
Saliency Based Opportunistic Search for Object Part
Extraction and Labeling

Yang Wu1,2, Qihui Zhu2, Jianbo Shi2, Nanning Zheng1

1Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University
ywu@aiar.xjtu.edu.cn, nnzheng@mail.xjtu.edu.cn

2Department of Computer and Information Science, University of Pennsylvania
wuyang@seas.upenn.edu, qihuizhu@seas.upenn.edu,

jshi@cis.upenn.edu

Abstract. We study the task of object part extraction and labeling, which seeks
to understand objects beyond simply identifiying their bounding boxes. We start
from bottom-up segmentation of images and search for correspondences between
object parts in a few shape models and segments in images. Segments comprising
different object parts in the image are usually not equally salient due to uneven
contrast, illumination conditions, clutter, occlusion and pose changes. Moreover,
object parts may have different scales and some parts are only distinctive and rec-
ognizable in a large scale. Therefore, we utilize a multi-scale shape representation
of objects and their parts, figural contextual information of the whole object and
semantic contextual information for parts. Instead of searching over a large seg-
mentation space, we present a saliency based opportunisticsearch framework to
explore bottom-up segmentation by gradually expanding andbounding the search
domain. We tested our approach on a challenging statue face dataset and 3 human
face datasets. Results show that our approach significantlyoutperforms Active
Shape Models using far fewer exemplars. Our framework can beapplied to other
object categories.

1 Introduction

We are interested in the problem of object detection with object part extraction and la-
beling. Accurately detecting objects and labeling their parts requiresgoing inside the
object’s bounding boxto reason about object part configurations. Extracting object parts
with the right configuration is very helpful for recognizingobject details. For example,
extracting facial parts helps with recognizing faces and facial expressions, while under-
standing human activities requires knowing the pose of a person.

A common approach to solve this problem is to learn specific features for object
parts [1][2]. We choose a different path which starts with bottom-up segmentation and
aligns shape models to segments in test images. Our observation is that starting from
salient segments, it is unlikely to accidentally align object parts to background edges.
Therefore, we can search efficiently and avoid accidental alignment.

Our approach includes three key components:correpondence, contextual infor-
mation andsaliency of segments. There exist algorithms incorporating correspondence
and contextual information such as pictorial structures [3] and contour context selection
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Fig. 1. Saliency of contours and segments. The second image is a group of salient contours from
contour grouping [5] by setting a lower threshold to the average edge strength, while the third one
contains all the contours from contour grouping. It shows that by thresholding the saliency of con-
tour segments, we either get some foreground contours missing (under-segmented) or have a lot
of clutter come in (over-segmented). The same thing happensto image segmentation. Segments
comprising object parts pop out in different segmentation levels, representing different saliencies
(cut costs). The last three images show such a case.

[4], both showing good performance on some object categories. The disadvantage is that
these methods ignore image saliency. Therefore, they cannot tell accidental alignment
of faint segments in the background from salient object partsegments. However, it is
not easy to incorporate saliency. A naive way of using saliency is to find salient parts
first, and search for less salient ones depending on these salient ones. The drawback is
that a hard decision has to be made in the first step of labelingsalient parts, and mistakes
arising from this step cannot be recovered later. Moreover,object parts are not equally
hard to find. Segments belonging to different object parts may pop out at different seg-
mentation levels (with different numbers of segments), as shown in Figure 1. One could
start with over-segmentation to cover all different levels. Unfortunately, by introducing
many small segments at the same time, segment saliency will be lost, which defeats the
purpose of image segmentation. Fake segmentation boundaries will also cause many
false positives of accidentally aligned object parts.

We build two-level contexts and shape representations for objects and their parts,
with the goal of highdistinctivenessandefficiency. Some large object parts (e.g.facial
silhouettes) are only recognizable as a whole in a large scale, rather than as a sum of
the pieces comprising them. Moreover, hierarchical representation is more efficient for
modeling contextual relationships among model parts than asingle level representation
which requires a large clique potential and long range connections. Two different levels
of contextual information is explored:figural contextandsemantic context. The former
captures the overall shape of the whole object, and the latter is formed by semantic
object parts.

In this paper, we propose a novel approach calledSaliency Based Opportunistic
Searchfor object part extraction and labeling, with the followingkey contributions:

1. Different levels of context including both figural and semantic context are used.
2. Bottom-up image saliency is incorporated into the cost function.
3. We introduce an effective and efficient method of searching over different segmen-

tation levels to extract object parts.
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2 Related Work

It has been shown that humans recognize objects by their components [6] or parts [7].
The main idea is that object parts should be extracted and represented together with
the relationships among them for matching to a model. This idea has been widely used
for the task of recogize objects and their parts [8, 9, 3]. Figural and semantic contextual
information play an important role in solving this problem.Approaches that take ad-
vantage of figural context include PCA and some template matching algorithms such as
Active Shape Models (ASM) [10] and Active Appearance Models(AAM) [11]. Tem-
plate matching methods like ASM usually use local features (points or key points) as
searching cues, and constrain the search by local smoothness or acceptable variations
of the whole shape. However, these methods require good initialization. They are sen-
sitive to clutter and can be trapped in local minima. Anothergroup of approaches are
part-based models, which focus on semantic context. A typical case is pictorial struc-
ture [3]. Its cost function combines both the individual part matching cost and pair-wise
inconsistency penalties. The drawback of this approach is that it has no figural context
measured by the whole object. It may end up with many “OK” partmatches without a
global verification, especially when there are many faint object edges and occlusions in
the image. Recently, a multiscale deformable part model wasproposed to detect objects
based on deformable parts [1], which is an example that uses both types of contextual
information. However, it focuses on training deformable local gradient-based features
for detecting objects, but not extracting object parts out of the images.

3 Saliency Based Opportunistic Search

Problem definition. The problem we are trying to solve is to extract and label object
parts based on contextual information, given an image and its segmentations, as shown
in Figure 1. Multiple models are used to cover some variations of the object (see Figure
2 for the models we have used on faces). Extracting and labeling object parts requires
finding the best matched model. The problem can be formulatedas follows:
Input:

– Model: M = {M1, M2, . . . , Mm}; each modelMk has a set of labeled parts
{pk

1 , p
k
2 , . . . , pk

n}. They are all shape models made of contours and line segments.
– Image:S = {s1, s2, . . . , sl} is a set of region segments and contour segments

coming from different segmentation levels from the image. For region segments,
only boundaries are used for shape matching.

Output:

– Best matched modelMk.
– Object part labelsL(S). L(si) = j, if si belongs to partpk

j , or elseL(si) = 0.

This can be formulated as a shape matching problem, which aims to find sets of
segments whose shapes match to part models. However, the segments comprising the
object parts are not equally hard to extract from the image, and grouping them to objects
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Fig. 2. Different models for faces. They are hand designed models obtained from 7 real images,
each of them representing one pose. Facial features are labeled in different colors.

and object parts also requires checking the consistency among them. We call these ef-
forts “grouping cost”, which is not measured by shape but can be helpful to differentiate
segments belonging to object parts from those belonging to the background. Therefore,
we combine these two into such a cost function:

Clabeling = Cshape + Cgrouping (1)

Cshape measures the shape matching cost between shape models and labeled segments
in the image, which relays much oncorrespondenceand context. Cgrouping is the
grouping cost, which can be measured in different ways, but in this paper it is mainly
about the bottom-upsaliencybased editing cost.

The cost function above is based on the following three key issues.

1. Correspondence (u). A way to measure the dissimilarity between a shape model
and a test image. The correspondence is defined on control points. Features com-
puted on these control points represent the shape information and then the corre-
spondences are used to measure the dissimilarity. LetUM = {a1, a2, . . . , aNa

}
be a set of control points on the model, andUI = {b1, b2, . . . , bNb

} be the set on
the image. We useuij to denote the correspondence between control pointsai and
bj whereuij = 1 indicates they are matched, otherwiseuij = 0. Note that this
correspondence is different from the one between object parts and image segments.

2. Context (x and y). The idea of using the context is tochoose the correct context
on both model and test image sides for shape matching invariant to clutter and
occlusion. x andy are used here to denote the context selection of either segments
or parts on the model and the image, respectively.

3. Saliency. A property of bottom-up segments which represents how difficult it is
to separate the segment from the background. Coarse-level segmentation tends to
produce salient segments, while finer-level segmentation extracts less salient ones,
but at the same time introduces background clutter. Local editing on the salient gap
between two salient segments can help to get good segments out without bringing
in clutter, but it needs contextual guidence.

Saliency based editing. Segmentation has problems when the image segments have
different saliencies. Under-segmentation could end up with unexpected leakages, while
over-segmentation may introduce clutter. A solution for this problem is to do some
local editings. For example, adding a small virtual edge at the leakage place can make
the segmentation much better without increasing the numberof segments.Zoom-inin
a small area is also a type of editing that can be effective andefficient, as presented in
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Figure 1.Small costs for editing can result in big improvement on shape matching
cost. This is based the shape integrity and the non-additive distance between shapes.
However, editings need the contextual information from themodel.

Suppose there are a set of possible editing operationsz which might lead to better
segmentation.zk = 1 means that editingk is chosen, otherwisezk = 0. Note that
usually it is very hard to discover and precompute all the editings beforehand. There-
fore, this editing index vectorz is dynamic, and it appends on the fly. After doing some
editings, some new segments/(part hypotheses) will come out, meanwhile we can still
keep the original segments/parts. Therefore, a new variabley

edit = y
edit(y, z) is used

to denote all the available elements which includes both theoriginal ones iny and the
new ones induced by editingz. Let Cedit

k be the edit cost for editingk.
Our cost function (1) of object part labeling and extractioncan be written as follows:

min
x,y,z,u

Clabeling(x,y, z,u) = Cshape(x,y, z,u) + Cgrouping(z) =

Na∑

i=1

[ β ·

Nb∑

j=1

uijC
M↔I
ij (x,yedit) + CF↔M

i (x,u)] +
∑

k

Cedit
k zk (2)

s.t.
∑

j uij ≤ 1, i = 1, ..., Na

x: selection indicator of model segments/parts.
y: selection indicator of image segments/parts.
z: selection vector of editing operations.
u: correspondence of control points between the image and model.

y
edit(y, z): selection indicator of image segments/parts edited byz.

The three summations in equation (2) correspond to three different types of cost:mis-
match costCM↔I(x,yedit,u), miss costCF↔M(x,u) andedit costCedit(z). The
mismatch cost,CM↔I

ij (x,yedit) = ‖fi(x) − fj(y
edit)‖ denotes the feature dissim-

ilarity between two corresponding control points. To prevent the cost function from
biasing to fewer matches, we add the miss costCF↔M

i (x) = ‖ffull
i − (

∑

j uij)fi(x)‖
to denote how much of the model has not been matched by the image. It encourages
more parts to be matched on the model side. There is a trade-off betweenCM↔I

ij and
CF↔M

i , whereβ ≥ 0 is a controlling factor. Note that‖ · ‖ can be any norm function1.
The rest of this section focuses on the two parts of our cost function. Shape matching

will be performed on two levels of contexts and saliency based editing will result in the
opportunistic search approach.

3.1 Two-level Context Based Shape Matching

We extend the shape matching method called contour context selection in [4] to two
different contextual levels: “figural context selection” and “semantic context selection”.
Figural context selection.Figural context selection matches a segment-based holistic
shape model to an object hypothesis represented by segments, which may have clutter
and missing segments. We optimize the following cost function:

1 In our shape matching we usedL1 norm.
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min
x,y,u

Cfigural(x,y,u) =

Na∑

i=1

[ β ·

Nb∑

j=1

uij‖SCM
i (x) − SCI

j (y)‖
︸ ︷︷ ︸

+‖SCF
i − (

∑

j uij) · SCM
i (x)‖)

︸ ︷︷ ︸

]

CM↔I

ij (x,yedit) CF↔M

i (x,u)

s.t.
∑

i,j,i′,j′

uijui′j′C
geo
i,j,i′,j′ ≤ Ctol (3)

whereSCM
i (x) andSCI

j (y) is defined as the Shape Context centered at model control
pointai and image control pointbj . C

geo
i,j,i′,j′ is the geometric inconsistent cost of cor-

respondencesu. Ctol is the maximum tolerance of the geometric inconsistency. Weuse
Shape Context [12] as our feature descriptor. Note that the size of Shape Context his-
togram is large enough to cover the whole object model, and this is a set-to-set matching
problem. Details for this algorithm can be found in [4].
Semantic context selection.Similarly we explore semantic context to select consistent
object part hypotheses. We first generate part hypotheses using almost the same context
selection algorithm as the one presented above. The selection operates on parts instead
of the whole object. Figure 3 shows an example of generating apart hypothesis.

In semantic context selection, we reason about semantic object parts. Hence we
abstract each part (on either model or test image) as a point located at its center with its
part label. We place control points on each one of the part centers.

SupposeCpart
j is the matching cost of part hypothesisj. We usewP

j = e
γC

part
j

eγ ∈

[ 1
eγ , 1], γ ∈ [0, 1] as its weight. Then the cost function for semantic context selection is:

min
x,y,u

Csemantic(x,y,u) =

Na∑

i=1

[ β ·

Nb∑

j=1

uijw
P
j ‖SCM

i (x) − SCI
j (y)‖

︸ ︷︷ ︸
+‖SCF

i − (
∑

j uij) · SCM
i (x)‖)

︸ ︷︷ ︸

]

CM↔I

ij (x,yedit) CF↔M

i (x,u)

(4)

Fig. 3.Semantic context selection. Left: Part hypothesizing. a) Alocal part region around the eye
in the image, with segments and control points. c) A model template of the eye with control points.
Selection result on the image is shown in b). Right: Consistent part grouping. Semantic-level
shape context centered on the left eye captures semantic contextual information of the image. A
subset of those parts form a mutually consistent context andwe group them by matching with the
semantic-level shape context on the model shown in the middle.
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The variable definitions are similar to figural context selection, except for two differ-
ences: 1) selection variables depend on the correspondences and 2) Shape Context no
longer counts edge points, but object part labels.

The desired output of labelingL(S) is implicitly given in the optimization variables.
During part hypothesis generation, we put labels of candidate parts onto the segments.
Then after semantic context selection, we confirm some labels and discard the others
using the correspondenceuij between part candidates and object part models.

3.2 Opportunistic Search

Labeling object parts using saliency based editing potentially requires searching over a
very large state space. Matching object shape and its part configuration requires com-
puting correspondences and non-local context. Both of themhave exponentially many
choices. On top of that, we need to find a sequence of editings,such that the resulting
segments and parts produced by these editings are good enough for matching.

The key intuition of our saliency based opportunistic search is that we start from
coarse segmentations which produce salient segments and parts to guarantee low saliency
cost. We iteratively match configuration of salient parts togive a sequence of bounds
to thesearch zoneof the space which needs to be explored. The possible spatialextent
of the missing parts is bounded by their shape matching cost and the edit cost (equally,
saliency cost). Once the search space has been narrowed down, we “zoom-in” to the
finer scale segmentation to rediscover missing parts (hencewith lower saliency). Then
we “zoom-out” to do semantic context selection on all the part hypotheses. Adding
these new parts improves the bound on the possible spatial extent and might suggest
new search zones. This opportunistic search allows both high efficiencyand highaccu-
racy of object part labeling. We avoid extensive computation by narrowing down the
search zone. Furthermore, we only explore less salient parts if there exist salient ones
supporting them, which avoids producing many false positives from non-salient parts.
Search Zone.In each stept of the search, given(x(t−1),y(t−1), z(t−1),u(t−1)), we use
∆CM↔I(x,yedit) to denote the increment ofCM↔I(x,yedit) (the first summation in
equation (2)).∆CF↔M(x,u) and∆Cedit(z) are similarly defined. By finding missing
parts, we seek to decrease the cost (2). Therefore, we introduce the following criterion
for finding missing parts:

β∆CM↔I(x,y, z) + ∆CF↔M(x,u) + ∆Cedit(z) ≤ 0 (5)

We writeCM↔I(x,y, z)=CM↔I(x,yedit) sinceyedit depends on editing vectorz.
The estimation of bounds is based on the intuition that if allthe missing parts can be

found, then nomisscost is needed to pay any more. Therefore, according to equation
(4):

∆CF↔M(x) ≥ −
∑

i

CF↔M
i (x,u). (6)

This is the upper bound for the increment of either one of the other two items in equation
(5) when any new object part is matched.

Suppose a new editingz(t)
α = 1|

z
(t−1)
α =0

matches a new object partak to a part

hypothesis in the imagebℓ. Let k ↔ ℓ indicateu
(t)
kℓ = 1 and

∑

j u
(t−1)
kj = 0. Then this
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Algorithm 1 Saliency Based Opportunistic Search
1: Initialize using figural context selection.For each partk, computeZ(k) based onu from

figural context selection. Set(x(0),y(0), z(0),u(0)) to zeros. Sett = 1.
2: Compute search zones for all the missing parts.Find all missing parts by thresholding the

solutionx
(t−1).

for each missing partpk

If Z(k) = ∅, compute search zone setZ(k) by equation (9) and (10).
end

3: Zoom-in search zone.Update editing setz.
for eachx

(t−1)
k whereZ(k) 6= ∅

Perform Ncut segmentation for each zoom-in window indexed by elements inZ(k).
Generate part hypotheses. SetZ(k) = ∅.
If no candidates can be found, go to the next missing part.
Updatez from part hypotheses.

end
4: Evaluate configurations with re-discovered parts.

Terminate ifz does not change.
Update(x(t),y(t), z(t), u(t)) with the rediscovered parts using equation (4).
Terminate ifCsemantic(x,y,u) does not improve.
t = t + 1. Go to step 2.

editing at least has to pay the cost of matchingak to bℓ (we do not know whether others
will also match or not):

C|k↔ℓ = β∆CM↔I(x,y, z)|k↔ℓ + Cedit
α . (7)

The first item on the right of equation (7) is the increment ofmismatch∆CM↔I(x,yedit)
when a new object partak get matched tobℓ. It can be computed based on the last state
of the variables(x(t−1),y(t−1), z(t−1),u(t−1)). According to above equations, we get

β∆CM↔I(x,y, z)|k↔ℓ + Cedit
α −

∑

i

CF↔M
i (x(t−1),u(t−1)) ≤ 0 (8)

Since we use Shape Context for representation and matching,themismatchis non-
decreasing. And also the editing cost is nonnegative, so we abtain the bounds for the
new editingz(t)

α = 1|
z
(t−1)
α =0

. LetZ(k) denote the search zone for object partk. Then
we can compute two bounds forZ(k):

(Supremum) Zsup(k) = {zα|∆CM↔I(x,y, z)|k↔ℓ ≤
1

β

∑

i

CF↔M
i (x(t−1),u(t−1))}

(9)

(Infimium) Zinf (k) = {zα|C
edit
α ≤

∑

i

CF↔M
i (x(t−1),u(t−1))} (10)

whereZsup gives the supremum of the search zone,i.e. upper bound of zoom-in win-
dow size, andZinf gives the infimum of the search zone,i.e. lower bound of zoom-in
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Fig. 4. Saliency based opportunistic search, using faces as an example. Top: the flowchart. Bot-
tom: results of each step for 3 different examples. Typically the iteration converges after only one
or two rounds. Rectangles with different colors indicate the zoom-in search zones for different
parts. Note that when zoom-in is performed for the first time,two adjacent parts can be searched
together for efficiency. This figure is best viewed in color.

window size. When the number of segments is fixed, the saliency of the segments de-
creases as the window size becomes smaller.Zsup depends onmismatchandZinf

depends on theedit cost (i.e. saliency). In practice, one can sample the space of the
search zone, and check which ones fall into these two bounds.

Our opportunistic search is summarized in Algorithm 1.

4 Implementation

4.1 A Typical Example

We present more details on the opportunistic search using faces as an example in Figure
4. We found that usually the whole shape of the face is more salient than individual
facial parts. Therefore, the procedure starts with figural context and then switchs to
semantic context. We concretize our algorithm for this problem in the following steps.
The same procedure can be applied to similar objects.
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1. Initialization: Object Detection. Any object detection method can be used, but it
is not a necessary step2. We used shape context voting [13] to do this task, which can
handle different poses using a small set of positive training examples.
2. Context Based Alignment.First, useCfigural in equation (3) to select the best
matched modelMk and generate the correspondencesufigural for rough alignment3.
When the loop comes back again, update the alignment based onusemantic. Estimate
locations for other still missing parts.
3. Part Hypotheses Generation.Zoom in on these potential part locations by cropping
the regions and do Ncut segmentation to get finer scale segmentation. Then match them
to some predefined part models. The resulting matching scoreis used to prune out
unlikely part hypotheses, according to the bound of the costfunction.
4. Part Hypotheses Grouping.OptimizeCsemantic in equation (4). Note that the best
scoring group may consist of only a subset of the actual object parts.
5. Termination Checking. If no better results can be obtained, then we go to the next
step. Or else we updatesemantic contextand go back to step 2.
6. Extracting Facial Contours. This is a special step for faces only. With the final set
of facial parts, we optimizeCfigural again to extract the segments that correspond to
the face silhouette, which can be viewed as a special part of the face.

4.2 Two-level Context Selection

For simplification, we do not consider any editing in figural context selection. Then
equation (3) is an integer programming problem, we relaxed the variables to solve it
with LP. Details of this context selection algorithm can be found in [4].

For semantic context selection, we need to search for correspondences and part se-
lection variables simultaneously because they are highly dependent, unlike the situation
in figural context selection. Therefore, we introduce acorrespondence context vector
PM

ij = uijx to expand the selection space for model parts:

PM
ij ∈ {0, 1}|U

M| : PM
ij (i′) ⇔ uij = 1 ∧ x(i′) = 1 (11)

Similarly, we define thecorrespondence context vectorfor image parts,

P I
ij ∈ {0, 1}|U

I| : P I
ij(j

′) ⇔ uij = 1 ∧ y(j′) = 1 (12)

In addition to the cost in equation (4), constraints oncontext correspondence vec-
tor PM, P I are enforced such that the semantic context viewed by different parts are
consistent with each other. These constraints are summarized by the table 1. The cost
function and constraints are linear. We relaxed the variables and solved it with LP.

5 Experiments and Results

Datasets.We tested our approach on both statue faces from the Emperor-I dataset [14]
and real faces from various widely used face databases (UMIST, Yale, and Caltech

2 Figural context selection can also be used to do that [4].
3 In practice, we kept best two model hypotheses.
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Table 1.Constraints on context correspondence vectorPM, P I . For example,Context complete-
nessrequires that contexts must include all the matched parts. If both i andi′ are matched parts,
the context viewed fromi must includei′, i.e. (y(i) = 1) ∧ (y(i′) = 1) ⇒

P

j
PM

ij (i′) = 1,
which is relaxed as the constraint in row 4. Other constraints are constructed in a similar way.

Self consistency
P

j PM
ij (i) = y(i),

P

i P I
ij(j) = x(j)

One-to-one matching
P

i
PM

ij (i′) ≤ y(i′),
P

j
PM

ij (i′) ≤ y(i′)
P

i
P I

ij(j
′) ≤ x(j′),

P

j
P I

ij(j
′) ≤ x(j′)

Context reflexitivity PM
ij (i′) ≤ PM

ij (i), P I
ij(j

′) ≤ P I
ij(j)

Context completeness y(i) −
P

j PM
ij (i′) ≤ 1 − y(i′), x(j) −

P

i P I
ij(j

′) ≤ 1 − x(j′)

Mutual context support
P

j
PM

ij (i′) =
P

j′
PM

i′j′(i),
P

i
P I

ij(j
′) =

P

i′
P I

i′j′(j)

Faces). Quantitative comparison was done on the Emperor-I dataset and we also show
some qualitative results on a sample set of all these datasets. The statue face dataset has
some difficulties that normal faces do not have: lack of colorcue, low contrast, inner
clutter, and great intra-subject variation.
Comparison measurement.The comparison is between Active Shape Models [10] and
our approach. Since we extract facial parts by selecting contours, our desired result is
that the extracted contours are all in the right places and correctly labeled. However,
ASM generates point-wise alignment between the image and a holistic model. Due to
the differences, we chose to use “normalized average point alignment error” measure-
ment for alignment comparison.

Since our results are just labeled contours, we do not have point correspondences for
computing the point alignment error. Therefore, we relaxedthe measurement to the dis-
tance between each ground truth key point and its closest point on the contours belong
to the same part. To make the comparison fair, we have exactlythe same measurement
for ASM by using spline interpolation to generate “contours” for its facial parts. We use
0.35 times the maximum height of the ground truth key points as an approximation of
the distance between two eyes invariant to pose changes as the our normalizing factor.
Experiments.There are two aspects of our Emperor-I dataset that may introduce diffi-
culties for ASM: few training examples with various poses and dramatic face silhouette
changes. Therefore, we designed three variants of ASM to compensate for these chal-
lenges, denoted in our plots as “ASM1”,“ASM2”,“ASM3”. Table 2 shows the differ-
ences. Basically, ASM2 and ASM3 disregard face silhouette and work on fewer poses
that may have relatively more exemplars. Note that ASM3 evencombined the train-
ing data of the three near-frontal poses as a whole. We used “leave-one-out” cross-
validation for ASM. For our method, we picked up 7 images for different poses (one
for each pose), labeled them and extracted the contours out to work as our holistic mod-
els. Moreover, we chose facial part models (usually combined by 2 or 3 contours) from
a total of 23 images which also contained these 7 images. Our holistic models are shown
in Figure 2 and Figure 5 shows those averaged ones for ASM.

In Figure 6, we show the alignment errors for all the facial parts together and also
those only for the eyes. Other facial parts have similar results so we leave them out.
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Fig. 5. Left: averaged models for ASM1. Right: averaged model for ASM3.

Instead, we provide a summary in Table 3 and a comparison in the last column of Table
2, where each entry is the mean error across the test set or test set fold, as applicable.
We can see that our method performs significantly better thanASM on all facial parts
with significantly fewer training examples. We provide a qualitative evaluation of the
results in Figure 7, where we compare the result of ASM and ourmethod on a variety of
images containing both statue faces and real faces. These images show great variations,
especially of those statue faces. Note that the models are only trained on statue faces.

6 Conclusion

We proposed an object part extraction and labeling framework which incorporates two-
level contexts and saliency based opportunistic search. The combination of figural con-
text on the whole object shape and semantic context on parts enables robustly search
matching of object parts and image segments in cluttered images. Saliency further im-
proves this search by gradually exploring salient bottom-up segmentations and bound-
ing it via shape matching cost. Experimental results on several challenging face datasets
demonstrate that our approach can accurately label object parts such as facial features
and resist to accidental alignment.
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Fig. 6. Average point error vs. image number. All the values are normalized by the estimated
distance of two eyes in each image. The vertical dot-dash lines separate images of different poses.
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Fig. 7. A subset of the results. Upper group is on the Emperor-I dataset and the lower is for
real faces from various face databases (1-2 from UMIST, 3-4 from Yale, and 5-7 from Caltech).
Matched models, control points and labeled segments are superimposed on the images.


