hT(C),xsel is thus a linear function
of xsel.

types of features: bin-wise difference features −|HT(C)x
sel−GMysel| and intersection

features min(HT(C)x
sel,GMysel).

K(T,xsel,ysel) =

 −|HT(C)x
sel − GMysel|

min(HT(C)x
sel,GMysel)

 (2.2)

Figure 2.2, middle, shows the comparison of the two histograms resulting from choos-

ing a subset of contours in both the model and image, and the features used for

histogram comparison. Given a weighting on these features wapp ≥ 0, our goal is to

solve the maximization problem:

max

xsel ∈ {0, 1}|C|

ysel ∈ {0, 1}|M|

wappTK(T,xsel,ysel) (2.3)

An important question is how to perform the above maximization over T,xsel,ysel.

For fixed T, the resulting optimization problem is an integer linear program; if we
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Figure 2.4: Matching score of many-to-one matching. For a given model shape
(upper left; Giraffe) and placement T, different selections xsel of image contours
are shown. Indicator xsel encodes which image contours are many-to-one matched.
Matching score prefers selections and placements that select many contours which
have similar shape to the model.

can solve (or approximate) this integer linear program, we can directly search over

different possible choices of T, solving a separate optimization problem for each one.

Instead of trying to solve the integer linear program exactly, we can relax xsel ∈

[0, 1]|C| and ysel ∈ [0, 1]|M|, resulting in a linear program that can be solved efficiently

via a linear program solver ([2]), as in Zhu et al. [73]. With the restriction of wapp ≥

0, this score function is concave and maximization is possible. We can write a linear

program that maximizes a relaxation of our score function wappTK(T,xsel,ysel) using

proxy variables m and o to represent the histogram difference −|HT(C)x
sel−GMysel|

and intersection features min(HT(C)x
sel,GMysel) respectively:

20



Figure 2.5: Examples of many-to-one matching. Left: input image; center: two
different points on model to be matched in the image; right: different many-to-one
matchings of model to image. A single shape context was used as the histogram,
centered at the highlighted points on the model; the transformation T relating the
image to the model was simply a translation of image contours derived from the
relative locations of the model part point and the corresponding image point. Correct
correspondences are highlighted in green; matched image contours are shown in
white, and un-matched contours are black.
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max
xsel∈[0,1]|C|,ysel∈[0,1]|M|

wappT

 m

o


s.t. m ≤ (GMysel −HT(C)x

sel), (HT(C)x
sel − GMysel)

o ≤ HT(C)x
sel,GMysel

(2.4)

Many-to-one Matching: An important special case of the many-to-many match-

ing problem is the many-to-one matching problem. In this setting, instead of having

multiple model contours, there is just one, which must always be matched (cannot

be de-selected). The variables for model contour selection ysel can be eliminated,

and the term Gysel can be replaced with a single model histogram hM.

Figure 2.4 shows examples of different possible selections xsel and how the many-to-

one matching cost function behaves as a result, while Figure 2.5 shows examples of

many-to-one matchings of different points on an object model to an input image.

2.2.4 Articulation-Invariant Matching

The previously described many-to-one matching handles only the case of largely

rigid objects. However, many interesting object categories such as humans are artic-

ulated and therefore we require a different approach to matching bottom-up image

structures to the object model in the case of articulation. The inner-distance shape

context (IDSC) was proposed by Ling et al. ([41]) as a descriptor capable of ad-

dressing this issue. One way to use the IDSC is for matching bottom-up segments

in an image against exemplar shapes of different regions of the body. Because the

IDSC is largely invariant to articulation, image segments can still be matched to the

exemplars even if the pose of the person in the image is different than that of the

exemplars.

The IDSC is an extension of the original shape context proposed in [6]. In the

original shape context formulation, given a contour of n points x1, ..., xn, a shape

context was computed for point xi by the histogram
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#(xj, j 6= i : xj − xi ∈ bin(k)) (2.5)

Ordinarily, the inclusion function xj−xi ∈ bin(k) is based on the Euclidean distance

d =‖ xj − xi ‖2 and the angle acos((xj − xi)/d). However, these measures are very

sensitive to articulation. The IDSC replaces these with an inner-distance and an

inner-angle.

The inner-distance between xi and xj is the shortest path between the two points

traveling through the interior of the mask. This distance is less sensitive to articu-

lation. The inner-angle between xi and xj is the angle between the contour tangent

at the point xi and tangent at xi of the shortest path leading from xi to xj. Figure

2.6 shows the interior shortest path and contour tangent.

The inner-distances are normalized by the mean inner-distance between all pairs

{(xi, xj)}, i 6= j of points. This makes the IDSC scale invariant, since angles are

also scale-invariant. The inner-angles and normalized log inner-distances are binned

to form a histogram, the IDSC descriptor. For two shapes with points x1, ..., xn

and y1, .., yn, IDCSs are computed at all points on both contours. For every pair of

points xi, yj, a matching score between the two associated IDCSs is found using the

Chi-Square score ([6]). This forms an n-by-n cost matrix, which is used as input

to a standard dynamic programming algorithm for string matching, allowing us to

establish correspondence between the points on the two contours. The algorithm also

permits occlusion of matches with a user-specified penalty. We try the alignment at

several different, equally spaced starting points on the exemplar mask to handle the

cyclic nature of the closed contours, and keep the best scoring alignment (and the

score). The complexity of the IDSC computation and matching is dominated by the

matching; with n contour points and s different starting points, the complexity is

O(sn2).
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Figure 2.6: Inner-distance shape context computation. Left: We show: shortest
interior path (green) from start (blue dot) to end (blue cross); boundary contour
points (red); contour tangent at start (magenta). The length of interior path is
the inner-distance; the angle between contour tangent and the start of the interior
path is the inner-angle. Center: Lower body mask parse; colored points indicate
correspondence established by IDSC matching with exemplar on right.
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Chapter 3

Grouping with a Related Image

As mentioned in Chapter 1, bottom-up image structures are useful for addressing the

pose variation and clutter challenges of object recognition. However, the process of

bottom-up grouping is itself susceptible to corruption by these issues. For example, in

segmentation by motion or stereo, correspondences between pairs of images must be

established in order to estimate the motion of different parts of the image. Typically

this is achieved using matching of local image patch features ([58, 67, 69]). As

discussed previously, local features can be corrupted by background objects and

object deformation and therefore be poorly matched between pairs of images. In

this chapter, we introduce a method for perceptual grouping based on a pair of

related images that addresses the issues of background clutter and object deformation

using holistic evaluation via many-to-many matching of image contours between the

images.

The pair of images may be a stereo pair, frames from a video, or two similar images

(images containing similar objects). Relative motion of contours in one image to

their matching contours in the other provides a cue for grouping - contours that

undergo similar motion should be grouped together. The contours themselves are

detected bottom-up without a model, and are provided as input to our method.

While contours already represent a kind of grouping (of edges), they typically lack
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Grouping in image 1 using related images

Im
age 1
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Figure 3.1: Contours (white) in the image on the left can be further grouped using
the contours of a second, related image (top row). The bottom row shows idealized
groupings in the original image according to the inter-image relationship.

large spatial support. Region segments, on the other hand, have large spatial sup-

port, but lack the structure that contours provide. Therefore, additional grouping

of contours can give us both qualities. This has important applications for object

recognition and scene understanding, since groups of contours are often large pieces

of objects.

Figure 3.1 shows a single image in the 1st column, with contours; in the other

columns, top row, are different images related by stereo, motion and similarity to the

first, shown with their contours. Below each of these images are idealized groupings

of contours in the original image. Note that internal contours on cars and buildings

are grouped, providing rich, structured shape information over a larger image region.

3.1 Related Work

Stereo, motion, and similar image matching have been studied largely in isolation,

and often with different purposes in mind than perceptual grouping. Much of the

stereo literature focuses on per-pixel depth recovery; however, as [32] noted, stereo
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can be used for perceptual grouping, with the advantage that precise depth estima-

tion is not required to infer a good grouping. Motion is often used for estimating

optical flow or dense segmentation of images into groups of pixels undergoing similar

motion [68]. These approaches to motion and stereo are largely region-based, and

therefore do not provide the same internal structure that groups of contours provide.

Similar image matching has been used for object recognition [7], but is rarely applied

to image segmentation.

In work on contours, Sherman and Peleg ([56]) matched contour points in the con-

text of aerial imagery, but use constraints such as ordering of matches along scanlines

and disparity gradient that are not appropriate for motion or similar images, and

do not provide grouping information. Liu et al. [42] grouped image pixels into con-

tours according to similar motion using optical flow as a local cue. While the result

addresses the long-standing aperture problem in motion estimation, the framework

does not extend to large inter-image deformations or matching across similar images.

Hedau et al. [34] grouped and matched image regions across different images and

unstable segmentations (as we do with contours), but the regions lack internal struc-

ture. Others ([10, 30]) used stereo pairs of images to detect depth discontinuities

as potential object boundaries. However, these methods will not detect and group

group contour points in the interior of fronto-parallel surfaces.

3.2 Grouping Criteria

We first present some definitions and our basic criteria for grouping contours. The

inputs to our method are:

1. Images: I1, I2; for each image Ii we also have:

2. A set of points (typically image edges) Pi ⊂ R2. We restrict the set of points

to those that lie on image contours, defined next.
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3. A set of contours Ci, where Cj
i ∈ Ci is an ordered subset of points in Pi:

Cj
i = [P k1

i , P k2
i , ..., P kn

i ] ⊆ Ci.

Our goal is to assign each contour in the first image I1 to a group 1, ..., n. For each

contour Cj
1 , we create a label variable lj ∈ {0, 1, ..., n}, where lj == 0 means the

contour is ungrouped, and value k ∈ {1, .., n} means the contour belongs to group

k. The collective set of all label variables is denoted as L.

We would like the groups to possess the following criteria:

1. Good continuation - for contours that overlap significantly, we prefer that they

are present in the same group, if they are grouped at all. For overlapping

contours Ci
1, C

j
1 , we prefer that li == lj.

2. Common fate by shape: each contour point in a grouped contour should be

matchable to a point in the second image where the local shape of the two

points are similar. In addition, there should exist a single transformation that

explains the motion of the contours in a group to the other image.

3. Maximality/simplicity: We would like to group as many of the contours as

possible into as few groups as possible, while still maintaining the similarity of

local shape described above.

We can write down a score function for this grouping problem in terms of a unary

score ShapeMatchScore and pairwise score LabelSmoothness. The unary terms en-

capsulate our desire for common fate by shape, while the pairwise term captures the

criteria of good continuation and maximality/simplicity for contours that overlap

(represented by the set of pairs E; (i, j) ∈ E if and only if contours Ci
1 and Cj

1

overlap; our goal is to maximize the score function F:

F(L) =
∑

Ci
1∈C1

ShapeMatchScore(li) +
∑

(i,j)∈E

LabelSmoothness(Li, Lj) (3.1)
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The binary term LabelSmoothness(li, lj) has two possible values, depending on whether

or not the labels agree:

LabelSmoothness(lj = a, lk = b) =

1 a == b

1− τ a 6= b

(3.2)

If the two labels are the same, the score received is 1, while if they are different, the

score received is 1− τ for some 0 ≤ τ ≤ 1; τ is specified by the user.

3.3 Shape Matching

The unary term ShapeMatchScore captures how well a particular contour in the first

image can be matched in terms of shape to the second image. This requires knowing

the underlying motion of the contour, correspondences of individual contour points

to the second image, and correct context of shape with which to match the contours

for each group. Specifically, we define for each group i:

• A transformation Ti that maps points (and hence contours) in image 2 to image

1: Ti : R2 → R2.

• Sets of contours in each image that provide a context for shape matching,

represented by indicator vectors Coni
1,Coni

2. Coni
1 ∈ {0, 1}|C1|, and maps

contours in image 1 to {0, 1}: Coni
1 : C1 → {0, 1}; Coni

2 is defined analgously

for image I2.

• Group-specific correspondences Corrji of each point P j
1 ∈ P1 to P2: P

Corrji
2 ∈ P2.

We describe how to propose each of these in turn from the input images and their

contours, and then how these quantities combine together to form a group assignment

score that is robust to object pose variation and background clutter using many-to-

many contour matching.
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3.3.1 Inferring Transformations

In general, there may be many different transformations that can align different ob-

jects between two images, and each motion can characterize a different one. There-

fore, by proposing transformations, we are also proposing different groups. We begin

with extracting and matching SIFT ([43]) features between the two images, giving a

set of corresponding points {(ai, bi)}, where each ai lies in the first image and each

bi lies in the second. Via RANSAC, we can find a transformation (homography in

our case) with a maximum number of inliers. We add this transformation to our

set of transformations, and remove all inliers from the set of correspondences. We

then repeat the process until no transformation can be extracted with fewer than

a pre-defined number of inliers. The result is a set of transformations {T1, ..., Tn},

each of which is a transformation for a different group.

3.3.2 Many-to-Many Matching for Determining Contextual

Shape Information

Given a transformation Ti that aligns image I2 to image I1, we can use many-to-

many matching to find groups of contours that potentially move under that motion

between the two images. Recalling our formulation of many-to-many matching from

Chapter 2, we require two sets of contours, M and C, and an aligning transformation

T that aligns contours C with M . Identifying M with the contours in image I1, C1,

and C with the contours in image I2, C2, and the transformation T with the group

specific transformation Ti, we can achieve many-to-many matching. Because we need

to capture the shape of contours throughout the entire image, for the histogram we

use evenly spaced shape contexts to measure local shape, as in Figure 2.2. Solving

the many-to-many matching linear program results in selection indicator vectors

xsel and ysel, which we identify with our context indicator vectors Con1 and Con2

respectively.
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Figure 3.2: For a pair of images, SIFT matches propose different transformations
of the contours in image 2 to align with contours in image 1. The many-to-many
matching process is performed for each transformation to infer a context suitable for
evaluating contour point correspondences via contextual shape information.

3.3.3 Correspondences using Contextual Shape

Different hypotheses for the group assignment of a point P j
1 in image I1 lead to differ-

ent hypotheses for the motion and hence correspondence of the point. Therefore, for

each group hypothesis, we propose a different correspondence in the second image.

The score of the best possible correspondence under a particular group assignment

results in a score for the assignment of the point to that group, which contributes to

the unary terms of contours that contain that point.

Given the particular contextual information Coni
1,Coni

2 for group i, we can find a

best possible correspondence for a point P j
1 using the transformation Ti, which pro-

vides a general idea of the motion of the point, and the contextual shape information
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to evaluate different correspondence hypotheses. A single shape context centered at

P j
1 in the first image can be computed to characterize the contextual shape infor-

mation around the point. This shape context can be denoted as SCj

C1,Coni1
or the

shape context computed for point P j
1 using contours selected from the first image

via Coni
1. Similarly, for a possible correspondence point q ∈ Ti(P2), we can compute

a shape context centered at q over the transformed contours summarizing the shape

information in the second image as: SCq

Ti(C2),Coni2
. The similarity of these two shape

contexts can be written in terms of the histogram difference and intersection features

using a a weight vector wapp ≥ 0:

CorrScoreji (q) = wappT

 |SCj

C1,Coni1
− SCq

Ti(C2),Coni2
|

min(SCj

C1,Coni1
, SCq

Ti(C2),Coni2
)

 (3.3)

In practice, we restrict the allowed correspondences to be within a neighborhood of

P j
1 . Our goal is to find a corresponding point q in the second image that maximizes

the above score. Using these scores for each point, we can compute the score for

assigning a particular contour Ck
1 to layer i as the sum of the scores of the points P j

1

contained within the contour:

ShapeMatchScore(Lk == i) ∝
∑

P j
1∈Ck

1

max
q∈Ti(P2)

CorrScoreji (q) (3.4)

Figure 3.3 shows an example of the correspondence process for a single point P j
1

in the first image under transformation hypothesis Ti. Shape contexts are used to

characterize the contextual shape around P j
1 and potential correspondences using the

matched image contours. The shape contexts are then compared using CorrScore

to find a best correspondence. The resulting score is also used to compute the

assignment score of the contour containing P j
1 to group i.
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3.3.4 Baseline Comparison

As a baseline comparison, we attempted grouping using an MN that involved no

selection information. The binary potential remained the same, while the unary

potential was a function of the distance of each contour point in contour Cj
1 to its

closest match in P2, under the transformation Ti:

ShapeMatchScore(lj == i) ∝
n∑

l=1

[ min
q∈Ti(P2)

(||pkl − q||2L2, occlusionThresh2)] (3.5)

The constant occlusionThresh serves a threshold in case a contour point had no

nearby match in P2 under the transformation Ti. Points which had no match within

occlusionThresh distance were marked as occluded for the hypothesis lj = a. If more

than half the points in the final assignment l∗j for a contour were occluded, we marked

the entire contour as occluded, and it was not assigned to any group (equivalently, it

was assigned label lj == 0). Since we omitted all selection information, all contours

in the 1st image were included in the MN as nodes, and their contour points were

allowed to match to any contour point in P2. We again optimized the MN energy

with the α−β swap graph cut. Free parameters were tuned by hand to produce the

best result possible.

3.4 Experiments

We tested our method and the baseline over stereo, motion and similar image pairs.

Input contours in each image were extracted automatically using the method of [72].

SIFT matches were extracted between each image, keeping only confident matches as

described in [43]; matches proposing similar transformations were pruned to a small

set, typically 10-20. To capture large scale shape, we used very large shape contexts

(radius 90 pixels, in images typically of size 400 by 500), which made matching very

robust. The shape contexts were augmented with edge orientation bins in addition

to the standard radial and angular bins. Shape contexts were placed on a uniform
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Figure 3.4: Baseline comparison (top) and additional results (bottom)
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grid with a spacing 50 pixels in the x and y dimensions. Image pairs were taken from

the Caltech 101 dataset [21] and from a stereo rig with 1m baseline mounted on a

car from our lab (providing stereo as well as motion pairs from the same camera over

time). The running time of our unoptimized MATLAB implementation was several

minutes for each image pair.

Figure 3.4, top block, shows the results of our method and the baseline method on

stereo, motion and similar images. We can see that our method provides superior

groupings that better respect object boundaries. Groups for stereo image pairs

are colored according to disparity. Due to the lack of large context, the baseline

method is able to find a good match for a given contour point under almost any

group hypothesis lj = a, since in cluttered regions, there are always nearby matches.

However, by being able to reason over a much larger, optimized context, our method

exploits large-scale shape information and is better able to infer about occlusion, as

well as layer assignment. We present additional results on different images in Figure

3.4, bottom block, and also show the dense correspondences. Interesting groups

found in our results include facades of buildings, people, and a car (top row).

3.5 Observations

Using only longer contours for the matching is critical to the success of the method.

As contours become shorter and shorter, hallucinating shapes out of the contours

becomes easier, resulting in false matches. In addition, extracting as many possi-

ble transformations as possible out of the SIFT features is also important; if there

is a correct transformation, the matching will confirm it with a good score, while

incorrect transformations are easily pruned. In retrospect, the choice of shape con-

text histograms for measuring the similarity of shape may not have been as good a

choice as using a grid histogram, which would allow for matching under slightly less

accurate alignments than shape contexts, whose smaller bins require very precise
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alignment to properly match. Also, moving from the min-cut graph cut to clustering

based on normalized cuts could also be useful, as it is relatively easy to extend the

segmentation from pairs of frames to segmentation across several frames at once. For

two edge points in the same image, an affinity can be established between the two

using the similarity of motion profiles for each point. The motion profile, used by Shi

and Malik ([59]) for motion segmentation in video, encodes a distribution over the

possible motions for a specific image edge. An affinity between two image edges can

be obtained by considering the similarity of their motion profiles, and normalized

cuts can be used to partition a graph on these image edges using the affinities. In

this setting, the motion profile for two edges in the same image can be computed

using the shape matching score for each edge across the several different aligning

transformations for the image with respect to another image. The motion profiles

can then be used to construct affinities for partitioning via normalized cuts, allowing

for partitioning of edges across multiple frames of video simultaneously, without the

need for an explicit modeling of segment motion, which min-cut based techniques

typically require.
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Chapter 4

Holisitic Human Pose Estimation

Estimating the pose of a human from a single image is a key problem in both image

and video understanding; pose is an important clue for understanding activity and

intent of an individual. Naturally, this problem exhibits both key challenges of

background clutter and pose variation. Pose variation for many human activities such

as sports or dancing can be highly exaggerated, greatly complicating the recognition

problem. There has been good previous work on this topic, but significant challenges

remain ahead. We divide the previous literature on this topic into three main areas:

Top-down approaches: Felzenszwalb and Huttenlocher ([24]) developed the well-

known pictorial structures method and applied it to human pose estimation. In

the original formulation, pictorial structures does probablistic inference in a tree-

structured graphical model, where the overall cost function for a pose decomposes

across the edges and nodes of the tree, usually with the torso as the root. Pictorial

structures recovers locations, scales and orientations of rigid rectangular part tem-

plates that represent a body. Pairwise potentials were limited to simple geometric

relations (relative position and angle), while unary potentials were based on image

gradients or edge detections. The tree structure is a limitation since many cues

(e.g., symmetry of appearance of right and left legs) cannot be encoded. Ramanan

([50]) extended the original model to encode the fact that symmetric limb pairs have
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Figure 4.1: Given a single image of a human (left), our goal is to segment them from
the background and estimate their pose via correspondence to an exemplar shape
(right).

similar color, and that parts have consistent color or colors in general, but how to

incorporate more general cues seems unclear. A top-down pictorial structures model

was used in [51] to track people by repeatedly detecting them in subsequent video

frames. Sigal et al. ([61]) introduced a non-parametric belief propagation method

with occlusion reasoning to determine the pose. Andriluka et al. ([3]) used a pic-

torial structures model to simultaeously detect people in images while estimating

their pose. All these approaches estimate pose, and do not provide an underlying

segmentation of the image. Their ability to utilize more sophisticated cues beyond

pixel-level cues and geometric constraints between parts is limited.

Search approaches: Mori et al. [47] utilized heuristic-guided search, starting from

limbs detected as segments from Normalized Cuts (NCut) ([16]), and extending the

limbs into a full-body pose and segmentation estimate. A follow up to this by Mori,

[46], introduced an Markov-Chain Monte Carlo (MCMC) method for recovering pose

and segmentation. Lee and Cohen [37] developed an MCMC technique for inferring

3-D body pose from 2-D images, but used skin and face detection as extra cues.

Zhang et al. [71] utilized a combination of top-down, MCMC and local search to

infer 2-D pose.
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Bottom-up/Top-down approaches: Ren et al. ([53]) used bottom-up detection

of parallel lines in the image as part hypotheses, and then combined these hypotheses

into a full-body configuration via an integer quadratic program. Zhang et al. ([71])

also fit into this category, as they use bottom-up cues such as skin pixel detection.

Similarly, Hua et al. ([35]) integrated bottom-up skin color cues with a top-down,

non-parametric belief propagation process. Mori ([46]) used superpixels to guide

their search. While Borenstein et al. ([11]) estimate only segmentation and not

pose for horses and humans in upright, running poses, they best utilize shape and

segmentation information in their framework. Ronfard et al. ([54]) use bottom-up

part detectors to detect part hypotheses, and then piece these hypotheses together

using a simple dynamic programming procedure in much the same way as in [24].

4.1 Overview of Our Parsing Method

Our goal is to combine a subset of salient shapes S (in our case, represented as binary

masks, and provided by segmenting the image via NCut) detected in an image into

a shape that is similar to that of a human body. Because the body has a very

distinctive shape, we expect that it is very unlikely for this to occur by chance alone,

and therefore should correspond to the actual human in the scene.

We formulate this as a parsing problem, where we provide a set of parsing rules that

lead to a parse (also represented by a binary mask) for the body, as see in Figures

4.2 and 4.3. A subset of the initial shapes S are then parsed into a body. The rules

are unary or binary, and hence a non-terminal can create a parse by composing the

parses of one or two children nodes (via the pixel-wise OR operator). In addition the

parses for a node can be formed directly from a shape from S, in addition to being

formed from a child/children. Traditional parsing methods (dynamic programming

methods) that exploit a subtree independence (SI) property in their scoring of a

parse can search over an exponential number of parses in polynomial time.
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We can define a traditional context-free grammar as a tuple

〈V, T,A,R, S〉 (4.1)

V are parse non-terminals and T are the terminals, where A is the root non-terminal,

R = {Ai → Bi, Ci} (4.2)

is a set of production rules with Ai ∈ V and Bi, Ci ∈ V ∪ T (we restrict ourselves to

binary rules, and unary rules by making Ci degenerate), and Si is a score for using

rule Ri. Further, for each image, a terminal Ti ∈ T will have potentially multiple

instantiations tji , j = 1, ..., ni each with its own score uji for using Ti → tji in a parse.

Each terminal instantiation tji ∈ S, corresponds to an initial shape S drawn from

NCut segmentation. If the root is A ∈ V , then we can compute the score of the best

parse (and therefore the best parse itself) recursively as

P (A) = max
ri|ri=(A→Bi,Ci)

(Si + P (Bi) + P (Ci)) (4.3)

However, this subtree independence property greatly restricts the type of parse scor-

ing function that can be used.

By contrast, our approach seeks to maximize a shape scoring function FA for A that

takes as input two specific child parses bji and cki (or one, as we allow unary rules)

corresponding to rule A→ Bi, Ci:

P (A) = max
ri=(A→Bi,Ci)

max
j,k

(FA(bji , c
k
i )) (4.4)

Recall that we represent a parse bji or tji as a binary mask, not as the parse rules

and terminals that form it. Note that the exact solution requires all parses for the

children as opposed to just the best, since the scoring function FA does not depend

on the scores of the child parses. Because the exact solution is intractable, we instead

solve this approximately by greedily pruning parses to a constant number. However,

we use a richer parse scoring function that has no subtree independence property. We
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can view the differences between the two methods along two dimensions: proposal

and evaluation.

Proposal: Dynamic programming methods explore all possible parses, and therefore

have a trivial proposal step. Our method recursively groups bottom-up body part

parses into increasingly larger parts of the body until an entire body parse is formed.

For example, a lower body could be formed by grouping two Legs, or a Thigh+Lower

leg and a Lower leg, or taken directly from S. In the worst case, creating parses from

two children with n parses each could create n2 new parses. Therefore, pruning occurs

at each node to ensure that the number of parses does not grow exponentially further

up the tree. To prune, we eliminate redundant or low scoring parses. Because there

is pruning, our method does not evaluate all possible parses. However, we are still

able to produce high quality parses due to a superior evaluation function.

Evaluation: On the evaluation side, dynamic programming employs evaluation

functions with special structure, limiting the types of evaluation functions that can

be used. Usually, this takes the form of evaluating a parse according to the parse

rule used (chosen from a very limited set of choices) and the scores of the subparses

that compose it, as in Equation (4.3). However, this does not allow scoring of the

parse in a holistic fashion. Figure 4.4 gives an example; two shapes that on their

own are not clearly parts of a disk, but when combined together, very clearly form a

disk. Therefore, we associate with each node i a scoring function Fi (as in Equation

(4.4)) that scores parses not based on the scores of their constituent parses or the

parse rule, but simply based on their shape. The scoring function also allows for

pruning, as parses can be ranked and low-scoring parses can be discarded to control

the number of parses. It is important to note that our choice of Fi does not exhibit

an SI property. Because of this, we are primarily interested in the actual result of the

parse, a binary mask, as opposed to how it was generated from child parses or from

S. In contrast to dynamic programming methods, a parse is evaluated irrespective

of how it was generated.
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Figure 4.2: Our body parse tree, shown with an exemplar shape from our training
set for each node; the exemplars are used for shape scoring. Shape parsing begins at
the leaf nodes of thigh and lower leg and proceeds upwards. Note that in addition
to composing parses from children nodes, parses can always come from the initial
shapes S. 43



• {Lower leg, Thigh} → Leg

• {Thigh, Thigh} → Thighs

• {Thighs, Lower leg} → Thighs+Lower leg

• {Thighs+Lower leg, Lower leg} → Lower body

• {Leg, Leg} → Lower body

• {Lower body} → Lower body+torso

• {Lower body+torso} → Lower body+torso+head

Figure 4.3: Our parse rules. We write them in reverse format to emphasize the
bottom-up nature of the parsing.

+ =
Figure 4.4: The two shapes on the left bear little resemblance to a disk in isolation.
However, when combined, the disk is clear.
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4.1.1 Multiple Segmentations

To initialize our bottom-up parsing, we need a set of intial shapes S. Mori et al.

([47]) noted that human limbs tend to be salient regions that NCut segmentation

often isolate as a single segment. To make this initial shape generation method more

robust, we consider not one segmentation as in [47], but 12 different segmentations

provided by NCut. We vary the number of segments from 5 to 60 in steps of 5, giving

a total of 390 initial shapes per image. This allows us to segment out large parts

of the body that are themselves salient, e.g. the lower body may appear as a single

segment, as well as smaller parts like individual limbs or the head. Figure 4.5 shows

for an image 2 of the 12 segmenations with overlaid boundaries. Segments from

different segmentations can overlap, or be contained within another. In our system,

these segments are all treated equally. These initial shapes could be generated by

other methods besides segmentation, but we found segmentation to be very effective.

4.1.2 Shape Comparison

For each node i, we have an associated shape scoring function Fi. For the root node,

this ranks the final parses for us. For all other nodes, Fi ranks parses so that they

can be pruned. All the shape scoring functions operate the same way: we match

the boundary contour of the mask that represents a parse against boundary contours

from a set of exemplar shapes using the inner-distance shape context (IDSC) of [41].

4.1.3 Parse Rule Application Procedure

Our parsing process consists of five basic steps that can be used to generate the

parses for each node. For a particular node A, given all the parses for all children

nodes, we perform the following steps:
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Figure 4.5: Two segmentations of an image, 10 and 40 segments. Red lines indicate
segment boundaries for 10 segments, green lines indicate boundaries for 40 segments,
and yellow indicates boundaries common to both segmentations (best viewed in
color).

46



 

+  =  

G rouping 

E xtension  

Shape M atching 

G rouping 

Segm ents 

E xtension  

H ole filling P roposals 

Shape M atching 

P runing, 
C onsolidation, 

R anking 

Segm ents 

C  H yps B  H yps 

A  H yps 

H ypothesis generation  

Figure 4.6: Left: parse rule application procedure. For binary rules, all pairs of
child parses that are within 10 pixels of each other are composed via grouping, with
hole filling provided by segments if needed. For unary rules, the child parses undergo
extension using projected quadrilaterals and segment proposals. Shape matching is
performed on both the original segments as well as the composed parses. For leaf
nodes, shape matching is performed only on the segments. After shape matching,
the parses are consolidated, pruned and ranked. Right: Grouping: two legs, on
the left, are grouped into a lower body parse, on the right. Extension: the leftmost
image shows a lower body parse with multiple different torso quadrilaterals projected
from exemplars on to the image using the correspondence between the lower body
parse and the lower body exemplars; the center image shows the exemplar with
its torso quadrilateral that yielded the best torso parse, seen in the right image.
Shape matching: two examples of shape matching. The lower body on the right was
detected directly from the segments S, underscoring the importance of injecting the
shapes from S into all levels of the parse tree.
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Algorithm 1: PA = Parse(A, S): for a particular image, given initial segments
S and part name A, produce ranked and pruned parses for A.

Input: Part name A and initial shapes S
Output: PA: set of ranked and pruned parses for A
PA = S; // Include all of S as parse candidates

foreach rule {Bi, Ci} → A (or Bi → A) do
PBi

= Parse(Bi, S); // Recurse

PCi
= Parse(Ci, S); // If binary rule, recurse

PA = PA∪ Group(PBi
, PCi

) (or Extend(PBi
)); // Add to parses of A

PA = RankByShapeMatchingScore(PA);
PA = Prune(PA); // Prune redundant/low scoring parses

return PA; // Return parses

Parse rules

Segment inclusion: applies to all nodes We include by default all the masks

in S as parses for A. This allows us to cope with an input image that is itself a

silhouette, which would not necessarily be broken into different limbs, for example.

A leg will often appear as a single segment, not as separate segments for the thigh

and lower leg; it is easier to detect this as a single segment, rather than trying to split

segments into two or more pieces, and then recognize them separately. For nodes in

the parse tree with no children, this is their only source of masks.

Grouping: {B,C} → A For binary rules, we can compose parses from two children

such as grouping two legs into a lower body, e.g. {Leg, Leg} → Lower body. For

each child, based on the alignment of the best matching exemplar to the child, we

can predict which part of the segment boundary is likely to be adjacent to another

part.

A pair of masks, b from B and c from C, are taken if the two masks are within 30

pixels of each other (approximately 1/10th of the image size in our images), and

combined with the pixel-wise OR operator. Because we need a single connected

shape for shape comparison, if the two masks are not directly adjacent we search

for a mask from the segmentations that is adjacent to both, and choose the smallest
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such mask m. m is then combined with b and c into a single mask with a single

connected component. If no such mask exists, we just keep the larger of a and b.

Figure 4.6 provides an example of the parse rule, {Leg,Leg} → LowerBody.

Extension: {B} → A For unary rules we generate parses by projecting an expected

location for an additional part based on correspondence with exemplars. This is

useful when bottom-up detection of a part by shape, such as the torso or head, is

difficult due to wide variation of shape, or lack of distinctive shape. Once we have a

large piece of the body (at least the lower body), it is more reliable to directly project

a position for other parts. Given a parse of the lower body and its correspondence to a

lower body exemplar shape, we can project the exemplar’s quadrilateral representing

the torso on to the parse (we estimate a transform with translation, rotation and

scale based on the correspondence of two contour points closest to the two bottom

vertices of the torso quadrilateral).

Similarly, given a mask for the lower body and torso, and its correspondence to

exemplars, we can project quadrilaterals for the head. With these projected quadri-

laterals, we look for all masks in S which have at least half their area contained

within the quadrilateral, and combine these with the existing mask to give a new

parse. For each parse/exemplar pair, we compose a new parse.

Complexity Control

Scoring Once parses have been composed, they are scored by matching to the

nearest exemplar with IDSCs and dynamic programming. Correspondence is also

established with the exemplar, providing an estimate of pose.

Pruning Many parses are either low-scoring or redundant or both. We prune away

these parses with a simple greedy technique: we order the parses by their shape score,

from highest to lowest (best to worst). We add the best parse to a representative

set, and eliminate all other parse which are similar to the just added parse. We then

recurse on the remaining parses until the representative set reaches a fixed size. For
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mask similarity we use a simple mask overlap score O between masks a and b:

O(a, b) =
area(a

⋂
b)

area(a
⋃
b)

(4.5)

where
⋂

performs pixel-wise AND, and area(m) is simply the count of pixels with

value 1 in the mask. If O(a, b) is greater than a particular threshold, a and b are

considered to be similar. After this step, we have a pruned set of parses that can be

passed higher in the tree, or to evaluate in the end if the node A is the root. Figure 4.6

illustrates the stages of the parsing process for generating the parse for a single node.

Also included are examples of grouping, extension, and shape matching/scoring.

Algorithm 1 sums up the parsing process for a particular part A, given intial set

of shapes S from segmentation. It recursively generates parses for the children

parts, and therefore to parse the torso+lower body+head (TLBH), we would call

Parse(TLBH, S). Note that if the part is a child in the parse tree, then no recursion

occurs, and only the shapes S can form parses.

4.2 Results

We present results on the baseball dataset used in [47] and [46]. This dataset contains

challenging variations in pose and appearance. We used 15 images to construct shape

exemplars, and tested on |I| = 39 images. To generate the IDSC descriptors, we

used the code provided by the authors of [41]. Boundary contours of masks were

computed and resampled to have 100 evenly-spaced points. The IDSC histograms

had 5 distance and 12 angle bins (in [0, 2π]). The occlusion penalty for dynamic

programming matching of contours was 0.6 * (average match score), and 10 different

alignments were used to initialize contour registration. For pruning, we used a

threshold of 0.95 for the overlap score to decide if two masks were similar (a, b are

similar ⇐⇒ O(a, b) ≥ 0.95) for the lower body+torso and lower body + torso +

head, and 0.75 for all other pruning. In all cases, we pruned to 50 parses.
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For parsing via grouping of parses from two different nodes, we can compose at

most 502 = 2500 parses. In practice, we typically found this to be between 500

and 1500 parses. For parsing via extension, for each of the 50 child parses, we

create 15 new parses, 1 per exemplar, for a total of 750 parses. For each node,

we examine an additional 390 parses from S. Given that there are 8 nodes, 2

extension relationships, and 5 grouping relationships, this gives an upper bound

# of 2500 ∗ 5 + 750 ∗ 2 + 390 ∗ 8 = 17120 parses. With 15 exemplars, the number of

shape comparisons is at most 15 ∗ 17120 = 256800.

Because we limit ourselves to shape cues, the best mask (in terms of segmentation

and pose estimate) found by the parsing process is not always ranked first; although

shape is a very strong cue, it alone is not quite enough to always yield a good parse.

We expect that incorporating other cues would allow us to rank the best parse at,

or very close to, the top. Our main purpose was to investigate the use of global

shape features over large portions of the body via shape parsing. We evaluate our

results in two different ways: segmentation score and projected joint position error.

To the best of our knowledge, we are the first to present both segmentation and pose

estimation results on this task.

4.2.1 Segmentation Scoring

We present our results in terms of an overlap score for a mask with a ground truth

labeling. Our parsing procedure results in 50 final masks per image, ranked by

their shape score. We compute the overlap score O(m, g) between each mask m and

ground truth mask g. We then compute the cumulative maximum overlap score

through the 50 masks. For an image i with ranked parses pi1, ...p
i
n, we compute

overlap scores oi1, ..., o
i
n. From these scores, we compute the cumulative maximum

Ci(k) = max(oi1, ..., o
i
k). The cumulative maximum gives us the best mask score we

can hope to get by taking the top k parses.

To understand the behavior of the cumulative maximum over the entire dataset, we
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Figure 4.7: Top: We plot the average of each image’s maximum overlap score as a
function of the number of final parses retained, and do this for each region. Bottom:
To give greater insight into the distribution of overlap scores, we focus on the top 10
parses, and histogram the best overlap score out of the top 10 for each image and
region.
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compute M(k) = 1
|I|

|I|∑
i=1

Ci(k), or the average of the cumulative maximum over all

the test images for each k = 1, ..., n (n = 50 in our case). This is the average of

the best overlap score we could expect out of the top k parses for each image. We

consider this a measure of both precision and recall; if our parsing procedure is good,

it will have high scoring masks (recall) when k is small (precision). On top in Figure

4.7, we plot M(k) against k for three different types of masks composed during our

parsing process: lower body, lower body+torso, and lower body + head + torso. We

can see that in the top 10 masks, we can expect to find a mask that is similar to the

ground truth mask desired, with similarity 0.7 on average. This indicates that our

parsing process does a good job of both generating parses as well as ranking them.

While the above plot is informative, we can obtain greater insight into the overlap

scores by examining all Ci(k), i = 1, ..., |I| for a fixed k = 10. We histogram the

values of Ci(10) on the bottom in Figure 4.7. We can see that most of the values

are in fact well over 0.5, clustered mostly around 0.7. This confirms our belief that

the parsing process is effective in both recalling and ranking parses, and that shape

is a useful cue for segmenting human shape.

4.2.2 Joint Position Scoring

We also examinine the error in joint positions predicted by the correspondence of a

parse to the nearest exemplar. We take 5 joints: head-torso, torso-left thigh, torso-

right thigh, left thigh-left lower leg, right thigh-right lower leg. The positions of

these joints are marked in the exemplars, and are mapped to a body parse based

on the correspondence between the two shapes. For a joint with position j in the

exemplar, we locate the two closest boundary contour points p, q in the exemplar that

have corresponding points p′, q′ in the shape mask. We compute a rotation, scaling

and translation that transforms p, q to p′, q′, and apply these to j to obtain a joint

estimate j′ for the parse mask. We compare j′ with the ground truth joint position
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Figure 4.8: Top: We plot the average, across all images, of the minimum average
joint error in the top k parses as a function k, the number of parses retained. Bot-
tom: Taking the top 10 parses per image, for each image we compute the minimum
average joint error from these top 10. We then histogram these values to show that
taking 10 parses is likely to lead to recall of a good body parse. We can see that the
vast majority of average errors are roughly 20 pixels or less.
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via Euclidean distance. For each mask, we compute the average error over the 5

joints. Given these scores, we can compute statistics in the same way as the overlap

score for segmentation. On the top in Figure 4.8 we plot the average cumulative

minimum M(k), which gives the average best-case average joint error achieveable

by keeping the top k masks. We see again that in the top 10 masks, there is a good

chance of finding a mask with relatively low average joint error. On the bottom in

Figure 4.8, we again histogram the data when k = 10.

We show several example segmentations/registrations of images in Figure 4.9. Note

that with the exception of the arms, our results are comparable to those of [46]

(some of the images are the same), and in some cases our segmentation is better.

As noted in [46], although quantitative measures may seem poor (e.g., average joint

position error), qualitatively the results seem good. Figure 4.10 shows the top five

parse results (according to exemplar matching score) for each of the images in the

test dataset, along with the correspondences of the body mask to the nearest exem-

plar. We can see that the inner-distance shape context is effective at matching very

different poses.

4.3 Observations

Clearly, the quality of the segmentation plays an important role in the performance

of the method, but as long as large segments are used, sampling many different

segmentations does not seem to negatively impact the performance of the method.

Some poses of course also have more distinctive shapes (e.g. legs apart versus legs

together) that are easier to recognize. The size of the exemplar set need not be

very large; most likely, the number of shape exemplars can be cut from the 15

used by default to a smaller number like 5, for example. Shape exemplars could

be automatically clustered using similarities measured from inner-distance shape

context matching between different exemplars. Internal features of the body have
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been used before (as in Mori et al. [48]), but shape seems to be the best cue (and

results in [63] corroborate this), especially given that large segments and the holistic

nature of the inner-distance shape context convey rich shape information. Recent

work has also focused on the use of image contours (Zhang et al. submitted to CVPR

2011) for human pose estimation, which often provide better recall and grouping

of image boundaries, and may serve as a better set of bottom-up structures for

pose estimation. Lastly, the develop of shape features specific to interesting body

configurations could be especially useful for difficult aspects of human pose such as

the upper body, where features such as junctions can indicate important occlusion

relationships.
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Figure 4.9: We present additional pose estimation results. The segmentation of
the person has been highlighted and the contour drawn as colored dots, indicating
correspondence to the best matching exemplar. All the parses were the top scoring
parses for that image (images are ordered row-major), with the exception of images
4 (2nd best), 8 (3rd best), 6 (3rd best). Some images were cropped and scaled for
display purposes only. Full body overlap scores for each image (images are ordered
row-major): 0.83, 0.66, 0.72, 0.74, 0.76, 0.70, 0.44, 0.57 and 0.84. Average joint
position errors for each image: 12.28, 28, 27.76, 10.20, 18.87, 17.59, 37.96, 18.15,
and 27.79.

57



Figure 4.10: Top 5 parse results for each of the test images in the baseball images
dataset. Each row contains, on the left, the top 5 parse results in terms of overall
score (best shape matching score to a torso+lower body + head exemplar); on the
right is the correspondence of the image to the best exemplar. The images are ordered
by accuracy of the best match in the top 5, measured with respect to ground truth.
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Figure 4.10: Top 5 parse results, continued.
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Figure 4.10: Top 5 parse results, continued.

60



Figure 4.10: Top 5 parse results, continued.
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Figure 4.10: Top 5 parse results, continued.
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Chapter 5

Many-to-one Matching For

Describing and Discriminating

Object Shape

While the previous chapter concerned the use of bottom-up image segmentation for

human pose estimation, here we are concerned with recognizing more general non-

articulated objects. Although the variation of pose of non-articulated objects is not

as substantial, there is sufficient deformation nevertheless for the relative spatial

relationships of both clutter and foreground shape features to vary substantially.

Again, to address this problem we use a cost function that incorporates holisitic

shape matching. One of the weaknesses of the parsing approach was the need for at

least some regions of the body to appear clearly as individual segments. In practice,

this assumption is not always satisfied, and so in this chapter we focus on recognition

that is invariant to bottom-up fragmentation, using image contours. The advantage

of image contours is that they tend to leak into the background less often, resulting

in more accurate portions of object boundary shape, as well as being easily adapted

for fragmentation-invariant recognition (following [73]).

Our approach is summarized in Fig. 5.1. Given positive and negative images for an
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object category, and object bounding boxes, we use a bottom-up grouping method

([72]) to obtain long, salient image contours. From these contours, we first learn a

descriptive shape model from the positive images. We then discriminatively tune

the model using additional negative images for good detection performance. Both

the learning steps use many-to-one matching of image contours to a shape model as

a key process.

This chapter first provides an overview of related previous work on object recogni-

tion, covering contour-based detection, learning of object shape, and discriminative

training of object detectors. Then the method for learning object shape is discussed,

followed by the discriminative training of object detectors using the Latent-SVM

learning framework ([22]), which allows for discriminatively training object detectors

that have latent variables (such as the positions of object parts and their segmenta-

tion).

5.1 Overview

There are three different areas related to our approach: image contour-based object

detection, object shape learning, and discriminative object detection.

Image contour-based detection methods: There are several works that use

bottom-up image contours for object detection; [26] is most related. They used

voting of configurations of bottom-up contours followed by a refinement scheme to

discover shape from positive examples. In [44], the authors extracted contours and

used a particle filter method for recognizing and grouping contours given a hand-

drawn model. However, both methods expect image contours to have consistent

fragmentation across images, which is not always satisfied. The method of [73]

used many-to-one (and also many-to-many) matching of image contours to a shape

model for a detection, but required a hand-drawn model and hand-tuned detection

parameters.
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Input: 
images,

bounding 
boxes

Descriptive model

Negatives

Positives Discriminative model

vs.

Explains most 
positives well,

but some 
negatives too

Discriminates
positives and 
negatives well

Bottom-up
contours 
extracted

Positive images,
Bounding boxes,

contours

Negative 
images,

contours

Models share
object shape

Figure 5.1: Overview of our proposed method. Positive and negative images labeled
with bounding boxes for instances of a single object category are provided. Long,
salient, bottom-up image contours are extracted from these images. The positive
images are used to learn a descriptive shape model of the object shape by finding
“lucky” image contours that can explain much of the shape of the positive examples
via a many-to-one matching criterion. A discriminative detection model is trained
using all the training images, their image contours and the learned shape model.

Object shape learning: In [20], the authors learned the outline shape of an object

category from contours (found using a snake model), but were limited to learning

from clutter-free “cartoon-images” and did not learn interior contours. There has

been substantial other work in learning object shape, such as [38], [70], [39], and [60]

but they do not leverage bottom-up image segmentations, leaving them at risk for

accidental alignments in clutter. In addition to detection, [26] also learned object

shape using a combination of discovery of recurring configurations and refinement

steps; however this again expects that configurations of bottom-up contours recur

consistently.

Discriminative object detection: Topic-model approaches, such as [28], have

been used to discover a low-dimensional representation for image regions as a set
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of responses to the topic model. This representation provided features for an SVM

classifier. Local feature voting for hypothesis proposal was combined with intersec-

tion kernel SVM verification by [45]. However, these patch-based methods do not

leverage the non-accidental nature of bottom-up segmentation. Boosting has been

used to learn an object model shape made of contours extracted from training im-

ages, as in [49]. However, they used a chamfer matching cost for scoring placements

of object parts in the image which often matches clutter. Some work ([52]) used

a hand-drawn model of the object of interest, broke the model contours into frag-

ments, and searched the image for fragment matches. Matches voted to yield object

detections, which were followed by refinement and verification steps. In contrast,

our method learns an object shape model automatically.

The histogram of oriented gradients (HOG, [18]) image feature was used in a discrim-

inatively trained deformable part object model where part placements were scored

by correlation of a learned part filter with the HOG features ([22] used). However,

the support of a HOG feature in the image may overlap between the object and

background (also noted in [38]), which can lead to unpredictable changes in the

features.

This chapter first discusses the model shape learning, also explaining the use of

many-to-one matching, and then explains the discriminative learning.

5.2 Learning a Descriptive Shape Model

We assume as input a set of positive images IP containing the object IP = {I1, ..., I|IP |}.

Each image has associated with it one or more bounding boxes that indicate the

rough location and size of the instances of the object in the image. Also, for each

image Ij we use a bottom-up contour grouping process (we use the method of [72])

to obtain image contours:

Cj = {Cj
1 , ..., C

j
|Cj |} (5.1)

We restrict the contours to those that lie inside a bounding box. We define C as the
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union of these sets of contours for all the images. Instead of learning the object shape

from scratch ([38]), we use C as a set of natural candidates for object model. The

key insight is that in some of the images a significant portion of the object is clearly

visible, resulting in a long, salient object contour. By combining several of these

“lucky” contours, we can obtain a good shape model. We write the model contours

as CM = {CM1 , ..., CM|CM|}, and have two criteria for selecting these contours:

• Matching efficiency: each model contour in CM should be able to match effi-

ciently (defined below) to object contours Cj in a training image Ij

• Non-overlapping: each model contour in CM should be matched to mostly

different contours C = {C1 ∪ C2 ∪ ... ∪ C |IP |} in the training images

We explain score functions for both separately and then integrate them into a single

score.

Matching efficiency score: The matching efficiency score evaluates the ability of

a single model contour CMi to match well to many fragmented contours Cj in an

image Ij: E(CMi , Cj). The key difficulty is that there is no one-to-one correspon-

dence between image contours and the model, making the problem well-suite for the

many-to-one matching framework of Chapter 2. Recall that to perform many-to-one

matching, we need a transformation that relates image contours to the model. In

this case, the bounding boxes provided with the positive images allow us to infer

rough alignment of the training images. We can derive a transformation T for each

positive example from the center of the bounding box and its dimensions, translat-

ing the image contours and scaling them in x and y in order to align all training

bounding boxes. For a particular set of matched image contours xsel, we again have

the histogram comparison features K(T,xsel).

We can now write the matching efficiency score E in terms of K, normalized by

model contour length l(CM
i ) (the length of a contour refers to its physical length,

not simply the number of points in it):
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E(CMi , Cj) =
1

l(CMi )
max

xsel∈{0,1}|Cj|
wappTK(T,xsel)

We summarize the outputs of the matching process: training set matching efficiency

E for each candidate in C (for Ci ∈ C, sum of efficiencies over all training images;

E(i) =
∑|IP |

j=1 E(Ci, C
j); see Fig. 5.2) and matching indicator vectors {r1, ..., r|C|},

where each ri ∈ {0, 1}|C| is an indicator vector. This vector tells us which contours

in the images candidate Ci ∈ C was matched to.

In practice, we use the linear program to approximate E(i) for all candidates and

prune those with low approximate score. We solve an integer program for the re-

maining candidates to get E(i) exactly, and discard those with E(i) < 0 as they are

unlikely to be good model contours.

Overlapping candidate suppression: Two different candidate contours in C,

from the same or different images, may both correspond to the same part of the ob-

ject. Additionally, the contour grouping method we use ([72]) produces overlapping

contours within a single image, unlike most bottom-up grouping methods. So, we

must be careful not to include overlapping contours in our model. We define for any

two candidates Ci, Cj ∈ C, Q(Ci, Cj) as a measure of overlap in terms of the which

contours matched to the candidates:

Q(Ci, Cj) =

∑|C|
k=1 ri(k)rj(k)l(Ck)∑|C|

k=1 rj(k)l(Ck)
(5.2)

The numerator computes the sum of lengths of contours that both Ci, Cj matched,

while the denominator computes the sum of lengths of contours that Cj matched. If

Q is large, then Ci matched most of the contours (according to total length) that Cj

matched. Q lies in the interval [0, 1]. If Cj matched no contours, Q is defined to be

1 for all Ci.

Model shape score function: Given score functions for matching efficiency and

overlap, we can now define a joint score function that optimizes the total matching
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Figure 5.3: Models learned for Applelogos, Bottles, Giraffes, Mugs and Swans from
the ETHZ Shape Classes dataset using half the images for each category. Contour
colors indicate different candidates combined to form the model.

efficiency of the model contours subject to an overlap constraint Q(CMi , CMj ) ≤ t,

where t is a pre-defined threshold on the contours:

max
CM|CM⊆C

|CM|∑
i=1

|IP |∑
j=1

E(CMi , Cj)

s.t. ∀k, l Q(CMk , CMl ) ≤ t

(5.3)

Algorithm 2: Model shape learning: optimizing Eq. 5.3
Input candidates C, match eff. scores E, matches R;
Output Model shape CM; local maximum for Eq. 5.3;
Initialization CM ← ∅ , A← {1}|C| (indicates whether candidate still active);
while A has a true entry do

Ci ← active candid. w/ best match eff. score E(i);
CM ← CM

⋃
{Ci}, A(i)← false ;

∀j s.t. Q(Ci, Cj) > t, A(j)← false ;

end

Optimization over CM: Because the space of CM includes all possible subsets of

C, there are an exponential number of states. We use a greedy approach which incre-

mentally adds a contour candidate to the model according to training set matching

efficiency and avoiding overlap, summarized in Algorithm 2. CM is initialized to be

empty (∅), and all candidates are initially active (A(i) is true). We add to CM the

active contour candidate with highest efficiency, and de-activate all conflicting can-

didates (A(i) ← false, according to Q), repeating until no candidates remain. This

process is guaranteed to improve the score in Eq. 5.3 at each step while obeying Q,
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Figure 5.4: Overview of discriminative tuning of many-to-one matching score func-
tion.“Input” panel: input to this step is the shape model automatically discovered
previously, along with positive and negative training images and their image con-
tours. “Model initialization”: relative spatial relationships of parts w.r.t. to root part
are computed along with shape histograms to represent part appearances. The many-
to-one matching paramters (to be learned) are initialized. “Latent SVM”: latent
SVM training iterates between a) running the detector on images (left)/extracting
positive, negative detection examples and features FP and FN , resp. (middle) and
b) updating model parameters w, b (right). A detection ( left) involves placements
of the parts Ti and many-to-one matchings of contours to the parts xsel

i .
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since we only keep candidates with E(i) > 0. Fig. 5.2 depicts the learning process,

and Fig. 5.3 shows results on the ETHZ Shape Classes dataset.

5.3 Discriminative Detector Learning

5.3.1 Object Detection as Many-to-one Matching

For object detection, we still perform many-to-one matching of image contours to a

shape model (learned above), but with a matching score tuned for discrimination.

Previously we assumed just one model part (single contour selection + part place-

ment) because the bounding boxes provided the placement/warping. For detection,

we extend to have N + 1 parts to better accomodate object deformation:

Parts : P0, P1, ..., PN

Parts may deform relative to the root part, P0, that represents the center of the

object. In the model, parts P1, .., PN are located at points of high curvature on the

model shape contours: P ′1, ..., P
′
N (Fig. 5.4, panel “Model initialization”). We use the

discrete curve evolution method of [36] (a contour simplification technique) to find

these points P ′i from the model shape contours, and P ′0 on the model is computed as

simply the mean of P ′1, ..., P
′
N in the model. Part appearances for parts Pi, i = 1, ..., N

are represented with model part histograms hiM centered at P ′i computed over the

model shape (P0 has no appearance term, although our formulation can accomodate

one); we use shape context histograms (Fig. 5.4, “Model initialization”).

For an image Ij with contours Cj, a detection of consists of a many-to-one matching

for each part: transformations Ti for each part (which align placement of the part

in the image back to the location of the part on the model), and selected contours

for matching to each part Pi, i = 1, ..., N , xsel
i (with the exception of the root part,

which only serves to spatially relate the other parts):
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Ti : Pi → R2

xsel
i : Cj → {0, 1}|Cj|

(5.4)

We define a detection as D = {T0,T1,x
sel
1 ,T2,x

sel
2 ...,TN ,x

sel
N }. For simplicity, we

abuse notation and refer to the correspondence of model point P ′i in the image using

Ti. Following the terminology of [22], we also call Ti a placement of part Pi, since

it refers to the location in the image where part Pi is hypothesized to lie. Fig. 5.4,

“Latent SVM”, left, also describes a detection.

Placement score: For each part Pi, we need to be able to score a placement Ti of

the part in the image along with matching contours xsel
i . We use the same many-

to-one shape matching features K, with a part-specific weight vector wapp
i ≥ 0:

wapp
i

TK(Ti,x
sel
i ). The corresponding model part shape histogram is hiM (Fig. 5.4,

“Model initialization”, center).

Deformation score: For each part i = 1, ..., N we use a part offset Oi = (Ox
i , O

y
i )

that describes the expected spatial position of Pi in the image, Ti, relative to T0, the

position of the root part in the image: T0 +Oi (Fig. 5.4, “Model initialization”). Oi

is computed as the difference between the locations of parts Pi and P0 in the model:

P ′i − P ′0. The deviation of a part Pi from its expected position relative to the root

provides part deformation features G:

G(T0,Ti) =

 −(Tx
i − (Tx

0 +Ox
i ))2

−(Ty
i − (Ty

0 +Oy
i ))2

 (5.5)

A set of parameters wdef
i , i = 1, ..., N (to be learned, along with wapp

i ) penalizes

deviation of part Pi from its expected position relative to P0. The overall score

function for a particular detection D is:

DetScore(D) =
N∑
i=1

 wdef
i

wapp
i

T  G(T0,Ti)

K(Ti,x
sel
i )

 (5.6)

In contrast to [22], our appearance term does not depend simply on the placement

Ti of part Pi, but also on the contours chosen for matching, xsel
i .
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Inference for detection: The space of possible detections is exponential in the

number of possible placements for each part and number of image contours. To

cope, we create a regular grid of possible root part locations R in the image and

only keep the highest scoring detection per root part location Rj ∈ R, as in [22].

For each possible root location Rj, we fix T0 = Rj, and then maximize the detection

score subject to this root constraint to obtain score S(Rj, w):

S(Rj, w) = max
D|T0=Rj

DetScore(D) =⇒

max
{T1,...,TN ,xsel

1 ,...,xsel
N }

N∑
i=1

 wdef
i

wapp
i

T  G(Rj,Ti)

K(Ti,x
sel
i )

 (5.7)

We note that wapp
i

TK(Ti,x
sel
i ) does not depend on T0, and hence for each part Pi

the maximization over xsel
i can be pre-computed for each possible placement Ti. In

[22], this step corresponds to convolving the image with the filter associated with a

part. In our case, we use the previously described linear programming relaxation to

efficiently and accurately approximate the many-to-one matching score.

Given wapp
i

TK(Ti,x
sel
i ) for each possible placement Ti of each part Pi,

max
D|T0=Rj

DetScore(D)

can be computed easily by picking the best part placement for each part Pi individu-

ally. For fixed T0, the scores for parts P1, ..., PN are independent. The set of possible

placements are sampled from points of high curvature along image contours, follow-

ing the method of [36]. We take as a bounding box the bounding box of the part

locations. A detection with center Rj can be labeled as a true or false positive (label

yj = ±1) according the overlap of its bounding box with a ground truth bounding

box. Non-maximum suppression allows us to eliminate many redundant/overlapping

detections, reducing the complexity of learning.
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5.3.2 Latent SVM For Discriminative Detector Learning

Given detections centered at Rj ∈ R with labels yj = ±1 from the training im-

ages, we learn discriminative model parameters w = [wdef
1

T
wapp

1
T · · ·wdef

N
T
wapp

N
T]T to

optimize detection performance.

Loss function: Following the standard SVM formulation, we can write a hinge-loss

function associated with the above score function as:
Z(w) = C

∑
j

max(0, 1− yj(S(Rj, w)− b)) +
1

2
wTw

s.t. w ≥ 0

(5.8)

where max(0, 1− yj(S(Rj, w)− b)) is the hinge loss and 1
2
wTw is the regularization

term. The learned constant b is the usual SVM bias term. We require w ≥ 0 so that

many-to-one matching score remains concave and maximizable.

Latent SVM training: We adapt the “coordinate descent” method from [22] for

minimizing Eq. 5.8. Beginning with an initial set of parameters w0, b0, we run the

detection procedure on the training images. The following two steps are iterated as

shown in Fig. 5.4 (“Latent SVM”):

• Update model parameters w, b given argmax detection for each root placement

Rj: Given the detection results from the previous model parameters, we train

an optimal model w, b using the the features from the argmax of Eq. 5.7 (also

see in Fig. 5.4) for each root Rj. This is equivalent to traditional SVM using

these features, but with the added constraint w ≥ 0.

• For each root placement Rj, update part placements Ti and xsel
i for parts

1, ..., N : Given new model parameters w, b, we recompute the optimal se-

lections and placements xsel
i ,Ti, i = 1, .., N for each root placement Rj by

running the detection procedure.

We iterate the two update steps until the average precision of the detection precision-

recall curve stops increasing, up to a maximum number of iterations. As in [22], we

use a cache of hard negative examples that is grown on each iteration to ensure that

the update of w, b does not cycle from one iteration to the next.
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5.3.3 Placement Refinement and Joint Matching

The above voting procedure produces a reasonable detection result (see Table 5.3 and

associated discussion in experiments section). However, for efficiency reasons, the

sampling of different possible placements, or correspondences of each model part to

the image, is relatively coarse. Subtle but discriminative shape features, particularly

those at a small scale, may not be measured well without more accurate alignment

of the image to the model. Additionally, the set of image contours matched to each

model part is independent of one another, while in fact they should be the same

for each part. This leads us to several different strategies for improving both the

alignment of the image to the model as well as the matching of image contours to

the model for a specific detection D = {T0, ..., Tn,xsel
1 , ...,x

sel
n }:

• More accurate part placement: with denser sampling of possible part place-

ments, we can achieve more accurate localization of the object parts and better

measure subtle shape features.

• Affine warping of the image contours to align with the model: while the space

of deformations that the object may undergo is large, affine transformations

are appealing as they can help with out-of-plane transformations of the object.

• Joint or consistent matching of image contours to each of the model parts:

instead of computing a different xsel for each model part, have a single xsel or

matching of image contours to all model parts.

More accurate part placement: For each part placement Ti, we can sample a set

of additional nearby part placements Zi = {T |||T −Ti||2 ≤ δ}, and repeat the voting

procedure with these denser sets of placements for each part. The result is a more

accurate set of part placements that can help better localize subtle but important

shape features. We can write the voting as a modification of Equation 5.7, where

each part placement Ti must lie in Zi, or Ti ∈ Zi:
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S(Rj, w) = max
D|T0=Rj

DetScore(D) =⇒

max
{T1∈Z1,...,TN∈Zn,xsel

1 ,...,xsel
N }

N∑
i=1

 wdef
i

wapp
i

T  G(Rj,Ti)

K(Ti,x
sel
i )

 (5.9)

Joint matching: For a fixed set of part placements, we can solve the many-to-one

matching problem simultaneously for all parts. In essence, this is like treating the

shape contexts of all the object parts as a single large histogram, and solving the

many-to-one matching problem with this unified histogram. The result is a single xsel

that encodes which contours are matched to the object as a whole. Given an exsting

detection D = {T0, ..., Tn,xsel
1 , ...,x

sel
n }, we can write the maximization problem as:

max
xsel

N∑
i=1

wapp
i

TK(Ti,x
sel) = max

xsel


wapp

1

wapp
2

...

wapp
N



T 
K(T1,x

sel)

K(T2,x
sel)

...

K(TN ,x
sel)

 (5.10)

This can also be approximated via the same linear program (considering of all the

shape contexts together forming a single large histogram) as the usual single-part

many-to-one matching.

Affine warping of image contours: To estimate a good affine transformation

of the image to the model, we first enrich the set of correspondences of image to

model. With the above part model, the number of correspondences is relatively few,

typically on the order of about 10. However, with the known matching of image

contours (xsel from the joint matching step) to the model, we can compute shape

contexts at many different locations on the object in the image using only edge points

from the matched contours. If we densely sample these shape contexts on the image

and match them precisely in the model, we can establish many good correspondences

that can be used to estimate an affine transformation.
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Figure 5.5: Affine transformation of image to model improves alignment. Left panel:
at the top are shown the object shape model with part locations as colored dots
and the placement of the parts ({Ti}) in the image, along with the matched image
contours in red. Using these correspondences, the best rigid transform that aligns
the image contours to the model is shown below, and we can see that the alignment
is not very good. Right panel: at the top are shown denser correspondences between
the model and the image, found via shape-context matching between the model
shape and the matched image contours (red). Only high scoring correspondences,
according to the Chi-Square score between the two shape contexts, are kept. From
these correspondences, we can estimate an affine transformation that warps the image
contours back to the object model (below). We can see that the alignment is much
better under the new affine transformation.
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Given the matched set of image contours, establishing correspondences between the

image and the model reduces to the correspondence problem solved by Belongie

et al. [6]. For each sampled shape context in the image, we try matching it at

many different locations in the model using the Chi-Square similarity measure from

[6]. Correspondences with a matching cost below a fixed threshold are retained,

and used to estimate an affine transformation of the image to the model using a

least-squares criterion. Figure 5.5 shows an example of the improved alignment due

to estimation of an affine transformation. In the left panel are shown, clockwise

from top left, the model shape with part locations in colored points, the placements

of those parts in the image found via the original detection voting along with the

matched image contours from joint matching, and lastly the rigid alignment of the

matched image contours to the model shape using a rigid transformation estimated

from the correspondence of part locations in the image to part locations on the model.

We can see that alignment is rather poor, since this particular Applelogo instance

has undergone out-of-plane rotation, and hence no rigid transformation could align

it to the model shape. In the right panel of Figure 5.5 are, clockwise from top

left, dense points on the model shape, the correspondences of those points to the

points on the matched image contours in the image, and lastly the image contours

registered back to the model using the affine transformation estimated from these

new correspondences. We can see that the affine transformation does a very good

job of correctly aligning the image and model shapes, thereby drastically improving

the detection score of this particular Applelogos instance.

Joint matching and final evaluation: Given the final part placements, we can

again perform joint matching of image contours to all the object parts. On the

histogram comparison features and the geometric relationships of parts to the object

center, we can train an SVM classifier to provide a final detection score.
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5.4 Experiments

We implemented our method in MATLAB, using additional software packages ob-

tained from the authors of [72] and [2], and plan to release the code. We tested our

method on the ETHZ Shape Classes dataset ([26]; freely available online), with five

classes: Applelogos, Bottles, Giraffes, Mugs and Swans. We follow the train/test

split described in [45]; for training for each category we used the first half of the

images from that category as positive examples, and an equal number of nega-

tive images chosen equally from the remaining classes. Each category had 32 to

86 training images. Model shape learning was first performed, and a detector was

trained using the latent SVM formulation. During shape learning, we used a 4-by-4

grid histogram with trilinear interpolation (orientation binning in addition to spa-

tial binning; similar to [18]). Each image averaged 85 contours. Using the linear

programming approximation to the matching efficiency score, these candidates were

pruned to a pool of about 100 candidates, for which the exact efficiency score was

computed using an integer linear program solver (also in GLPK; [2]). Histogram dif-

ference and intersection features were weighted uniformly as 1.2 and 1, respectively.

We used overlap threshold t = 0.8.

During detection, images were searched at 6 different scales, 2 per octave. Each part

had up to 200 different possible placements in the image; for each part, placement,

scale tuple, a separate linear program was solved, taking a few minutes per image.

Latent SVM parameters w were initialized uniformly as in model shape learning, and

convergence took 3-7 iterations. After training the initial detector, learning was done

for part placement refinement, affine transformation estimation and joint selection

using high-scoring detections from voting (< 200 detections). All our results used 0.5

overlap score threshold for determining if a detection bounding box overlaps with

a ground truth bounding box (PASCAL criterion). Each detector was tested on

remaining 169 (Giraffe) to 223 (Swan) test images.

We compare our approach against the reported results from [45] and the method of
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[22] with the same train/test split. We show the precision/recall (PR) curves (Fig.

5.6) as well as plots of false positives per image (FPPI) vs. detection rate (DR),

and also the result of [44] (which tested on full dataset). Our method is comparable

in Applelogos/Bottles and substantially outperforms on Mugs/Giraffes/Swans which

have large deformation. Table 5.2 shows the interpolated average precision (AP; as

used in the PASCAL VOC Challenge) for the methods. Our APs for the five classes

are (0.845/0.916/0.787/0.888/0.922; mean: 0.872), much better than the next best

result at (mean: 0.771; [45]). Table 5.1 compares DR at 0.3/0.4 FPPI for sev-

eral methods. Our detection rates at 0.3/0.4 FPPI of (0.95/0.95; 1/1; 0.872/0.896;

0.936/0.936; 1/1) and mean across classes of 0.952/0.956, are a substantial im-

provement over the results of [45], 0.919/0.932 and [52], 0.930/0.952 (hand-drawn

models). We also outperform methods using hand-drawn models ([73], [52], [44]).

Fig. 5.7 shows detections/segmentations from our method. Both internal and exter-

nal contours (e.g. mug handle/outline) are segmented out.

To gain further insight into the results, we display selected detections (ordered by

detection score in decreasing order) from the ETHZ test data for each category in

Figure 5.8 along with the positions on the PR curve of those detections. We can see

that the false positives tend to have the shape of the object we are looking for, while

some true positives have low score due to object deformation (e.g., articulation of

the Giraffe or out of plane rotation of Applelogos) or missing contours.

We also performed an ablative analysis of the different steps of the method: voting,

refinement and joint selection, as seen in Table 5.3. While voting with discriminative

training is itself effective, the additional of refinement and joint selection also produce

substantial increases in performance. By contrast, removing learning drastically

worsens the results.
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5.5 Observations

Implementing any object recognition system requires a mix of scientific principles

and engineering principles. For the descriptive shape learning, choosing the right

histogram binning is an important detail. Too many small histogram bins make

it difficult to match contours according to actual shape commonalities relevant to

the object and also require very precise alignment, which is difficult with a single

transformation provided by the ground truth bounding boxes. Therefore, a shape

context binning pattern is not ideal as the small bins near the shape context center

require precise alignment in order to record repeatable shape information. Instead,

a grid histogram with medium-sized bins is advisable, as it does not require very

precise alignment but can still record some useful shape information, enough to

discover commonalities of shape among the various positive examples.

For shape discrimination, some of the most important bins are ones that contain

no contour points in the vast majority of the positive examples. These bins can be

assigned high weight reliably, while other bins that consistently contain a particular

part (and the same part) of the object shape may have counts that vary substan-

tially. As a result, they cannot be assigned as high a weight to achieve as high

discriminability. One can view the bins that consistently have no contour points

as “carving” out the actual object shape using negative regions, or description by

subtraction. For the bins that consistently contain object shape, exploring different

types of features, exploring different ways of describing the contents of the bin or

the relative nature of the contents of bins could be useful. For example, differential

features as used by Viola and Jones ([66]) might be more appropriate; in the linear

programming formulation, a hinge penalty on the difference between neighboring

shape context bins could be useful for encoding such a differential feature (the count

of a particular bin should be larger than another bin, and if not, pay a penalty linear

in the violation of the constraint).
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Figure 5.7: Some of our detection results on the ETHZ Shape Classes dataset. Each
image shows segmented object contours and bounding boxes for one or more detec-
tions. Bottom row shows false positives for Applelogos, Bottles, Giraffes, Mugs and
Swans (l-to-r); rest are true positives.
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Applelogos Bottles Giraffes Mugs Swans Mean
Our method 0.845 0.916 0.787 0.888 0.922 0.872
Maji et al. [45] 0.869 0.724 0.742 0.806 0.716 0.771
Felz. et al. [22] code 0.891 0.950 0.608 0.721 0.391 0.712
Lu et al. [44] 0.844 0.641 0.617 0.643 0.798 0.709

Table 5.2: Comparison of interpolated average precision (AP) on the ETHZ
Shape Classes dataset. Our method has the highest AP in 3 of the 5 classes, and
the highest mean across classes.

Components Avg. AP Avg. Rec. at 0.3/0.4 FPPI
Vote only 0.822 0.877 / 0.883
Vote+ref. 0.844 0.913 / 0.935
Vote+ref.+joint sel. (Tables 5.1 & 5.2) 0.872 0.952 / 0.956
Same as above (no training) 0.712 0.852 / 0.856
Voting only (no training) 0.574 0.765 / 0.790

Table 5.3: Ablative analysis of different components of our method on the ETHZ
Shape Classes dataset. We can see that the additional steps of refinement (ref.)
and joint selection (joint sel.) produce significant improvements in performance over
voting alone (rows 1-3, all with discriminative training). Removing discriminative
training produces substantially worse results (row 4), and removing both training as
well as refinement and joint selection severly impacts performance (row 5).
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Table 5.4: Shape model learning results over several different training folds. To
examine the variation of the shape model learning with different training images,
we performed shape model learning with different sets of positive images. Each row
represents a different training fold of half the positive images, which were randomly
chosen except for the first row, which is the original model shape learning result
seen before. Despite variation in the training set of images, the shape learning
still produced clear object shape models for all of the classes, with some minor
artifacts (e.g., in the Swan category) that could be cleaned up with a refined matching
procedure.
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A B

C D

A

B

…

…

C … D

A B C D

Prec (%) 100 100 29 27

Rec (%) 5 85 90 95

Applelogo Detections Ordered by Score
Max Recall

27

95

Figure 5.8: Listing of detection results for each class. In the upper right is the
precision-recall curve, annotated at several different points with letters “A”, “B”,
etc... Shown below are detections in descending order of detection score, along with
the locations on the curve indicated by the letters. Green bounding boxes indicate
true positives, while red bounding boxes indicate false positives. Selected contours
for each detection are highlighted in black.
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…

…

…

…

A

B C

D

E

A B
C

D

E

Bottle Detections Ordered by Score
A B C D E

Prec (%) 100 100 95 89 51

Rec (%) 3.6 50 64 86 100

Max Recall

51

100

Figure 5.8: Listing of detection results for each class. In the upper right is the
precision-recall curve, annotated at several different points with letters “A”, “B”,
etc... Shown below are detections in descending order of detection score, along with
the locations on the curve indicated by the letters. Green bounding boxes indicate
true positives, while red bounding boxes indicate false positives. Selected contours
for each detection are highlighted in black.
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… …

…

…

…

A B

C D

E

F

A B C

D-F

Giraffe Detections Ordered by Score
A B C D E F

Prec (%) 100 100 97 95 86 68

Rec (%) 2.1 26 62 75 79 83

Max R.

39

89

Figure 5.8: Listing of detection results for each class. In the upper right is the
precision-recall curve, annotated at several different points with letters “A”, “B”,
etc... Shown below are detections in descending order of detection score, along with
the locations on the curve indicated by the letters. Green bounding boxes indicate
true positives, while red bounding boxes indicate false positives. Selected contours
for each detection are highlighted in black.
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…

… …

A

B C

D

A B

C
D

Mug Detections Ordered by Score

A B C D

Prec (%) 100 100 87 76

Rec (%) 3.2 84 87 94

Max Recall

76

94

Figure 5.8: Listing of detection results for each class. In the upper right is the
precision-recall curve, annotated at several different points with letters “A”, “B”,
etc... Shown below are detections in descending order of detection score, along with
the locations on the curve indicated by the letters. Green bounding boxes indicate
true positives, while red bounding boxes indicate false positives. Selected contours
for each detection are highlighted in black.
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…

… … …

A B

C D

A B
C D

Swan Detections Ordered by Score

A B C D

Prec (%) 100 100 71 63

Rec (%) 6 71 88 100

Max Recall

63

100

Figure 5.8: Listing of detection results for each class. In the upper right is the
precision-recall curve, annotated at several different points with letters “A”, “B”,
etc... Shown below are detections in descending order of detection score, along with
the locations on the curve indicated by the letters. Green bounding boxes indicate
true positives, while red bounding boxes indicate false positives. Selected contours
for each detection are highlighted in black.
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Chapter 6

Conclusion

6.1 Summary

In conclusion, we have demonstrated the importance of holistic matching of bottom-

up image structures in addressing problems in perceptual grouping, human pose

estimation, and object recognition.

We began by reviewing different types of bottom-up image structures, contours and

segments, and algorithms for extracting them in images. Methods for evaluating

holistic shape of these structures were discussed, including the many-to-many (one)

matching framework of Zhu et al. [73] and the inner-distance shape context repre-

sentation of Ling et al. [41].

Perceptual grouping is one area that can benefit from holistic evaluation of image

contours, as seen in Chapter 3. Many-to-many matching was used to establish

hypotheses for correspondences of contour points in one image to another in order

to collect different hypotheses for the motion of the contour points. Based on these

motions, the contours were segmented into different groups using min-cuts [12]. By

comparing against a baseline that did not use many-to-many matching to score

motion hypotheses, but just proximity of contour points in one image to points in

another, a significant improvement in the groups of contours was observed due to
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the many-to-many matching.

In Chapter 4, the inner-distance shape context was used to match image segments

against exemplar shapes of different regions of the human body, even under substan-

tial deformation due to articulation. A set of human-provided parsing rules allowed

hypotheses of smaller regions of the body to be joined together in order to form

increasingly larger regions, and eventually the entire body (except for the arms).

By having a variety of different possible body regions (some overlapping), we were

able to make maximal use of the image segments, as they tend to fragment in many

different ways with respect to the human body.

Chapter 5 explored the learning of object shape and discriminative training of an

object detector for detecting objects using image contours. From an input of positive

images annotated with bounding boxes containing instances of a single object cat-

egory, and negative images containing no instances, a two-step procedure of shape

learning followed by detector training was described. During shape learning, “lucky”

contours that captured large portions of the object shape were found and used to

greedily construct a shape model that explained the positive examples well. The

measure of explanation quality used the many-to-one matching framework. Given

this shape model, the Latent-SVM learning algorithm ([22]) was used to discrimi-

natively train an object detector from the positive and negative images. The latent

variables included the positions of object parts as well as the actual contours that

comprised the boundary of each object instance.

Recent work with Weiyu Zhang has revisited the human pose estimation problem

from the perspective of using image contours along with regions and patches. While

the regions used in Chapter 4 can often provide substantial information about the

pose of a human, in more difficult images the regions tend to leak and do not capture

shape as well as long contours. Contours are especially useful because they can be

used to propose pose of limbs of the person, eliminating the need for explicit search

over all possible positions of all body parts as approaches such as pictorial structures
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[24] often use.

6.2 Future Work

There are several important directions for future efforts raised by the work in this

thesis. One important theme that was not fully developed is the contrast between

evaluating individual bottom-up structures vs. evaluating those structures only as

a whole. In the parsing approach of Chapter 4, individual image segments provided

important information about the pose of the human, while in the object detection

work of Chapter 5, individual contours were never examined by the algorithm. The

recent contour-based pose estimation work provides a bridge between these two, using

individual contours to propose portions of the body pose, while using many-to-one

matching to holistically verify pose hypotheses.

A second important issue is scaling to larger, more difficult datasets. While the

ETHZ Shape Classes dataset used in Chapter 5 is a challenging dataset, larger

datasets with more object categories exhibiting greater pose and 3D variation such

as the PASCAL Visual Object Classes Challenge still present a formidable obstacle.

The recent work on pose estimation took a step in addressing this by introducing

a hybrid object model that included contours, patches and regions, all of which are

likely necessary to effectively tackle more difficult datasets. Proposing 3-D object

pose from detected image junctions is also an important task since this can dramat-

ically reduce the search space for determining the object pose.

On the learning front, the shape learning method used in Chapter 5 learned only

a single model for each category. Learning multiple models for each category and

variations within each model as important areas for future work. Discriminative

training for detection should also make sure of higher-level shape information, such

as junctions and geometric relationships (e.g. parallelism, straight vs. curved, etc...)

to provide better generalization. Also, better learning of the binning patterns for
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the histograms used to measure object shape would also be useful since the choice

of the log-polar binning pattern of the shape context or the uniform sampling of the

grid histogram are well-motivated but somewhat ad-hoc. A boosting-like procedure

could be developed to select the minimum number of necessary bins to provide good

detection performance, thereby speeding up detection as well as reducing the number

of parameters to be learned in the model (perhaps improving generalization).
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