Swith\Ware: Accelerating Network Evolution (White Raper)

J. M. Snitht, D. JFarbert, C. A. Guntert, S. M. NettlesT,
D. C. Feldmeiert and WD. Sncoskiet

ABSTRET

We popose the deslopment of a set of sofave technologies‘Switdh\Ware”)

which will enable rapid delopment and depionent of nev network services.

The lkey insight is that by making the basic netw service selectable on a per
user (or gen per paclet) basis, the need for formal standardization is eliminated.
Additionally, by making the basic netwk service programmable, the deplo
ment times, today constrained by capital funding limitations, are tremendously
reduced (to the order of sofne distrilwtion times). Finally, by constructing an
advanced, robst programming efronment, gen the service deslopment time

can be reduced.

A SwithWare switch consists of input and output ports controlled by a soft-
ware-programmable element; programs are contained in sequences of messages
sent to thesSwitdhWare switch’s input ports, which interpret the messages as pro-
grams. V& all these “Switdhlets'. This accelerates the pace of netkevolu-
tion, as golving user needs can be immediately reflected in thearktimfras-
tructure. Immediateeconfgurability enhances the adaptability of the nathv
infrastructure in thedce of ungpected situationsWe all a netvork huilt from
SwitdhWare switches aractive network

1. Introduction

The pace of netark evolution (not switch golution, networkevdution) proceedsdr too slavly.

To a krge dgree this is a function of standardization. Standardization is a necessary step in net-
work design to ensure interoperabiligs a retwork’s uility increases with the number of inter
connected nodes. Since todaynternet architecture mandates the implementation of IP in all
routers and hosts, and requires a 5-8 year standaddgelopment —» deployment process (e.g.,

IETF - Cisco - Internet Service Pxaders), it is inflible and &olves slavly.

The Internet Protocol (IP) forces interoperability byimiefy a standard paek format and
addressing scheme which igedaid on networks comprising the internetwk. Sinceit must
operate on the least capable of rats, it is designed to f&fr a minimal set of functions; addi-
tional services are added byedays on IPThree undesirable consequences of this design are:

1. It must run gerywhere (e.g., at hosts and switches). There arme dwbconsequences:
changing IP means changingeg/thing, and geryone must share the same service model.

2. Owrlays (e.g., the reliable streaweday of TCR or multimedia multicast with MBONE)
are forced by people who ddmiccept the communal service model, i.e.ythant or need
a dfferent service.

T CIS Department, Unersity of Pennsylania
T Bell Communications Research

VERSI ON OF 6/26/96 - COWMENTS WELCOVE

-2

3. IPhas no semantics for passing data-link layer information to the end-points.

Overlays are problems for twedditional reasons. Firstyverlays may be indicient because the
underlying netwrk does not tak the functionality of the werlay into account; considenerlay-

ing a packt-switching netwrk on top of a circuit-switching netwk. Second, partitioning of
resources becomes morefidifilt because we must split the partitioning of resources within an
overlay from the partitioning of resources amonvgrtays.

A second alternate, semming from our werall goal of accelerating netwk evolution, is to
create virtual switches, with important sub-goals.

This nev set of goals, if realized, ka profound consequences for the engineering of future
networks. These are:

1. Programmable serviceso accelerate netark evolution.

2. Extensibility so thatlogical overlays can be implemented within the switches rather than as
true overlays at the endpoints. Programmability alone is naéresibility; for ekample,
extensibility is missing in control sof@ve for telephone switches [29}f seems most use-
ful to provide userextensibility, so that nev applications not imagined by the designers can
be easily added, and we cawid the risks of a‘harrov-gauge’ i nfrastructure.

3. Security as this is both an increasing concern as meks become more widely applied,
and increasingly difcult as thg become more compte For us,robustnesds an aspect of
security

4. Partitioning, to control resource allocation and scheduling under a programralty.

5. Portability, so that software switching performance caadp pace with component technol-
ogy cunes, such as processor performance, and carryaseftswitched applications along
the same upslope.

We propose aSwitdh\Ware switch, which preides a programmable element, essentially a com-
puter to perform switching functions and address this list of goals. Extending the role of comput-
ing in the netwrk is the ley o accelerating thewlution of network infrastructure; a compelling
example is the rate ofvelution of the World-Wide Web with its simple HTML language and
Common Gateay Interface scripts.

The approach suggested in this paper isxéension of that used tov@utionize telephon
in the early 199@. Adwanced Intelligent Netarking [32], deeloped in part by Bellcore, sepa-
rates the implementation of teleplyaservices from basic switching by wiag the service con-
trol to an adjunct processor from the switcBince each call can wohavea dfferent service,
the need for standardization ofweervices has been eliminateBeployment times are greatly
reduced, since a weservice is essentially data entered into the database of the adjunct processor
Development times areven reduced by enabling service piders and users to deé and
develop new services, and by a graphical programming irgteef dgeloped by Bellcore.The
telephory industry has seen weproduction quality service creation times drop fromerawo
years to as little as wweeks as a result of AINThe SwitdhWare switch will extend the
approach used by AIN to greatly increase thvellef programmability in the switch, by reducing
the need for a call model which constrains AIWe will also apply the technique to internet-
work routers and AM switches, which ha rot been attempted by AIN.

2. Switchingand the Pace of Network Evolution

The pace of netark evolution proceedsdr too slavly, relatve © the technological changes in
the underlying transmission systems, where laboratory reswksdached &rabit/second band-
widths, and relatie to the applications depyed at the edges of the neirk, such as the bvid-
Wide Web and its supporting technologies such as tha [Pd] Programming languagelhe

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-3-

element interconnecting the links and end-nodes is a switch; logically (although atypically) it is
possible to vier routers, bridges, etc. as specialized switches.

Programmability of switching elements led to major progress in voluteon of our
national netwrk infrastructure. Anxeellent case study of telecommunications switching infras-
tructure [23] is the \&stern Electric 3B20D processor [38] and the associated Olpldiple
Environment Real ime (DMERT) [15, 13] operating systenThis system \as emplged in the
Bell Systems$ 5ESS switch systems which remain in widespread use. DMERased on the
earlier MER' operating system [19], and ptides both a real-time and timesharingisznment.

The 3B20D dfered useprogrammable microcode so that high-performance applications could

in fact create a custom or emulated machine architecture within thextcohtie 3B20D pro-
cessing unit; this as used to support code andides from earlier switchabrics such as the 1A
attached processing unit. Up to four concurrent instruction sets were supported; an instruction set
could be selected with a single watimicrocode instruction.

This system reflected the importance of saftvin implementing the national telecommu-
nications architecture, as itas designed from the start to be deaive exeution platform for
software. The programming model alled programs to be loaded at run-timet, &f course \as
not accessible to arbitrary users of the phone system.

What has changed in our moderwviesnment is the need for anety of programmed, cus-
tomizedservices and the model of updating centrafice switches using aan full of magnetic
tapes is no longer appropriate.

2.1. Asoftware goproach: the Advanced Intelligent Network (AIN)

As we remarkd earlierthe approach suggested in this paper isxéension of that used towe
olutionize telephowy in the early 199®, Adwanced Intelligent Netarking [32], which vas
developed in part by Bellcore. The use of an independent control processor in the swithing f

ric gaveservice designers access to databases and other processorgltoqaib processing fea-

tures. The response to a telephone call can then be represented as a state machinegesvhich tak
actions as information is input during a cdixamples of services that can bevpded with this

model would include routing of a call to the nearest shop in a chain of Pizzergedervices.

The call processing ould reference a Geographic Information System, and could be enhanced
with vendor preided data such asalability of drivers.

The deep, and fundamental restriction on the applicability of this approach is its use of the
call model, which isdr too restricie for the netwrk infrastructure we h& row, which is
evdving from circuits to pacsts, and if the&SwitthhWare approach is tadn, bgond to typed data
objects.

2.2. Why not the Internet model?

As we agued in the Introduction, this sloevolutionary pace is a function of standardization.
The Internet Protocol (IP) forces interoperability byiniefy a standard paek format and
addressing scheme which igedaid on networks comprising the internetwk. Sinceit must
operate on the least capable of rats, it is designed to f&r a minimal set of functions; addi-
tional services are added byedays on IP

The diffi culty with this model is that it isremely dificult tointerposenew protocol func-
tionality. This can be illustrated with thexample of Domain Name Service (DNS). The pres-
sures on DNS are tremendous anéliiko increase. Manapplications are dependent on it, and
the World Wide Web’s use of location-dependent naming places further pressure on DNS perfor
mance. Thefuture will bring personal netwks of perhaps hundreds of processors and

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-4 -

intelligent sensors - such a neik's dements will need names for management and function
location. DNS will not scale to such artent with caching, and yet the appropriate caching
functionality cannot beult without interposed protocols for DNS cache management (including
security features to prent spooing) and WWW proxies. These features require sarfew
embedded in the information nedk.

An excellent &kample of interposed functionality can bewlnafrom electronic mail sys-
tems, which can interpose toolsdithe “vacat i on” program to alter mail handling when peo-
ple are on trael. Such systems ka been etended with programming to priale priorities based
on addressees and message sizes, which are transparent to the sender

2.3. SwithhWare Programming

For any workable communication, there must f@meagreement; standardization is essentially

an agreement about what the agreement is. The IP protocol has been successful in standardizing
paclet formats, bt because its standardization process operates at a political tempo rather than a
technological tempo, the pace obhkition has been held back.eelieve that a PostScript-lik

[35] concept, which raises thevé of abstraction of the standard, 8witthWare services rather

than IP services, is the method for staying on the technologg.daarsing the lesl of abstrac-

tion also gves a nuch greater toehold for netrk management, speiciélly for automated self-
diagnosis and repairhis is true becaugd) behaioral assertions are simpler to stg#&, moni-

toring software is easier to write, arfd) the chain of assertions that lead to diagnosis and repair

is less compbe

For most rapid ®olution, networks must be userustomizable, and for users to \ari
deployment of nev services, the netark must be on-the-fly programmabl&hat is, it must be
programmable by the paets that flev through it. While not all paegks need contain code,
paclet sequences can contain modules of programming, as in the mobile agents prototyped by
Knabe [17]. These code objects are used tovte customized services to thedeof an indi-
vidual useror if predictions of hundreds of processors or intelligent sensors per person are true,
perhaps composites of hundreds of such services.

3. SwitchWare Applications

We intend to implement one or more prototype servicesSwiahWare system in order to sko
feasibility. These services shouldveathe properties of being useful to a subset,fot necessar

ily all users of the acte retwork. Servicesvhich are useful to all or most users of the roeky

like smple unreliable datagram foasding, or unreliable multicast are susceptible to being
included in a traditional bearer service such asSHvices which are highly speculadj too for

ward looking, or simply not well understood are good candidates for being implemented in an
active retwork. Several example services which match these characteristics are described belo

3.1. Self-payinginformation transport

The idea of Self-paying information transport (Iveésist using the acrgm) is to hae an
object which is to be transported through the oektwnclude some form of electronic payment
information as part of the objech simple analogy wuld be to the stamp on a letter toda&y
transportable object (such as a paotr a virtual circuit) wuld contain, as part of the control
information (i.e. the pa&k header or VC setup messages) some sort of electronic payment infor
mation. This could be either e-cash, e-check, or an electronic credit card nihdbpayment
information would then bexamined by theSwitthhWare, and if suficient payment as ofered,

the object wuld be serviced by thewitd\Ware. Note the service might be to prde computing

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-5-

by executing the object in th&withhWare, or to provide communications by switching the
object, to proide storage for state information the object may wish teeléathe Switd\Ware

switch, or some combination of these. The payment information may then be altered (some e-
cash subtracted) as the objecvéraes the netark.

This type of service is speculai enough that it wuld not be possible to consider stan-
dardizing it in a bearer service toddjoweve, it is ot hard to ewision either commercial or
military scenarios where it might be useful. In commercial situations, vida® the possibility
of creating a dynamic maekin netvork bandwidth, which may be more economicalliyosént
than todaysdirly static tarif structure where prices only change iietl times of the dayA
provider with an underutilized netwk might lover his prices, thus attracting objects into his
network. A provider who was werloaded could raise prices until the demand subsided to match
available capacity

Since payment is really a complorm of priority it's possible that in a military applica-
tion, the payment may instead be interpreted as an authorization and.pRedtyests that car
ried insuficient priority in times of high demandowld be either déred a laver grade of ser
vice, delayed, or possiblyen dropped. ar more dynamic schemes might be constructed as
required. This scheme could be used, fanaple, to control QoS-based scheduling inside the
SwitdhWare run-time system.

3.2. Network management

Many network management tasks consist of collecting and collating data, sugbnase@unts.
To provide the most useful netwk management data, such aseption indications, intelligence
must be used talter out uninteresting (uxeeptional) gents. An easy &y to write a netark
management system, assuming that appropriate authentication and protection casede ide
to write a netwrk management program using modules constructed from sequenga®-of °
gram’ packets.

Fault management is aewy important and difcult task, particularly so for lge netvorks
and for correlatedailures. Correlatedailures may be caused by bothvenonmental &ctors,
such as earthquek or &plosions, or by malicious intruder$Ve kelieve that actve retworking
can be used to sigreantly improve fault detection and management capabilities in thear&tw

Existing netvork monitoring for &ult detection consists ohthering a knen set of mea-
surements. Th&ault management systentitérs and correlates these measuremeAtproblem
with this approach is that &’dfficult to integgrate netwrk elements that operate with fdifent
fault management system&letwork elements are designed to operate with one $pdaiilt
management systenflso, differing design philosophies may peat the intgration of seeral
fault management system3hese incompatibility issues also neakdifficult to evolve the fault
management system, because it i aift to add a netark element that does not conform with
all existing elements.

Active retworks can preide the desired flability, because thealult management system
can be changed as necessary without the needny about backard compatibility Existing
systems can be recagiired as necessary simply by changing the code useduitrnhanage-
ment. Actve retworking also may all for hierarchical &ult managementAs faults are being
isolated and ideni#d, the &ult management system can be refocuseddammme in more detail
those netwrk elements that may be operating incorreciyfferent \ersions of &ult detection
code can be loaded into selected meknelements for eachve of the hierarchicaldult man-
agement process.

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-6-

3.3. Active Network Striping f or Software Salable Bandvidth

One of the major challenges to the vision of »&tNetwork technology and virtual infrastruc-
tures is proiding compelling @amples of the usefulness of the onytlflg programmable infras-
tructure. SwitthhWare provides the opportunity fosoftwae salable bandwidthto be denred

from the virtual infrastructure. ariations on the same technique can address delay jitter (by
resynching typed paeks withSwitthWare) and reliability.

Two interconnectedwitthhWare switches and attached host computers arenshio Figure

1.
- Chanhell —»
A Switch | = | Switch B
Host - Channel3 » Host
A —hartnto B
- Chanhhel4—»

Figure L Interconnecte@®witdhWare Switches

While adding stripinghardware to all switches in a netvk is unlikely to be cost-ééctive [39,
40], theSwitthWare infrastructure can be programmed topde striped servicesA software-
implemented solution auld stripe most é&ctively by using multiple intedices to send multiple
concurrent paaits. Thussimple pseudocode of Switdlet for sender striping (asynchronous
Send()), would be:

When Arrives(Packet, | nPort)

Send((SequenceNunber , Packet), Qut Port);

QutPort := (QutPort + 1) Mdd Channel s;
}

and the receer would eecute:
VWhen Arrives((SequenceNunber, Packet), I nPort)

If (1 nOder(SequenceNunber, Expect ed))

Send(Packet , Qut Port);
Expected : = Expected +1;
}

el se
Queue((SequenceNunber, Packet), QueueNane) ;

i f(CheckQueue(QueueNane, Expect ed))
{
DeQueue((Expect ed, Packet));
Send(Packet, Qut Port);
Expected : = Expected + 1;

}

The key dosenation to mak aout packt striping is that it ¢érs the possibility of multiplying
the throughput\ailable between processors in proportion to the number of stripes.

VERSI ON OF 6/26/96 - COWMENTS WELCOVE

Processor1l |,
Processor2 | Striped P Intermnei CPU, Memory
Embadiad . and Disk
High-Speed mbedded LaConnection
Processor 3 (M9 A swithware
Processor 4 ATM o Switch - - Striped-Links te Rermete-
~y F— e 7 —— — — — = — — — — — ——
Connectiony - — Switches-and Resourcaes
a
p ~ ATM
Connection] CPY, Memory
Low-cost and Disk
Network IP Internet
Appliance| | Connection
(wireless?)
Java(tm)
Interpreter

Figure 2 An embedde@&with\Ware switch

This multiplication can be accomplished with no change in the lejwatherassuming that

the interbices are attached to processors able to support their memory bandwidth demands, the
focus is on algorithms for deciding which ineeré(s) to use, and when to stripersus simply

using a single connectiokigure 2illustrates striping in an embedded switch.

3.4. Otherapplications

Another application of the multiple channel approach is for reliab@itysider the tw intercon-
nectedSwitdh\Ware switches shan in Figure 1 If three channels evth of capacity are required,

we can implement the striping algorithm on the three channels, and utilize the fourth as an
error/loss correction channel, as in RAID systems [18, for eample, we could (using
SwitthWare's capacity for processing), for each three psksent on the three stripes, compute a
fourth paclet consisting of the ExclugOR of the three paeks comprising the stripe. Then, if

ary 3 of the four packts arrve in time, the data can be re@ed and fonarded.

Such modules can carry out nyalasks. Br example, consider the sensor fusion required
to detect an automobile on the other side of a bend; a CCD camera, IR camera (at night) or other
sensor could be feeding a broadcast ndtwAn application injected into the neivk by your
automobile could run a motion detection algorithm on the real-time video feed and signal a mon-
itor in the automobile with an approach speed indicationasnivg tone.An actuator for a rear
window defroster in a caarea netwrk might fuse information from a smart thermometer with
light diffusion measures to automatically turn on; directional remote motion detection could dim
the high beams, etAAnother ekample is personal multicast topologies; it is easy to write a small
program which mees itself from SwitchWare switch to switch [33], replicating itself selecty
to output ports to create a peaiclket multicast.

Still more applications include:

* Speech coding ca@rsion for interoperation of national telecommunications infrastructures;
this would be accomplished witBwitdh\Ware libraries or DSPs if higher performance is

VERSI ON OF 6/26/96 - COWMENTS WELCOVE

needed.

» Self-adaptation of paeks to netwrk dynamics such asifure and congestion, as yhe
could carry algorithmic code specifying appropriate responsesuosss.

* Subnet-speci€ compression, as bandwidth and latecharacteristics dictate aomuch
effort should be spent compressing.

» Data type-spedit routing and stream synchronization. As aample video frames might
choose a higher bandwidth link with a greater loss rate, while motion control streams for
interactve telerobotics [2] wuld select a path with o bandwidth lut high reliability and
low delay jitter

4. Securityand SwitdhhWare

Security of information means that the right information gets to the right people at the right place
at the right time, meaning that securityliires occur when these conditions are not met, i.e.,
wrong people, wrong place, wrong information, wrong tirBecurity &ilures can include unau-
thorized viaving of information, denial of service [27], and insertionaléé information.These

sorts of &ilures [6] will become more common unless securitiesignednto a system.

Application Modules

Protection

Level Boundary

Traditional
Opeimating
System

Scheduler/
Multiplexer

Figure 3 A multi-applications dements share a processor

While cryptograpi provides potential end-to-end pacy, it has no dict on denial-of-service
attacks, which can pvent correct and timely defery of important information; such attacks
must be precludedConsider for gample the difculty of preventing trafic analysis when
paclet switching is usedTypically, messages or paets must hee headers in the cleaeven if
the data portion is protected by a cryptographieapyi transformation. lis easy to imagine a
sequence of paeks where theirst paclet contains a program capable of obtainingya fkom a
trusted authorityused by theSwitdh\Ware to decode the headers of subsequent giacik the
train.

Active retworks ofer the netwrk users a pmerful tool for impraing network perfor
mance and ftability. Howeve, the paverful capabilities of the system mide paverful tools
to malicious intruders.Consequentlynetwork security and authentication become correspond-
ingly more important.Network elements must assure thay ande thg execute was produced

VERSI ON OF 6/26/96 - COWMENTS WELCOVE

-9-

by an authorized sourcélso, ary fault detection and management systems must be abde to v
ify the validity of ary network monitoring data that are reeed from network elements.

Although security and authentication mechanisms are being proposedymetaarking
forums, actre retworking may allev us to design a single intgrated security mechanism fall
network resources.This eliminates the need for multiple security/authentication systems that
operate independently at each communication protocol. lay&rould also allav us to address
the traditional need for separation of the transport and management planes, whidehasep-
arate for reasons of securiperformance and modularityThe difiiculty is the resource manage-
ment. Ary switching system, no matter Wwosimple or complg, represents enulti-application
consisting of a number of tasks, which may be concurrent e with the illusion of being
so via time-drision multiplexing of a shared elemenitigure 3 illustrates a multiapplication
mapped onto a single shared processor

The dashed line dfigure 3illustrates a crucial design decision; to control mulilg of
the machine resources, e.g., to associate codeatamis with interrupts, to operate on netk
adapters and persistent state resident on secondary storagejadimg systenis used to create
a resource protection boundary between applications, whioh d&taess to avirtual machine’,
and the multiplging mechanism, which has access to all system resources arkeprthe vir
tual machine.

4.1. AccesgLontrol by O.S. or Compiler? — Multiplexing Implications

Unfortunately this multiplexing architecture has w&re performance limitations, in particular for

the boundary crossing operation between the application and the operating systekerfthe *
nel”). Multiplexing performance is crucial in switching. A great deal of recent research has tried
to alleviate these costs while preserving the protection semantics of the operating system [9, 10].
To dbtain an order of magnitude estimate of the penalty for this boundary crossing, we compared
system calls with an ideal scheduling method, i.e., co-routine schediilvegmethod used ag

the facilitiesset j np() andl ongj np() provided by the C libraryThey provide the ability to
achiese a ron-local goto, that is, one which crosses routine boundaredg. np() saves the

current "state" of the program (i.e., a minimal set gisters, floating rgisters, frame pointers,

etc) into g np_buf structure (described ihusr /i ncl ude/ setj np. h) and| ongj np(),

given aj np_buf , restores the spe®@l state, including the program counter

On an SGI Challenge L, when the program is run on a 3,334,216 ibetgtuni x), it
requires 2.43 seconds ofeeution time; a @rsion of the program which merely reads and writes
takes 0.69 seconds. Counting ow context switches per character we et
(2*3334216)/(2.43-0.69) or 3,832,432 coiite per second, or 260 nanoseconds per gbnte
switch. Measurements of a microbenchmark which reads 0 byted fienv nul | repeatedly
shav that eachr ead() requires 17 microseconds, with 14.7 microseconds consumed by the
operating system. This suggests that we can xbstgtch between threadst least 60 times
fasterif we get the programming language model right, and further optimizations should be able
to reduce costs to approximately a procedure call.

Allowing the user to program andtend the basic netwk fabric pravides great flgibility and
power, but as with ay power tool it also creates a safety hazard. It is possiblely)ikhat pro-
grams den-loaded into a switch or routemould interfere with, corrupt, or suért the trafic of
other users. Thus @&k question in the design @witthhWare is haw this paver can be pnaded
safely

VERSI ON OF 6/26/96 - COWVMENTS WELCOVE

-10 -

4.2. Systems$ecurity and Programming Environments

Familiarity with the Internet VWirm [34] or recent security problems [8] found in systems such as
Netscapes Web bravser and the Ja [21] highlight the importance of security in distribd
computing. Althoughhese problems manifested themsslas security breaches, maimthem

were a result of the lack of safety features in the programming language, notably C. Languages
like SVIL and J&a avoid these problems by supportipginter safety In pointer safe languages,
pointerscannotpoint to irvalid locations in memorythus aoiding "core dumps" and arraye-

runs. Thekey features needed for pointer safety are strong (though not necessarily static) type
checking, array bounds checking and automatic storage managergaritage ®llection

4.3. Formal Semantics of Pogramming Languages

“ Formal Methods’is a ubric used to refer to a collection of techniques which seek to apply
ideas from formal mathematical logic to computational problems arising from e aw soft-
ware. Suchtechniques hae been an acte aea of irvestigation for at least tev decades.
Although not a panacea, the techniques de ltae potential of being quite useful, especially in
areas of program specifition, hardwre \erification, and language design.

In the area of language design, researcpragramming languge theoryhas deeloped a
collection of tools appropriate to the mathematical spatibn of programming language$he
value of such a spedtfation is that it ma&s properties of the language, the programs written in
it, and its compilers amenable to rigorous or (in limited cases) automated papofal treat-
ments hae keen preided for most widely-used languageBor instance: DoD commissioned
the completion of such a semantics for a substantial portion of its Ada language while, more
recently C++ and other object-oriented languagegehiaeen the subject of focused attention.

It has been less common for a programming languagedeveéopedn the contgt of con-
siderations from programming language theory—Ilanguage designs are usually more influenced
by programming and compilation issugdowever, accounting for theoretical considerations as
part of a design has sigim@nt adantages if ensuring certain properties of (programs written in)
the language is of paramount concehm.particular this is the case when there is a strong need
to guarantee arious safety or security constraintds a motvating example, the programming
language Standard ML (SML) is descended from a Meta-Language (ML) used to guide a goal-
directed theorem-prvang system [12]. The standard [22] as completed in 1987 and is
described via a set of mathematical rul&nce the soundness of the language as a theorem-
proving vehicle was a paramount early concern, the semantics of the langw@asgeowstructed
with great rigor and attention to detalfonsequentlyit is one of the most rigorously designed
languages being used in sigognt programming projectdt has, for instance, been of interest to
DARPA, which has funded research on its potential use in systems anorkgregramming
[14].

We would like to gpply techniques similar to the ones used to design and specify SML to
similar goals for theswithh\Ware language. Thisvill make it possible to apply a collection of
techniques desloped by the programming language theory community to the languiager
ticular, it will be possible to formulate and p@\arious safety and security properties based on
the language defition. This will ensure that programs written in the language aratuated
with a correct interpreter will respect such propertiésoofs of this kind cannot be wed as a
‘silver kullet—they will be limited in scope and ditult if the Switd\Ware language is laje—
but researchers va had success with the wiopment of appropriate mathematical techniques
and marshalling of automated tools to attack such problemsfimug languagesin particular
work at Penn under the supervision of Carl Gunter has hadisagtisuccess with SML, which
should form a solid starting-point foronk on the SwithhWare language, which will be

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-11 -

implemented as part of themerimental €brt in this project.

4.4. Authenticated Type-checled modules

When we apply mathematical methods to the cardéa highly-aailable distrituted switching
fabric, which depends on type-checking, we masefthe challenge of making the formal guar
antees in theakce of threats in the netwk [26]. Several authors hee aldressed the need for
secure object storage [11] in such amiemment, and ne cryptographic technologies [7] for
digital signatures are applicable to thiwieonment; in particular a type-chemk module can be
stored in a machine-independent form, which is then either signed directly or supported by a
secure hashing algorithmNew technologies are becomingadable for message-hashing, such
as MD5, which can beevy helpful in distrilnted type-checking A trusted authority is refer
enced as part of loading awmenodule into the systemThis work can easily bild on &isting
work for distributing loadable modules [17]A rogue loadable module can be ledkat as a par
ticularly harmful form of virus, one introduced directly into the retninfrastructure, so we can
draw on the considerable ovk [31] focused on this topic.

5. Concurrency and garbage collection

Garbage collection is crucial becausevitids the possibility that storage will be returned to the
memory allocator while it is still in use. Usingrpage collection alsosaids the possibility that
unused storage will not be returned to the allocaamiding the problem of "memory leaks".
Even slav leaks can cause longdd servers to crash and thealso cause systems to use
resources unnecessarily

Users ofenmacs know that garbage collectors typically stop the client program while
reclaiming storage, creatinggarbage ollection pauseThese pauses can be of arbitrary length
and sgeral second pauses are not uncomm@hile annging to the users of interaeé pro-
grams, thg can be catastrophic to real-time control prograi@ensidey for example, a com-
puteraugmented jetighter occasionally losing control for awfeseconds at Mach 2And yet,
such applications are also ones in which freedom from crashes related to pointer errors is highly
desirable. Thebasic technique for eliminating pauses is tovaltbe collector to run concur
rently with the client, as discussedhe

Threads are prxaded in Jaa, thus preiding low-level support for parallelism; it seems
likely that this will be one of the Walevel mechanisms used by parallel applications. Unfortu-
nately the dgree of concurrencoffered by such an implementation is limited by the need to
garbage collect the store sequentialljettles,et al.,have devdoped a ne/ concurrent GC tech-
nique, replicating collection[29]. Basedon ideas from distrilted systems, replicating collec-
tion is a simple and and gt solution to the difcult problem of making cgpng collection
concurrent. Ihas been implemented in the runtime of SML/NJ on both DEC uniprocessors run-
ning Mach and on SGI multiprocessors using IRTe results of the implementation shthat
GC can mak& good adantage of parallel machines, thus eliminating the concuriaritieneck
caused by arbage collection. More importantlihe results she that replicating collection is
very successful at eliminating the long pauses often associated aviihgg collection.These
pauses are a substantial reason for higd-leanguages not being used for performance critical
applications. [28]These techniques are applicable to othembagge-collected languagesdik
Java and should greatly impke@ the performance ofagbage-collected languages, andwvaliiy-
nificant speedups on multiprocessors.

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-12 -

6. Run-time support for the Bellcore Programmable Output Port Contr oller — OPCv2

Switches require uffers to handle the case in which multiple input géslare destined for sin-
gle output port simultaneoushyf we desire a switch that pvades Quality of Service, then a
scheduling mechanism determines the order in whichgbacke processed by the output port.
Although man different scheduling algorithms are possible, a single programmabletpack
scheduler can beubt that is capable of implementing anety of algorithms.Any packet
scheduling algorithm can be split intoayarts. Thefirst part of the algorithm is the computa-
tion of a label for each paek Thesecond part of the algorithm is the sorting of paskased

on their label to establish their transmission ardgy allowing programmability of the label
generation algorithm, the QoS mechanism of the switch can be changed easily to impdement v
ous packt scheduling policies.

Bellcore has alreadyuldt such a deice into the output port controller of the SunshiffévA
switch [20]. An Intel 80960 processor is used to compute ealdbels for each cell, and a cus-
tom VLSI sorting chip is used to order the cells by padébel for transmissionThe «isting
Bellcore design can be used to determine the pvengperations necessary to allspeciica-
tion of a packt scheduling algorithmThe «isting paclet scheduler also could be used as a
stepping-stone to a more sophisticated design.

7. Otherresearch in this area

Borensteins ATOMICMAIL [5] system used LISP functions embedded in electronic mail mes-
sages, to supportverlay functions such as automatically generated mailing lists and aeftw
distribution via e-mail. Considerablealue stemmed from combining message transport with
programs applied to interpreting the messages, especially for widely heterogeneouginaser en
ments.

The SOFTNET [41] systemag a packt radio netwrk where pacgts of multithreaded M-
FORTH code were interpreted by neix elements consisting of taprocessor nodes; one ser
viced netvork events, and the other ran user program$ie nodes were supported by a small
operating system, which protected the retnvelements, e.g., to prant buggy programs from
destrging the packt-switching &bric. Thefocus was proof-of-concept rather than a wholesale
change in netark infrastructure, models and run-time support.

Erlang [1] is a concurrent functional programming language fgelardustrial real-time
systems, pnading transparent cross-platform distrilon, primitves for detecting run-time
errors, real-timeGC, and dynamic code replacemeifirlang has been depled in switches
built by Ericsson. It does not preide the strong static type checking we propose in our
approach.

A previous Bellcore project, theoliring Machine, is a distnited multimedia communica-
tion system which supported 150 users in both point-to-point communications and broadcast
meetings and lectureS.he architecture has masimilarities to an actie retwork. Network ele-
ments, such as the end nodes, switches, and audio/video bridgese aduiated processors.
All communication functions, such as connection setupéean, were performed by sending
blocks of eecutable LISP code toavious processor platforms in the netiw There vas no for
mal model and no abstraction useful for security and interoperalalittation deeloped.

We intend to verk with other researchers on Awi Networks, contrilnte software and
methods, utilize research prototypes, and to host nodesderimental dgbrts, which may com-
municate ger existing transmissionafcilities (such as the InternetJable | relates our research
actiities and Ennenhouse’[37] proposed franveork.

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-13-

Activity Enabling | Platform | Pgm’ing| Middleware Active Netw.
Tech. Develop. Models | Svcs./Apps.| Citls./Algs,| Ops.

1.Formal Model Frk * * *wx

2.Runtime Ewn. * ** **

3.Router *x ** **

4Secur|ty * ** ** *k% **

5.0PCv2 *kk b

Table I: Switc\Ware Contrikutions to erall effort, * s for relatve importance

We havehad informal discussions with other research groups interestectivre Networkand
are avare of their work and contribitions. W will borrow technology as appropriate in an
attempt to produce an igeated efort in Active Network research.

The SPIN [3] Project is anfeft to kuild extensible operating systemerkels, with the idea
that type-safe Modula-3 code could be loaded into an operating system for reasons of perfor
mance or access to resources. Thiskwreinforces our belief that type-safe modern program-
ming languages are a fertile ground for systems programmingemtiee most performance-
sensitve ewvironment. While it is unlikly we can directly empjoany of the code produced by
the SPIN Project in our fefrts, we gpect that interactions with kkminded researchers will be
valuable. The setting of a switch infrastructure haged#ht challenges, including the need for
resource partitioning algorithms, disuied loading of type-cheek modules, security and a
high deyree of multipleing/ parallel processing, that are less pressing tokstations.

The Scout Project [24] at the Wersity of Arizona uses an algorithm, patiding, to opti-
mize the paths through protocoteeutions in a realization. This is aluable technology that
could be emplged in the kilding of Switth\Ware, but does not directly address the algorithmic,
security and management issues \&eefin the design of an on-the-fly upgradable petw
infrastructure. W kelieve that while Scout itself may be able to operate across reanron-
ments, it is preiding a level of abstraction that is too Vo to gain the interoperability adwntages
of our extensions to SML/NJ.

The Exolernel [10] project at MIT has been focusing on an operating system restructuring,
where much of the operating system functionality is carried out in libraries. There is still, for
security a reed for a smallérnel. W kelieve, as we dscussed irSection 4 that the protection
kernel approach has some fundamental performance limitations, especialyaass tbe high
degree of multiplging found in a netark switch. W& bkelieve that as the Exadnel architects
attempt to re-virtualize the O.S. functions, faample by preiding multiplexing of an adapter
with a processor embedded in the adaphat the will run into problems either with theuel of
abstraction (and therefore interoperability) or with performance barriers that amedaibée on
todays hardware. What it seems kfty they will contribute is a great deal of kmtedge on hw
to craft systems which pvale dedicated application access to adaptors, a model which the
SwithWare run-time may empha

The FXX Project at CMU [14] is likely to be an essential supplier of technolollysome-
what oversimply, the research group at CMU has been focusedramgelizing SML to the sys-
tems communityand the havebeen doing this by focusing on interesting problems such as writ-
ing a TCP/IP in Standard ML [4]We look at the CMU wrk as preiding tools. Their imple-
mentation ideas for compilers [36] and run-timeiemments [18] can be weed as aids and
assists to pnading a high-performance implementation of @witdi\Ware language system; in
essence, our SML/NXt&nsions foiSwithh\Ware ride the compiler technology cueas well. Our
run-time research compliments their research, and our setting, a high-performance switch as part

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-14 -

of an actve retwork infrastructure, dmas on the demonstrated strengths of our team and its
organizations. Our focus in programming language semanticasllis to attack the theoretical
problems in a restricted comtethat of an Actre Network Switch, that increases our chances of
success.

Turner’s goup [30] at Vshington Uniersity propose an approach of interconnectiwge
ful general purpose processors with afVAswitching system. Thus, the hardse has the abil-
ity, in principle, to eecute Swith\Ware-like ftware. Thg make two important assumptions
which we belige ae unpreen, and which th&witthhWare architecture is not fundamentally sub-
ject to. First, the believe that by detecting opportunities to set UpM\circuits, theg can avoid
most petpaclet processing once d&low’” is detected through their systenthis means that
software participation in paek processing is arxeeption rather than the rul8witd\Ware tech-
nology attempts to makpacket processingaist enough thatll paclets could be processed; hard-
ware assists are assists and not essential. Secopghréseme that a strippedagdn UNIX oper
ating system can imtt process thénon-flowed” packets fast enough to puade gigabit range
performance. Based on our measurements of UNIX gbaetitching performance orxgemely
fast processors, we bele that this approach is wronglfhe protection werhead of a coren-
tional operating system architecture is togéato sustain high deees of IP multipbeing, and is
likely to induce considerable jitteAdditionally, we bkelieve that the security of this approach
(both for access control and resource denial, such as bandwid#tistgris dependent on the
security of UNIX rather than pvable statements about security enforced at compile time, as in
our approach. If you can do it once in the compidry do it repeatedly at run time?

8. Planof Work

Project tracking is shwn in Figure 4 Our networking priorities are, in orde(l) flexibility, (2)
robustness,(3) security (4) link performance and5) processor performance. Our approach
addresses tha$t four, to the detriment of thafth.

Although SwitdhWare will depend critically on formal and mathematical techniques, we
plan to pursue arxperimental approach for the project as a whdlke programming language
implementation challenge Bwitthh\Ware will be providing good performance for SML when it is
used as a systems programming language. A recent implementation of SML, the TIL compiler at
CMU by Morrisett and arditi [36], strongly suggests that SML implementations with perfor
mance similar to C are feasible.

8.1. ExperimentalMethodology - Highlights

A first-order gperiment will be performed by attaching a number of petvadaptors (perhaps
several ATM adaptors, and one or morarieties of Ethernet) to a small scale shared-memory
multiprocessarThe processors ould then act simultaneously as port controllers amdigion
engines for the languagd&he loadable language modulesuld be transported betwe&with-
Ware switches, forming trains of aeé packets, which we calSwitdlets To presenre the paver

of the semantic model, type-checkmodules are digitally checksummed with a Secure Hash
Algorithm provided by a trusted authorityhis tales adantage of thedtct that it is easier toew

ify the proof than to do the proof.

This approach prades the concurrentecution model necessary inyarealistic switching
ervironment, while preiding an attractie ewvironment in which to deslop software and algo-
rithms. Thiswould provide initial insights into the programming model, and demonstrate that
paclet interpretation can be usefully appliethe same anronment will be used for SML run-
time system and ag® router periments. Additionaéxperience will be gined from the Bell-
core Programmable Output Port Controller 6PCv2.

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-15 -

Formal SwitthhWare Applications Possible
SwitthWare Run-Time and Actve SwithWare Timeline

Semlantics Sy§tem Roqting Acce!erator
| Protptype ’ Enumerate
| Run-time égtlz\t/:r SwitchWare Year 1
| on SGI | Archs.
ldedlized Support SwitdWare Rank
Formal Active Appli- Swith\Ware Year 2
Language Router cations Archs.
Specify Measure Extend Pger
SwithhWare and Extend Appli- Design Year 3
Language to OPCv2 catlions or Demo
| | | |

Figure 4 Project Tacks and imeline

9. References

[1] J. Armstrong, M. Wiliams, and R. Wding, Concurent Pogramming in Erlang Prentice
Hall (1993). ISBN 13-285792-8

[2] RuzenaBajcsy David J. Farber Richard P Paul, and Jonathan M. SmithGigabit Teler
obotics: Applying Adanced Information Infrastructute,n 1994 International Symposium
on Robotics and Manufacturiniylaui, HI (August 1994).

[3] Brian Bershad, Stein Saage, Przemysla Pardyak, Emin Gun SireDavid Becler, Marc
Fiuczynski, Craig Chambers, and Susan Egge&istensibility, Safety and Performance in
the SPIN Operating Systém,n Proceedings of the 15thCM Symposium on Opsging
System Principles (SOSP-18ppper Mountain, CO (December 1995), pp. 267-284.

[4] E. Biagioni, ‘A Structured TCP in Standard ML, n Proceedings, 1994 SIGCOMM Con-
ference London, UK (Aug. 31st - Sep. 2nd, 1994), pp. 36-45.

[5] Nathaniel S. Borenstein,‘Computational Mail as Netark Infrastructure for Computer
Supported Cooperat Work,” i n Proceedings, Computer Supported Coapige Vbrk
Confeence Toronto, CANADA (1992).

[6] SystemSecurity Study Committee - National Research Couminputes & Risk: Safe
Computing in the Information &gNational Academy Press (1991).

[7] G.Davida, Y. Desmedt, and B. MattDefending Systems Aajnst Miruses through Crypto-
graphic Authenticatiofj n Proceedings, IEEE Symposium on Security and Priys@§9),
pp. 312-318.

[8] D. Dean and D. \lach, ‘Security Flavs in the HotJea Web Bravser” Technical Report,
Princeton Unrersity, Computer Science (Nember 3rd, 1995).

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-16 -

[9] P. Druschel, L. L. Peterson, and B. S.vidzg “Experiences with a High-Speed Netk
Adaptor: A Softvare Perspeate,” in Proceedings, 1994 SIGCOMM Cordace London,
UK (Aug. 31st - Sep. 2nd, 1994), pp. 2-13.

[10] Dawson R. EnglerM. Frans Kaashoek, and James @3k, Jr, “Exokernel: An Operating
System Architecture for Application-kel Resource Managemeht,n Proceedings of the
15th ACM Symposium on Opeting System Principles (SOSP-18ppper Mountain, CO
(December 1995).

[11] Virgil D. Gligor and Bruce G. Lindsay‘Object Migration and Authenticatioh,|IEEE
Transactions on SoftwarEngineeringSE-56), pp. 607-611 (Nwember 1979).

[12] M. J. C. Gordon, R. Milneend C. Wadsworth, Edinkurgh LCF, Springer (1979).

[13] M.E. Grzelalowski, J.H. Campbell, and M.R. Dubmai)MERT Operating Systerh,Bell
System ddhnical burnal 62(1), pp. 303-323 (January 1983).

[14] http://ww. cs. crru. edu/ af s/ cs/ proj ect/ f ox/ nosai ¢/ HonePage. ht m
Fox Project, CMU Shool of Computer Scienc#995.

[15] J.R.Kane, R.E. Anderson, andS? McCabe,'Overview, Architecture, and Performance of
DMERT,” Bell Systeméddnical burnal 62(1), pp. 291-302 (January 1983).

[16] RandyH. Katz, Garth A. Gibson, and Bid A. Patterson, ‘Disk System Architectures for
High Performance ComputirigProceedings of the IEEE7(12) (December 1989).

[17] Frederick Colville Knabe, ‘Language Support for Mobile AgertsC MU-CS-95-223,
CMU School of Computer Science (December 1998).D. Thesis

[18] Mark Leone and Peter Le€Optimizing ML with Run-Time Code Generatiohjn Pro-
ceedings, EM SIGPLAN PLDI '9g§May 1996). to appear

[19] H.Lycklama and D.L. BayelThe MERT Operating Systerh,Bell System@&tnical Jbur-
nal 57(6, Part 2), pp. 2049-2086 (July/August 1978).

[20] W. S. Marcus, ‘An experimental deice for multimedia eperimentatiori, IEEE/ACM
Transactions on Networkindgo gopear (1996).

[21] Sun Microsystems, ‘The Jaa Language: A White &per’ htt p://j ava. sun. com
(1995).

[22] R.Milner, M. Tofte, and R. Harpefhe Deihition of Standad ML, The MIT Press (1990).

[23] R.W. Mitze, H. L. Bosco, N. X. DeLessio, R. J. Frank, N. A. Martellotto GASchwartz,

and R. W Wolfe, “3B20D Processor and DMHBRas a Base for €lecommunications
Applications; Bell Systemddnical burnal 62(1), pp. 181-190 (January 1983).

[24] A. B. Montz and D. Mosbeer, S. W. O'Malley, L. L. Peterson, TA. Proebsting, J. H.
Hartman, “Scout: A communications-oriented operating systehechnical Report 94-20,,
Department of Computer Science, bmsity of Arizona (June 1994).

[25] MTSs, Engineering and Opations in The Bell SysterAT&T Bell Laboratories, Murray
Hill, NJ (1983). ISBN #0-932764-04-5

[26] R.Needham and M. Schroedé@Using Encryption for Authentication in Lge Netvorks;
Communications of theGM 21(12), pp. 993-999 (DecemhdO78).

[27] Roger M. Needham, ‘Denial of Service: An Example, Communications of the GM
37(11), pp. 42-46 (Neember 1994).

[28] S.Nettles and J. Odole, ‘Real-Time Replication Garbage Collectibmn SIGPLAN Sym-
posium on Rsgramming Languge Design and ImplementatipACM (June 1993).

[29] JamedD’'Toole, Scott Nettles, and Bd Gifford, “Concurrent Compacting Garbage Col-
lection of a Persistent Heapn Proceedings, 14th@M Symp. Opetting Syst. Principles

VERSI ON OF 6/26/96 - COMVENTS WELCOVE

-17 -

(December1993), pp. 161-174. P

[30] Guru Paulkar, Douglas C. Schmidt, and Jonathan 8tnEr “a't m: a Stratgy for Inte-
grating IP with AM,” i n Proceedings, SIGCOMM 9&ambridge, MA (Aug. 28th to Sept.
1, 1995), pp. 49-58.

[31] M. Pozzo and TGray, “A model for the containment of Computeirises; i n Second
Aerspace Computer Security Applications Coeree(December 1986), pp. 11-18.

[32] Bell Communications Researdng., “AIN Release 1 Service Logic Program Fraroek
Generic RequirementsA -NWT-001132.

[33] JohnF. Shoch and Jon A. Hupp;The Worm Programs - Early Experience with a Dis-
tributed Computatioh,Communications of theGM 25(3) (March 1982).

[34] EugeneH. Spaford, “The Internet Vdrm: Crisis and Aftermath,Communications of the
ACM 32(6), pp. 678-687 (June 1989).

[35] Adobe Systems, Inc.PostScript Languge Refeence Manual Addison-W\esleg/, Reading,
MA (1985).

[36] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Bob Harped Peter Lee,TIL:
A Type-Directed Optimizing Compiler for MLj n Proceedings, 8M SIGPLAN PLDI '96
(May 1996).to appear

[37] D.L. Tennenhouse and D.J.atherall, Towards an Active Network Ahitecture, Jan. 1996.

[38] W.N. Toy and L.E. Gallaher“Overview and Architecture of the 3B20D ProcessoBell
System @dnical burnal 62(1), pp. 181-190 (January 1983).

[39] C.Brendan S. fiaw, Applying Achitectural Parallelism in High Rrformance Network Sub-
systemsCIS Dept., Uniersity of Pennsylania (1995).Ph.D. Thesis

[40] C. Brendan S. fiaw and Jonathan M. Smith;Striping within the Netwrk Subsyster,
IEEE Networkpp. 22-32 (July/August 1995).

[41] J.Zander and R. ¢rchheimer“Softnet - An approach to Higher ‘@ Packet Radid, i n
Proceedings, AMRAD Confairce San Francisco (1983).

VERSI ON OF 6/26/96 - COWMENTS WELCOVE

