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Abstract. We study the task of object part extraction and labeling chisieeks
to understand objects beyond simply identifiying their liiog boxes. We start
from bottom-up segmentation of images and search for quoretences between
object parts in a few shape models and segments in imagesefegcomprising
different object parts in the image are usually not equaljest due to uneven
contrast, illumination conditions, clutter, occlusiordgsose changes. Moreover,
object parts may have different scales and some parts arelistihctive and rec-
ognizable in a large scale. Therefore, we utilize a muldilsshape representation
of objects and their parts, figural contextual informatiénhe whole object and
semantic contextual information for parts. Instead of cleiag over a large seg-
mentation space, we present a saliency based opportusestich framework to
explore bottom-up segmentation by gradually expandingoauehding the search
domain. We tested our approach on a challenging statue &asat and 3 human
face datasets. Results show that our approach significantherforms Active
Shape Models using far fewer exemplars. Our framework cappbed to other
object categories.

1 Introduction

We are interested in the problem of object detection witlecotypart extraction and la-
beling. Accurately detecting objects and labeling theitpeaequireggoing inside the
object’s bounding boto reason about object part configurations. Extractingailperts
with the right configuration is very helpful for recognizingject details. For example,
extracting facial parts helps with recognizing faces awthfaxpressions, while under-
standing human activities requires knowing the pose of aqrer

A common approach to solve this problem is to learn specifituies for object
parts [1][2]. We choose a different path which starts witlttdwm-up segmentation and
aligns shape models to segments in test images. Our ohiseri@that starting from
salient segments, it is unlikely to accidentally align @bjearts to background edges.
Therefore, we can search efficiently and avoid accidenihadent.

Our approach includes three key componeatsrepondence contextual infor-
mation andsaliency of segmentsThere exist algorithms incorporating correspondence
and contextual information such as pictorial structuréaf@l contour context selection
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Fig. 1. Saliency of contours and segments. The second image is p gf@alient contours from
contour grouping [5] by setting a lower threshold to the ageredge strength, while the third one
contains all the contours from contour grouping. It shoves by thresholding the saliency of con-
tour segments, we either get some foreground contoursngigsnder-segmented) or have a lot
of clutter come in (over-segmented). The same thing hapjmeimsage segmentation. Segments
comprising object parts pop out in different segmentatemells, representing different saliencies
(cut costs). The last three images show such a case.

[4], both showing good performance on some object categoriee disadvantage is that
these methods ignore image saliency. Therefore, they taslhaccidental alignment
of faint segments in the background from salient object pegiments. However, it is
not easy to incorporate saliency. A naive way of using saliés to find salient parts
first, and search for less salient ones depending on thdsatsahes. The drawback is
that a hard decision has to be made in the first step of labsdilent parts, and mistakes
arising from this step cannot be recovered later. Moremlgect parts are not equally
hard to find. Segments belonging to different object partg pug out at different seg-
mentation levels (with different numbers of segments) hasve in Figure 1. One could
start with over-segmentation to cover all different levelafortunately, by introducing
many small segments at the same time, segment saliencyandkh, which defeats the
purpose of image segmentation. Fake segmentation boesdaili also cause many
false positives of accidentally aligned object parts.

We build two-level contexts and shape representationsifgots and their parts,
with the goal of highdistinctivenesandefficiency Some large object parte.g.facial
silhouettes) are only recognizable as a whole in a largee scather than as a sum of
the pieces comprising them. Moreover, hierarchical reprigion is more efficient for
modeling contextual relationships among model parts theingle level representation
which requires a large clique potential and long range cotimres. Two different levels
of contextual information is exploretigural contextandsemantic contextThe former
captures the overall shape of the whole object, and ther latirmed by semantic
object parts.

In this paper, we propose a novel approach caSetlency Based Opportunistic
Searchfor object part extraction and labeling, with the followikey contributions:

1. Different levels of context including both figural and sertic context are used.

2. Bottom-up image saliency is incorporated into the costfion.

3. We introduce an effective and efficient method of searghirer different segmen-
tation levels to extract object parts.



2 Related Work

It has been shown that humans recognize objects by their @oemps [6] or parts [7].
The main idea is that object parts should be extracted anesepted together with
the relationships among them for matching to a model. Tlea iths been widely used
for the task of recogize objects and their parts [8, 9, 3JuFafjand semantic contextual
information play an important role in solving this probleApproaches that take ad-
vantage of figural context include PCA and some templatemrajalgorithms such as
Active Shape Models (ASM) [10] and Active Appearance Mod@&laM) [11]. Tem-
plate matching methods like ASM usually use local featupssnts or key points) as
searching cues, and constrain the search by local smostln@sceptable variations
of the whole shape. However, these methods require goadlimdttion. They are sen-
sitive to clutter and can be trapped in local minima. Anotiyeup of approaches are
part-based models, which focus on semantic context. A & giase is pictorial struc-
ture [3]. Its cost function combines both the individualtpaatching cost and pair-wise
inconsistency penalties. The drawback of this approadimisit has no figural context
measured by the whole object. It may end up with many “OK” paatches without a
global verification, especially when there are many fainecbedges and occlusions in
the image. Recently, a multiscale deformable part modepr@gosed to detect objects
based on deformable parts [1], which is an example that ustibstypes of contextual
information. However, it focuses on training deformabledibgradient-based features
for detecting objects, but not extracting object parts dihe images.

3 Saliency Based Opportunistic Search

Problem definition. The problem we are trying to solve is to extract and label abje
parts based on contextual information, given an image argkigmentations, as shown
in Figure 1. Multiple models are used to cover some variatfrthe object (see Figure

2 for the models we have used on faces). Extracting and tapelbject parts requires

finding the best matched model. The problem can be formutddllows:

Input:

— Model: M = {My, Ms,...,M,,}; each modelM}, has a set of labeled parts
{pk,pk, ..., pk}. They are all shape models made of contours and line segments

— Image: S = {s1,s2,...,s} is a set of region segments and contour segments
coming from different segmentation levels from the imagar. fegion segments,
only boundaries are used for shape matching.

Output:

— Best matched modél/},.
— Object part labeld.(S). L(s;) = j, if s; belongs to parp’?, orelseL(s;) = 0.

This can be formulated as a shape matching problem, which &rfind sets of
segments whose shapes match to part models. However, tmestsgcomprising the
object parts are not equally hard to extract from the image garouping them to objects



g B ﬁ > g o = = = A
6‘7 0 QLJ s LY Q(S D

Fig. 2. Different models for faces. They are hand designed modetsradd from 7 real images,
each of them representing one pose. Facial features atedahalifferent colors.

and object parts also requires checking the consistencygthem. We call these ef-
forts “grouping cost, which is not measured by shape but can be helpful to difféate
segments belonging to object parts from those belongingetdackground. Therefore,
we combine these two into such a cost function:

Clabeling _ Cshape + Cg'r‘ouping (1)

C#hare measures the shape matching cost between shape modelbeled lsegments
in the image, which relays much arorrespondencend context C97°"Pi"9 is the
grouping cost, which can be measured in different ways, iothis paper it is mainly
about the bottom-upaliencybased editing cost.

The cost function above is based on the following three kayss.

1. Correspondence (). A way to measure the dissimilarity between a shape model
and a test imageThe correspondence is defined on control points. Featoras ¢
puted on these control points represent the shape infasmatid then the corre-
spondences are used to measure the dissimilarityUt¥t = {a;,as,...,an,}
be a set of control points on the model, did = {b;, bo, ... ,bn, } be the set on
the image. We use;; to denote the correspondence between control pojrasd
b; whereu;; = 1 indicates they are matched, otherwisg = 0. Note that this
correspondence is different from the one between objets pad image segments.

2. Context (x and y). The idea of using the context is¢hoose the correct context
on both model and test image sides for shape matching inviatiaclutter and
occlusionx andy are used here to denote the context selection of either sggme
or parts on the model and the image, respectively.

3. Saliency. A property of bottom-up segments which represents how uifiicis
to separate the segment from the backgrau®oarse-level segmentation tends to
produce salient segments, while finer-level segmentatita&ts less salient ones,
but at the same time introduces background clutter. Lodtihgdn the salient gap
between two salient segments can help to get good segmenistibout bringing
in clutter, but it needs contextual guidence.

Saliency based editing Segmentation has problems when the image segments have
different saliencies. Under-segmentation could end up witexpected leakages, while
over-segmentation may introduce clutter. A solution fas tproblem is to do some
local editings. For example, adding a small virtual edgdati¢akage place can make
the segmentation much better without increasing the nummibsegmentsZoom-inin

a small area is also a type of editing that can be effectiveedident, as presented in



Figure 1.Small costs for editing can result in big improvement on shap matching
cost This is based the shape integrity and the non-additivaudigt between shapes.
However, editings need the contextual information fromrtioelel.

Suppose there are a set of possible editing operatiavisich might lead to better
segmentationz; = 1 means that editing: is chosen, otherwise, = 0. Note that
usually it is very hard to discover and precompute all theirgl beforehand. There-
fore, this editing index vectar is dynamic, and it appends on the fly. After doing some
editings, some new segments/(part hypotheses) will comenanwhile we can still
keep the original segments/parts. Therefore, a new vanabl’ = y°?i(y, z) is used
to denote all the available elements which includes bottotiggnal ones iny and the
new ones induced by editing Let C£4 be the edit cost for editing.

Our cost function (1) of object part labeling and extractian be written as follows:

min Clabeling (X, .z, u) _ Cshape (X, y.z, u) + Ogrouping (Z) _
x,y,z,u

Na N,
Z[ E Z uijci/;_/lHZ(x’ yedzt) + Cf(—)M (X, u)] + Z ngztzk (2)
i=1 j=1 B

s.t. Zjuij Sl, izl,...,Na

x: selection indicator of model segments/parts.

y: selection indicator of image segments/parts.

z:. selection vector of editing operations.

u: correspondence of control points between the image and Iimode
Y,Z):

y selection indicator of image segments/parts edited.by

edit (

The three summations in equation (2) correspond to thréerdift types of cosimis-
match costCM~Z(x, y*4 ), miss costC¥ =M (x,u) andedit costC*?*(z). The
mismatch costC % (x, y©4t) = || fi(x) — f;(y**"*)|| denotes the feature dissim-
ilarity between two corresponding control points. To praviine cost function from
biasing to fewer matches, we add the miss €8t M (x) = || /7 — (32 wij) fi(x)|
to denote how much of the model has not been matched by thesintagncourages
more parts to be matched on the model side. There is a trdtdhetufeenC{;/‘HI and
C7 =M, where3 > 0is a controlling factor. Note that- || can be any norm functidn

The rest of this section focuses on the two parts of our costion. Shape matching
will be performed on two levels of contexts and saliency daediting will result in the
opportunistic search approach.

3.1 Two-level Context Based Shape Matching

We extend the shape matching method called contour corgéedton in [4] to two
different contextual levels: “figural context selectiomith'semantic context selection”.
Figural context selection.Figural context selection matches a segment-based kolisti
shape model to an object hypothesis represented by segmiinth may have clutter
and missing segments. We optimize the following cost fuomcti

Y 1n our shape matching we uséd norm.
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whereSCM (x) andSC7 (y) is defined as the Shape Context centered at model control
pointa; and image control poirtt;. C’Z‘]?OZ _ Is the geometric inconsistent cost of cor-
respondences. C,; is the maximum tolerance of the geometric inconsistencyugée
Shape Context [12] as our feature descriptor. Note thatifteecf Shape Context his-
togram is large enough to cover the whole object model, andka set-to-set matching
problem. Details for this algorithm can be found in [4].
Semantic context selectionSimilarly we explore semantic context to select consistent
object part hypotheses. We first generate part hypothesegalmost the same context
selection algorithm as the one presented above. The selamierates on parts instead
of the whole object. Figure 3 shows an example of generatjpaythypothesis.

In semantic context selection, we reason about semantecbpprts. Hence we
abstract each part (on either model or testimage) as a paiatdd at its center with its
part label. We place control points on each one of the patecgn

L opart

Supposeﬁf“” is the matching cost of part hypothegisVe usew] = ¢<—— €
[, 1],v € [0,1] as its weight. Then the cost function for semantic conteetsien is:

ev’?

min Csemantzc(x y7u) —
x,y,u

Z Zum FISCHM (%) = SCEWHISCT — (3 uig) - SCH ()]

Ci/;_AHz(x,ycdit) cF=M(x,u)

c)

(4)

(6} Left Eyebrow
Right Eyebrow
Left Eye

3 Right Eye
Nose

Mouth

Left Ear

Fig. 3. Semantic context selection. Left: Part hypothesizing. &adal part region around the eye
in the image, with segments and control points. c) A modeptate of the eye with control points.
Selection result on the image is shown in b). Right: Constspart grouping. Semantic-level
shape context centered on the left eye captures semantiextaal information of the image. A
subset of those parts form a mutually consistent contextangroup them by matching with the
semantic-level shape context on the model shown in the eidd|



The variable definitions are similar to figural context sttet, except for two differ-
ences: 1) selection variables depend on the corresporslande?) Shape Context no
longer counts edge points, but object part labels.

The desired output of labeling(.S) is implicitly given in the optimization variables.
During part hypothesis generation, we put labels of caridigarts onto the segments.
Then after semantic context selection, we confirm some dadoadl discard the others
using the correspondenag; between part candidates and object part models.

3.2 Opportunistic Search

Labeling object parts using saliency based editing pa#intiequires searching over a
very large state space. Matching object shape and its pafigcoation requires com-
puting correspondences and non-local context. Both of thawe exponentially many
choices. On top of that, we need to find a sequence of editsugs, that the resulting
segments and parts produced by these editings are goodrefusugatching.

The key intuition of our saliency based opportunistic skascthat we start from
coarse segmentations which produce salient segments gadqguarantee low saliency
cost. We iteratively match configuration of salient partgitee a sequence of bounds
to thesearch zonef the space which needs to be explored. The possible spat&it
of the missing parts is bounded by their shape matching cakthe edit cost (equally,
saliency cost). Once the search space has been narrowed wewnoom-in” to the
finer scale segmentation to rediscover missing parts (heitbhdower saliency). Then
we “zoom-out” to do semantic context selection on all thet pgpotheses. Adding
these new parts improves the bound on the possible spat@iteand might suggest
new search zones. This opportunistic search allows bothéffgciencyand highaccu-
racy of object part labeling. We avoid extensive computation byrowing down the
search zone. Furthermore, we only explore less saliens gdhere exist salient ones
supporting them, which avoids producing many false passtivom non-salient parts.
Search Zoneln each step of the search, givefx! =1, y(¢=1) z(t=1) w(=1) we use
ACM=T(x, yedi) to denote the increment 6fM—Z (x, yedit) (the first summation in
equation (2))ACT =M (x, u) andAC*4i(z) are similarly defined. By finding missing
parts, we seek to decrease the cost (2). Therefore, we urdedtie following criterion
for finding missing parts:

BACMT (x,y,2) + ACT M (x,0) + AC“(z) <0 (5)

We write CM<Z(x,y, z)=CM=T (x, y*dit) sincey®?* depends on editing vectar
The estimation of bounds is based on the intuition that ifteImissing parts can be
found, then namisscost is needed to pay any more. Therefore, according to iequat
(4):
ACTM(x) > =Y CF " M(x,u). (6)

This is the upper bound for the increment of either one of the@wo items in equation
(5) when any new object part is matched.

Suppose a new editing&t) = 1|Z(H):0 matches a new object pat}; to a part

hypothesis in the imagly. Letk « /¢ indicateu,(fé) =1land}, u,(fj_l) = 0. Then this



Algorithm 1 Saliency Based Opportunistic Search

1: Initialize using figural context selectiorfor each partk, computeZ (k) based on. from
figural context selection. Séx(®, y(@ 2 u(®) to zeros. Set = 1.
2: Compute search zones for all the missing paFind all missing parts by thresholding the
solutionx*~),
for each missing parnby,
If Z(k) = 0, compute search zone s&{k) by equation (9) and (10).
end
3: Zoom-in search zoneUpdate editing sez.
for eachz!' ™" where Z (k) # 0
Perform Ncut segmentation for each zoom-in window indeyedldments it (k).
Generate part hypotheses. $&tk) = 0.
If no candidates can be found, go to the next missing part.
Updatez from part hypotheses.
end
4: Evaluate configurations with re-discovered parts.
Terminate ifz does not change.
Update(x®, y® 2 u®) with the rediscovered parts using equation (4).
Terminate ifC*¢™*"*(x, y, u) does not improve.
t=t-+ 1. Goto step 2.

editing at least has to pay the cost of matchipdo b, (we do not know whether others
will also match or not):

Clice = BACMTT(x,y,2) ke + CEM. (7)

The firstitem on the right of equation (7) is the incrementigmatchACM =7 (x, y©dit)
when a new object padt, get matched td,. It can be computed based on the last state
of the variablegx*—1), y(t=1 2= u(=1) According to above equations, we get

BACME(x,y, 2) jy + O = Y CT MV u") <0 (8)

Since we use Shape Context for representation and mat¢hengjsmatchis non-
decreasing. And also the editing cost is nonnegative, sobtarathe bounds for the

new editingzgf) = 1[,«-1_,. Let Z(k) denote the search zone for object parThen
we can compute two bounds f&r(k):

(Supremum) Z5P(k) = {zo| ACM =L (x,y,2)|ree < %Z CF =M (xt=1 ut-1yy
©)
(Infimium) 27 (k) = {za|Ce%* <> C7 =M (xlD ult=)} (10)

whereZ*“? gives the supremum of the search zare,upper bound of zoom-in win-
dow size, andZ™/ gives the infimum of the search zone. lower bound of zoom-in
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Fig. 4. Saliency based opportunistic search, using faces as ampéxanop: the flowchart. Bot-
tom: results of each step for 3 different examples. Typyddé iteration converges after only one
or two rounds. Rectangles with different colors indicate ftoom-in search zones for different
parts. Note that when zoome-in is performed for the first time, adjacent parts can be searched
together for efficiency. This figure is best viewed in color.

window size. When the number of segments is fixed, the saliehthe segments de-
creases as the window size becomes smafiét? depends ommismatchand Zf
depends on thedit cost {.e. saliency). In practice, one can sample the space of the
search zone, and check which ones fall into these two bounds.

Our opportunistic search is summarized in Algorithm 1.

4 Implementation

4.1 A Typical Example

We present more details on the opportunistic search usoas fas an example in Figure
4. We found that usually the whole shape of the face is moiergahan individual
facial parts. Therefore, the procedure starts with figuoaitext and then switchs to
semantic context. We concretize our algorithm for this pgobin the following steps.
The same procedure can be applied to similar objects.
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1. Initialization: Object Detection. Any object detection method can be used, but it
is not a necessary stepVe used shape context voting [13] to do this task, which can
handle different poses using a small set of positive trgiexamples.

2. Context Based Alignment.First, useCf%9uel in equation (3) to select the best
matched mode)/,, and generate the correspondene&§* ® for rough alignment.
When the loop comes back again, update the alignment baset"8f**’°. Estimate
locations for other still missing parts.

3. Part Hypotheses GenerationZoom in on these potential part locations by cropping
the regions and do Ncut segmentation to get finer scale sdgtiten Then match them

to some predefined part models. The resulting matching ssoused to prune out
unlikely part hypotheses, according to the bound of the ftosttion.

4. Part Hypotheses Grouping Optimize C*¢™mantic in equation (4). Note that the best
scoring group may consist of only a subset of the actual opjs.

5. Termination Checking. If no better results can be obtained, then we go to the next
step. Or else we updasemantic contextand go back to step 2.

6. Extracting Facial Contours. This is a special step for faces only. With the final set
of facial parts, we optimiz€ /%947 again to extract the segments that correspond to
the face silhouette, which can be viewed as a special panedbte.

4.2 Two-level Context Selection

For simplification, we do not consider any editing in figurahtext selection. Then
equation (3) is an integer programming problem, we relakedvariables to solve it
with LP. Details of this context selection algorithm can barid in [4].

For semantic context selection, we need to search for quonelences and part se-
lection variables simultaneously because they are higiyeddent, unlike the situation
in figural context selection. Therefore, we introducecarespondence context vector
PZ-./]V‘ = u;;x to expand the selection space for model parts:

M . .
PZ-/J\-A e {0,1}IV71 . P/JV[(Z’) Su;=1Ax3")=1 (11)
Similarly, we define theorrespondence context vector image parts,
PLe (0,130 PL(j) © uy =1 Ay() =1 (12)

In addition to the cost in equation (4), constraintscmmtext correspondence vec-
tor P, PT are enforced such that the semantic context viewed by diftgrarts are
consistent with each other. These constraints are sumedig the table 1. The cost
function and constraints are linear. We relaxed the vagmbhd solved it with LP.

5 Experiments and Results

Datasets.We tested our approach on both statue faces from the Empdataset [14]
and real faces from various widely used face databases (UM&e, and Caltech

2 Figural context selection can also be used to do that [4].
% In practice, we kept best two model hypotheses.
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Table 1.Constraints on context correspondence vegtt, PZ. For exampleContext complete-
nessrequires that contexts must include all the matched pditth ¢ and:” are matched parts,
the context viewed from must includei’, i.e. (y(i) = 1) A (y(i') = 1) = 37, P =1,
which is relaxed as the constraint in row 4. Other constsaan¢ constructed in a similar way.

Self consistency >, PYG) = y(i), 32, P5G) = x(4)
One-to-one matching Zz:: (( ))i (( ; % (( ))sg(g ))
Context reflexitivity (i PL(j)

") < PYG), P57 <
Context completeness|y (i) — 3, P, ( <1— Y( ), x(4) =3, PG <1—x(5")
Mutual context support >, P ( N =30, PAN), X, PE() =X Pl ()

Faces). Quantitative comparison was done on the Emperasdt and we also show
some qualitative results on a sample set of all these datddet statue face dataset has
some difficulties that normal faces do not have: lack of caleg, low contrast, inner
clutter, and great intra-subject variation.

Comparison measurementThe comparison is between Active Shape Models [10] and
our approach. Since we extract facial parts by selectingocws, our desired result is
that the extracted contours are all in the right places amcectly labeled. However,
ASM generates point-wise alignment between the image aradigtib model. Due to
the differences, we chose to use “normalized average pligminaent error” measure-
ment for alignment comparison.

Since our results are just labeled contours, we do not hame@mrespondences for
computing the point alignment error. Therefore, we relakedneasurement to the dis-
tance between each ground truth key point and its closest pnithe contours belong
to the same part. To make the comparison fair, we have exthetlgame measurement
for ASM by using spline interpolation to generate “contdios its facial parts. We use
0.35 times the maximum height of the ground truth key poistamapproximation of
the distance between two eyes invariant to pose changes asitimormalizing factor.
Experiments. There are two aspects of our Emperor-1 dataset that maydince diffi-
culties for ASM: few training examples with various posed dramatic face silhouette
changes. Therefore, we designed three variants of ASM tgeosate for these chal-
lenges, denoted in our plots as “ASM1”,"ASM2","ASM3". TabR shows the differ-
ences. Basically, ASM2 and ASM3 disregard face silhouatteveork on fewer poses
that may have relatively more exemplars. Note that ASM3 es@nbined the train-
ing data of the three near-frontal poses as a whole. We usadéione-out” cross-
validation for ASM. For our method, we picked up 7 images fiffedent poses (one
for each pose), labeled them and extracted the contoure autrk as our holistic mod-
els. Moreover, we chose facial part models (usually contbine? or 3 contours) from
a total of 23 images which also contained these 7 images. @istih models are shown
in Figure 2 and Figure 5 shows those averaged ones for ASM.

In Figure 6, we show the alignment errors for all the faciatpéogether and also
those only for the eyes. Other facial parts have similarlteso we leave them out.
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Fig. 5. Left: averaged models for ASM1. Right: averaged model foM8S

Instead, we provide a summary in Table 3 and a comparisorilagt column of Table
2, where each entry is the mean error across the test set eetesld, as applicable.
We can see that our method performs significantly better &% on all facial parts
with significantly fewer training examples. We provide a lifative evaluation of the
results in Figure 7, where we compare the result of ASM andrathod on a variety of
images containing both statue faces and real faces. Theggesshow great variations,
especially of those statue faces. Note that the models dydramed on statue faces.

6 Conclusion

We proposed an object part extraction and labeling framlewbich incorporates two-
level contexts and saliency based opportunistic searahc®mbination of figural con-
text on the whole object shape and semantic context on paatsdes robustly search
matching of object parts and image segments in clutteredesmeSaliency further im-
proves this search by gradually exploring salient bottgmsegmentations and bound-
ing it via shape matching cost. Experimental results onrs¢eballenging face datasets
demonstrate that our approach can accurately label objets puch as facial features
and resist to accidental alignment.
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Ours 0.1547 0.2015 0.1142 0.1546 0.1243  0.1353
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Fig. 6. Average point error vs. image number. All the values are atimed by the estimated
distance of two eyes in each image. The vertical dot-dasis Beparate images of different poses.
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Fig. 7. A subset of the results. Upper group is on the Emperor-| éatasd the lower is for
real faces from various face databases (1-2 from UMIST, @#hfyale, and 5-7 from Caltech).
Matched models, control points and labeled segments aexisymsed on the images.



