
FPGA VirusesIlija Had�zi�c, Sanjay Udani and Jonathan M. Smithfihadzic, udani, jmsg@dsl.cis.upenn.eduDistributed Systems Laboratory, University of Pennsylvania ?Abstract. Programmable logic is widely used, for applications rangingfrom �eld-upgradable subsystems to advanced uses such as recon�gurablecomputing platforms which are modi�able at run-time. Users can thusimplement algorithms which are largely executed by a general-purposeCPU, but may be selectively accelerated with special purpose hardware.In this paper, we show that programmable logic devices unfortunatelyopen another avenue for malicious users to implement the hardware ana-logue of a computer virus.We begin the paper with an outline of the general properties of FPGAsthat create risks. We then explain how to exploit these risks, and demon-strate through directed experiments that they are exploitable even in theabsence of detailed layout information. We prove our point by demon-strating the �rst known FPGA virus and its e�ect on the current ab-sorbed by the device, namely that the device is destroyed. We close byoutlining possible methods of defense and point out the similarities anddi�erences between FPGA and software viruses.1 IntroductionSRAM-based programmable logic devices have been widely deployed whereverhardware performance and software 
exibility are required concurrently. Oneof the most ambitious uses of the devices has been in the �eld of Run-timeRecon�gurable Computing [16] where selected portions (or even the entirety)of algorithms are implemented in hardware, o�ering high performance whilemaintaining the 
exibility of software systems. Various research and commercialplatforms that utilize programmable logic as an accelerator or processing enginehave been proposed[4, 5, 12, 15].The majority of research on using the devices for computing has focused onthe issues of mapping various well known algorithms to recon�gurable hardware[8],device technology[6], resource management[9], hardware-software co-design[11],and to some extent, programming models[10]. Very little attention, in fact nonethat we are aware of, has been paid to the security models for these devices.In fact, the connotation of security in the FPGA community has been framed? This work was supported by DARPA under Contracts #DABT63-95-C-0073,#N66001-96-C-852 and #MDA972-95-1-0013, with additional support from theHewlett-Packard and Intel Corporations.



in terms of protecting the intellectual property contained in a device's con�gu-ration, rather than the security and integrity of the system itself. Furthermor,PLD vendors assume that by keeping the architectural details and the format ofthe con�guration data of their devices proprietary, the design contained in thecon�guration data can be secured[1].In this paper we show that neither the system nor any associated intellec-tual property can be protected by practicing security through obscurity. Weshow by example that it is possible to deduce the architectural details necessaryfor constructing malicious con�gurations without knowledge of any proprietaryinformation.In the next section, we analyze the properties of FPGA devices and showhow they can be exploited to create speci�c forms of attack. We also provide thede�nition of classes of attack that can be performed in run-time recon�gurablesystems. In Section 3 we present an experiment in which an extremely destructiveform of FPGA virus attacks a device at the transistor level and attempts todestroy it (in several experiments in our laboratory, the attempt succeeded). InSection 4, we outline the potential spreading mechanisms for FPGA viruses. InSection 5 we discuss possible methods for preventing and detecting attacks. Weassess the impact of our results in Section 6, which concludes the paper.2 Opportunities for AttackRecon�gurable hardware has the interesting property that it can both change asystem's behavior at the logic level as well its electrical properties. In general,no other architectural component has this property.For example, by executing di�erent programs, a processor changes its logicbehavior, but the electrical properties of the system remain unchanged. Simi-larly, memory can be viewed as a lookup table for which the logic behavior isprogrammed by changing its content. On the other hand, reprogramming anFPGA device can change its electrical properties (e.g, power consumption, pintypes, slew rate of output signals, etc.). A malicious user can exploit this prop-erty to cause damage (e�ecting a security attack) at the electrical signal level.This creates an entirely new class of destructive behavior than the attacks usedby software computer viruses. Most interestingly, these attacks are centered onthe physical destruction of the system (e.g. by overheating).To classify the wide range of potential attacks to a system, we have createdthree categories based on the type of threat:{ Level 0 (Electrical Signals): At the lowest level, the attacker creates electricalcon
icts either inside the device or at pins connecting the attacked device toother components of the system. The goal of this attack type is to physicallydestroy system components. We call this class of threat a Malicious ElectricalLevel Threat (MELT).{ Level 1 (Logic Signals): At this level, the attacker generates signals whichare electrically correct, but logically do not make sense to other devices.



For example, an FPGA device attached to a processor bus can generate asequence of signals which do not represent any meaningful bus cycle causingunpredictable behavior of the system. We call this class of threat a SignalAlteration Logic Threat (SALT).{ Level 2 (Software Attacks): Finally, a virus may generate legitimate cycleswhich together compose an execution of a malicious task (e.g., deleting datafrom the disk). This attack level is equivalent to the attacks performed bysoftware viruses. We call this class of threat a Higher Abstraction LevelThreat (HALT).MELT represents an interesting, and most destructive, form of attack en-abled by the addition of recon�gurable hardware. SALT attacks may cause un-predictable behavior in the system, but cannot directly cause physical damage(although they may indirectly cause damage, such as forcing a disk device orFLASH to operate until failure). It is less destructive than MELT, but its detec-tion and prevention can be very di�cult, mainly because any such preventionrequires a rather complete model of the system in which the device is embed-ded. We are, however, thinking about how to address SALT attacks. Finally,HALT attacks should be treated the same as malicious software code (i.e. soft-ware virus) and are thus not FPGA-speci�c. They are harder to detect since thedevice has no model for the valid behavior of systems sca�olded on top of it.In such instances, a defense should be based on establishing a trust relationshipbetween the source of the con�guration and the user executing it (i.e., whencon�guring the FPGA device). The problem is thus a classic security problemand therefore neither novel nor of particular interest to FPGA users.The attacker's goal at the electrical level is to physically damage the system.To destroy a system component, the attacker must create high currents eitherinside the device or at its input/output pins. The latter case can be easily realizedprovided that the attacker is familiar with the board level architecture of thesystem. It is necessary to know which pins of the attacked device are supposedto be con�gured as inputs (i.e. connected to outputs of external devices) andcon�gure them as outputs.This will result in a potential con
ict in logic levels creating a high currentthrough the output transistors of both the device and whatever is connected toit, for example another device, as shown in Figure 1 (a).Either device may be destroyed if a high current is applied su�ciently long. Inaddition to knowing the board level architecture, the attacker must have someinsight on the behavior of external signals, as high currents exist only if theattacked device outputs the logic complement of signals applied to it. Since thecompiler is not aware of the board level system architecture, such a maliciouscon�guration represents a legitimate design from the device's perspective and adefense using a compiler technique does not appear possible. More appropriatemethods of defense are discussed in Section 5.The second group of electrical level attacks attempts to create high currentsinside the device by programming it with a con�guration that creates a logiccon
ict in the internal connections. Most FPGA devices use pass gates to connect
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ict at a) I/O pins - left and b) logic elements - rightlogic blocks to routing resources. This represents an opportunity for creating aninternal con
ict if two (or more) logic blocks are con�gured to drive the samerouting resource as shown in Figure 1 (b).In contrast with the previous example, such a con�guration cannot be gen-erated by a compiler since it will not allow internal logic con
icts. However, itis in fact possible to modify the compiler output �le (i.e., the device con�gura-tion data) and create internal logic con
icts. In the next section we demonstratethe construction of such a con�guration, using the Altera EPF8636ALC84-4device[3] as an experimental platform (any vendor's devices will exhibit the rel-evant properties), using no Altera proprietary information and rendering thedevice inoperable.3 Constructing a VirusIn this section we describe an attack at the electrical level (MELT) that createsinternal logic con
icts taking advantage of the fact that the interconnectionbetween routing resources is achieved via pass-gates that connect multiple logicblocks to the same routing resource.The �rst step in constructing the internal logic con
ict is the identi�cation ofvulnerable points. That is, a connection of multiple logic blocks to the same rout-ing resource via a pass gate. In Altera Flex8000 family, the logic elements (LE)from logic array blocks (LAB) in the same column share a column interconnect.For example LE(1) in LAB(A1) in Figure 2 will share the column interconnectwith LE(1) in LAB(B1). Therefore, if we could program the LE(1) in LAB(A1)and LAB(B1) to output complementary signals and connect both of them to theshared column interconnect, an internal con
ict would be created. This con
ictpattern can be replicated as many times as the device size allows and increasesthe device power consumption up to a level su�ciently high to overheat anddestroy it. Column interconnects are the only vulnerable point in Altera's Flexdevices, since each logic element has a dedicated row interconnect and internalcon
icts among the logic elements in the same row are not possible.
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ict, we analyzed the con�guration �les of sim-ple logic designs and compared the di�erences resulting from changing the logicelement assignments and the logic functions. We identi�ed locations in the con�g-uration �le which correspond to the logic element con�guration and connectionsto column interconnect. To create a con
ict we used two designs, one that uti-lizes a 4-input NOR gate in row A of the device and one that utilizes a 4-inputOR gate in row B2. We created a con�guration with internal con
icts by mix-ing the logic elements and column interconnects from two previously describedcon�gurations. Since the con�guration �les for these devices do not use a globalchecksum or CRC, this cut-and-paste type of attack can be easily realized. Evenif such a global checksum or CRC existed, the device would not be secure sincethe attack would require only slightly more e�ort.We have experimentally veri�ed our claim by downloading con�gurationswith internal con
icts into the device and measuring the supply current. Noclock has been applied so the measured result represents the quiescent supplycurrent which should be very low given that the device is fabricated using CMOStechnology. The results of our measurements are shown in Figure 3. With onlyone con
ict the quiescent current is greater than the maximum of 10mA speci�edby the datasheet[3] and it grows almost linearly with the number of con
icts. Asmall non-linearity appears due to the fact the the mobility of carriers in silicondrops with the temperature, causing some current 
ow to be reduced. Typically,the supply current will have an overshoot after the device is con�gured and the2 The logic function used is arbitrary as long as the functions in row A always outputthe complement of functions in row B an are su�ciently \complex" so as to preventthe compiler from placing the logic in I/O blocks



current will fall as the device heats up until it reaches steady state. Despite thisnegative temperature feedback, quiescent current can grow arbitrarily and theupper limit is determined only by device size { that is, the number of possiblelogic con
icts.
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Fig. 3. Quiescent current as the function of number of logic con
ictsAlthough it is not possible to guarantee the physical destruction of a device,the attacker would normally try to make a device operate in the unsafe region andincrease the probability of its desctuction. As an illustration we will determinethe critical current at which the junction temperature exceeds the maximum ofTJ = 135oC speci�ed by the datasheet. We will show that this temperature iseasily achieved with a relatively modest number of logic con
icts.The thermal resistance of the PLCC84 package is �JA = 35oC=W [2] andassuming the ambient temperature of TA = 25oC, we can easily calculate themaximum power consumption:P = TJ � TA�JA = 135� 2535 = 3:143[W ] (1)For the power supply voltage of Vdd = 5V , we calculate that the maximumallowed supply current is Imaxcc = 629mA. From the graph in the Figure 3, itis clear that this limit can be easily exceeded with the quiescent current (i.e.,without applying the clock) if the number of logic con
icts is greater than 50.During our experiments, we have observed extensive device heating. In severaltrials, this resulted in physical destruction of the device, manifested throughthe device's inability for further recon�guration after being exposed to the highsupply current.In addition to being a threat to the attacked device, the high current drawnby a infected device/card in a system will potentially reduce the available supply



current for other devices in the system. For systems designed to be physicallysmall and densely packed, temperature may be a critical issue and increasing theambient temperature could make the entire system operate in an unsafe region,leading to larger scale failures. Even if the system power requirements are met,this heat can lead to long term instability.In the case of cards plugged into a PCI bus, the PCI Bus Speci�cation (ver-sion 2.1)[13] says that the total power drawn by a PCI card cannot exceed 25W .If a card with several FPGAs on it were infected with the virus (thus drawinghigh current), that speci�cation would be violated. Depending on the design ofthe bus, the system may then crash or it may work intermittently or even worknormally. This uncertainity is unacceptable for most systems. As programmabledevices are used in more cards, this problem will grow.4 Spreading a VirusReplication mechanisms can be classi�ed as either software assisted replicationor pure hardware replication.The �rst mechanism is equivalent to the replication mechanism of softwareviruses, with the only di�erence being in the system component the virus at-tacks. While most software viruses target the hard disk of a computer system,the FPGA virus would target the programmable logic devices in the system.If run-time recon�gurable computing platforms become more widely adopted,future computer systems will utilize a combination of a general purpose CPUand some amount of recon�gurable hardware. An FPGA virus would then bea piece of code which carries a malicious FPGA con�guration and whose repli-cation mechanism is implemented in software. The attack could be performedeither by directly programming the FPGA device once it has been found in thesystem or by replacing the FPGA con�gurations associated with other programsin the system which utilize the run-time recon�gurable logic. A hardware-librarymodel, such as that proposed in [14], is especially vulnerable to such attacks.The second replication mechanism provides limited opportunity for the virusto spread without software assistance. An FPGA device could theoretically storea con�guration of other smaller device in the user memory and use it to createa reduced version of itself in other devices given su�ciently large di�erence indevice sizes. Although possible, this replication mechanism is di�cult to realizein practice and is mentioned here only for completeness.Logic con
icts inside the device can be generated either immediately upondownloading or some time after device con�guration. Postponed logic con
ictscan be easily generated by programming the short circuited logic blocks so thata control signal selects if they should output same logic levels (no con
ict) oropposite logic levels (logic con
ict). The virus with hardware replicating mech-anism would typically use postponed logic con
icts to avoid device destructionbefore it gets the chance to spread to other devices.Software replication mechanisms have the same properties as classical soft-ware viruses and should be studied as such. On the other hand, hardware repli-



cation mechanisms are limited to the local system and can be easily disabledif the architecture on the board level is such that FPGA devices do not haveaccess to con�guration signals of other devices.5 Detecting and Preventing the AttackThe design space for an attacker in systems with run-time recon�gurable hard-ware contains the design space for the attacker in CPU based systems.Our goal is to study the defense methods only for attacks speci�c to recon-�gurable hardware and to provide a safe environment on the electrical and logicsignal levels (i.e., protect from MELT and SALT attack types) so that the at-tacker's design space is reduced back to its software subset. This approach wouldthen allow us to treat the FPGA viruses the same way we treat software viruses,which have been studied in work by others[7].We will now present the three main methods of defense against FPGA viruses,and discuss the advantages and disadvantages of each method.5.1 Con�guration File Veri�cationBefore it is downloaded into a device, the con�guration �le can be analyzed forpotential logic con
icts, both internal and external. For a logic con
ict to existeither of the following must be true:{ two or more logic blocks are connected to the same routing resource{ an output pin is connected to the output of an external deviceThe goal of the con�guration �le analysis is to ensure that none of the abovenecessary conditions is satis�ed. A correct place and route algorithm will ensurethat the �rst condition is not satis�ed. However, it is still possible to create acompiler that generates a malicious con�guration or directly modify the con-�guration �le as demonstrated in Section 3. The second condition cannot beaddressed at compile time since the compiler is not aware of the board levelarchitecture.It is therefore necessary to analyze the con�guration �le against both condi-tions prior to downloading it into the device. Since the system is or can be madeaware of the board level architecture, analysis against the second condition isalso possible. For successful attack prevention, the system must know the for-mat of the con�guration �le and search for the binary patterns that correspondto potential con
icts. Since the number of connections to a routing resource is�nite, analyzing the con�guration �le is a viable solution.The advantage of this method is that the attack can be prevented before thedevice is exposed to a malicious con�guration. The major disadvantage is in thetime necessary to perform the analysis, which adds to the download time. Userswould also need to know the device con�guration �le format, something whichdevice vendors are reluctant to make public.



5.2 High Current DetectionElectrical level attacks have the property that they must generate a high currenteither internally or at the I/O pins. In the case of internal logic con
icts the highcurrent drawn causes a high current at the power supply lines. This high currentwill be present in quiescent mode and it will be greater than the maximumallowed quiescent current3 for the device as speci�ed by the vendor.The attack can easily be detected by measuring the quiescent supply currentafter the device has been con�gured but before applying the clock. Power canthen be immediately disconnected from the device if the maximum is exceeded.There are many vendors (e.g. [17]) who carry current sensors which can be usedto provide a digital signal when the current on a circuit exceeds a limit. Theresponse time of these devices is typically on the order of a few microseconds.With the appropriate circuitry, these sensors could be used to guard not onlypower pins but also I/O pins from high current damage. Once the attack isdetected, the device can be immediately cleared to prevent damage.This detection method has neither of the disadvantages of the analysis method- it does not require additional time to analyze the �le, nor does it require knowl-edge of proprietary �le formats. The key disadvantage is in the additional pro-tection circuitry required and the existence of a short current pulse before theattack is detected. In addition, the current detection method could have prob-lems detecting postponed attacks as it relies on measuring the quiescent supplycurrent and (by de�nition) postponed attacks happen after the clock has beenapplied and the supply current consists of both quiescent and switching current,which could result in bogus attack detection.5.3 Avoiding Pass GatesThe �nal way of preventing electrical level attacks would be to remove pass gatesfrom the architecture of FPGAs. Although it would completely eliminate theopportunity for an electrical level attack on the internal logic, this approach is notfeasible for economic reasons. Replacing pass gates with logic (i.e. multiplexersand demultiplexers) would dramatically reduce the device density as well asachievable clock rates. Also, removing pass gates would not prevent external(I/O) level attacks.6 ConclusionWe have presented a threat model and outlined possible defense methods insystems that utilize run-time recon�gurable hardware. This includes line cardsand add-in boards with accessible FPGAs. We have developed the conceptualbasis for, and experimentally demonstrated, that the threat is realistic.3 We have experimentally veri�ed this claim only for Altera Flex8000 devices, but webelieve that other device families also have this property.
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