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Abstract: This is a survey of the method of graph cuts and its applications to graph
clustering of weighted unsigned and signed graphs. I provide a fairly thorough treatment
of the method of normalized graph cuts, a deeply original method due to Shi and Malik,
including complete proofs. I also cover briefly the method of ratio cuts, and show how it can
be viewed as a special case of normalized cuts. I include the necessary background on graphs
and graph Laplacians. I then explain in detail how the eigenvectors of the graph Laplacian
can be used to draw a graph. This is an attractive application of graph Laplacians. The
main thrust of this paper is the method of normalized cuts. I give a detailed account for
K = 2 clusters, and also for K > 2 clusters, based on the work of Yu and Shi. I also show
how both graph drawing and normalized cut K-clustering can be easily generalized to handle
signed graphs, which are weighted graphs in which the weight matrix W may have negative
coefficients. Intuitively, negative coefficients indicate distance or dissimilarity. The solution
is to replace the degree matrix D by the matrix D in which absolute values of the weights
are used, and to replace the Laplacian L = D −W by the signed Laplacian L = D −W .
The signed Laplacian L is always positive semidefinite, and it may be positive definite (for
unbalanced graphs, see Chapter 5). As far as I know, the generalization of K-way normalized
clustering to signed graphs is new. Finally, I show how the method of ratio cuts, in which a
cut is normalized by the size of the cluster rather than its volume, is just a special case of
normalized cuts. All that needs to be done is to replace the normalized Laplacian Lsym by
the unormalized Laplacian L. This is also true for signed graphs (where we replace Lsym by
L).

Three points that do not appear to have been clearly articulated before are elaborated:

1. The solutions of the main optimization problem should be viewed as tuples in the
K-fold cartesian product of projective space RPN−1.

2. When K > 2, the solutions of the relaxed problem should be viewed as elements of the
Grassmannian G(K,N).

3. Two possible Riemannian distances are available to compare the closeness of solutions:
(a) The distance on (RPN−1)K . (b) The distance on the Grassmannian.

I also clarify what should be the necessary and sufficient conditions for a matrix to
represent a partition of the vertices of a graph to be clustered.
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Chapter 1

Introduction

In the Fall of 2012, my friend Kurt Reillag suggested that I should be ashamed about knowing
so little about graph Laplacians and normalized graph cuts. These notes are the result of
my efforts to rectify this situation.

I begin with a review of basic notions of graph theory. Even though the graph Laplacian
is fundamentally associated with an undirected graph, I review the definition of both directed
and undirected graphs. For both directed and undirected graphs, I define the degree matrix
D, the incidence matrix B, and the adjacency matrix A. Then, I define a weighted graph.
This is a pair (V,W ), where V is a finite set of nodes and W is a m×m symmetric matrix
with nonnegative entries and zero diagonal entries (where m = |V |). For every node vi ∈ V ,
the degree d(vi) (or di) of vi is the sum of the weights of the edges adjacent to vi:

di = d(vi) =
m∑
j=1

wi j.

The degree matrix is the diagonal matrix

D = diag(d1, . . . , dm).

Given any subset of nodes A ⊆ V , we define the volume vol(A) of A as the sum of the
weights of all edges adjacent to nodes in A:

vol(A) =
∑
vi∈A

m∑
j=1

wi j.

The notions of degree and volume are illustrated in Figure 1.1. Given any two subsets

A,B ⊆ V (not necessarily distinct), we define links(A,B) by

links(A,B) =
∑

vi∈A,vj∈B

wi j.

7
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The quantity links(A,A) = links(A,A) (where A = V − A denotes the complement of A in
V ) measures how many links escape from A (and A). We define the cut of A as

cut(A) = links(A,A).

18

Degree of a node:
di = ¦j Wi,j

Degree matrix:
Dii = ¦j Wi,j

Figure 1.1: Degree and volume.

Figure 1.2: A Cut involving the set of nodes in the center and the nodes on the perimeter.

The notions of cut is illustrated in Figure 1.2. The above concepts play a crucial role in
the theory of normalized cuts. Then, I introduce the (unnormalized) graph Laplacian L of
a directed graph G in an “old-fashion,” by showing that for any orientation of a graph G,

BB> = D − A = L

is an invariant. I also define the (unnormalized) graph Laplacian L of a weighted graph
G = (V,W ) as L = D −W . I show that the notion of incidence matrix can be generalized
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to weighted graphs in a simple way. For any graph Gσ obtained by orienting the underlying
graph of a weighted graph G = (V,W ), there is an incidence matrix Bσ such that

Bσ(Bσ)> = D −W = L.

I also prove that

x>Lx =
1

2

m∑
i,j=1

wi j(xi − xj)2 for all x ∈ Rm.

Consequently, x>Lx does not depend on the diagonal entries in W , and if wi j ≥ 0 for all
i, j ∈ {1, . . . ,m}, then L is positive semidefinite. Then, if W consists of nonnegative entries,
the eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λm of L are real and nonnegative, and there is an
orthonormal basis of eigenvectors of L. I show that the number of connected components of
the graph G = (V,W ) is equal to the dimension of the kernel of L, which is also equal to
the dimension of the kernel of the transpose (Bσ)> of any incidence matrix Bσ obtained by
orienting the underlying graph of G.

I also define the normalized graph Laplacians Lsym and Lrw, given by

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw = D−1L = I −D−1W,

and prove some simple properties relating the eigenvalues and the eigenvectors of L, Lsym

and Lrw. These normalized graph Laplacians show up when dealing with normalized cuts.

Next, I turn to graph drawings (Chapter 3). Graph drawing is a very attractive appli-
cation of so-called spectral techniques, which is a fancy way of saying that that eigenvalues
and eigenvectors of the graph Laplacian are used. Furthermore, it turns out that graph
clustering using normalized cuts can be cast as a certain type of graph drawing.

Given an undirected graph G = (V,E), with |V | = m, we would like to draw G in Rn for
n (much) smaller than m. The idea is to assign a point ρ(vi) in Rn to the vertex vi ∈ V , for
every vi ∈ V , and to draw a line segment between the points ρ(vi) and ρ(vj). Thus, a graph
drawing is a function ρ : V → Rn.

We define the matrix of a graph drawing ρ (in Rn) as a m× n matrix R whose ith row
consists of the row vector ρ(vi) corresponding to the point representing vi in Rn. Typically,
we want n < m; in fact n should be much smaller than m.

Since there are infinitely many graph drawings, it is desirable to have some criterion to
decide which graph is better than another. Inspired by a physical model in which the edges
are springs, it is natural to consider a representation to be better if it requires the springs
to be less extended. We can formalize this by defining the energy of a drawing R by

E(R) =
∑

{vi,vj}∈E

‖ρ(vi)− ρ(vj)‖2 ,
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where ρ(vi) is the ith row of R and ‖ρ(vi)− ρ(vj)‖2 is the square of the Euclidean length of
the line segment joining ρ(vi) and ρ(vj).

Then, “good drawings” are drawings that minimize the energy function E . Of course, the
trivial representation corresponding to the zero matrix is optimum, so we need to impose
extra constraints to rule out the trivial solution.

We can consider the more general situation where the springs are not necessarily identical.
This can be modeled by a symmetric weight (or stiffness) matrix W = (wij), with wij ≥ 0.
In this case, our energy function becomes

E(R) =
∑

{vi,vj}∈E

wij ‖ρ(vi)− ρ(vj)‖2 .

Following Godsil and Royle [10], we prove that

E(R) = tr(R>LR),

where
L = D −W,

is the familiar unnormalized Laplacian matrix associated with W , and where D is the degree
matrix associated with W .

It can be shown that there is no loss in generality in assuming that the columns of R
are pairwise orthogonal and that they have unit length. Such a matrix satisfies the equation
R>R = I and the corresponding drawing is called an orthogonal drawing . This condition
also rules out trivial drawings.

Then, I prove the main theorem about graph drawings (Theorem 3.2), which essentially
says that the matrix R of the desired graph drawing is constituted by the n eigenvectors of
L associated with the smallest nonzero n eigenvalues of L. We give a number examples of
graph drawings, many of which are borrowed or adapted from Spielman [21].

The next chapter (Chapter 4) contains the “meat” of this document. This chapter
is devoted to the method of normalized graph cuts for graph clustering. This beautiful
and deeply original method first published in Shi and Malik [20], has now come to be a
“textbook chapter” of computer vision and machine learning. It was invented by Jianbo Shi
and Jitendra Malik, and was the main topic of Shi’s dissertation. This method was extended
to K ≥ 3 clusters by Stella Yu in her dissertation [23], and is also the subject of Yu and Shi
[24].

Given a set of data, the goal of clustering is to partition the data into different groups
according to their similarities. When the data is given in terms of a similarity graph G,
where the weight wi j between two nodes vi and vj is a measure of similarity of vi and vj, the
problem can be stated as follows: Find a partition (A1, . . . , AK) of the set of nodes V into
different groups such that the edges between different groups have very low weight (which
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indicates that the points in different clusters are dissimilar), and the edges within a group
have high weight (which indicates that points within the same cluster are similar).

The above graph clustering problem can be formalized as an optimization problem, using
the notion of cut mentioned earlier. If we want to partition V into K clusters, we can do so
by finding a partition (A1, . . . , AK) that minimizes the quantity

cut(A1, . . . , AK) =
1

2

K∑
i=1

cut(Ai) =
1

2

K∑
i=1

links(Ai, Ai).

For K = 2, the mincut problem is a classical problem that can be solved efficiently, but in
practice, it does not yield satisfactory partitions. Indeed, in many cases, the mincut solution
separates one vertex from the rest of the graph. What we need is to design our cost function
in such a way that it keeps the subsets Ai “reasonably large” (reasonably balanced).

An example of a weighted graph and a partition of its nodes into two clusters is shown
in Figure 1.3.

15

Encode Pairwise Relationships as a Weighted Graph

16

Cut the graph into two pieces 

Figure 1.3: A weighted graph and its partition into two clusters.

A way to get around this problem is to normalize the cuts by dividing by some measure
of each subset Ai. A solution using the volume vol(Ai) of Ai (for K = 2) was proposed and
investigated in a seminal paper of Shi and Malik [20]. Subsequently, Yu (in her dissertation
[23]) and Yu and Shi [24] extended the method to K > 2 clusters. The idea is to minimize
the cost function

Ncut(A1, . . . , AK) =
K∑
i=1

links(Ai, Ai)

vol(Ai)
=

K∑
i=1

cut(Ai, Ai)

vol(Ai)
.
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The first step is to express our optimization problem in matrix form. In the case of two
clusters, a single vector Xx can be used to describe the partition (A1, A2) = (A,A). We
need to choose the structure of this vector in such a way that

Ncut(A,A) =
X>LX

X>DX
,

where the term on the right-hand side is a Rayleigh ratio.

After careful study of the original papers, I discovered various facts that were implicit in
these works, but I feel are important to be pointed out explicitly.

First, I realized that it is important to pick a vector representation which is invariant
under multiplication by a nonzero scalar, because the Rayleigh ratio is scale-invariant, and
it is crucial to take advantage of this fact to make the denominator go away. This implies
that the solutions X are points in the projective space RPN−1. This was my first revelation.

Let N = |V | be the number of nodes in the graph G. In view of the desire for a scale-
invariant representation, it is natural to assume that the vector X is of the form

X = (x1, . . . , xN),

where xi ∈ {a, b} for i = 1, . . . , N , for any two distinct real numbers a, b. This is an indicator
vector in the sense that, for i = 1, . . . , N ,

xi =

{
a if vi ∈ A
b if vi /∈ A.

The choice a = +1, b = −1 is natural, but premature. The correct interpretation is really
to view X as a representative of a point in the real projective space RPN−1, namely the point
P(X) of homogeneous coordinates (x1 : · · · : xN).

Let d = 1>D1 and α = vol(A), where 1 denotes the vector whose components are all
equal to 1. I prove that

Ncut(A,A) =
X>LX

X>DX

holds iff the following condition holds:

aα + b(d− α) = 0. (†)

Note that condition (†) applied to a vector X whose components are a or b is equivalent to
the fact that X is orthogonal to D1, since

X>D1 = αa+ (d− α)b,

where α = vol({vi ∈ V | xi = a}).
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If we let

X =
{

(x1, . . . , xN) | xi ∈ {a, b}, a, b ∈ R, a, b 6= 0
}
,

our solution set is

K =
{
X ∈ X | X>D1 = 0

}
.

Actually, to be perfectly rigorous, we are looking for solutions in RPN−1, so our solution set
is really

P(K) =
{

(x1 : · · · : xN) ∈ RPN−1 | (x1, . . . , xN) ∈ K
}
.

Consequently, our minimization problem can be stated as follows:

Problem PNC1

minimize
X>LX

X>DX
subject to X>D1 = 0, X ∈ X .

It is understood that the solutions are points P(X) in RPN−1.

Since the Rayleigh ratio and the constraints X>D1 = 0 and X ∈ X are scale-invariant,
we are led to the following formulation of our problem:

Problem PNC2

minimize X>LX

subject to X>DX = 1, X>D1 = 0, X ∈ X .

Because problem PNC2 requires the constraint X>DX = 1 to be satisfied, it does not
have the same set of solutions as problem PNC1 , but PNC2 and PNC1 are equivalent in
the sense that they have the same set of minimal solutions as points P(X) ∈ RPN−1 given
by their homogeneous coordinates X. More precisely, if X is any minimal solution of PNC1,
then X/(X>DX)1/2 is a minimal solution of PNC2 (with the same minimal value for the
objective functions), and if X is a minimal solution of PNC2, then λX is a minimal solution
for PNC1 for all λ 6= 0 (with the same minimal value for the objective functions).

Now, as in the classical papers, we consider the relaxation of the above problem obtained
by dropping the condition that X ∈ X , and proceed as usual. However, having found a
solution Z to the relaxed problem, we need to find a discrete solution X such that d(X,Z)
is minimum in RPN−1. All this is presented in Section 4.2.

If the number of clusters K is at least 3, then we need to choose a matrix representation
for partitions on the set of vertices. It is important that such a representation be scale-
invariant, and it is also necessary to state necessary and sufficient conditions for such matrices
to represent a partition (to the best of our knowledge, these points are not clearly articulated
in the literature).
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We describe a partition (A1, . . . , AK) of the set of nodes V by an N × K matrix X =
[X1 · · ·XK ] whose columns X1, . . . , XK are indicator vectors of the partition (A1, . . . , AK).
Inspired by what we did when K = 2, we assume that the vector Xj is of the form

Xj = (xj1, . . . , x
j
N),

where xji ∈ {aj, bj} for j = 1, . . . , K and i = 1, . . . , N , and where aj, bj are any two distinct
real numbers. The vector Xj is an indicator vector for Aj in the sense that, for i = 1, . . . , N ,

xji =

{
aj if vi ∈ Aj
bj if vi /∈ Aj.

The choice {aj, bj} = {0, 1} for j = 1, . . . , K is natural, but premature. I show that if we
pick bi = 0, then we have

cut(Aj, Aj)

vol(Aj)
=

(Xj)>LXj

(Xj)>DXj
j = 1, . . . , K,

which implies that

Ncut(A1, . . . , AK) =
K∑
j=1

cut(Aj, Aj)

vol(Aj)
=

K∑
j=1

(Xj)>LXj

(Xj)>DXj
.

Then, I give necessary and sufficient conditions for a matrix X to represent a partition.

If we let

X =
{

[X1 . . . XK ] | Xj = aj(x
j
1, . . . , x

j
N), xji ∈ {1, 0}, aj ∈ R, Xj 6= 0

}
(note that the condition Xj 6= 0 implies that aj 6= 0), then the set of matrices representing
partitions of V into K blocks is

K =
{
X = [X1 · · · XK ] | X ∈ X ,

(X i)>DXj = 0, 1 ≤ i, j ≤ K, i 6= j,

X(X>X)−1X>1 = 1
}
.

As in the case K = 2, to be rigorous, the solution are really K-tuples of points in RPN−1,
so our solution set is really

P(K) =
{

(P(X1), . . . ,P(XK)) | [X1 · · · XK ] ∈ K
}
.

Remark: For any X ∈ X , the condition X(X>X)−1X>1 = 1 is redundant. However, when
we relax the problem and drop the condition X ∈ X , the condition X(X>X)−1X>1 = 1
captures the fact 1 should be in the range of X.
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In view of the above, we have our first formulation of K-way clustering of a graph using
normalized cuts, called problem PNC1 (the notation PNCX is used in Yu [23], Section 2.1):

K-way Clustering of a graph using Normalized Cut, Version 1:
Problem PNC1

minimize
K∑
j=1

(Xj)>LXj

(Xj)>DXj

subject to (X i)>DXj = 0, 1 ≤ i, j ≤ K, i 6= j,

X(X>X)−1X>1 = 1, X ∈ X .

As in the case K = 2, the solutions that we are seeking are K-tuples (P(X1), . . . ,P(XK))
of points in RPN−1 determined by their homogeneous coordinates X1, . . . , XK .

Then, step by step, we transform problem PNC1 into an equivalent problem PNC2. We
eventually relax PNC1 into (∗1) and PNC2 into (∗2), by dropping the condition that X ∈ X .

Our second revelation is that the relaxation (∗2) of version 2 of our minimization problem
(PNC2), which is equivalent to version 1, reveals that that the solutions of the relaxed
problem (∗2) are members of the Grassmannian G(K,N).

This leads us to our third revelation: we have two choices of metrics to compare solutions :
(1) a metric on (RPN−1)K ; (2) a metric on G(K,N). We discuss the first choice, which is the
choice implicitly adopted by Shi and Yu. However, in approximating a discrete solution X
by a solution Z of problem (∗1) we allow more general transformations of the form Q = RΛ,
where R ∈ O(K), and Λ is a diagonal invertible matrix. Thus we seek R and Λ to minimize
‖X − ZRΛ‖F . This yields better discrete solutions X.

In Chapter 5, I show how both the spectral method for graph drawing and the normalized-
cut method for K clusters generalize to signed graphs, which are graphs whose weight matrix
W may contain negative entries. The intuition is that negative weights indicate dissimilarity
or distance.

The first obstacle is that the degree matrix may now contain negative entries. As a
consequence, the Laplacian L may no longer be positive semidefinite, and worse, D−1/2 may
not exist.

A simple remedy is to use the absolute values of the weights in the degree matrix! We
denote this matrix by D, and define the signed Laplacian as L = D − W . The idea to
use positive degrees of nodes in the degree matrix of a signed graph with weights (−1, 0, 1)
occurs in Hou [14]. The natural step of using absolute values of weights in the degree matrix
is taken by Kolluri, Shewchuk and O’Brien [15] and Kunegis et al. [16].

As we will see, this trick allows the whole machinery that we have presented to be used
to attack the problem of clustering signed graphs using normalized cuts.
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As in the case of unsigned weighted graphs, for any orientation Gσ of the underlying
graph of a signed graph G = (V,W ), there is an incidence matrix Bσ such that

Bσ(Bσ)> = D −W = L.

Consequently, Bσ(Bσ)> is independent of the orientation of the underlying graph of G and
L = D −W is symmetric and positive semidefinite. I also show that

x>Lx =
1

2

m∑
i,j=1

|wij|(xi − sgn(wij)xj)
2 for all x ∈ Rm.

As in Section 4.3, given a partition of V into K clusters (A1, . . . , AK), if we represent the
jth block of this partition by a vector Xj such that

Xj
i =

{
aj if vi ∈ Aj
0 if vi /∈ Aj,

for some aj 6= 0, then the following result holds: For any vector Xj representing the jth
block of a partition (A1, . . . , AK) of V , we have

(Xj)>LXj = a2j(cut(Aj, Aj) + 2links−(Aj, Aj)).

The above suggests defining the key notion of signed normalized cut: The signed nor-
malized cut sNcut(A1, . . . , AK) of the partition (A1, . . . , AK) is defined as

sNcut(A1, . . . , AK) =
K∑
j=1

cut(Aj, Aj)

vol(Aj)
+ 2

K∑
j=1

links−(Aj, Aj)

vol(Aj)
.

Our definition of a signed normalized cut appears to be novel.

Based on previous computations, we have

sNcut(A1, . . . , AK) =
K∑
j=1

(Xj)>LXj

(Xj)>DXj
,

where X is the N ×K matrix whose jth column is Xj.

Observe that minimizing sNcut(A1, . . . , AK) amounts to minimizing the number of posi-
tive and negative edges between clusters, and also minimizing the number of negative edges
within clusters. This second minimization captures the intuition that nodes connected by a
negative edge should not be together (they do not “like” each other; they should be far from
each other). It would be preferable if the notion of signed cut only took into account the
contribution links+(Aj, Aj) of the positively weighted edges between disjoint clusters, but
we have not found a way to achieve this.
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Since

sNcut(A1, . . . , AK) =
K∑
j=1

(Xj)>LXj

(Xj)>DXj
,

the whole machinery of Sections 4.3 and 4.5 can be applied with D replaced by D and
L replaced by L. However, there is a new phenomenon, which is that L may be positive
definite. As a consequence, 1 is not always an eigenvector of L.

Following Kunegis et al. [16], we show that the signed Laplacian L is positive definite iff
G is unbalanced, which means that it contains some cycle with an odd number of negative
edges. We also characterize when a graph is balanced in terms of the kernel of the transpose
B> of any of its incidence matrices.

To generalize the graph drawing method to signed graphs, we explain that if the energy
function E(R) of a graph drawing is redefined to be

E(R) =
∑

{vi,vj}∈E

|wij| ‖ρ(vi)− sgn(wij)ρ(vj)‖2 ,

then we obtain orthogonal graph drawings of minimal energy, and we give some examples.

We conclude this survey with a short chapter on graph clustering using ratio cuts. The
idea of ratio cut is to replace the volume vol(Aj) of each block Aj of the partition by its
size, |Aj| (the number of nodes in Aj). Given an unsigned graph (V,W ), the ratio cut
Rcut(A1, . . . , AK) of the partition (A1, . . . , AK) is defined as

Rcut(A1, . . . , AK) =
K∑
i=1

cut(Aj, Aj)

|Aj|
.

If we represent the jth block of this partition by a vector Xj such that

Xj
i =

{
aj if vi ∈ Aj
0 if vi /∈ Aj,

for some aj 6= 0, then we obtain

Rcut(A1, . . . , AK) =
K∑
i=1

cut(Aj, Aj)

|Aj|
=

K∑
i=1

(Xj)>LXj

(Xj)>Xj
.

On the other hand, the normalized cut is given by

Ncut(A1, . . . , AK) =
K∑
i=1

cut(Aj, Aj)

vol(Aj)
=

K∑
i=1

(Xj)>LXj

(Xj)>DXj
.
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Therefore, ratio cut is the special case of normalized cut where D = I! Consequently, all that
needs to be done is to replace the normalized Laplacian Lsym by the unormalized Laplacian
L (and omit the step of considering Problem (∗∗1)).

In the case of signed graphs, we define the signed ratio cut sRcut(A1, . . . , AK) of the
partition (A1, . . . , AK) as

sRcut(A1, . . . , AK) =
K∑
j=1

cut(Aj, Aj)

|Aj|
+ 2

K∑
j=1

links−(Aj, Aj)

|Aj|
.

Since we still have

(Xj)>LXj = a2j(cut(Aj, Aj) + 2links−(Aj, Aj)),

we obtain

sRcut(A1, . . . , AK) =
K∑
j=1

(Xj)>LXj

(Xj)>Xj
.

Therefore, this is similar to the case of unsigned graphs, with L replaced with L. The same
algorithm applies, but as in Chapter 5, the signed Laplacian L is positive definite iff G is
unbalanced.

Some of the most technical material on the Rayleigh ratio, which is needed for some
proofs in Chapter 3, is the object of Appendix A. Appendix B may seem a bit out of place.
Its purpose is to explain how to define a metric on the projective space RPn. For this, we
need to review a few notions of differential geometry.

I hope that these notes will make it easier for people to become familiar with the wonderful
theory of normalized graph cuts. As far as I know, except for a short section in one of
Gilbert Strang’s book, and von Luxburg [22] excellent survey on spectral clustering, there is
no comprehensive writing on the topic of graph cuts.



Chapter 2

Graphs and Graph Laplacians; Basic
Facts

2.1 Directed Graphs, Undirected Graphs, Incidence

Matrices, Adjacency Matrices, Weighted Graphs

Definition 2.1. A directed graph is a pair G = (V,E), where V = {v1, . . . , vm} is a set of
nodes or vertices , and E ⊆ V × V is a set of ordered pairs of distinct nodes (that is, pairs
(u, v) ∈ V × V with u 6= v), called edges . Given any edge e = (u, v), we let s(e) = u be the
source of e and t(e) = v be the target of e.

Remark: Since an edge is a pair (u, v) with u 6= v, self-loops are not allowed. Also, there
is at most one edge from a node u to a node v. Such graphs are sometimes called simple
graphs .

An example of a directed graph is shown in Figure 2.1.

1

v4

v5

v1 v2

v3

e1

e7

e2 e3 e4

e5

e6

Figure 2.1: Graph G1.
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For every node v ∈ V , the degree d(v) of v is the number of edges leaving or entering v:

d(v) = |{u ∈ V | (v, u) ∈ E or (u, v) ∈ E}|.

We abbreviate d(vi) as di. The degree matrix D(G), is the diagonal matrix

D(G) = diag(d1, . . . , dm).

For example, for graph G1, we have

D(G1) =


2 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 2

 .

Unless confusion arises, we write D instead of D(G).

Definition 2.2. Given a directed graph G = (V,E), for any two nodes u, v ∈ V , a path
from u to v is a sequence of nodes (v0, v1, . . . , vk) such that v0 = u, vk = v, and (vi, vi+1) is
an edge in E for all i with 0 ≤ i ≤ k − 1. The integer k is the length of the path. A path
is closed if u = v. The graph G is strongly connected if for any two distinct nodes u, v ∈ V ,
there is a path from u to v and there is a path from v to u.

Remark: The terminology walk is often used instead of path, the word path being reserved
to the case where the nodes vi are all distinct, except that v0 = vk when the path is closed.

The binary relation on V × V defined so that u and v are related iff there is a path from
u to v and there is a path from v to u is an equivalence relation whose equivalence classes
are called the strongly connected components of G.

Definition 2.3. Given a directed graph G = (V,E), with V = {v1, . . . , vm}, if E =
{e1, . . . , en}, then the incidence matrix B(G) of G is the m× n matrix whose entries bi j are
given by

bi j =


+1 if s(ej) = vi

−1 if t(ej) = vi

0 otherwise.

Here is the incidence matrix of the graph G1:

B =


1 1 0 0 0 0 0
−1 0 −1 −1 1 0 0
0 −1 1 0 0 0 1
0 0 0 1 0 −1 −1
0 0 0 0 −1 1 0

 .
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1
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f

Figure 2.2: The undirected graph G2.

Observe that every column of an incidence matrix contains exactly two nonzero entries,
+1 and −1. Again, unless confusion arises, we write B instead of B(G).

When a directed graph has m nodes v1, . . . , vm and n edges e1, . . . , en, a vector x ∈ Rm

can be viewed as a function x : V → R assigning the value xi to the node vi. Under this
interpretation, Rm is viewed as RV . Similarly, a vector y ∈ Rn can be viewed as a function
in RE. This point of view is often useful. For example, the incidence matrix B can be
interpreted as a linear map from RE to RV , the boundary map, and B> can be interpreted
as a linear map from RV to RE, the coboundary map.

Remark: Some authors adopt the opposite convention of sign in defining the incidence
matrix, which means that their incidence matrix is −B.

Undirected graphs are obtained from directed graphs by forgetting the orientation of the
edges.

Definition 2.4. A graph (or undirected graph) is a pair G = (V,E), where V = {v1, . . . , vm}
is a set of nodes or vertices , and E is a set of two-element subsets of V (that is, subsets
{u, v}, with u, v ∈ V and u 6= v), called edges .

Remark: Since an edge is a set {u, v}, we have u 6= v, so self-loops are not allowed. Also,
for every set of nodes {u, v}, there is at most one edge between u and v. As in the case of
directed graphs, such graphs are sometimes called simple graphs .

An example of a graph is shown in Figure 2.2.

For every node v ∈ V , the degree d(v) of v is the number of edges incident to v:

d(v) = |{u ∈ V | {u, v} ∈ E}|.

The degree matrix D is defined as before.
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Definition 2.5. Given a (undirected) graph G = (V,E), for any two nodes u, v ∈ V , a path
from u to v is a sequence of nodes (v0, v1, . . . , vk) such that v0 = u, vk = v, and {vi, vi+1} is
an edge in E for all i with 0 ≤ i ≤ k − 1. The integer k is the length of the path. A path is
closed if u = v. The graph G is connected if for any two distinct nodes u, v ∈ V , there is a
path from u to v.

Remark: The terminology walk or chain is often used instead of path, the word path being
reserved to the case where the nodes vi are all distinct, except that v0 = vk when the path
is closed.

The binary relation on V ×V defined so that u and v are related iff there is a path from u
to v is an equivalence relation whose equivalence classes are called the connected components
of G.

The notion of incidence matrix for an undirected graph is not as useful as in the case of
directed graphs

Definition 2.6. Given a graph G = (V,E), with V = {v1, . . . , vm}, if E = {e1, . . . , en},
then the incidence matrix B(G) of G is the m× n matrix whose entries bi j are given by

bi j =

{
+1 if ej = {vi, vk} for some k

0 otherwise.

Unlike the case of directed graphs, the entries in the incidence matrix of a graph (undi-
rected) are nonnegative. We usually write B instead of B(G).

The notion of adjacency matrix is basically the same for directed or undirected graphs.

Definition 2.7. Given a directed or undirected graph G = (V,E), with V = {v1, . . . , vm},
the adjacency matrix A(G) of G is the symmetric m×m matrix (ai j) such that

(1) If G is directed, then

ai j =

{
1 if there is some edge (vi, vj) ∈ E or some edge (vj, vi) ∈ E
0 otherwise.

(2) Else if G is undirected, then

ai j =

{
1 if there is some edge {vi, vj} ∈ E
0 otherwise.

As usual, unless confusion arises, we write A instead of A(G). Here is the adjacency
matrix of both graphs G1 and G2:
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A =


0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

 .

If G = (V,E) is a directed or an undirected graph, given a node u ∈ V , any node v ∈ V
such that there is an edge (u, v) in the directed case or {u, v} in the undirected case is called
adjacent to u, and we often use the notation

u ∼ v.

Observe that the binary relation ∼ is symmetric when G is an undirected graph, but in
general it is not symmetric when G is a directed graph.

If G = (V,E) is an undirected graph, the adjacency matrix A of G can be viewed as a
linear map from RV to RV , such that for all x ∈ Rm, we have

(Ax)i =
∑
j∼i

xj;

that is, the value of Ax at vi is the sum of the values of x at the nodes vj adjacent to vi. The
adjacency matrix can be viewed as a diffusion operator . This observation yields a geometric
interpretation of what it means for a vector x ∈ Rm to be an eigenvector of A associated
with some eigenvalue λ; we must have

λxi =
∑
j∼i

xj, i = 1, . . . ,m,

which means that the the sum of the values of x assigned to the nodes vj adjacent to vi is
equal to λ times the value of x at vi.

Definition 2.8. Given any undirected graph G = (V,E), an orientation of G is a function
σ : E → V × V assigning a source and a target to every edge in E, which means that for
every edge {u, v} ∈ E, either σ({u, v}) = (u, v) or σ({u, v}) = (v, u). The oriented graph
Gσ obtained from G by applying the orientation σ is the directed graph Gσ = (V,Eσ), with
Eσ = σ(E).

The following result shows how the number of connected components of an undirected
graph is related to the rank of the incidence matrix of any oriented graph obtained from G.

Proposition 2.1. Let G = (V,E) be any undirected graph with m vertices, n edges, and
c connected components. For any orientation σ of G, if B is the incidence matrix of the
oriented graph Gσ, then c = dim(Ker (B>)), and B has rank m − c. Furthermore, the
nullspace of B> has a basis consisting of indicator vectors of the connected components of
G; that is, vectors (z1, . . . , zm) such that zj = 1 iff vj is in the ith component Ki of G, and
zj = 0 otherwise.
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Proof. After Godsil and Royle [10], Section 8.3). The fact that rank(B) = m − c will be
proved last.

Let us prove that the kernel of B> has dimension c. A vector z ∈ Rm belongs to the
kernel of B> iff B>z = 0 iff z>B = 0. In view of the definition of B, for every edge {vi, vj}
of G, the column of B corresponding to the oriented edge σ({vi, vj}) has zero entries except
for a +1 and a −1 in position i and position j or vice-versa, so we have

zi = zj.

An easy induction on the length of the path shows that if there is a path from vi to vj in G
(unoriented), then zi = zj. Therefore, z has a constant value on any connected component of
G. It follows that every vector z ∈ Ker (B>) can be written uniquely as a linear combination

z = λ1z
1 + · · ·+ λcz

c,

where the vector zi corresponds to the ith connected component Ki of G and is defined such
that

zij =

{
1 iff vj ∈ Ki

0 otherwise.

This shows that dim(Ker (B>)) = c, and that Ker (B>) has a basis consisting of indicator
vectors.

Since B> is a n×m matrix, we have

m = dim(Ker (B>)) + rank(B>),

and since we just proved that dim(Ker (B>)) = c, we obtain rank(B>) = m − c. Since B
and B> have the same rank, rank(B) = m− c, as claimed.

Following common practice, we denote by 1 the (column) vector whose components are
all equal to 1. Since every column of B contains a single +1 and a single −1, the rows of
B> sum to zero, which can be expressed as

B>1 = 0.

According to Proposition 2.1, the graph G is connected iff B has rank m−1 iff the nullspace
of B> is the one-dimensional space spanned by 1.

In many applications, the notion of graph needs to be generalized to capture the intuitive
idea that two nodes u and v are linked with a degree of certainty (or strength). Thus, we
assign a nonnegative weight wi j to an edge {vi, vj}; the smaller wi j is, the weaker is the
link (or similarity) between vi and vj, and the greater wi j is, the stronger is the link (or
similarity) between vi and vj.
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Definition 2.9. A weighted graph is a pair G = (V,W ), where V = {v1, . . . , vm} is a set of
nodes or vertices , and W is a symmetric matrix called the weight matrix , such that wi j ≥ 0
for all i, j ∈ {1, . . . ,m}, and wi i = 0 for i = 1, . . . ,m. We say that a set {vi, vj} is an edge
iff wi j > 0. The corresponding (undirected) graph (V,E) with E = {{vi, vj} | wi j > 0}, is
called the underlying graph of G.

Remark: Since wi i = 0, these graphs have no self-loops. We can think of the matrix W as
a generalized adjacency matrix. The case where wi j ∈ {0, 1} is equivalent to the notion of a
graph as in Definition 2.4.

We can think of the weight wi j of an edge {vi, vj} as a degree of similarity (or affinity)
in an image, or a cost in a network. An example of a weighted graph is shown in Figure 2.3.
The thickness of an edge corresponds to the magnitude of its weight.

15

Encode Pairwise Relationships as a Weighted Graph

Figure 2.3: A weighted graph.

For every node vi ∈ V , the degree d(vi) of vi is the sum of the weights of the edges
adjacent to vi:

d(vi) =
m∑
j=1

wi j.

Note that in the above sum, only nodes vj such that there is an edge {vi, vj} have a nonzero
contribution. Such nodes are said to be adjacent to vi, and we write vi ∼ vj. The degree
matrix D is defined as before, namely by D = diag(d(v1), . . . , d(vm)).

The weight matrix W can be viewed as a linear map from RV to itself. For all x ∈ Rm,
we have

(Wx)i =
∑
j∼i

wijxj;
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that is, the value of Wx at vi is the weighted sum of the values of x at the nodes vj adjacent
to vi.

Observe that W1 is the (column) vector (d(v1), . . . , d(vm)) consisting of the degrees of
the nodes of the graph.

Given any subset of nodes A ⊆ V , we define the volume vol(A) of A as the sum of the
weights of all edges adjacent to nodes in A:

vol(A) =
∑
vi∈A

d(vi) =
∑
vi∈A

m∑
j=1

wi j.

Remark: Yu and Shi [24] use the notation degree(A) instead of vol(A).

The notions of degree and volume are illustrated in Figure 2.4.

18

Degree of a node:
di = ¦j Wi,j

Degree matrix:
Dii = ¦j Wi,j

Figure 2.4: Degree and volume.

Observe that vol(A) = 0 if A consists of isolated vertices, that is, if wi j = 0 for all vi ∈ A.
Thus, it is best to assume that G does not have isolated vertices.

Given any two subset A,B ⊆ V (not necessarily distinct), we define links(A,B) by

links(A,B) =
∑

vi∈A,vj∈B

wi j.

Since the matrix W is symmetric, we have

links(A,B) = links(B,A),

and observe that vol(A) = links(A, V ).

The quantity links(A,A) = links(A,A) (where A = V − A denotes the complement of
A in V ) measures how many links escape from A (and A), and the quantity links(A,A)
measures how many links stay within A itself. The quantity

cut(A) = links(A,A)
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is often called the cut of A, and the quantity

assoc(A) = links(A,A)

is often called the association of A. Clearly,

cut(A) + assoc(A) = vol(A).

The notion of cut is illustrated in Figure 2.5.

Figure 2.5: A Cut involving the set of nodes in the center and the nodes on the perimeter.

We now define the most important concept of these notes: The Laplacian matrix of a
graph. Actually, as we will see, it comes in several flavors.

2.2 Laplacian Matrices of Graphs

Let us begin with directed graphs, although as we will see, graph Laplacians are funda-
mentally associated with undirected graph. The key proposition below shows how given an
undirected graph G, for any orientation σ of G, Bσ(Bσ)> relates to the adjacency matrix
A (where Bσ is the incidence matrix of the directed graph Gσ). We reproduce the proof in
Gallier [7] (see also Godsil and Royle [10]).

Proposition 2.2. Given any undirected graph G, for any orientation σ of G, if Bσis the
incidence matrix of the directed graph Gσ, A is the adjacency matrix of Gσ, and D is the
degree matrix such that Di i = d(vi), then

Bσ(Bσ)> = D − A.

Consequently, L = Bσ(Bσ)> is independent of the orientation σ of G, and D−A is symmetric
and positive semidefinite; that is, the eigenvalues of D − A are real and nonnegative.
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Proof. The entry Bσ(Bσ)>i j is the inner product of the ith row bσi , and the jth row bσj of Bσ.
If i = j, then as

bσi k =


+1 if s(ek) = vi

−1 if t(ek) = vi

0 otherwise

we see that bσi · bσi = d(vi). If i 6= j, then bσi · bσj 6= 0 iff there is some edge ek with s(ek) = vi
and t(ek) = vj or vice-versa (which are mutually exclusive cases, since Gσ arises by orienting
an undirected graph), in which case, bσi · bσj = −1. Therefore,

Bσ(Bσ)> = D − A,

as claimed.

For every x ∈ Rm, we have

x>Lx = x>Bσ(Bσ)>x = ((Bσ)>x)>(Bσ)>x =
∥∥(Bσ)>x

∥∥2
2
≥ 0,

since the Euclidean norm ‖ ‖2 is positive (definite). Therefore, L = Bσ(Bσ)> is positive
semidefinite. It is well-known that a real symmetric matrix is positive semidefinite iff its
eigenvalues are nonnegtive.

The matrix L = Bσ(Bσ)> = D − A is called the (unnormalized) graph Laplacian of the
graph Gσ. For example, the graph Laplacian of graph G1 is

L =


2 −1 −1 0 0
−1 4 −1 −1 −1
−1 −1 3 −1 0
0 −1 −1 3 −1
0 −1 0 −1 2

 .

The (unnormalized) graph Laplacian of an undirected graph G = (V,E) is defined by

L = D − A.

Observe that each row of L sums to zero (because (Bσ)>1 = 0). Consequently, the vector 1
is in the nullspace of L.

Remarks:

1. With the unoriented version of the incidence matrix (see Definition 2.6), it can be
shown that

BB> = D + A.
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2. As pointed out by Evangelos Chatzipantazis, Proposition 2.2 in which the incidence
matrix Bσ is replaced by the incidence matrix B of any arbitrary directed graph G
does not hold. The problem is that such graphs may have both edges (vi, vj) and
(vj, vi) between two distinct nodes vi and vj, and as a consequence, the inner product
bi · bj = −2 instead of −1. A simple counterexample is given by the directed graph
with three vertices and four edges whose incidence matrix is given by

B =

 1 −1 0 −1
−1 1 −1 0
0 0 1 1

 .

We have

BB> =

 3 −2 −1
−2 3 −1
−1 −1 2

 6=
3 0 0

0 3 0
0 0 2

−
0 1 1

1 0 1
1 1 0

 = D − A.

The natural generalization of the notion of graph Laplacian to weighted graphs is this:

Definition 2.10. Given any weighted graph G = (V,W ) with V = {v1, . . . , vm}, the (un-
normalized) graph Laplacian L(G) of G is defined by

L(G) = D(G)−W,

where D(G) = diag(d1, . . . , dm) is the degree matrix of G (a diagonal matrix), with

di =
m∑
j=1

wi j.

As usual, unless confusion arises, we write L instead of L(G).

The graph Laplacian can be interpreted as a linear map from RV to itself. For all x ∈ RV ,
we have

(Lx)i =
∑
j∼i

wij(xi − xj).

It is clear that each row of L sums to 0, so the vector 1 is the nullspace of L, but it is
less obvious that L is positive semidefinite. One way to prove it is to generalize slightly the
notion of incidence matrix.

Definition 2.11. Given a weighted graph G = (V,W ), with V = {v1, . . . , vm}, if {e1, . . . , en}
are the edges of the underlying graph of G (recall that {vi, vj} is an edge of this graph iff
wij > 0), for any oriented graph Gσ obtained by giving an orientation to the underlying
graph of G, the incidence matrix Bσ of Gσ is the m× n matrix whose entries bi j are given
by

bi j =


+
√
wij if s(ej) = vi

−√wij if t(ej) = vi

0 otherwise.
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For example, given the weight matrix

W =


0 3 6 3
3 0 0 3
6 0 0 3
3 3 3 0

 ,

the incidence matrix B corresponding to the orientation of the underlying graph of W where
an edge (i, j) is oriented positively iff i < j is

B =


1.7321 2.4495 1.7321 0 0
−1.7321 0 0 1.7321 0

0 −2.4495 0 0 1.7321
0 0 −1.7321 −1.7321 −1.7321

 .

The reader should verify that BB> = D −W . This is true in general, see Proposition 2.3.

It is easy to see that Proposition 2.1 applies to the underlying graph ofG. For any oriented
graph Gσ obtained from the underlying graph of G, the rank of the incidence matrix Bσ is
equal to m− c, where c is the number of connected components of the underlying graph of
G, and we have (Bσ)>1 = 0. We also have the following version of Proposition 2.2 whose
proof is immediately adapted.

Proposition 2.3. Given any weighted graph G = (V,W ) with V = {v1, . . . , vm}, if Bσ is
the incidence matrix of any oriented graph Gσ obtained from the underlying graph of G and
D is the degree matrix of W , then

Bσ(Bσ)> = D −W = L.

Consequently, Bσ(Bσ)> is independent of the orientation of the underlying graph of G and
L = D −W is symmetric and positive semidefinite; that is, the eigenvalues of L = D −W
are real and nonnegative.

Remark: Given any orientationGσ of the underlying graph of a weighted graphG = (V,W ),
if B is the incidence matrix of Gσ, then B> defines a kind of discrete covariant derivative
∇ : RV ×X (G)→ RV on the set of 0-forms, which is just the set of functions RV . For every
vertex vi ∈ V , we view the set of edges with source or endpoint vi,

TviG = {(vi, vj) | wij 6= 0} ∪ {(vh, vi) | whi 6= 0},

as a kind of discrete tangent space at vi. The disjoint union of the tangent spaces TviG
is the discrete tangent bundle TG. A discrete vector field is then a function X : V → TG
that assigns to every vertex vi ∈ V some edge X(vi) = ek ∈ TviG, and we denote the set
of all discrete vectors fields by X (G). For every function f ∈ RV and for every vector field
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X ∈ X (G), we define the function ∇Xf , a discrete analog of the covariant derivative of the
function f with respect to the vector field X, by

(∇Xf)(vi) = B>(f)(X(vi));

that is, if X(vi) is the kth edge ek = (vi, vj), then

(∇Xf)(vi) =
√
wij(fi − fj),

else if X(vi) is the kth edge ek = (vj, vi), then

(∇Xf)(vi) =
√
wij(fj − fi).

Then, the graph Laplacian L is given by

L = BB>;

for every node vi, we have

(Lx)i =
∑
j∼i

wij(xi − xj).

Thus, L appears to be a discrete analog of the connection Laplacian (also known as Bochner
Laplacian), rather than a discrete analog of the Hodge (Laplace–Beltrami) Laplacian; see
Petersen [19]. To make the above statement precise, we need to view ∇f as the function
from X (G) to RV given by

(∇f)(X) = ∇Xf.

The set of functions from X (G) to RV is in bijection with the set of functions RX (G)×V from
X (G) × V to R, and we can view the discrete connection ∇ as a linear map ∇ : RV →
RX (G)×V . Since both X (G) and V are finite, we can use the inner product on the vector
space RX (G)×V (and the inner product on RV ) to define the adjoint ∇∗ : RX (G)×V → RV of
∇ : RV → RX (G)×V by

〈∇∗F, f〉 = 〈F,∇f〉,
for all f ∈ RV and all F ∈ RX (G)×V . Then, the connection Laplacian ∇∗∇ : RV → RV is
indeed equal to L.

Another way to prove that L is positive semidefinite is to evaluate the quadratic form
x>Lx.

Proposition 2.4. For any m×m symmetric matrix W = (wij), if we let L = D−W where
D is the degree matrix associated with W , then we have

x>Lx =
1

2

m∑
i,j=1

wi j(xi − xj)2 for all x ∈ Rm.

Consequently, x>Lx does not depend on the diagonal entries in W , and if wi j ≥ 0 for all
i, j ∈ {1, . . . ,m}, then L is positive semidefinite.
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Proof. We have

x>Lx = x>Dx− x>Wx

=
m∑
i=1

dix
2
i −

m∑
i,j=1

wi jxixj

=
1

2

(
m∑
i=1

dix
2
i − 2

m∑
i,j=1

wi jxixj +
m∑
i=1

dix
2
i

)

=
1

2

m∑
i,j=1

wi j(xi − xj)2.

Obviously, the quantity on the right-hand side does not depend on the diagonal entries in
W , and if wi j ≥ 0 for all i, j, then this quantity is nonnegative.

Proposition 2.4 immediately implies the following facts: For any weighted graph G =
(V,W ),

1. The eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λm of L are real and nonnegative, and there is
an orthonormal basis of eigenvectors of L.

2. The smallest eigenvalue λ1 of L is equal to 0, and 1 is a corresponding eigenvector.

It turns out that the dimension of the nullspace of L (the eigenspace of 0) is equal to the
number of connected components of the underlying graph of G.

Proposition 2.5. Let G = (V,W ) be a weighted graph. The number c of connected com-
ponents K1, . . . , Kc of the underlying graph of G is equal to the dimension of the nullspace
of L, which is equal to the multiplicity of the eigenvalue 0. Furthermore, the nullspace of L
has a basis consisting of indicator vectors of the connected components of G, that is, vectors
(f1, . . . , fm) such that fj = 1 iff vj ∈ Ki and fj = 0 otherwise.

Proof. Since L = BB> for the incidence matrix B associated with any oriented graph
obtained from G, and since L and B> have the same nullspace, by Proposition 2.1, the
dimension of the nullspace of L is equal to the number c of connected components of G and
the indicator vectors of the connected components of G form a basis of Ker (L).

Proposition 2.5 implies that if the underlying graph of G is connected, then the second
eigenvalue λ2 of L is strictly positive.

Remarkably, the eigenvalue λ2 contains a lot of information about the graph G (assuming
that G = (V,E) is an undirected graph). This was first discovered by Fiedler in 1973, and for
this reason, λ2 is often referred to as the Fiedler number . For more on the properties of the
Fiedler number, see Godsil and Royle [10] (Chapter 13) and Chung [4]. More generally, the
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spectrum (0, λ2, . . . , λm) of L contains a lot of information about the combinatorial structure
of the graph G. Leverage of this information is the object of spectral graph theory .

It turns out that normalized variants of the graph Laplacian are needed, especially in
applications to graph clustering. These variants make sense only if G has no isolated vertices,
which means that every row of W contains some strictly positive entry. In this case, the
degree matrix D contains positive entries, so it is invertible and D−1/2 makes sense; namely

D−1/2 = diag(d
−1/2
1 , . . . , d−1/2m ),

and similarly for any real exponent α.

Definition 2.12. Given any weighted directed graph G = (V,W ) with no isolated vertex
and with V = {v1, . . . , vm}, the (normalized) graph Laplacians Lsym and Lrw of G are defined
by

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw = D−1L = I −D−1W.

Observe that the Laplacian Lsym = D−1/2LD−1/2 is a symmetric matrix (because L and
D−1/2 are symmetric) and that

Lrw = D−1/2LsymD
1/2.

The reason for the notation Lrw is that this matrix is closely related to a random walk on
the graph G.

Since the unnormalized Laplacian L can be written as L = BB>, where B is the incidence
matrix of any oriented graph obtained from the underlying graph of G = (V,W ), if we let

Bsym = D−1/2B,

we get

Lsym = BsymB
>
sym.

In particular, for any singular decomposition Bsym = UΣV > of Bsym (with U an m × m
orthogonal matrix, Σ a “diagonal” m×n matrix of singular values, and V an n×n orthogonal
matrix), the eigenvalues of Lsym are the squares of the top m singular values of Bsym, and
the vectors in U are orthonormal eigenvectors of Lsym with respect to these eigenvalues (the
squares of the top m diagonal entries of Σ). Computing the SVD of Bsym generally yields
more accurate results than diagonalizing Lsym, especially when Lsym has eigenvalues with
high multiplicity.

There are simple relationships between the eigenvalues and the eigenvectors of Lsym, and
Lrw. There is also a simple relationship with the generalized eigenvalue problem Lx = λDx.
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Proposition 2.6. Let G = (V,W ) be a weighted graph without isolated vertices. The graph
Laplacians, L,Lsym, and Lrw satisfy the following properties:

(1) The matrix Lsym is symmetric and positive semidefinite. In fact,

x>Lsymx =
1

2

m∑
i,j=1

wi j

(
xi√
di
− xj√

dj

)2

for all x ∈ Rm.

(2) The normalized graph Laplacians Lsym and Lrw have the same spectrum
(0 = ν1 ≤ ν2 ≤ . . . ≤ νm), and a vector u 6= 0 is an eigenvector of Lrw for λ iff D1/2u
is an eigenvector of Lsym for λ.

(3) The graph Laplacians L and Lsym are symmetric and positive semidefinite.

(4) A vector u 6= 0 is a solution of the generalized eigenvalue problem Lu = λDu iff D1/2u
is an eigenvector of Lsym for the eigenvalue λ iff u is an eigenvector of Lrw for the
eigenvalue λ.

(5) The graph Laplacians, L and Lrw have the same nullspace. For any vector u, we have
u ∈ Ker (L) iff D1/2u ∈ Ker (Lsym).

(6) The vector 1 is in the nullspace of Lrw, and D1/21 is in the nullspace of Lsym.

(7) For every eigenvalue νi of the normalized graph Laplacian Lsym, we have 0 ≤ νi ≤ 2.
Furthermore, νm = 2 iff the underlying graph of G contains a nontrivial connected
bipartite component.

(8) If m ≥ 2 and if the underlying graph of G is not a complete graph, then ν2 ≤ 1.
Furthermore the underlying graph of G is a complete graph iff ν2 = m

m−1 .

(9) If m ≥ 2 and if the underlying graph of G is connected then ν2 > 0.

(10) If m ≥ 2 and if the underlying graph of G has no isolated vertices, then νm ≥ m
m−1 .

Proof. (1) We have Lsym = D−1/2LD−1/2, and D−1/2 is a symmetric invertible matrix (since
it is an invertible diagonal matrix). It is a well-known fact of linear algebra that if B is an
invertible matrix, then a matrix S is symmetric, positive semidefinite iff BSB> is symmetric,
positive semidefinite. Since L is symmetric, positive semidefinite, so is Lsym = D−1/2LD−1/2.
The formula

x>Lsymx =
1

2

m∑
i,j=1

wi j

(
xi√
di
− xj√

dj

)2

for all x ∈ Rm

follows immediately from Proposition 2.4 by replacing x by D−1/2x, and also shows that
Lsym is positive semidefinite.
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(2) Since
Lrw = D−1/2LsymD

1/2,

the matrices Lsym and Lrw are similar, which implies that they have the same spectrum. In
fact, since D1/2 is invertible,

Lrwu = D−1Lu = λu

iff
D−1/2Lu = λD1/2u

iff
D−1/2LD−1/2D1/2u = LsymD

1/2u = λD1/2u,

which shows that a vector u 6= 0 is an eigenvector of Lrw for λ iff D1/2u is an eigenvector of
Lsym for λ.

(3) We already know that L and Lsym are positive semidefinite.

(4) Since D−1/2 is invertible, we have

Lu = λDu

iff
D−1/2Lu = λD1/2u

iff
D−1/2LD−1/2D1/2u = LsymD

1/2u = λD1/2u,

which shows that a vector u 6= 0 is a solution of the generalized eigenvalue problem Lu = λDu
iff D1/2u is an eigenvector of Lsym for the eigenvalue λ. The second part of the statement
follows from (2).

(5) Since D−1 is invertible, we have Lu = 0 iff D−1Lu = Lrwu = 0. Similarly, since D−1/2

is invertible, we have Lu = 0 iff D−1/2LD−1/2D1/2u = 0 iff D1/2u ∈ Ker (Lsym).

(6) Since L1 = 0, we get Lrw1 = D−1L1 = 0. That D1/21 is in the nullspace of Lsym

follows from (2). Properties (7)–(10) are proved in Chung [4] (Chapter 1).

Remark: Observe that although the matrices Lsym and Lrw have the same spectrum, the
matrix Lrw is generally not symmetric, whereas Lsym is symmetric.

A version of Proposition 2.5 also holds for the graph Laplacians Lsym and Lrw. This follows
easily from the fact that Proposition 2.1 applies to the underlying graph of a weighted graph.
The proof is left as an exercise.

Proposition 2.7. Let G = (V,W ) be a weighted graph. The number c of connected compo-
nents K1, . . . , Kc of the underlying graph of G is equal to the dimension of the nullspace of
both Lsym and Lrw, which is equal to the multiplicity of the eigenvalue 0. Furthermore, the
nullspace of Lrw has a basis consisting of indicator vectors of the connected components of
G, that is, vectors (f1, . . . , fm) such that fj = 1 iff vj ∈ Ki and fj = 0 otherwise. For Lsym,
a basis of the nullpace is obtained by multiplying the above basis of the nullspace of Lrw by
D1/2.
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Chapter 3

Spectral Graph Drawing

3.1 Graph Drawing and Energy Minimization

Let G = (V,E) be some undirected graph. It is often desirable to draw a graph, usually
in the plane but possibly in 3D, and it turns out that the graph Laplacian can be used to
design surprisingly good methods. Say |V | = m. The idea is to assign a point ρ(vi) in Rn

to the vertex vi ∈ V , for every vi ∈ V , and to draw a line segment between the points ρ(vi)
and ρ(vj) iff there is an edge {vi, vj}. Thus, a graph drawing is a function ρ : V → Rn.

We define the matrix of a graph drawing ρ (in Rn) as a m× n matrix R whose ith row
consists of the row vector ρ(vi) corresponding to the point representing vi in Rn. Typically,
we want n < m; in fact n should be much smaller than m. A representation is balanced iff
the sum of the entries of every column is zero, that is,

1>R = 0.

If a representation is not balanced, it can be made balanced by a suitable translation. We
may also assume that the columns of R are linearly independent, since any basis of the
column space also determines the drawing. Thus, from now on, we may assume that n ≤ m.

Remark: A graph drawing ρ : V → Rn is not required to be injective, which may result in
degenerate drawings where distinct vertices are drawn as the same point. For this reason,
we prefer not to use the terminology graph embedding , which is often used in the literature.
This is because in differential geometry, an embedding always refers to an injective map.
The term graph immersion would be more appropriate.

As explained in Godsil and Royle [10], we can imagine building a physical model of G
by connecting adjacent vertices (in Rn) by identical springs. Then, it is natural to consider
a representation to be better if it requires the springs to be less extended. We can formalize
this by defining the energy of a drawing R by

E(R) =
∑

{vi,vj}∈E

‖ρ(vi)− ρ(vj)‖2 ,

37
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where ρ(vi) is the ith row of R and ‖ρ(vi)− ρ(vj)‖2 is the square of the Euclidean length of
the line segment joining ρ(vi) and ρ(vj).

Then, “good drawings” are drawings that minimize the energy function E . Of course, the
trivial representation corresponding to the zero matrix is optimum, so we need to impose
extra constraints to rule out the trivial solution.

We can consider the more general situation where the springs are not necessarily identical.
This can be modeled by a symmetric weight (or stiffness) matrix W = (wij), with wij ≥ 0.
Then our energy function becomes

E(R) =
∑

{vi,vj}∈E

wij ‖ρ(vi)− ρ(vj)‖2 .

It turns out that this function can be expressed in terms of the Laplacian L = D−W . The
following proposition is shown in Godsil and Royle [10]. We give a slightly more direct proof.

Proposition 3.1. Let G = (V,W ) be a weighted graph, with |V | = m and W an m × m
symmetric matrix, and let R be the matrix of a graph drawing ρ of G in Rn (a m×n matrix).
If L = D −W is the unnormalized Laplacian matrix associated with W , then

E(R) = tr(R>LR).

Proof. Since ρ(vi) is the ith row of R (and ρ(vj) is the jth row of R), if we denote the kth
column of R by Rk, using Proposition 2.4, we have

E(R) =
∑

{vi,vj}∈E

wij ‖ρ(vi)− ρ(vj)‖2

=
n∑
k=1

∑
{vi,vj}∈E

wij(Rik −Rjk)
2

=
n∑
k=1

1

2

m∑
i,j=1

wij(Rik −Rjk)
2

=
n∑
k=1

(Rk)>LRk = tr(R>LR),

as claimed.

Note that
L1 = 0,

as we already observed.

Since the matrix R>LR is symmetric, it has real eigenvalues. Actually, since L is positive
semidefinite, so is R>LR. Then, the trace of R>LR is equal to the sum of its positive
eigenvalues, and this is the energy E(R) of the graph drawing.
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If R is the matrix of a graph drawing in Rn, then for any invertible matrix M , the map
that assigns ρ(vi)M to vi is another graph drawing of G, and these two drawings convey the
same amount of information. From this point of view, a graph drawing is determined by the
column space of R. Therefore, it is reasonable to assume that the columns of R are pairwise
orthogonal and that they have unit length. Such a matrix satisfies the equation R>R = I,
and the corresponding drawing is called an orthogonal drawing . This condition also rules
out trivial drawings. The following result tells us how to find minimum energy orthogonal
balanced graph drawings, provided the graph is connected.

Theorem 3.2. Let G = (V,W ) be a weighted graph with |V | = m. If L = D −W is the
(unnormalized) Laplacian of G, and if the eigenvalues of L are 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λm,
then the minimal energy of any balanced orthogonal graph drawing of G in Rn is equal to
λ2+· · ·+λn+1 (in particular, this implies that n < m). The m×n matrix R consisting of any
unit eigenvectors u2, . . . , un+1 associated with λ2 ≤ . . . ≤ λn+1 yields a balanced orthogonal
graph drawing of minimal energy; it satisfies the condition R>R = I.

Proof. We present the proof given in Godsil and Royle [10] (Section 13.4, Theorem 13.4.1).
The key point is that the sum of the n smallest eigenvalues of L is a lower bound for
tr(R>LR). This can be shown using an argument using the Rayleigh ratio; see Proposition
A.3 (the Poincaré separation theorem). Then, any n eigenvectors (u1, . . . , un) associated
with λ1, . . . , λn achieve this bound. Because the first eigenvalue of L is λ1 = 0 and because
we are assuming that λ2 > 0, we have u1 = 1/

√
m. Since the uj are pairwise orthogonal

for i = 2, . . . , n and since ui is orthogonal to u1 = 1/
√
m, the entries in ui add up to 0.

Consequently, for any ` with 2 ≤ ` ≤ n, by deleting u1 and using (u2, . . . , u`), we obtain a
balanced orthogonal graph drawing in R`−1 with the same energy as the orthogonal graph
drawing in R` using (u1, u2, . . . , u`). Conversely, from any balanced orthogonal drawing in
R`−1 using (u2, . . . , u`), we obtain an orthogonal graph drawing in R` using (u1, u2, . . . , u`)
with the same energy. Therefore, the minimum energy of a balanced orthogonal graph
drawing in Rn is equal to the minimum energy of an orthogonal graph drawing in Rn+1, and
this minimum is λ2 + · · ·+ λn+1.

Since 1 spans the nullspace of L, using u1 (which belongs to KerL) as one of the vectors
in R would have the effect that all points representing vertices of G would have the same
first coordinate. This would mean that the drawing lives in a hyperplane in Rn, which is
undesirable, especially when n = 2, where all vertices would be collinear. This is why we
omit the first eigenvector u1.

Observe that for any orthogonal n× n matrix Q, since

tr(R>LR) = tr(Q>R>LRQ),

the matrix RQ also yields a minimum orthogonal graph drawing. This amounts to applying
the rigid motion Q> to the rows of R.

In summary, if λ2 > 0, an automatic method for drawing a graph in R2 is this:
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1. Compute the two smallest nonzero eigenvalues λ2 ≤ λ3 of the graph Laplacian L (it is
possible that λ3 = λ2 if λ2 is a multiple eigenvalue);

2. Compute two unit eigenvectors u2, u3 associated with λ2 and λ3, and let R = [u2 u3]
be the m× 2 matrix having u2 and u3 as columns.

3. Place vertex vi at the point whose coordinates is the ith row of R, that is, (Ri1, Ri2).

This method generally gives pleasing results, but beware that there is no guarantee that
distinct nodes are assigned distinct images, because R can have identical rows. This does
not seem to happen often in practice.

3.2 Examples of Graph Drawings

We now give a number of examples using Matlab. Some of these are borrowed or adapted
from Spielman [21].

Example 1. Consider the graph with four nodes whose adjacency matrix is

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 .

We use the following program to compute u2 and u3:

A = [0 1 1 0; 1 0 0 1; 1 0 0 1; 0 1 1 0];

D = diag(sum(A));

L = D - A;

[v, e] = eigs(L);

gplot(A, v(:,[3 2]))

hold on;

gplot(A, v(:,[3 2]),’o’)

The graph of Example 1 is shown in Figure 3.1. The function eigs(L) computes the six
largest eigenvalues of L in decreasing order, and corresponding eigenvectors. It turns out
that λ2 = λ3 = 2 is a double eigenvalue.

Example 2. Consider the graph G2 shown in Figure 2.2 given by the adjacency matrix

A =


0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

 .

We use the following program to compute u2 and u3:
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Figure 3.1: Drawing of the graph from Example 1.

A = [0 1 1 0 0; 1 0 1 1 1; 1 1 0 1 0; 0 1 1 0 1; 0 1 0 1 0];

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on

gplot(A, v(:, [2 3]),’o’)

The function eig(L) (with no s at the end) computes the eigenvalues of L in increasing
order. The result of drawing the graph is shown in Figure 3.2. Note that node v2 is assigned
to the point (0, 0), so the difference between this drawing and the drawing in Figure 2.2 is
that the drawing of Figure 3.2 is not convex.
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Figure 3.2: Drawing of the graph from Example 2.
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Example 3. Consider the ring graph defined by the adjacency matrix A given in the Matlab

program shown below:

A = diag(ones(1, 11),1);

A = A + A’;

A(1, 12) = 1; A(12, 1) = 1;

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on

gplot(A, v(:, [2 3]),’o’)
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Figure 3.3: Drawing of the graph from Example 3.

Observe that we get a very nice ring; see Figure 3.3. Again λ2 = 0.2679 is a double
eigenvalue (and so are the next pairs of eigenvalues, except the last, λ12 = 4).

Example 4. In this example adapted from Spielman, we generate 20 randomly chosen points
in the unit square, compute their Delaunay triangulation, then the adjacency matrix of the
corresponding graph, and finally draw the graph using the second and third eigenvalues of
the Laplacian.

A = zeros(20,20);

xy = rand(20, 2);

trigs = delaunay(xy(:,1), xy(:,2));

elemtrig = ones(3) - eye(3);

for i = 1:length(trigs),

A(trigs(i,:),trigs(i,:)) = elemtrig;

end
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A = double(A >0);

gplot(A,xy)

D = diag(sum(A));

L = D - A;

[v, e] = eigs(L, 3, ’sm’);

figure(2)

gplot(A, v(:, [2 1]))

hold on

gplot(A, v(:, [2 1]),’o’)

The Delaunay triangulation of the set of 20 points and the drawing of the corresponding
graph are shown in Figure 3.4. The graph drawing on the right looks nicer than the graph
on the left but is is no longer planar.
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Figure 3.4: Delaunay triangulation (left) and drawing of the graph from Example 4 (right).

Example 5. Our last example, also borrowed from Spielman [21], corresponds to the skele-
ton of the “Buckyball,” a geodesic dome invented by the architect Richard Buckminster
Fuller (1895–1983). The Montréal Biosphère is an example of a geodesic dome designed by
Buckminster Fuller.

A = full(bucky);

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on;

gplot(A,v(:, [2 3]), ’o’)

Figure 3.5 shows a graph drawing of the Buckyball. This picture seems a bit squashed
for two reasons. First, it is really a 3-dimensional graph; second, λ2 = 0.2434 is a triple
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eigenvalue. (Actually, the Laplacian of L has many multiple eigenvalues.) What we should
really do is to plot this graph in R3 using three orthonormal eigenvectors associated with λ2.
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Figure 3.5: Drawing of the graph of the Buckyball.

A 3D picture of the graph of the Buckyball is produced by the following Matlab program,
and its image is shown in Figure 3.6. It looks better!

[x, y] = gplot(A, v(:, [2 3]));

[x, z] = gplot(A, v(:, [2 4]));

plot3(x,y,z)
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Figure 3.6: Drawing of the graph of the Buckyball in R3.



Chapter 4

Graph Clustering

4.1 Graph Clustering Using Normalized Cuts

Given a set of data, the goal of clustering is to partition the data into different groups
according to their similarities. When the data is given in terms of a similarity graph G,
where the weight wi j between two nodes vi and vj is a measure of similarity of vi and vj, the
problem can be stated as follows: Find a partition (A1, . . . , AK) of the set of nodes V into
different groups such that the edges between different groups have very low weight (which
indicates that the points in different clusters are dissimilar), and the edges within a group
have high weight (which indicates that points within the same cluster are similar).

The above graph clustering problem can be formalized as an optimization problem, using
the notion of cut mentioned at the end of Section 2.1.

Given a subset A of the set of vertices V , recall that we define cut(A) by

cut(A) = links(A,A) =
∑

vi∈A,vj∈A

wi j,

and that
cut(A) = links(A,A) = links(A,A) = cut(A).

If we want to partition V into K clusters, we can do so by finding a partition (A1, . . . , AK)
that minimizes the quantity

cut(A1, . . . , AK) =
1

2

K∑
i=1

cut(Ai).

The reason for introducing the factor 1/2 is to avoiding counting each edge twice. In partic-
ular,

cut(A,A) = links(A,A).

For K = 2, the mincut problem is a classical problem that can be solved efficiently, but in
practice, it does not yield satisfactory partitions. Indeed, in many cases, the mincut solution

45
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separates one vertex from the rest of the graph. What we need is to design our cost function
in such a way that it keeps the subsets Ai “reasonably large” (reasonably balanced).

A example of a weighted graph and a partition of its nodes into two clusters is shown in
Figure 4.1.

15

Encode Pairwise Relationships as a Weighted Graph

16

Cut the graph into two pieces 

Figure 4.1: A weighted graph and its partition into two clusters.

A way to get around this problem is to normalize the cuts by dividing by some measure of
each subset Ai. One possibility is to use the size (the number of elements) of Ai. Another is to
use the volume vol(Ai) of Ai. A solution using the second measure (the volume) (for K = 2)
was proposed and investigated in a seminal paper of Shi and Malik [20]. Subsequently, Yu
(in her dissertation [23]) and Yu and Shi [24] extended the method to K > 2 clusters. We
will describe this method later. The idea is to minimize the cost function

Ncut(A1, . . . , AK) =
K∑
i=1

links(Ai, Ai)

vol(Ai)
=

K∑
i=1

cut(Ai, Ai)

vol(Ai)
.

We begin with the case K = 2, which is easier to handle.

4.2 Special Case: 2-Way Clustering Using Normalized

Cuts

Our goal is to express our optimization problem in matrix form. In the case of two clusters,
a single vector X can be used to describe the partition (A1, A2) = (A,A). We need to choose
the structure of this vector in such a way that Ncut(A,A) is equal to the Rayleigh ratio

X>LX

X>DX
.
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It is also important to pick a vector representation which is invariant under multiplication
by a nonzero scalar, because the Rayleigh ratio is scale-invariant, and it is crucial to take
advantage of this fact to make the denominator go away.

Let N = |V | be the number of nodes in the graph G. In view of the desire for a scale-
invariant representation, it is natural to assume that the vector X is of the form

X = (x1, . . . , xN),

where xi ∈ {a, b} for i = 1, . . . , N , for any two distinct real numbers a, b. This is an indicator
vector in the sense that, for i = 1, . . . , N ,

xi =

{
a if vi ∈ A
b if vi /∈ A.

The correct interpretation is really to view X as a representative of a point in the real
projective space RPN−1, namely the point P(X) of homogeneous coordinates (x1 : · · · : xN).
Therefore, from now on, we view X as a vector of homogeneous coordinates representing the
point P(X) ∈ RPN−1.

Let d = 1>D1 and α = vol(A). Then, vol(A) = d− α. By Proposition 2.4, we have

X>LX = (a− b)2 cut(A,A),

and we easily check that
X>DX = αa2 + (d− α)b2.

Since cut(A,A) = cut(A,A), we have

Ncut(A,A) =
cut(A,A)

vol(A)
+

cut(A,A)

vol(A)
=

(
1

vol(A)
+

1

vol(A)

)
cut(A,A),

so we obtain

Ncut(A,A) =

(
1

α
+

1

d− α

)
cut(A,A) =

d

α(d− α)
cut(A,A).

Since
X>LX

X>DX
=

(a− b)2

αa2 + (d− α)b2
cut(A,A),

in order to have

Ncut(A,A) =
X>LX

X>DX
,

we need to find a and b so that

(a− b)2

αa2 + (d− α)b2
=

d

α(d− α)
.
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The above is equivalent to

(a− b)2α(d− α) = αda2 + (d− α)db2,

which can be rewritten as

a2(αd− α(d− α)) + b2(d2 − αd− α(d− α)) + 2α(d− α)ab = 0.

The above yields
a2α2 + b2(d2 − 2αd+ α2) + 2α(d− α)ab = 0,

that is,
a2α2 + b2(d− α)2 + 2α(d− α)ab = 0,

which reduces to
(aα + b(d− α))2 = 0.

Therefore, we get the condition
aα + b(d− α) = 0. (†)

Note that condition (†) applied to a vector X whose components are a or b is equivalent to
the fact that X is orthogonal to D1, since

X>D1 = αa+ (d− α)b,

where α = vol({vi ∈ V | xi = a}).

We claim the following two facts. For any nonzero vector X whose components are a or
b, if X>D1 = αa+ (d− α)b = 0, then

(1) α 6= 0 and α 6= d iff a 6= 0 and b 6= 0.

(2) if a, b 6= 0, then a 6= b.

(1) First assume that a 6= 0 and b 6= 0. If α = 0, then αa + (d − α)b = 0 yields db = 0
with d 6= 0, which implies b = 0, a contradiction. If d − α = 0, then we get da = 0 with
d 6= 0, which implies a = 0, a contradiction.

Conversely, assume that α 6= 0 and α 6= d. If a = 0, then from αa+ (d− α)b = 0 we get
(d − α)b = 0, which implies b = 0, contradicting the fact that X 6= 0. Similarly, if b = 0,
then we get αa = 0, which implies a = 0, contradicting the fact that X 6= 0.

(2) If a, b 6= 0, a = b and αa+ (d− α)b = 0, then αa+ (d− α)a = 0, and since a 6= 0, we
deduce that d = 0, a contradiction.

If X>D1 = αa+ (d− α)b = 0 and a, b 6= 0, then

b = − α

(d− α)
a,
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so we get

αa2 + (d− α)b2 = α
(d− α)2

α2
b2 + (d− α)b2

= (d− α)

(
d− α
α

+ 1

)
b2 =

(d− α)db2

α
,

and

(a− b)2 =

(
−(d− α)

α
b− b

)2

=

(
d− α
α

+ 1

)2

b2 =
d2b2

α2
.

Since

X>DX = αa2 + (d− α)b2

X>LX = (a− b)2 cut(A,A),

we obtain

X>DX =
(d− α)db2

α
=

αda2

(d− α)

X>LX =
d2b2

α2
cut(A,A) =

d2a2

(d− α)2
cut(A,A).

If we wish to make α disappear, we pick

a =

√
d− α
α

, b = −
√

α

d− α
,

and then

X>DX = d

X>LX =
d2

α(d− α)
cut(A,A) = dNcut(A,A).

In this case, we are considering indicator vectors of the form{
(x1, . . . , xN) | xi ∈

{√
d− α
α

,−
√

α

d− α

}
, α = vol(A)

}
,

for any nonempty proper subset A of V . This is the choice adopted in von Luxburg [22].
Shi and Malik [20] use

a = 1, b = − α

d− α
= − k

1− k
,
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with
k =

α

d
.

Another choice found in the literature (for example, in Belkin and Niyogi [2]) is

a =
1

α
, b = − 1

d− α
.

However, there is no need to restrict solutions to be of either of these forms. So, let

X =
{

(x1, . . . , xN) | xi ∈ {a, b}, a, b ∈ R, a, b 6= 0
}
,

so that our solution set is
K =

{
X ∈ X | X>D1 = 0

}
,

because by previous observations, since vectors X ∈ X have nonzero components, X>D1 = 0
implies that α 6= 0, α 6= d, and a 6= b, where α = vol({vi ∈ V | xi = a}). Actually, to be
perfectly rigorous, we are looking for solutions in RPN−1, so our solution set is really

P(K) =
{

(x1 : · · · : xN) ∈ RPN−1 | (x1, . . . , xN) ∈ K
}
.

Consequently, our minimization problem can be stated as follows:

Problem PNC1

minimize
X>LX

X>DX
subject to X>D1 = 0, X ∈ X .

It is understood that the solutions are points P(X) in RPN−1.

Since the Rayleigh ratio and the constraints X>D1 = 0 and X ∈ X are scale-invariant
(for any λ 6= 0, the Rayleigh ratio does not change if X is replaced by λX, X ∈ X iff
λX ∈ X , and (λX)>D1 = λX>D1 = 0), we are led to the following formulation of our
problem:

Problem PNC2

minimize X>LX

subject to X>DX = 1, X>D1 = 0, X ∈ X .

Because problem PNC2 requires the constraint X>DX = 1 to be satisfied, it does not
have the same set of solutions as problem PNC1. Nevertherless, problem PNC2 is equiv-
alent to problem PNC1, in the sense that if X is any minimal solution of PNC1, then
X/(X>DX)1/2 is a minimal solution of PNC2 (with the same minimal value for the objec-
tive functions), and if X is a minimal solution of PNC2, then λX is a minimal solution for
PNC1 for all λ 6= 0 (with the same minimal value for the objective functions). Equivalently,
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problems PNC1 and PNC2 have the same set of minimal solutions as points P(X) ∈ RPN−1
given by their homogeneous coordinates X.

Unfortunately, this is an NP-complete problem, as shown by Shi and Malik [20]. As often
with hard combinatorial problems, we can look for a relaxation of our problem, which means
looking for an optimum in a larger continuous domain. After doing this, the problem is to
find a discrete solution which is close to a continuous optimum of the relaxed problem.

The natural relaxation of this problem is to allow X to be any nonzero vector in RN , and
we get the problem:

minimize X>LX subject to X>DX = 1, X>D1 = 0.

In order to apply Proposition A.2, we make the change of variable Y = D1/2X, so that
X = D−1/2Y . Then, the condition X>DX = 1 becomes

Y >Y = 1,

the condition
X>D1 = 0

becomes
Y >D1/21 = 0,

and
X>LX = Y >D−1/2LD−1/2Y.

We obtain the problem:

minimize Y >D−1/2LD−1/2Y subject to Y >Y = 1, Y >D1/21 = 0.

Because L1 = 0, the vector D1/21 belongs to the nullspace of the symmetric Laplacian
Lsym = D−1/2LD−1/2. By Proposition A.2, minima are achieved by any unit eigenvector
Y of the second eigenvalue ν2 > 0 of Lsym. Since 0 is the smallest eigenvalue of Lsym

and since D1/21 belongs to the nullspace of Lsym, as the eigenvectors associated with distinct
eigenvalues are orthogonal, the vector Y is orthogonal to D1/21, so the constraint Y >D1/21 =
0 is satisfied. Then, Z = D−1/2Y is a solution of our original relaxed problem. Note that
because Z is nonzero and orthogonal to D1, a vector with positive entries, it must have
negative and positive entries.

The next question is to figure how close is Z to an exact solution in X . Actually, because
solutions are points in RPN−1, the correct statement of the question is: Find an exact
solution P(X) ∈ P(X ) which is the closest (in a suitable sense) to the approximate solution
P(Z) ∈ RPN−1. However, because X is closed under the antipodal map, as explained in
Appendix B, minimizing the distance d(P(X),P(Z)) on RPN−1 is equivalent to minimizing
the Euclidean distance ‖X − Z‖2, where X and Z are representatives of P(X) and P(Z) on
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the unit sphere (if we use the Riemannian metric on RPN−1 induced by the Euclidean metric
on RN).

We may assume b < 0, in which case a > 0. If all entries in Z are nonzero, due to the
projective nature of the solution set, it seems reasonable to say that the partition of V is
defined by the signs of the entries in Z. Thus, A will consist of nodes those vi for which
xi > 0. Elements corresponding to zero entries can be assigned to either A or A, unless
additional information is available. In our implementation, they are assigned to A.

Here are some examples of normalized cuts found by a fairly naive implementation of the
method. The weight matrix of the first example is

W1 =



0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 1 0


.

Its underlying graph has 9 nodes and 9 edges and is shown in Figure 4.2 on the left. The
normalized cut found by the algorithm is shown in the middle; the edge of the cut is shown
in magenta, and the vertices of the blocks of the partition are shown in blue and red. The
figure on the right shows the two disjoint subgraphs obtained after deleting the cut edge.

Figure 4.2: Underlying graph of the matrix W1 (left); normalized cut (middle); blocks of the
cut (right).

The weight matrix of the second example is

W2 =


0 3 6 3
3 0 0 3
6 0 0 3
3 3 3 0

 .
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Its underlying graph has 4 nodes and 5 edges and is shown in Figure 4.3 on the left. The
normalized cut found by the algorithm is shown in the middle; the edges of the cut are shown
in magenta, and the vertices of the blocks of the partition are shown in blue and red. The
figure on the right shows the two disjoint subgraphs obtained after deleting the cut edges.

Figure 4.3: Underlying graph of the matrix W2 (left); normalized cut (middle); blocks of the
cut (right).

The weight matrix W3 of the third example is the adjacency matrix of the complete graph
on 12 vertices. All nondiagonal entries are equal to 1, and the diagonal entries are equal to
0. This graph has 66 edges and is shown in Figure 4.4 on the left.

Figure 4.4: Underlying graph of the matrix W3 (left); normalized cut (middle); blocks of the
cut (right).

The normalized cut found by the algorithm is shown in the middle; the edges of the cut
are shown in magenta, and the vertices of the blocks of the partition are shown in blue and
red. The figure on the right shows the two disjoint subgraphs obtained after deleting the cut
edges. Recall that Lsym = B3B

>
3 for any incidence matrix B3 associated with W3, so that for

any SVD U3Σ3V3 of B3, the vectors in U3 are eigenvectors of Lsym for its eigenvalues listed in
decreasing order. The normalized Laplacian of this weight matrix has the eigenvalue 1.0909
with multiplicity 11 (and any incidence matrix B3 associated with W3 has the singular value
1.0445 with multiplicity 11). Computing the SVD U3Σ3V3 of B3 and picking the next to
the last eigenvector in U3 yields a partition consisting of 7 and 5 nodes. There are other
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eigenvectors that yield partitions with an equal number of elements. Since a complete graph
has a lot of symmetries, it is not surprising that there are many different solutions. In fact,
examination of the eigenvectors of U3 reveal very unbalanced solutions.

For graphs where the number N of edges is very large and the number of edges is O(N2),
computing the SVD of the incidence matrix B is not practical. Instead, we compute an SVD
for Lsym, which appears to be more stable that diagonalizing Lsym.

Our naive algorithm treated zero as a positive entry. Now, using the fact that

b = − αa

d− α
,

a better solution is to look for a vector X ∈ RN with Xi ∈ {a, b} which is closest to a
minimum Z of the relaxed problem (in the sense that ‖X − Z‖ is minimized) and with
‖X‖ = ‖Z‖. We designed the following algorithm.

A vector X describing a partition (A,A) is of the form

Xi =

{
a if vi ∈ A
−βa otherwise,

with

α = vol({vi | vi ∈ A}), β =
α

d− α
,

and where a > 0 is chosen so that
∥∥X∥∥ = ‖Z‖. For any solution Z of the relaxed problem,

let I+Z = {i | Zi > 0} be the set of indices of positive entries in Z, I−Z = {i | Zi < 0} the
set of indices of negative entries in Z, I0Z = {i | Zi = 0} the set of indices of zero entries in
Z. Initially, it makes sense to form a discrete approximation X of Z such that all entries of
index in I+Z are assigned the value a > 0 (to be determined later), and all other entries are
assigned the value −βa. In order for X and Z to have the same norm, since∥∥X∥∥2 = (na + β2(N − na))a2

with

na = |I+Z |, α = vol({vi | i ∈ I+Z }), β =
α

d− α
,

we set

a =
‖Z‖√

(na + β2(N − na))
.

The problems is to determine whether an entry with an index i ∈ I0Z (which is initially
assigned the value −βa) should be reassigned the value a. To make the decision, we form

the new discrete solution X̃ obtained from X by adding the index i to I+Z , and updating
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α, β and a; this is done in step (2). Then, we compare ‖X − Z‖ and ‖X̃ − Z‖ and keep the
vector that yields the smallest norm. We delete i from I0Z , and repeat step (2). After a finite
number of steps, I0Z becomes empty and we obtain a discrete solution X which is typically
closer to X than the starting approximate solution.

We also need to decide whether to start with Z or −Z (remember that solution are
determined up to a nonzero scalar). We proceed as follows. Let Z+ and Z− be the vectors
given by

Z+
i =

{
Zi if i ∈ I+Z
0 if i /∈ I+Z

Z−i =

{
Zi if i ∈ I−Z
0 if i /∈ I−Z

.

Also let na = |I+Z |, nb = |I−Z |, let a and b be the average of the positive and negative entries
in Z respectively, that is,

a =

∑
i∈I+Z

Zi

na
b =

∑
i∈I−Z

Zi

nb
,

and let Z+ and Z− be the vectors given by

(Z+)i =

{
a if i ∈ I+Z
0 if i /∈ I+Z

(Z−)i =

{
b if i ∈ I−Z
0 if i /∈ I−Z

.

If
∥∥Z+ − Z+

∥∥ > ∥∥Z− − Z−∥∥, then replace Z by −Z.

Step 1 of the algorithm is to compute an initial approximate discrete solution X.

(1) Let

na = |I+Z |, α = vol({vi | i ∈ I+Z }), β =
α

d− α
,

and form the vector X with

X i =

{
a if i ∈ I+Z
−βa otherwise,

such that
∥∥X∥∥ = ‖Z‖, where the scalar a is determined by

a =
‖Z‖√

(na + β2(N − na))
.

Next, pick some entry with index i ∈ I0Z and see whether we can impove the solution
X by adding i to I+Z .
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(2) While I0Z 6= ∅, pick the smallest index i ∈ I0Z , compute

Ĩ+Z = I+Z ∪ {i}
ña = na + 1

α̃ = α + d(vi)

β̃ =
α̃

d− α̃
,

and then X̃ with

X̃j =

{
ã if j ∈ Ĩ+Z
−β̃ã otherwise,

and

ã =
‖Z‖√

ña + β̃2(N − ña)
.

Set I0Z = I0Z −{i}. If ‖X̃ −Z‖ < ‖X −Z‖, then let X = X̃, I+Z = Ĩ+Z , na = ña, α = α̃.
Go back to (2).

(3) The final answer if X.

I implemented this algorithm, and it seems to do a god job dealing with zero entries in
the continuous solution Z.

4.3 K-Way Clustering Using Normalized Cuts

We now consider the general case in which K ≥ 3. Two crucial issues need to be addressed
(to the best of our knowledge, these points are not clearly articulated in the literature).

1. The choice of a matrix representation for partitions on the set of vertices. It is impor-
tant that such a representation be scale-invariant. It is also necessary to state necessary
and sufficient conditions for such matrices to represent a partition.

2. The choice of a metric to compare solutions. It turns out that the space of discrete
solutions can be viewed as a subset of the K-fold product (RPN−1)K of the projective
space RPN−1. Version 1 of the formulation of our minimization problem (PNC1) makes
this point clear. However, the relaxation (∗2) of version 2 of our minimization problem
(PNC2), which is equivalent to version 1, reveals that that the solutions of the relaxed
problem (∗2) are members of the Grassmannian G(K,N). Thus, we have two choices
of metrics: (1) a metric on (RPN−1)K ; (2) a metric on G(K,N). We discuss the first
choice, which is the choice implicitly adopted by Shi and Yu. Actually, it appears that
it is difficult to deal with the product metric on (RPN−1)K induced by a metric on
RPN−1. Instead, we approximate a metric on (RPN−1)K using the Frobenius norm; see
Section 4.5 for details.
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We describe a partition (A1, . . . , AK) of the set of nodes V by an N × K matrix X =
[X1 · · ·XK ] whose columns X1, . . . , XK are indicator vectors of the partition (A1, . . . , AK).
Inspired by what we did in Section 4.2, we assume that the vector Xj is of the form

Xj = (xj1, . . . , x
j
N),

where xji ∈ {aj, bj} for j = 1, . . . , K and i = 1, . . . , N , and where aj, bj are any two distinct
real numbers. The vector Xj is an indicator vector for Aj in the sense that, for i = 1, . . . , N ,

xji =

{
aj if vi ∈ Aj
bj if vi /∈ Aj.

When {aj, bj} = {0, 1} for j = 1, . . . , K, such a matrix is called a partition matrix by
Yu and Shi. However, such a choice is premature, since it is better to have a scale-invariant
representation to make the denominators of the Rayleigh ratios go away.

Since the partition (A1, . . . , AK) consists of nonempty pairwise disjoint blocks whose
union is V , some conditions on X are required to reflect these properties, but we will worry
about this later.

As in Section 4.2, we seek conditions on the ajs and the bjs in order to express the
normalized cut Ncut(A1, . . . , AK) as a sum of Rayleigh ratios. Then, we reformulate our
optimization problem in a more convenient form, by chasing the denominators in the Rayleigh
ratios, and by expressing the objective function in terms of the trace of a certain matrix. This
will reveal the important fact that the solutions of the relaxed problem are right-invariant
under multiplication by a K ×K orthogonal matrix.

Let d = 1>D1 and αj = vol(Aj), so that α1 + · · ·+αK = d. Then, vol(Aj) = d−αj, and
as in Section 4.2, we have

(Xj)>LXj = (aj − bj)2 cut(Aj, Aj),

(Xj)>DXj = αja
2
j + (d− αj)b2j .

When K ≥ 3, unlike the case K = 2, in general we have cut(Aj, Aj) 6= cut(Ak, Ak) if j 6= k,
and since

Ncut(A1, . . . , AK) =
K∑
j=1

cut(Aj, Aj)

vol(Aj)
,

we would like to choose aj, bj so that

cut(Aj, Aj)

vol(Aj)
=

(Xj)>LXj

(Xj)>DXj
j = 1, . . . , K,

because this implies that

µ(X) = Ncut(A1, . . . , AK) =
K∑
j=1

cut(Aj, Aj)

vol(Aj)
=

K∑
j=1

(Xj)>LXj

(Xj)>DXj
.
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Since
(Xj)>LXj

(Xj)>DXj
=

(aj − bj)2 cut(Aj, Aj)

αja2j + (d− αj)b2j

and vol(Aj) = αj, in order to have

cut(Aj, Aj)

vol(Aj)
=

(Xj)>LXj

(Xj)>DXj
j = 1, . . . , K,

we need to have
(aj − bj)2

αja2j + (d− αj)b2j
=

1

αj
j = 1, . . . , K.

Thus, we must have

(a2j − 2ajbj + b2j)αj = αja
2
j + (d− αj)b2j ,

which yields

2αjbj(bj − aj) = db2j .

The above equation is trivially satisfied if bj = 0. If bj 6= 0, then

2αj(bj − aj) = dbj,

which yields

aj =
2αj − d

2αj
bj.

This choice seems more complicated that the choice bj = 0, so we will opt for the choice
bj = 0, j = 1, . . . , K. With this choice, we get

(Xj)>DXj = αja
2
j .

Thus, it makes sense to pick

aj =
1
√
αj

=
1√

vol(Aj)
, j = 1, . . . , K,

which is the solution presented in von Luxburg [22]. This choice also corresponds to the
scaled partition matrix used in Yu [23] and Yu and Shi [24].

When N = 10 and K = 4, an example of a matrix X representing the partition of
V = {v1, v2, . . . , v10} into the four blocks

{A1, A2, A3, A4} = {{v2, v4, v6}, {v1, v5}, {v3, v8, v10}, {v7, v9}},
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is shown below:

X =



0 a2 0 0
a1 0 0 0
0 0 a3 0
a1 0 0 0
0 a2 0 0
a1 0 0 0
0 0 0 a4
0 0 a3 0
0 0 0 a4
0 0 a3 0


.

Let us now consider the problem of finding necessary and sufficient conditions for a matrix
X to represent a partition of V .

When bj = 0, the pairwise disjointness of the Ai is captured by the orthogonality of the
X i:

(X i)>Xj = 0, 1 ≤ i, j ≤ K, i 6= j. (∗)
This is because, for any matrix X where the nonzero entries in each column have the same
sign, for any i 6= j, the condition

(X i)>Xj = 0

says that for every k = 1, . . . , N , if xik 6= 0 then xjk = 0.

When we formulate our minimization problem in terms of Rayleigh ratios, conditions on
the quantities (X i)>DX i show up, and it is more convenient to express the orthogonality
conditions using the quantities (X i)>DXj instead of the (X i)>Xj, because these various
conditions can be combined into a single condition involving the matrix X>DX. Now,
because D is a diagonal matrix with positive entries and because the nonzero entries in each
column of X have the same sign, for any i 6= j, the condition

(X i)>Xj = 0

is equivalent to
(X i)>DXj = 0, (∗∗)

since, as above, it means that for k = 1, . . . , N , if xik 6= 0 then xjk = 0. Observe that the
orthogonality conditions (∗) (and (∗∗)) are equivalent to the fact that every row of X has
at most one nonzero entry.

Remark: The disjointness condition

X1K = 1N

is used in Yu [23]. However, this condition does guarantee the disjointness of the blocks. For
example, it is satisfied by the matrix X whose first column is 1N , with 0 everywhere else.
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Each Aj is nonempty iff Xj 6= 0, and the fact that the union of the Aj is V is captured
by the fact that each row of X must have some nonzero entry (every vertex appears in some
block). It is not immediately obvious how to state conveniently this condition in matrix
form.

Observe that the diagonal entries of the matrix XX> are the square Euclidean norms of
the rows of X. Therefore, we can assert that these entries are all nonzero. Let DIAG be the
function which returns the diagonal matrix (containing the diagonal of A),

DIAG(A) = diag(a1 1, . . . , ann),

for any square matrix A = (ai j). Then, the condition for the rows of X to be nonzero can
be stated as

det(DIAG(XX>)) 6= 0.

Since every row of any matrix X representing a partition has a single nonzero entry aj,
we have

X>X = diag
(
n1a

2
1, . . . , nKa

2
K

)
,

where nj is the number of elements in Aj, the jth block of the partition. Therefore, an
equivalent condition for the columns of X to be nonzero is

det(X>X) 6= 0.

Remark: The matrix

DIAG(XX>)−1/2X

is the result of normalizing the rows of X so that they have Euclidean norm 1. This nor-
malization step is used by Yu [23] in the search for a discrete solution closest to a solution
of a relaxation of our original problem. For our special matrices representing partitions,
normalizing the rows will have the effect of rescaling the columns (if row i has aj in column
j, then all nonzero entries in column j are equal to aj), but for a more general matrix, this is
false. Thus, in general, DIAG(XX>)−1/2X is not a solution of the original problem. Still, as
we will see in Section 4.5, this matrix is a pretty good approximation to a discrete solution.

Another condition which does not involve explicitly a determinant and is scale-invariant
stems from the observation that not only

X>X = diag
(
n1a

2
1, . . . , nKa

2
K

)
,

but

X>1N =

 n1a1
...

nKaK

 ,
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and these equations imply that

(X>X)−1X>1N =


1
a1
...
1
aK

 ,

and thus
X(X>X)−1X>1N = 1N . (†)

When aj = 1 for j = 1, . . . , K, we have (X>X)−1X>1 = 1K , and condition (†) reduces to

X1K = 1N .

Note that because the columns of X are linearly independent, (X>X)−1X> is the pseudo-
inverse X+ of X. Consequently, if X>X is invertible, condition (†) can also be written
as

XX+1N = 1N .

However, it is well known that XX+ is the orthogonal projection of RK onto the range of
X (see Gallier [8], Section 14.1), so the condition XX+1N = 1N is equivalent to the fact
that 1N belongs to the range of X. In retrospect, this should have been obvious since the
columns of a solution X satisfy the equation

a−11 X1 + · · ·+ a−1K XK = 1N .

We emphasize that it is important to use conditions that are invariant under multipli-
cation by a nonzero scalar, because the Rayleigh ratio is scale-invariant, and it is crucial to
take advantage of this fact to make the denominators go away.

If we let

X =
{

[X1 . . . XK ] | Xj = aj(x
j
1, . . . , x

j
N), xji ∈ {1, 0}, aj ∈ R, Xj 6= 0

}
(note that the condition Xj 6= 0 implies that aj 6= 0), then the set of matrices representing
partitions of V into K blocks is

K =
{
X = [X1 · · · XK ] | X ∈ X ,

(X i)>DXj = 0, 1 ≤ i, j ≤ K, i 6= j,

X(X>X)−1X>1 = 1
}
.

Since for matrices in K, the orthogonality conditions (X i)>DXj = 0 are equivalent to
the orthogonality conditions (X i)>Xj = 0, and since matrices in X have nonzero columns,
X>X is invertible, so the last condition makes sense.
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As in the case K = 2, to be rigorous, the solution are really K-tuples of points in RPN−1,
so our solution set is really

P(K) =
{

(P(X1), . . . ,P(XK)) | [X1 · · · XK ] ∈ K
}
.

In view of the above, we have our first formulation of K-way clustering of a graph using
normalized cuts, called problem PNC1 (the notation PNCX is used in Yu [23], Section 2.1):

K-way Clustering of a graph using Normalized Cut, Version 1:
Problem PNC1

minimize
K∑
j=1

(Xj)>LXj

(Xj)>DXj

subject to (X i)>DXj = 0, 1 ≤ i, j ≤ K, i 6= j,

X(X>X)−1X>1 = 1, X ∈ X .

As in the case K = 2, the solutions that we are seeking are K-tuples (P(X1), . . . ,P(XK))
of points in RPN−1 determined by their homogeneous coordinates X1, . . . , XK .

Remark: Because

(Xj)>LXj = (Xj)>DXj − (Xj)>WXj = vol(Aj)− (Xj)>WXj,

Instead of minimizing

µ(X1, . . . , XK) =
K∑
j=1

(Xj)>LXj

(Xj)>DXj
,

we can maximize

ε(X1, . . . , XK) =
K∑
j=1

(Xj)>WXj

(Xj)>DXj
,

since
ε(X1, . . . , XK) = K − µ(X1, . . . , XK).

This second option is the one chosen by Yu [23] and Yu and Shi [24] (actually, they work with
1
K

(K − µ(X1, . . . , XK)), but this doesn’t make any difference). Theoretically, minimizing
µ(X1, . . . , XK) is equivalent to maximizing ε(X1, . . . , XK), but from a practical point of
view, it is preferable to maximize ε(X1, . . . , XK). This is because minimizing solutions
of µ are obtained from (unit) eigenvectors corresponding to the K smallest eigenvalues
of Lsym = D−1/2LD−1/2 (by multiplying these eigenvectors by D1/2). However, numerical
methods for computing eigenvalues and eigenvectors of a symmetric matrix do much better
at computing largest eigenvalues. Since Lsym = I −D−1/2WD−1/2, the eigenvalues of Lsym
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listed in increasing order correspond to the eigenvalues of I−Lsym = D−1/2WD−1/2 listed in
decreasing order. Furthermore, v is an eigenvector of Lsym for the ith smallest eigenvalue νi
iff v is an eigenvector of I −Lsym for the (N + 1− i)th largest eigenvalue νi. Therefore, it is
preferable to find the largest eigenvalues of I−Lsym = D−1/2WD−1/2 and their eigenvectors.
In fact, since the eigenvalues of Lsym are in the range [0, 2], the eigenvalues of 2I−Lsym = I+
D−1/2WD−1/2 are also in the range [0, 2] (that is, I+D−1/2WD−1/2 is positive semidefinite).

Let us now show how our original formulation (PNC1) can be converted to a more
convenient form, by chasing the denominators in the Rayleigh ratios, and by expressing the
objective function in terms of the trace of a certain matrix.

For any N ×N matrix A, because

X>AX =

 (X1)>

...
(XK)>

A[X1 · · ·XK ]

=


(X1)>AX1 (X1)>AX2 · · · (X1)>AXK

(X2)>AX1 (X2)>AX2 · · · (X2)>AXK

...
...

. . .
...

(XK)>AX1 (XK)>AX2 · · · (XK)>AXK

 ,

we have

tr(X>AX) =
K∑
j=1

(Xj)>AXj,

and the conditions
(X i)>AXj = 0, 1 ≤ i, j ≤ K, i 6= j,

are equivalent to
X>AX = diag((X1)>AX1, . . . , (XK)>AXK).

As a consequence, if we assume that

(X1)>AX1 = · · · = (XK)>AXK = α2,

then we have
X>AX = α2I,

and if R is any orthogonal K ×K matrix, then by multiplying on the left by R> and on the
right by R, we get

R>X>AXR = R>α2IR = α2R>R = α2I.

Therefore, if
X>AX = α2I,

then
(XR)>A(XR) = α2I,
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for any orthogonal K×K matrix R. Furthermore, because tr(AB) = tr(BA) for all matrices
A,B, we have

tr(R>X>AXR) = tr(X>AX).

Since the Rayleigh ratios
(Xj)>LXj

(Xj)>DXj

are invariant under rescaling by a nonzero number, by replacing Xj by ((Xj)>DXj)−1/2Xj,
the denominators become 1, and we have

µ(X) = µ(X1, . . . , XK) =
K∑
j=1

(Xj)>LXj

(Xj)>DXj

= µ(((X1)>DX1)−1/2X1, . . . , ((XK)>DXK)−1/2XK)

=
K∑
j=1

((Xj)>DXj)−1/2(Xj)>L ((Xj)>DXj)−1/2Xj

= tr(Λ−1/2X>LXΛ−1/2)

= tr(Λ−1X>LX),

where
Λ = diag((X1)>DX1, . . . , (XK)>DXK).

If (X1)>DX1 = · · · = (XK)>DXK = α2, then Λ = α2IK , so

µ(X) = tr(Λ−1X>LX) =
1

α2
tr(X>LX),

and for any orthogonal K ×K matrix R,

µ(RX) =
1

α2
tr(R>X>LXR) =

1

α2
tr(X>LX),

and thus,
µ(X) = µ(XR).

The condition
X(X>X)−1X>1 = 1

is also invariant if we replace X by XR, where R is any invertible matrix, because

XR((XR)>(XR))−1(XR)>1 = XR(R>X>XR)−1R>X>1

= XRR−1(X>X)−1(R>)−1R>X>1

= X(X>X)−1X>1 = 1.

In summary we proved the following proposition:
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Proposition 4.1. For any orthogonal K ×K matrix R, any symmetric N × N matrix A,
and any N ×K matrix X = [X1 · · · XK ], the following properties hold:

(1) µ(X) = tr(Λ−1X>LX), where

Λ = diag((X1)>DX1, . . . , (XK)>DXK).

(2) If (X1)>DX1 = · · · = (XK)>DXK = α2, then

µ(X) = µ(XR) =
1

α2
tr(X>LX).

(3) The condition X>AX = α2I is preserved if X is replaced by XR.

(4) The condition X(X>X)−1X>1 = 1 is preserved if X is replaced by XR.

Now, by Proposition 4.1(1) and the fact that the conditions in PNC1 are scale-invariant,
we are led to the following formulation of our problem:

minimize tr(X>LX)

subject to (X i)>DXj = 0, 1 ≤ i, j ≤ K, i 6= j,

(Xj)>DXj = 1, 1 ≤ j ≤ K,

X(X>X)−1X>1 = 1, X ∈ X .

Conditions on lines 2 and 3 can be combined in the equation

X>DX = I,

and, we obtain the following formulation of our minimization problem:

K-way Clustering of a graph using Normalized Cut, Version 2:
Problem PNC2

minimize tr(X>LX)

subject to X>DX = I,

X(X>X)−1X>1 = 1, X ∈ X .

Because problem PNC2 requires the constraint X>DX = I to be satisfied, it does not
have the same set of solutions as problem PNC1. Nevertherless, problem PNC2 is equivalent
to problem PNC1, in the sense that for every minimal solution (X1, . . . , XK) of PNC1,
(((X1)>DX1)−1/2X1, . . . , ((XK)>DXK)−1/2XK) is a minimal solution of PNC2 (with the
same minimum for the objective functions), and that for every minimal solution (Z1, . . . , Zk)
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of PNC2, (λ1Z
1, . . . , λKZ

K) is a minimal solution of PNC1, for all λi 6= 0, i = 1, . . . , K (with
the same minimum for the objective functions). In other words, problems PNC1 and PNC2
have the same set of minimal solutions as K-tuples of points (P(X1), . . . ,P(XK)) in RPN−1
determined by their homogeneous coordinates X1, . . . , XK .

Formulation PNC2 reveals that finding a minimum normalized cut has a geometric in-
terpretation in terms of the graph drawings discussed in Section 3.1. Indeed, PNC2 has
the following equivalent formulation: Find a minimal energy graph drawing X in RK of the
weighted graph G = (V,W ) such that:

1. The matrix X is orthogonal with respect to the inner product 〈−,−〉D in RN induced
by D, with

〈x, y〉D = x>Dy, x, y ∈ RN .

2. The rows of X are nonzero; this means that no vertex vi ∈ V is assigned to the origin
of RK (the zero vector 0K).

3. Every vertex vi is assigned a point of the form (0, . . . , 0, aj, 0, . . . , 0) on some axis (in
RK).

4. Every axis in RK is assigned at least some vertex.

Condition 1 can be reduced to the standard condition for graph drawings (R>R = I) by
making the change of variable Y = D1/2X or equivalently X = D−1/2Y . Indeed,

tr(X>LX) = tr(Y >D−1/2LD−1/2Y ),

so we use the normalized Laplacian Lsym = D−1/2LD−1/2 instead of L,

X>DX = Y >Y = I,

and conditions (2), (3), (4) are preserved under the change of variable Y = D1/2X, since D1/2

is invertible. However, conditions (2), (3), (4) are “hard” constraints, especially condition
(3). In fact, condition (3) implies that the columns of X are orthogonal with respect to both
the Euclidean inner product and the inner product 〈−,−〉D, so condition (1) is redundant,
except for the fact that it prescribes the norm of the columns, but this is not essential due
to the projective nature of the solutions.

The main problem in finding a good relaxation of problem PNC2 is that it is very difficult
to enforce the condition X ∈ X . Also, the solutions X are not preserved under arbitrary
rotations, but only by very special rotations which leave X invariant (they exchange the
axes).

The first natural relaxation of problem PNC2 is to drop the condition that X ∈ X , and
we obtain the

Problem (∗2)
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minimize tr(X>LX)

subject to X>DX = I,

X(X>X)−1X>1 = 1.

Actually, since the discrete solutions X ∈ X that we are ultimately seeking are solutions
of problem PNC1, the preferred relaxation is the one obtained from problem PNC1 by
dropping the condition X ∈ X , and simply requiring that Xj 6= 0, for j = 1, . . . , K:

Problem (∗1)

minimize
K∑
j=1

(Xj)>LXj

(Xj)>DXj

subject to (X i)>DXj = 0, Xj 6= 0 1 ≤ i, j ≤ K, i 6= j,

X(X>X)−1X>1 = 1.

Now that we dropped the condition X ∈ X , it is not clear that X>X is invertible in (∗1)
and (∗2). However, since the columns of X are nonzero and D-orthogonal, they must be
linearly independent, so X has rank K and and X>X is invertible.

As we explained before, every solution Z = [Z1, . . . , ZK ] of problem (∗1) yields a solution
of problem (∗2) by normalizing each Zj by ((Zj)>DZj)1/2, and conversely for every solution
Z = [Z1, . . . , ZK ] of problem (∗2), the K-tuple [λ1Z

1, . . . , λKZ
K ] is a solution of problem

(∗1), where λj 6= 0 for j = 1, . . . , K. Furthermore, by Proposition 4.1, for every orthogonal
matrix R ∈ O(K) and for every solution X of (∗2), the matrix XR is also a solution of
(∗2). Since Proposition 4.1(2) requires that all (Xj)>DXj have the same value in order to
have µ(X) = µ(XR), in general, if X is a solution of (∗1), the matrix XR is not necessarily
a solution of (∗1). However, every solution X of (∗2) is also a solution of (∗1), for every
R ∈ O(K), XR is a solution of both (∗2) and (∗1), and since (∗1) is scale-invariant, for every
diagonal invertible matrix Λ, the matrix XRΛ is a solution of (∗1).

In summary, every solution Z of problem (∗2) yields a family of solutions of problem
(∗1); namely, all matrices of the form ZRΛ, where R ∈ O(K) and Λ is a diagonal invertible
matrix. We will take advantage of this fact in looking for a discrete solution X “close” to a
solution Z of the relaxed problem (∗2).

Observe that a matrix is of the form RΛ with R ∈ O(K) and Λ a diagonal invertible
matrix iff its columns are nonzero and pairwise orthogonal. First, we have

(RΛ)>RΛ = Λ>R>RΛ = Λ2,

which implies that the columns of RΛ are nonzero and pairwise orthogonal. Conversely, if
the columns of A are nonzero and pairwise orthogonal, then

A>A = Λ2
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for some invertible diagonal matrix Λ, and then A = RΛ, where R = AΛ−1 is orthogonal.

As a consequence of the invariance of solutions of (∗2) under multiplication on the right
by matrices in O(K), as explained below, we can view the solutions of problem (∗2) as
elements of the Grassmannian G(K,N).

Recall that the Stiefel manifold St(k, n) consists of the set of orthogonal k-frames in
Rn, that is, the k-tuples of orthonormal vectors (u1, . . . , uk) with ui ∈ Rn. For k = n,
the manifold St(n, n) is identical to the orthogonal group O(n). For 1 ≤ n ≤ n − 1, the
group SO(n) acts transitively on St(k, n), and St(k, n) is isomorphic to the coset manifold
SO(n)/SO(n − k). The Grassmann manifold G(k, n) consists of all (linear) k-dimensional
subspaces of Rn. Again, the group SO(n) acts transitively on G(k, n), and G(k, n) is isomor-
phic to the coset manifold SO(n)/S(O(k) ×O(n − k)). The group O(k) acts on the right
on the Stiefel manifold St(k, n) (by multiplication), and the orbit manifold St(k, n)/O(k)
is isomorphic to the Grassmann manifold G(k, n). Furthermore, both St(k, n) and G(k, n)
are naturally reductive homogeneous manifolds (for the Stiefel manifold, when n ≥ 3), and
G(k, n) is even a symmetric space (see O’Neill [18]). The upshot of all this is that to a
large extent, the differential geometry of these manifolds is completely determined by some
subspace m of the Lie algebra so(n), such that we have a direct sum

so(n) = m⊕ h,

where h = so(n−k) in the case of the Stiefel manifold, and h = so(k)× so(n−k) in the case
of the Grassmannian manifold (some additional condition on m is required). In particular,
the geodesics in both manifolds can be determined quite explicitly, and thus we obtain closed
form formulae for distances, etc.

The Stiefel manifold St(k, n) can be viewed as the set of all n× k matrices X such that

X>X = Ik.

In our situation, we are considering N ×K matrices X such that

X>DX = I.

This is not quite the Stiefel manifold, but if we write Y = D1/2X, then we have

Y >Y = I,

so the space of matrices X satisfying the condition X>DX = I is the image D(St(K,N))
of the Stiefel manifold St(K,N) under the linear map D given by

D(X) = D1/2X.

Now, the right action of O(K) on D(St(K,N)) yields a coset manifold D(St(K,N))/O(K)
which is obviously isomorphic to the Grassmann manidold G(K,N).
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Therefore, the solutions of problem (∗2) can be viewed as elements of the Grassmannian
G(K,N). We can take advantage of this fact to find a discrete solution of our original
optimization problem PNC2 approximated by a continuous solution of (∗2).

Recall that if X>X is invertible (which is the case), condition X(X>X)−1X>1 = 1 is
equivalent to XX+1 = 1, which is also equivalent to the fact that 1 is in the range of X.
If we make the change of variable Y = D1/2X or equivalently X = D−1/2Y , the condition
that 1 is in the range of X becomes the condition that D1/21 is in the range of Y , which is
equivalent to

Y Y +D1/21 = D1/21.

However, since Y >Y = I, we have

Y + = Y >,

so we get the equivalent problem

Problem (∗∗2)

minimize tr(Y >D−1/2LD−1/2Y )

subject to Y >Y = I,

Y Y >D1/21 = D1/21.

This time, the matrices Y satisfying condition Y >Y = I do belong to the Stiefel manifold
St(K,N), and again, we view the solutions of problem (∗∗2) as elements of the Grassmannian
G(K,N). We pass from a solution Y of problem (∗∗2) in G(K,N) to a solution Z of of
problem (∗2) in G(K,N) by the linear map D−1; namely, Z = D−1(Y ) = D−1/2Y .

It is not a priori obvious that the minimum of tr(Y >LsymY ) over all N ×K matrices Y
satisfying Y >Y = I is equal to the sum ν1 + · · · + νK of the first K eigenvalues of Lsym =
D−1/2LD−1/2. Fortunately, the Poincaré separation theorem (Proposition A.3) guarantees
that the sum of the K smallest eigenvalues of Lsym is a lower bound for tr(Y >LsymY ).
Furthermore, if we temporarily ignore the second constraint, the minimum of problem (∗∗2)
is achieved by any K unit eigenvectors (u1, . . . , uK) associated with the smallest eigenvalues

0 = ν1 ≤ ν2 ≤ . . . ≤ νK

of Lsym.1 We may assume that ν2 > 0, namely that the underlying graph is connected
(otherwise, we work with each connected component), in which case Y 1 = D1/21/

∥∥D1/21
∥∥
2
,

because 1 is in the nullspace of L. Since Y 1 = D1/21/
∥∥D1/21

∥∥
2
, the vector D1/21 is in the

range of Y , so the condition

Y Y >D1/21 = D1/21

1Other authors seem to accept this fact as obvious. This is not quite so, and Godsil and Royle [10] provide
a rigorous proof using Proposition A.3.
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is also satisfied. Then, Z = D−1/2Y with Y = [u1 . . . uK ] yields a minimum of our relaxed
problem (∗2) (the second constraint is satisfied because 1 is in the range of Z).

By Proposition 2.6, the vectors Zj are eigenvectors of Lrw associated with the eigenvalues
0 = ν1 ≤ ν2 ≤ . . . ≤ νK . Recall that 1 is an eigenvector for the eigenvalue ν1 = 0, and
Z1 = 1/

∥∥D1/21
∥∥
2
. Because, (Y i)>Y j = 0 whenever i 6= j, we have

(Zi)>DZj = 0, whenever i 6= j.

This implies that Z2, . . . , ZK are all orthogonal to D1, and thus, that each Zj has both some
positive and some negative coordinate, for j = 2, . . . , K.

The conditions (Zi)>DZj = 0 do not necessarily imply that Zi and Zj are orthogonal
(w.r.t. the Euclidean inner product), but we can obtain a solution of Problems (∗2) and
(∗1) achieving the same minimum for which distinct columns Zi and Zj are simultaneously
orthogonal and D-orthogonal, by multiplying Z by some K × K orthogonal matrix R on
the right. Indeed, if Z is a solution of (∗2) obtained as above, the K ×K symmetric matrix
Z>Z can be diagonalized by some orthogonal K ×K matrix R as

Z>Z = RΣR>,

where Σ is a diagonal matrix, and thus,

R>Z>ZR = (ZR)>ZR = Σ,

which shows that the columns of ZR are orthogonal. By Proposition 4.1, ZR also satisfies
the constraints of (∗2) and (∗1), and tr((ZR)>L(ZR)) = tr(Z>LZ).

Remark: Since Y has linearly independent columns (in fact, orthogonal) and since Z =
D−1/2Y , the matrix Z also has linearly independent columns, so Z>Z is positive definite and
the entries in Σ are all positive. Also, instead of computing Z>Z explicitly and diagonalizing
it, the matrix R can be found by computing an SVD of Z.

In summary, we should look for a solution Z of (∗2) that corresponds to an element of
the Grassmannian G(K,N), and hope that for some suitable orthogonal matrix R and some
diagonal invertible matrix Λ, the vectors in XRΛ are close to a true solution of the original
problem.

4.4 K-Way Clustering; Using The Dependencies

Among X1, . . . , XK

At this stage, it is interesting to reconsider the case K = 2 in the light of what we just did
when K ≥ 3. When K = 2, X1 and X2 are not independent, and it is convenient to assume
that the nonzero entries in X1 and X2 are both equal to some positive real c ∈ R, so that

X1 +X2 = c1.
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To avoid subscripts, write (A,A) for the partition of V that we are seeking, and as before
let d = 1>D1 and α = vol(A). We know from Section 4.2 that

(X1)>DX1 = αc2

(X2)>DX2 = (d− α)c2,

so we normalize X1 and X2 so that (X1)>DX1 = (X2)>DX2 = c2, and we consider

X =

[
X1

√
α

X2

√
d− α

]
.

Now, we claim that there is an orthogonal matrix R so that if X as above is a solution to our
discrete problem, then XR contains a multiple of 1 as a first column. A similar observation
is made in Yu [23] and Yu and Shi [24] (but beware that in these works α = vol(A)/

√
d). In

fact,

R =
1√
d

( √
α

√
d− α

√
d− α −

√
α

)
.

Indeed, we have

XR =

[
X1

√
α

c1−X1

√
d− α

]
R

=

[
X1

√
α

c1−X1

√
d− α

]
1√
d

( √
α

√
d− α

√
d− α −

√
α

)

=
1√
d

[
c1

√
d− α
α

X1 −
√

α

d− α
(c1−X1)

]
.

If we let

a = c

√
d− α
α

, b = −c
√

α

d− α
,

then we check that
αa+ b(d− α) = 0,

which shows that the vector

Z =

√
d− α
dα

X1 −
√

α

d(d− α)
(c1−X1)

is a potential solution of our discrete problem in the sense of Section 4.2. Furthermore,
because L1 = 0,

tr(X>LX) = tr((XR)>L(XR)) = Z>LZ,

the vector Z is indeed a solution of our discrete problem. Thus, we reconfirm the fact that
the second eigenvector of Lrw = D−1L is indeed a continuous approximation to the clustering
problem when K = 2. This can be generalized for any K ≥ 2.
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Again, we may assume that the nonzero entries in X1, . . . , XK are some positive real
c ∈ R, so that

X1 + · · ·+XK = c1,

and if (A1, . . . , AK) is the partition of V that we are seeking, write αj = vol(Aj). We have
α1 + · · ·+ αK = d = 1>D1. Since

(Xj)>DXj = αjc
2,

we normalize the Xj so that (Xj)>DXj = · · · = (XK)>DXK = c2, and we consider

X =

[
X1

√
α1

X2

√
α2

· · · XK

√
αK

]
.

Then, we have the following result.

Proposition 4.2. If X =
[
X1
√
α1

X2
√
α2
· · · XK

√
αK

]
is a solution of our discrete problem, then

there is an orthogonal matrix R such that its first column R1 is

R1 =
1√
d


√
α1√
α2
...√
αK


and

XR =

[
c√
d
1 Z2 · · · ZK

]
.

Furthermore,

(XR)>D(XR) = c2I

and

tr((XR)>L(XR)) = tr(Z>LZ),

with Z = [Z2 · · · ZK ].

Proof. Apply Gram–Schmidt to (R1, e2, . . . , eK) (where (e1, . . . , eK) is the canonical basis of
RK) to form an orthonormal basis. The rest follows from Proposition 4.1.

Proposition 4.2 suggests that if Z = [1 Z2 · · · ZK ] is a solution of the relaxed problem
(∗2), then there should be an orthogonal matrix R such that ZR> is an approximation of a
solution of the discrete problem PNC1.
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4.5 Finding a Discrete Solution Close to a Continuous

Approximation

The next step is to find an exact solution (P(X1), . . . ,P(XK)) ∈ P(K) which is the closest (in
a suitable sense) to our approximate solution (Z1, . . . , ZK) ∈ G(K,N). The set K is closed
under very special orthogonal transformations in O(K), so we can’t view K as a subset of the
Grassmannian G(K,N). However, we can think of K as a subset of G(K,N) by considering
the subspace spanned by (X1, . . . , XK) for every [X1 · · ·XK ] ∈ K.

Recall from Section 4.3 that every solution Z of problem (∗2) yields a family of solutions
of problem (∗1); namely, all matrices of the form ZQ, where Q is a K × K matrix with
nonzero and pairwise orthogonal columns. Since the solutions ZQ of (∗1) are all equivalent
(they yield the same minimum for the normalized cut), it makes sense to look for a discrete
solution X closest to one of these ZQ. Then, we have two choices of distances.

1. We view K as a subset of (RPN−1)K . Because K is closed under the antipodal map,
as explained in Appendix B, for every j (1 ≤ j ≤ K), minimizing the distance
d(P(Xj),P(Zj)) on RPN−1 is equivalent to minimizing ‖Xj − Zj‖2, where Xj and
Zj are representatives of P(Xj) and P(Zj) on the unit sphere (if we use the Rieman-
nian metric on RPN−1 induced by the Euclidean metric on RN). Then, if we use the
product distance on (RPN−1)K given by

d
(
(P(X1), . . . ,P(XK)), (P(Z1), . . . ,P(ZK))

)
=

K∑
j=1

d(P(Xj),P(Zj)),

minimizing the distance d
(
(P(X1), . . . ,P(XK)), (P(Z1), . . . ,P(ZK))

)
in (RPN−1)K is

equivalent to minimizing

K∑
j=1

∥∥Xj − Zj
∥∥
2
, subject to

∥∥Xj
∥∥
2

=
∥∥Zj

∥∥
2

(j = 1, . . . , K).

We are not aware of any optimization method to solve the above problem, which seems
difficult to tackle due to constraints ‖Xj‖2 = ‖Zj‖2 (j = 1, . . . , K). Therefore, we drop
these constraints and attempt to minimize

‖X − Z‖2F =
K∑
j=1

∥∥Xj − Zj
∥∥2
2
,

the Frobenius norm of X − Z. This is implicitly the choice made by Yu.

2. We view K as a subset of the Grassmannian G(K,N). In this case, we need to pick a
metric on the Grassmannian, and we minimize the corresponding Riemannian distance
d(X,Z). A natural choice is the metric on so(n) given by

〈X, Y 〉 = tr(X>Y ).
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This choice remains to be explored.

Inspired by Yu [23] and the previous discussion, given a solution Z of problem (∗2), we
look for pairs (X,Q) with X ∈ X and where Q is a K×K matrix with nonzero and pairwise
orthogonal columns, with ‖X‖F = ‖Z‖F , that minimize

ϕ(X,Q) = ‖X − ZQ‖F .

Here, ‖A‖F is the Frobenius norm of A, with ‖A‖2F = tr(A>A). Yu [23] and Yu and Shi
[24] consider the special case where Q ∈ O(K). We consider the more general case where
Q = RΛ, with R ∈ O(K) and Λ is a diagonal invertible matrix.

The key to minimizing ‖X − ZQ‖F rests on the following computation:

‖X − ZQ‖2F = tr((X − ZQ)>(X − ZQ))

= tr((X> −Q>Z>)(X − ZQ))

= tr(X>X −X>ZQ−Q>Z>X +Q>Z>ZQ)

= tr(X>X)− tr(X>ZQ)− tr(Q>Z>X) + tr(Q>Z>ZQ)

= tr(X>X)− tr((Q>Z>X)>)− tr(Q>Z>X) + tr(Z>ZQQ>)

= ‖X‖2F − 2tr(Q>Z>X) + tr(Z>ZQQ>).

Therefore, since ‖X‖F = ‖Z‖F is fixed, minimizing ‖X − ZQ‖2F is equivalent to minimizing
−2tr(Q>Z>X) + tr(Z>ZQQ>).

This is a hard problem because it is a nonlinear optimization problem involving two
matrix unknowns X and Q. To simplify the problem, we proceed by alternating steps
during which we minimize ϕ(X,Q) = ‖X − ZQ‖F with respect to X holding Q fixed, and
steps during which we minimize ϕ(X,Q) = ‖X − ZQ‖F with respect to Q holding X fixed.

This second step in which X is held fixed has been studied, but it is still a hard problem
for which no closed–form solution is known. Consequently, we further simplify the problem.
Since Q is of the form Q = RΛ where R ∈ O(K) and Λ is a diagonal invertible matrix, we
minimize ‖X − ZRΛ‖F in two stages.

1. We set Λ = I and find R ∈ O(K) that minimizes ‖X − ZR‖F .

2. Given X, Z, and R, find a diagonal invertible matrix Λ that minimizes ‖X − ZRΛ‖F .

The matrix RΛ is not a minimizer of ‖X − ZRΛ‖F in general, but it is an improvement
on R alone, and both stages can be solved quite easily.

In stage 1, the matrix Q = R is orthogonal, so QQ> = I, and since Z and X are given,
the problem reduces to minimizing −2tr(Q>Z>X); that is, maximizing tr(Q>Z>X). To
solve this problem, we need the following proposition.



4.5. DISCRETE SOLUTION CLOSE TO A CONTINUOUS APPROXIMATION 75

Proposition 4.3. For any n× n matrix A and any orthogonal matrix Q, we have

max{tr(QA) | Q ∈ O(n)} = σ1 + · · ·+ σn,

where σ1 ≥ · · · ≥ σn are the singular values of A. Furthermore, this maximum is achieved
by Q = V U>, where A = UΣV > is any SVD for A.

Proof. Let A = UΣV > be any SVD for A. Then we have

tr(QA) = tr(QUΣV >)

= tr(V >QUΣ).

The matrix Z = V >QU is an orthogonal matrix so |zij| ≤ 1 for 1 ≤ i, j ≤ n, and Σ is a
diagonal matrix, so we have

tr(ZΣ) = z11σ1 + · · ·+ znnσn ≤ σ1 + · · ·+ σn,

which proves the first statement of the proposition. For Q = V U>, we get

tr(QA) = tr(QUΣV >)

= tr(V U>UΣV >)

= tr(V ΣV >) = σ1 + · · ·+ σn,

which proves the second part of the proposition.

As a corollary of Proposition 4.3 (with A = Z>X and Q = R>), we get the following
result (see Golub and Van Loan [11], Section 12.4.1):

Proposition 4.4. For any two fixed N ×K matrices X and Z, the minimum of the set

{‖X − ZR‖F | R ∈ O(K)}

is achieved by R = UV >, for any SVD decomposition UΣV > = Z>X of Z>X.

The following proposition takes care of stage 2.

Proposition 4.5. For any two fixed N×K matrices X and Z, where Z has no zero column,
there is a unique diagonal matrix Λ = diag(λ1, . . . , λK) minimizing ‖X − ZΛ‖F given by

λj =
(Z>X)jj

‖Zj‖22
j = 1, . . . , K.

Proof. Since Λ is a diagonal matrix, we have

‖X − ZΛ‖2 = ‖X‖22 − 2tr(Λ>Z>X) + tr(Z>ZΛΛ>)

= ‖X‖22 − 2tr(Z>XΛ) + tr(Z>ZΛ2)

= ‖X‖22 − 2
K∑
j=1

(Z>X)jjλj +
K∑
j=1

∥∥Zj
∥∥2
2
λ2j .
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The above functional has a critical point obtained by setting the partial derivatives with
respect to the λj to 0, which gives

−2(Z>X)jj + 2
∥∥Zj

∥∥2
2
λj = 0;

that is,

λj =
(Z>X)jj

‖Zj‖22
.

Since the functional is a sum of quadratic functions and the coefficients ‖Zj‖22 of the λ2j are
positive, this critical point is indeed a minimum.

It should be noted that Proposition 4.5 does not guarantee that Λ is invertible. For
example, for

X =

1 0
0 1
1 0

 , Z =

1 1
1 0
1 −1

 ,

we have

Z>X =

(
1 1 1
1 0 −1

)1 0
0 1
1 0

 =

(
2 1
0 0

)
,

so λ2 = 0. When Proposition 4.5 yields a singular matrix, we skip stage 2 (we set Λ = I).

We now deal with step 1, where Q = RΛ is held fixed. For fixed Z and Q, we would like
to find some X ∈ K with ‖X‖F = ‖Z‖F so that ‖X − ZQ‖F is minimal. Without loss of
generality, we may assume that the entries a1, . . . , aK occurring in the matrix X are positive
and all equal to some common value a 6= 0. Recall that a matrix X ∈ X has the property
that every row contains exactly one nonzero entry, and that every column is nonzero.

To find X ∈ K, first we find the shape X̂ of X, which is the matrix obtained from X by
rescaling the columns of X so that X̂ has entries +1, 0. The problem is to decide for each
row, which column contains the nonzero entry. After having found X̂, we rescale its columns
so that ‖X‖F = ‖Z‖F .

Since
‖X − ZQ‖2F = ‖X‖2F − 2tr(Q>Z>X) + tr(Z>ZQQ>),

minimizing ‖X − ZQ‖F is equivalent to maximizing

tr(Q>Z>X) = tr((ZQ)>X) = tr(X(ZQ)>),

and since the ith row of X contains a single nonzero entry a in column ji (1 ≤ ji ≤ K), if
we write Y = ZQ, then

tr(XY >) = a
N∑
i=1

yi ji . (∗)
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By (∗), since a > 0, the quantity tr(XY >) is maximized iff yiji is maximized for i = 1, . . . , N ;
this is achieved if for the ith row of X, we pick a column index ` such that yi` is maximum.

To find the shape X̂ of X, we first find a matrix X by chosing a single nonzero entry
xij = 1 on row i in such a way that yij is maximum according to the following method. If
we let

µi = max
1≤j≤K

yij

Ji = {j ∈ {1, . . . , K} | yij = µi},

for i = 1, . . . , N , then

xij =

{
+1 for some chosen j ∈ Ji,
0 otherwise.

Of course, a single column index is chosen for each row. In our implementation, we pick the
smallest index in Ji.

Unfortunately, the matrixX may not be a correct solution, because the above prescription
does not guarantee that every column of X is nonzero. When this happens, we reassign
certain nonzero entries in columns having “many” nonzero entries to zero columns, so that
we get a matrix in K.

Suppose column j is zero. Then, we pick the leftmost index k of a column with a
maximum number of 1, and if i the smallest index for which X ik = 1, then we set X ik = 0
and X ij = 1. We repeat this reallocation scheme until every column is nonzero.

We obtain a new matrix X̂ in X , and finally we normalize X̂ to obtain X, so that
‖X‖F = ‖Z‖F .

A practical way to deal with zero columns in X is to simply decrease K. Clearly, further
work is needed to justify the soundness of such a method.

The above method is essentially the method described in Yu [23] and Yu and Shi [24],

except that in these works (in which X,Z and Y are denoted by X∗, X̃∗, and X̃, respectively)
the entries in X belong to {0, 1}; as described above, for row i, the index ` corresponding to
the entry +1 is given by

arg max
1≤j≤K

X̃(i, j).

The fact that X may have zero columns is not addressed by Yu. Furthermore, it is important
to make sure that X has the same norm as Z, but this normalization step is not performed
in the above works. On the other hand, the rows of Z are normalized and the resulting
matrix may no longer be a correct solution of the relaxed problem. In practice, it appears to
be a good approximation of a discrete solution; see option (3) of the initialization methods
for Z described below.

Any matrix obtained by flipping the signs of some of the columns of a solution ZR of
problem (∗2) is still a solution. Moreover, all entries in X are nonnegative. It follows that
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a “good” solution ZQp (that is, close to a discrete solution) should have the property that
the average of each of its column is nonnegative. We found that the following heuristic
is quite helpful in finding a better discrete solution X. Given a solution ZR of problem
(∗2), we compute ZQp, defined such that if the average of column (ZR)j is negative, then
(ZQp)

j = −(ZR)j, else (ZQp)
j = (ZR)j. It follows that the average of every column

in ZQp is nonnegative. Then, we apply the above procedure to find discrete solutions
X and Xp closest to ZR and ZQp respectively, and we pick the solution corresponding to
min{‖X − ZR‖F , ‖Xp − ZQp‖F}. Flipping signs of columns of ZR correspond to a diagonal
matrix Rp with entries ±1, a very special kind of orthogonal matrix. In summary, the
procedure for finding a discrete X close to a continuous ZR also updates R to Qp = RRp.
This step appears to be very effective for finding a good initial X.

The method due to Yu and Shi (see Yu [23] and Yu and Shi [24]) to find X ∈ K and
Q = RΛ with R ∈ O(K) and Λ diagonal invertible that minimize ϕ(X,Q) = ‖X − ZQ‖F is
to alternate steps during which either Q is held fixed (step PODX) or X is held fixed (step
PODR), except that Yu and Shi consider the special case where Λ = I.

(1) In step PODX, the next discrete solution X∗ is obtained fom the previous pair (Q∗, Z)

by computing X and then X∗ = X̂ from Y = ZQ∗, as just explained above.

(2) In step PODR, the next matrix Q∗ = RΛ is obtained from the previous pair (X∗, Z)
by first computing

R = UV >,

for any SVD decomposition UΣV > of Z>X∗, and then computing Λ from X∗ and ZR
using Proposition 4.5. If Λ is singular, then set Λ = I.

We keep track of the progress of the procedure by computing ϕ(X∗, Q∗) = ‖X∗ − ZQ∗‖F
after every step and checking that X∗ or ϕ(X∗, Q∗) stops changing, whichever comes first.
We observed that after a small number of steps, up to machine precision, ϕ(X∗, Q∗) stops
decreasing, and when this occurs the procedure halts (we also set a maximum number of
steps in case ϕ(X∗, Q∗) decreases for a very long time). Moreover, looking for Q = RΛ where
R ∈ O(K) and Λ is obtained using the method of Proposition 4.5 speeds up the convergence
and yields a better discrete solution X.

The process of searching for X and Q has an illuminating geometric interpretation in
terms of graph drawings. We may assume that the entries in the discrete solution X are 0 or
1. Then the rows of the discrete solutions X correspond to the tips of the unit vectors along
the coordinate axes in RK . Every axis contains at least such a point, and the multiplicity of
the point along the jth axis is the number of nodes in the jth block of the partition. Similarly,
the rows of Z are the nodes of a graph drawing of the weighted graph (V,W ). Multiplying
Z on the right by a K × K matrix Q (obtaining ZQ) is equivalent to multiplying Z> on
the left by Q> (obtaining Q>Z>). This means that the points in RK representing the rows
of ZQ are obtained by applying the linear transformation Q> to the columns of Z>. Thus,
ZR amounts to applying the rigid motion R> to the graph drawing Z, and ZΛ (where Λ is
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a diagonal invertible matrix) amounts to stretching or shrinking the graph drawing Z in the
directions of the axes.

Then, in step 2 (PODR), we are trying to deform the graph drawing given by Z using a
linear map (RΛ)>, so that the deformed graph drawing ZRΛ is as close as possible to X (in
the sense that ‖X − ZRΛ‖F is minimized).

In step 1 (PODX), we are trying to approximate the deformed graph drawing ZRΛ by a
discrete graph drawingX (whose nodes are the tips of the unit vectors), so that ‖X − ZRΛ‖F
is minimized.

If we are willing to give up the requirement that the deformed Z is still a solution of
problem (∗1), we have quite a bit of freedom in step 2. For example, we may allow normalizing
the rows. This seems reasonable to obtain an initial transformation Q. However, we feel
uncomfortable in allowing intermediate deformed Z that are not solutions of (∗1) during the
iteration process. This point should be investigated further.

In some sense, we have less freedom in step 1, since the ith row of ZRΛ is assigned to
the jth unit vector iff the index of the leftmost largest coordinate of this row is j. If some
axis has not been assigned any row of R, then we reallocate one of the points on an axis
with a maximum number of points.

Figure 4.5 shows a graph (on the left) and the graph drawings X and Z ∗ R obtained
by applying our method for three clusters. The rows of X are represented by the red points
along the axes, and the rows of Z ∗R by the green points (on the right). The original vertices
corresponding to the rows of Z are represented in blue. We can see how the two red points
correspond to an edge, the three red points correspond to a triangle, and the four red points
to a quadrangle. These constitute the clusters.

It remains to initialize Q∗ to start the process, and then steps (1) and (2) are iterated,
starting with step (1). Actually, what we really need is a “good” initial X∗, but to find it,
we need an initial R∗.

Method 1. One method is to use an orthogonal matrix denoted R1, such that distinct
columns of ZR1 are simultaneously orthogonal and D-orthogonal. The matrix R1 can be
found by diagonalizing Z>Z as Z>Z = R1ΣR

>
1 , as we explained at the end of Section 4.3.

We write Z2 = ZR1.

Method 2. The method advocated by Yu [23] is to pick K rows of Z that are as orthogonal
to each other as possible and to make a matrix R whose columns consist of these rows
normalized to have unit length. The intuition behind this method is that if a continuous
solution Z can be sent close to a discrete solution X by a rigid motion, then many rows of Z
viewed as vectors in RK should be nearly orthogonal. This way, ZR should contain at least
K rows well aligned with the canonical basis vectors, and these rows are good candidates
for some of the rows of the discrete solution X.

The algorithm given in Yu [23] needs a small correction, because rows are not removed
from Z when they are added to R, which may cause the same row to be added several times
to R.
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Xc and Rc after step 1

Figure 4.5: A graph and its drawing to find 3 clusters.

Given the N × K matrix Z (whose columns all have the same norm), we compute a
matrix R whose columns are certain rows of Z. We use a vector c ∈ RN to keep track of the
inner products of all rows of Z with the columns R1, . . . , Rk−1 that have been constructed
so far, and initially when k = 1, we set c = 0.

The first column R1 of R is any chosen row of Z.

Next, for k = 2, . . . , K, we compute all the inner products of Rk−1 with all rows in Z,
which are recorded in the vector ZRk−1, and we update c as follows:

c = c+ abs(ZRk−1).

We take the absolute values of the entries in ZRk−1 so that the ith entry in c is a score of
how orthogonal is the ith row of Z to R1, . . . , Rk−1. Then, we choose Rk as any row Zi of Z
for which ci is minimal (the customary (and ambiguous) i = arg min c), and we delete this
row from Z. The process is repeated (with the updated Z) until k = K.

At the end of the above process, we normalize the columns of R, to obtain a matrix that
we denote R2.

After some experimentation, we found that to obtain a better initial X∗, it is may desir-
able to start from a variant of the continuous solution Z obtained by solving problem (∗2).
We have implemented three methods.

1. We attempt to rescale the columns of Z by some diagonal invertible matrix Λ =
diag(λ1, . . . , λK), so that the rows of ZΛ sum to 1 as much as possible in the least-
squares sense. Since the vector of sums of rows of ZΛ is ZΛ1K = Zλ, with λ> =
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(λ1, . . . , λK), the least-squares problem is to minimize

‖Zλ− 1N‖22 ,

and since Z has rank K, the solution is λ = (Z>Z)−1Z>1N , and thus,

Λ = diag((Z>Z)−1Z>1N).

The matrix Λ is singular if some of the columns of Z sum to 0. This happens for
regular graphs, where the degree matrix is a multiple of the identity. There are also
cases where some of the λj are very small, so we use a tolerance factor to prevent
this, and in case of failure, we set Λ = I. In case of failure, we may also use ZR1

instead of Z, where R1 is the orthogonal matrix that makes ZR1 both D-orthogonal
and orthogonal.

2. We attempt to rescale the columns of Z by some diagonal invertible matrix Λ =
diag(λ1, . . . , λK), so that the rows of ZΛ have unit length as much as possible in the
least-squares sense. Since the square-norm of the ith row of ZΛ is

K∑
j=1

z2ijλ
2
j ,

if we write Z ◦Z for the matrix (z2ij) of square entries of elements in Z (the Hadamard
product of Z with itself), the least-squares problem is to mimimize∥∥Z ◦ Zλ2 − 1N

∥∥2
2
,

where (λ2)> = (λ21, . . . , λ
2
K). The matrix Z ◦ Z may not have rank K, so the least-

squares solution for λ2 is given by the pseudo-inverse of Z ◦ Z, as

λ2 = (Z ◦ Z)+1N .

There is no guarantee that the vector on the right-hand side has all positive entries,
so the method may fail. It may also fail when some of the λj are very small. We use
a tolerance factor to prevent this, and in case of failure, we set Λ = I.

3. We use a method more drastic than (2), which consists in normalizing the rows of Z.
Thus, we form the matrix

NZ = diag((ZZ>)
−1/2
11 , . . . , (ZZ>)

−1/2
NN ),

and we return NZ ∗ Z. Unlike the methods used in (1) and (2), this method does
not guarantee that NZ ∗ Z is a solution of problem (∗1). However, since the rows of
Z can be interpreted as vectors in RK that should align as much as possible with the
canonical basis vectors of RK , this method makes sense as a way to come closer to a
discrete solution. In fact, we found that it does well in most cases.
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We implemented a computer program that prompts the user for various options. To avoid
confusion, let us denote the original solution of problem (∗2) by Z1, and let Z2 = Z1R1, as
obtained by initialization method 1. The four options are:

1. Use the original solution Z1 of problem (∗2), as well as Z2.

2. Apply method 1 to Z1 and Z2.

3. Apply method 2 to Z1 and Z2.

4. Apply method 3 to Z1 and Z2.

Then, for each of these options, if we denote by Zinit1 and Zinit2 the solutions returned by
the method, our program computes initial solutions X1, X2, X3, X4 as follows:

1. Use Zinit1 and R = I.

2. Use Zinit1 and R = R2a, the matrix given by initialization method 2.

3. Use Zinit2 and R = I.

4. Use Zinit2 and R = R2b, the matrix given by initialization method 2.

After this, the program picks the discrete solutionX = Xi which corresponds to the minimum
of

‖X1− Zinit1‖ , ‖X2− Zinit1 ∗R2a‖ , ‖X3− Zinit2‖ , ‖X4− Zinit2 ∗R2b‖ .

Our experience is that options (3) and (4) tend to give better results. However, it is
harder to say whether any of the Xi does a better job than the others, although (2) and (4)
seem to do slightly better than (1) and (3). We also give the user the option in step PODR
to only compute R and set Λ = I. It appears that the more general method is hardly more
expansive (because finding Λ is cheap) and always gives better results.

We also found that we obtain better results if we rescale Z (and X) so that‖Z‖F = 100.

If we apply the method (using method 3 to find the initial R) to the graph associated
with the the matrix W1 shown in Figure 4.6 for K = 4 clusters, the algorithm converges in
3 steps and we find the clusters shown in Figure 4.7.

The solution Z of the relaxed problem is

Z =



−21.3146 −0.0000 19.4684 −15.4303
−4.1289 0.0000 16.7503 −15.4303
−21.3146 32.7327 −19.4684 −15.4303
−4.1289 −0.0000 16.7503 −15.4303
19.7150 0.0000 9.3547 −15.4303
−4.1289 23.1455 −16.7503 −15.4303
−21.3146 −32.7327 −19.4684 −15.4303
−4.1289 −23.1455 −16.7503 −15.4303
19.7150 −0.0000 −9.3547 −15.4303


.
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Figure 4.6: Underlying graph of the matrix W1.
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Figure 4.7: Four blocks of a normalized cut for the graph associated with W1 .

We find the following sequence for Q,Z ∗Q,X:

Q =


0 0.6109 −0.3446 −0.7128

−1.0000 0.0000 0.0000 −0.0000
0.0000 0.5724 0.8142 0.0969
−0.0000 0.5470 −0.4672 0.6947

 ,

which is the initial Q obtained by method 1;

Z ∗Q =



0.0000 −10.3162 30.4065 6.3600
0.0000 −1.3742 22.2703 −6.1531
−32.7327 −32.6044 −1.2967 2.5884

0.0000 −1.3742 22.2703 −6.1531
0.0000 8.9576 8.0309 −23.8653
−23.1455 −20.5505 −5.0065 −9.3982
32.7327 −32.6044 −1.2967 2.5884
23.1455 −20.5505 −5.0065 −9.3982
−0.0000 −1.7520 −7.2027 −25.6776


X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0


;

Q =


−0.0803 0.8633 −0.4518 −0.2102
−0.6485 0.1929 0.1482 0.7213
−0.5424 0.0876 0.5546 −0.6250
−0.5281 −0.4581 −0.6829 −0.2119


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Z ∗Q =



−0.6994 −9.6267 30.9638 −4.4169
−0.6051 4.9713 21.6922 −6.3311
−0.8081 −6.7218 14.2223 43.5287
−0.6051 4.9713 21.6922 −6.3311
1.4913 24.9075 6.8186 −6.7218
2.5548 6.5028 6.5445 31.3015
41.6456 −19.3507 4.5190 −3.6915
32.5742 −2.4272 −0.3168 −2.0882
11.6387 23.2692 −3.5570 4.9716


X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0


;

Q =


−0.3201 0.7992 −0.3953 −0.3201
−0.7071 −0.0000 0.0000 0.7071
−0.4914 −0.0385 0.7181 −0.4914
−0.3951 −0.5998 −0.5728 −0.3951



Z ∗Q =



3.3532 −8.5296 31.2440 3.3532
−0.8129 5.3103 22.4987 −0.8129
−0.6599 −7.0310 3.2844 45.6311
−0.8129 5.3103 22.4987 −0.8129
−4.8123 24.6517 7.7629 −4.8123
−0.7181 6.5997 −1.5571 32.0146
45.6311 −7.0310 3.2844 −0.6599
32.0146 6.5997 −1.5571 −0.7181
4.3810 25.3718 −5.6719 4.3810


X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0


.

During the next round, the exact same matrices are obtained and the algorithm stops.
Comparison of the matrices Z ∗ Q and X makes it clear that X is obtained from Z ∗ Q by
retaining on every row the leftmost largest value and setting the others to 0 (non-maximum
supression).

In this example, the columns of all X were nonzero, but this may happen, for example
when we apply the algorithm to the graph of Figure 4.6 to find K = 5 clusters shown in
Figure 4.8.
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Figure 4.8: Five blocks of a normalized cut for the graph associated with W1 .

We find that the initial value for Z ∗Q is
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Z ∗Q =



−5.7716 −27.5934 0.0000 −9.3618 −0.0000
5.5839 −20.2099 −29.7044 −1.2471 −0.0000
−2.3489 1.1767 −0.0000 −29.5880 −29.7044
5.5839 −20.2099 29.7044 −1.2471 0.0000
21.6574 −7.2879 0.0000 8.1289 0.0000
8.5287 4.5433 −0.0000 −18.6493 −21.0042
−2.3489 1.1767 −0.0000 −29.5880 29.7044
8.5287 4.5433 −0.0000 −18.6493 21.0042
23.3020 6.5363 −0.0000 −1.5900 −0.0000


.

The matrix X1 given by the above method in which we pick the leftmost largest entry on
every row has a fourth row equal to 0. The matrix X1 is repaired by migrating a 1 from
the second entry of the first column, which contains the largest number of 1’s, yielding the
matrix X2; see below.

X1 =



0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
1 0 0 0 0


X2 =



0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
1 0 0 0 0


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Chapter 5

Signed Graphs

5.1 Signed Graphs and Signed Laplacians

Intuitively, in a weighted graph, an edge with a positive weight denotes similarity or proximity
of its endpoints. For many reasons, it is desirable to allow edges labeled with negative
weights, the intuition being that a negative weight indicates dissimilarity or distance.

Weighted graphs for which the weight matrix is a symmetric matrix in which negative and
positive entries are allowed are called signed graphs . Such graphs (with weights (−1, 0,+1))
were introduced as early as 1953 by Harary [12], to model social relations involving disliking,
indifference, and liking. The problem of clustering the nodes of a signed graph arises naturally
as a generalization of the clustering problem for weighted graphs. From our perspective, we
would like to know whether clustering using normalized cuts can be extended to signed
graphs.

Given a signed graph G = (V,W ) (where W is a symmetric matrix with zero diagonal
entries), the underlying graph of G is the graph with node set V and set of (undirected)
edges E = {{vi, vj} | wij 6= 0}.

The first obstacle is that the degree matrix may now contain zero or negative entries. As
a consequence, the Laplacian L may no longer be positive semidefinite, and worse, D−1/2

may not exist.

A simple remedy is to use the absolute values of the weights in the degree matrix! This
idea applied to signed graph with weights (−1, 0, 1) occurs in Hou [14]. Kolluri, Shewchuk
and O’Brien [15] take the natural step of using absolute values of weights in the degree
matrix in their original work on surface reconstruction from noisy point clouds. Given a
Delaunay tetrahedralization, they build a graph with positive and negative edges and use
the normalized cut method for two clusters to decide which tetrahedra are inside or outside
the original object. The triangulated surface (called the eigencrust) consists of the triangles
where an inside and an outside tetrahedron meet. The authors state that the Lapacians
arising from such graphs are always positive definite, which is not quite correct since this
is only true for unbalanced graphs (see Section 5.3). Kunegis et al. [16] appear to be the

87
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first to make a systematic study of spectral methods applied to signed graphs. In fact, many
results in this section originate from Kunegis et al. [16]. However, it should be noted that
only 2-clustering is considered in the above papers.

As we will see, the trick of using absolute values of weights in the degree matrix allows
the whole machinery that we have presented to be used to attack the problem of clustering
signed graphs using normalized cuts. This requires a modification of the notion of normalized
cut. This new notion it is quite reasonable, as we will see shortly.

If (V,W ) is a signed graph, where W is an m×m symmetric matrix with zero diagonal
entries and with the other entries wij ∈ R arbitrary, for any node vi ∈ V , the signed degree
of vi is defined as

di = d(vi) =
m∑
j=1

|wij|,

and the signed degree matrix D as

D = diag(d(v1), . . . , d(vm)).

For any subset A of the set of nodes V , let

vol(A) =
∑
vi∈A

di =
∑
vi∈A

m∑
j=1

|wij|.

For any two subsets A and B of V , define links+(A,B), links−(A,B), and cut(A,A) by

links+(A,B) =
∑

vi∈A,vj∈B
wij>0

wij

links−(A,B) =
∑

vi∈A,vj∈B
wij<0

−wij

cut(A,A) =
∑

vi∈A,vj∈A
wij 6=0

|wij|.

Note that links+(A,B) = links+(B,A), links−(A,B) = links−(B,A), and

cut(A,A) = links+(A,A) + links−(A,A).

Then, the signed Laplacian L is defined by

L = D −W,

and its normalized version Lsym by

Lsym = D
−1/2

LD
−1/2

= I −D−1/2WD
−1/2

.
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For a graph without isolated vertices, we have d(vi) > 0 for i = 1, . . . ,m, so D
−1/2

is well
defined.

The signed Laplacian is symmetric positive semidefinite. As for the Laplacian of a weight
matrix (with nonnegative entries), this can be shown in two ways. The first method consists
in defining a notion of incidence matrix for a signed graph, and appears in Hou [14].

Definition 5.1. Given a signed graph G = (V,W ), with V = {v1, . . . , vm}, if {e1, . . . , en}
are the edges of the underlying graph of G (recall that {vi, vj} is an edge of this graph iff
wij 6= 0), for any oriented graph Gσ obtained by giving an orientation to the underlying
graph of G, the incidence matrix Bσ of Gσ is the m× n matrix whose entries bi j are given
by

bi j =


+
√
wij if wij > 0 and s(ej) = vi

−√wij if wij > 0 and t(ej) = vi√−wij if wij < 0 and (s(ej) = vi or t(ej) = vi)

0 otherwise.

Then, we have the following proposition whose proof is easily adapted from the proof of
Proposition 2.2.

Proposition 5.1. Given any signed graph G = (V,W ) with V = {v1, . . . , vm}, if Bσ is the
incidence matrix of any oriented graph Gσ obtained from the underlying graph of G and D
is the signed degree matrix of W , then

Bσ(Bσ)> = D −W = L.

Consequently, Bσ(Bσ)> is independent of the orientation of the underlying graph of G and
L = D −W is symmetric and positive semidefinite; that is, the eigenvalues of L = D −W
are real and nonnegative.

Another way to prove that L is positive semidefinite is to evaluate the quadratic form
x>Lx. We will need this computation to figure out what is the new notion of normalized
cut. For any real λ ∈ R, define sgn(λ) by

sgn(λ) =


+1 if λ > 0

−1 if λ < 0

0 if λ = 0.

Proposition 5.2. For any m×m symmetric matrix W = (wij), if we let L = D−W where
D is the signed degree matrix associated with W , then we have

x>Lx =
1

2

m∑
i,j=1

|wij|(xi − sgn(wij)xj)
2 for all x ∈ Rm.

Consequently, L is positive semidefinite.
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Proof. We have

x>Lx = x>Dx− x>Wx

=
m∑
i=1

dix
2
i −

m∑
i,j=1

wijxixj

=
m∑

i,j=1

(|wij|x2i − wijxixj)

=
m∑

i,j=1

(|wij|(x2i − sgn(wij)xixj)

=
1

2

(
m∑

i,j=1

|wij|(x2i − 2sgn(wij)xixj + x2j)

)

=
1

2

m∑
i,j=1

|wij|(xi − sgn(wij)xj)
2,

and this quantity is nonnegative.

5.2 Signed Normalized Cuts

As in Section 4.3, given a partition of V into K clusters (A1, . . . , AK), if we represent the
jth block of this partition by a vector Xj such that

Xj
i =

{
aj if vi ∈ Aj
0 if vi /∈ Aj,

for some aj 6= 0, then we have the following result.

Proposition 5.3. For any vector Xj representing the jth block of a partition (A1, . . . , AK)
of V , we have

(Xj)>LXj = a2j(cut(Aj, Aj) + 2links−(Aj, Aj)).

Proof. Using Proposition 5.2, we have

(Xj)>LXj =
1

2

m∑
i,k=1

|wik|(Xj
i − sgn(wik)X

j
k)

2.

The sum on the righthand side splits into four parts:

(1) S1 = 1
2

∑
i,k∈Aj

|wik|(Xj
i − sgn(wik)X

j
k)

2. In this case, Xj
i = Xj

k = aj, so only negative
edges have a nonzero contribution, and we have

S1 =
1

2

∑
i,k∈Aj ,wik<0

|wik|(aj + aj)
2 = 2a2j links−(Aj, Aj).
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(2) S2 = 1
2

∑
i∈Aj ,k∈Aj

|wik|(Xj
i − sgn(wik)X

j
k)

2. In this case, Xj
i = aj and Xj

k = 0, so

S2 =
1

2
a2j

∑
i∈Aj ,k∈Aj

|wik| =
1

2
a2jcut(Aj, Aj).

(3) S3 = 1
2

∑
i∈Aj ,k∈Aj

|wik|(Xj
i − sgn(wik)X

j
k)

2. In this case, Xj
i = 0 and Xj

k = aj, so

S3 =
1

2
a2j

∑
i∈Aj ,k∈Aj

|wik| =
1

2
a2jcut(Aj, Aj) =

1

2
a2jcut(Aj, Aj).

(4)

S4 = 1
2

∑
i,k∈Aj

|wik|(Xj
i − sgn(wik)X

j
k)

2. In this case, Xj
i = Xj

k = 0, so

S4 = 0.

In summary,

(Xj)>LXj = S1 + S2 + S3 + S4 = 2a2j links−(Aj, Aj) + a2jcut(Aj, Aj),

as claimed.

Since with the revised definition of vol(Aj), we also have

(Xj)>DXj = a2j
∑
vi∈Aj

di = a2jvol(Aj),

we deduce that
(Xj)>LXj

(Xj)>DXj
=

cut(Aj, Aj) + 2links−(Aj, Aj)

vol(Aj)
.

The calculations of the previous paragraph suggest the following definition.

Definition 5.2. The signed normalized cut sNcut(A1, . . . , AK) of the partition (A1, . . . , AK)
is defined as

sNcut(A1, . . . , AK) =
K∑
j=1

cut(Aj, Aj)

vol(Aj)
+ 2

K∑
j=1

links−(Aj, Aj)

vol(Aj)
.

Remark: Kunegis et al. [16] deal with a different notion of cut, namely ratio cut (in which
vol(A) is replaced by the size |A| of A), and only for two clusters. In this case, by a clever
choice of indicator vector, they obtain a notion of signed cut that only takes into account
the positive edges between A and A, and the negative edges among nodes in A and nodes
in A. This trick does not seem to generalize to more than two clusters, and this is why we
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use our representation for partitions. Our definition of a signed normalized cut appears to
be novel.

Based on previous computations, we have

sNcut(A1, . . . , AK) =
K∑
j=1

(Xj)>LXj

(Xj)>DXj
.

where X is the N ×K matrix whose jth column is Xj. Therefore, this is the same problem
as in Chapter 4, with L replaced by L and D replaced by D.

Observe that minimizing sNcut(A1, . . . , AK) amounts to minimizing the number of posi-
tive and negative edges between clusters, and also minimizing the number of negative edges
within clusters. This second minimization captures the intuition that nodes connected by a
negative edge should not be together (they do not “like” each other; they should be far from
each other).

The K-clustering problem for signed graphs is related but not equivalent to another
problem known as correlation clustering . In correlation clustering, in our terminology and
notation, given a graph G = (V,W ) with positively and negatively weighted edges, one seeks
a clustering of V that minimizes the sum links−(Aj, Aj) of the absolute values of the negative
weights of the edges within each cluster Aj, and minimizes the sum links+(Aj, Aj) of the pos-
itive weights of the edges between distinct clusters. In contrast to K-clustering, the number
K of clusters is not given in advance, and there is no normalization with respect to size of
volume. Furthermore, in correlation clustering, only the contribution links+(Aj, Aj) of posi-
tively weighted edges is minimized, but our method only allows us to minimize cut(Aj, Aj),
which also takes into account negatively weighted edges between distinct clusters. Correla-
tion clustering was first introduced and studied for complete graphs by Bansal, Blum and
Chawla [1]. They prove that this problem is NP-complete and give several approximation al-
gorithms, including a PTAS for maximizing agreement. Demaine and Immorlica [5] consider
the same problem for arbitrary weighted graphs, and they give an O(log n)-approximation
algorithm based on linear programming. Since correlation clustering does not assume that K
is given and not not include nomalization by size or volume, it is not clear whether algorithms
for correlation clustering can be applied to normalized K-clustering, and conversely.

5.3 Balanced Graphs

Since

sNcut(A1, . . . , AK) =
K∑
j=1

(Xj)>LXj

(Xj)>DXj
,

the whole machinery of Sections 4.3 and 4.5 can be applied with D replaced by D and
L replaced by L. However, there is a new phenomenon, which is that L may be positive
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definite. As a consequence, 1 is not always an eigenvector of L. As observed by Kunegis et
al. [16], it is also possible to characterize for which signed graphs the Laplacian L is positive
definite. Such graphs are “cousins” of bipartite graphs and were introduced by Harary [12].
Since a graph is the union of its connected components, we restrict ourselves to connected
graphs.

Definition 5.3. Given a signed graph G = (V,W ) with negative weights whose underlying
graph is connected, we say that G is balanced if there is a partition of its set of nodes V
into two blocks V1 and V2 such that all positive edges connect nodes within V1 or V2, and
negative edges connect nodes between V1 and V2.

An example of a balanced graph is shown in Figure 5.1 on the left, in which positive
edges are colored green and negative edges are colored red. This graph admits the partition

({v1, v2, v4, v7, v8}, {v3, v5, v6, v9}).

On the other hand, the graph shown on the right contains the cycle (v2, v3, v6, v5, v4, v2) with
an odd number of negative edges (3), and thus is not balanced.

v1

v2

v3

v4 v5

v6

v7

v8 v9

v1

v2

v3

v4 v5

v6

v7

v8 v9

Figure 5.1: A balanced signed graph G1 (left). An unbalanced signed graph G2 (right).

Observe that if we delete all positive edges in a balanced graph, then the resulting graph is
bipartite. Then, it is not surprising that connected balanced graphs can be characterized as
signed graphs in which every cycle has an even number of negative edges. This is analogous
to the characterization of a connected bipartite graph as a graph in which every cycle has
even length. The following proposition was first proved by Harary [12]. We give a more
direct proof.

Proposition 5.4. If G = (V,W ) is a connected signed graph with negative weights, then G
is balanced iff every cycle contains an even number of negative edges.

Proof. If G is balanced, then every cycle must switch from a node in V1 to a node in V2 (or
from a node in V2 to a node in V1) an even number of times. Therefore, it contains an even
number of negative edges.
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Conversely, assume that G contains no cycle with an odd number of negative edges. Since
G is connected, pick some some v0 in V , and let V1 be the set of node reachable from v0
by a path with an odd number of negative edges, and let V2 be the set of node reachable
from v0 by a path with an even number of negative edges. Clearly, (V1, V2) is a partition of
V . Assume that there is a negative edge {u, v} between two nodes within V1 (or V2). Then,
using the paths from v0 to u and v, where the parity of the number of negative edges is
the same, we would obtain a cycle with an odd number of negative edges, a contradiction.
Therefore, edges between nodes in V1 (or V2) are positive, and negative edges connect nodes
in V1 and V2.

We can also detect whether a connected signed graph is balanced in terms of the kernel
of the transpose of any of its incidence matrices.

Proposition 5.5. If G = (V,W ) is a connected signed graph with negative weights and with
m nodes, for any orientation of its underlying graph, let B be the corresponding incidence
matrix. The underlying graph of G is balanced iff rank(B) = m − 1. Furthermore, if G is
balanced, then there is a vector u with ui ∈ {−1, 1} such that B>u = 0, and the sets of nodes
V1 = {vi | ui = −1} and V2 = {vi | ui = +1} form a partition of V for which G is balanced.

Proof. Assume that rank(B) = m− 1; this implies that Ker (B>) 6= (0). For any u 6= 0, we
have B>u = 0 iff u>B = 0 iff u is orthogonal to every column of B. By definition of B, we
have

ui = sgn(wij)uj

iff there is an edge between vi and vj.

Pick node v1 in V and define V1 and V2 as in the proof of Proposition 5.4. The above
equation shows that u has the same value on nodes connected by a path with an even number
of negative edges, and opposite values on nodes connected by a path with an odd number of
negative edges. Since V1 consists of all nodes connected to v1 by a path with an odd number
of negative edges and V2 consists of all nodes connected to v1 by a path with an even number
of negative edges, it follows that u has the same value c = u1 on all nodes in V1, and the
value −c on all nodes in V2. Then, there is no negative edge between any two nodes in V1
(or V2), since otherwise u would take opposite values on theses two nodes, contrary to the
fact that u has a constant value on V1 (and V2). This implies that (V1, V2) is a partition of
V making G a balanced graph.

Conversely, if G is balanced, then there is a partition (V1, V2) of V such that positive
edges connect nodes within V1 or V2, and negative edges connect nodes between V1 and V2.
Then, if u is the vector with ui ∈ {−1, 1} defined so that ui = +1 iff vi ∈ V1 and ui = −1 iff
vi ∈ V2, we have

ui = sgn(wij)uj,

and so B>u = 0, which shows that u ∈ Ker (B>). Furthermore, the argument in the first
part of the proof shows that every vector in Ker (B>) must have the same value c on all
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nodes in V1, and the value −c on all nodes in V2, so it must be a multiple of the vector u
given by ui = +1 iff vi ∈ V1 and ui = −1 iff vi ∈ V2. Therefore, dim(Ker (B>)) = 1, and
rank = m− 1. The third part of the proposition has already been shown.

Remark: A simple modification of the proof of Proposition 5.5 shows that if there are c1
components containing only positive edges, c2 components that are balanced graphs, and c3
components that are not balanced (and contain some negative edge), then

c1 + c2 = m− rank(B).

Since by Proposition 5.1 we have L = BB> for any incidence matrix B associated with
an orientation of the underlying graph of G, we obtain the following important result (which
is proved differently in Kunegis et al. [16]).

Theorem 5.6. The signed Laplacian L of a connected signed graph G is positive definite iff
G is not balanced (possesses some cycle with an odd number of negative edges).

If G = (V,W ) is a balanced graph, then there is a partition (V1, V2) of V such that for
every edge {vi, vj}, if wij > 0, then vi, vj ∈ V1 or vi, vj ∈ V2, and if wij < 0, then vi ∈ V1 and
vj ∈ V2. It follows that if we define the vector x such that xi = +1 iff vi ∈ V1 and xi = −1
iff vi ∈ V2, then for every edge {vi, vj} we have

sgn(wij) = xixj.

We call x a bipartition of V .

The signed Laplacian of the balanced graph G1 is given by

L1 =



2 −1 0 −1 0 0 0 0 0
−1 5 1 −1 1 0 0 −1 0
0 1 3 0 −1 −1 0 0 0
−1 −1 0 5 1 0 −1 −1 0
0 1 −1 1 6 −1 0 1 −1
0 0 −1 0 −1 4 0 1 −1
0 0 0 −1 0 0 2 −1 0
0 −1 0 −1 1 1 −1 6 1
0 0 0 0 −1 −1 0 1 3


Using Matlab, we find that its eigenvalues are

0, 1.4790, 1.7513, 2.7883, 4.3570, 4.8815, 6.2158, 7.2159, 7.3112.

The eigenvector corresponding to the eigenvalue 0 is

(0.3333, 0.3333, −0.3333, 0.3333, −0.3333, −0.3333, 0.3333, 0.3333, −0.3333)
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It gives us the bipartition

({v1, v2, v4, v7, v8}, {v3, v5, v6, v9}),

as guaranteed by Proposition 5.5.

The signed Laplacian of the unbalanced graph G2 is given by

L2 =



2 −1 0 −1 0 0 0 0 0
−1 5 1 1 −1 0 0 −1 0
0 1 3 0 −1 −1 0 0 0
−1 1 0 5 1 0 −1 −1 0
0 −1 −1 1 6 −1 0 1 −1
0 0 −1 0 −1 4 0 1 −1
0 0 0 −1 0 0 2 −1 0
0 −1 0 −1 1 1 −1 6 1
0 0 0 0 −1 −1 0 1 3


The eigenvalues of L2 are

0.5175, 1.5016, 1.7029, 2.7058, 3.7284, 4.9604, 5.6026, 7.0888, 8.1921.

The matrix L2 is indeed positive definite (since G2 is unbalanced). Hou [14] gives bounds
on the smallest eigenvalue of an unbalanced graph. The lower bound involves a measure of
how unbalanced the graph is (see Theorem 3.4 in Hou [14]).

Following Kunegis et al., we can prove the following result showing that the eigenvalues
and the eigenvectors of L and its unsigned counterpart L are strongly related. Given a
symmetric signed matrix W , we define the unsigned matrix W such that Wij = |wij| (1 ≤
i, j ≤ m). We let L be the Laplacian associated with W . Note that

L = D −W .

The following proposition is shown in Kunegis et al. [16]).

Proposition 5.7. Let G = (V,W ) be a signed graph and let W be the unsigned matrix
associated with W . If G is balanced, and x is a bipartition of V , then for any diagonalization
L = PΛP> of L, where P is an orthogonal matrix of eigenvectors of L, if we define the matrix
P so that

Pi = xiPi,

where Pi is the ith row of P and Pi is the ith row of P , then P is orthogonal and

L = PΛP>

is a diagonalization of L. In particular, L and L have the same eigenvalues with the same
multiplicities.
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Proof. Observe that if we let
X = diag(x1, . . . , xm),

then
P = XP.

It follows that
PΛP> = XPΛP>X> = XLX> = XLX,

since X is a diagonal matrix. As a consequence, for diagonal entries, we have

x2iLii = Dii = Lii,

and for i 6= j, we have

xixjLij = sgn(wij)Lij = −sgn(wij)wij = −|wij| = −Wij = Lij,

which proves that L = PΛP>. It remains to prove that P is orthogonal. Since X is a
diagonal matrix whose entries are ±1, we have X>X = I, so

P>P = (XP )>XP = P>X>XP = P>IP = I,

since P is orthogonal. Thus, P is indeed orthogonal.

5.4 K-Way Clustering of Signed Graphs

Using the signed Laplacians L and Lsym, we can define the optimization problems as in
Section 4.3 and solve them as in Section 4.5, except that we drop the constraint

X(X>X)−1X>1 = 1,

since 1 is not necessarily an eigenvector of L. By Proposition A.3, the sum of the K smallest
eigenvalues of Lsym is a lower bound for tr(Y >LsymY ), and the minimum of problem (∗∗2)
is achieved by any K unit eigenvectors (u1, . . . , uk) associated with the smallest eigenvalues

0 ≤ ν1 ≤ ν2 ≤ . . . ≤ νK

of Lsym. The difference with unsigned graphs is that ν1 may be strictly positive. Here is the
result of applying this method to various examples.

First, we apply our algorithm to find three clusters for the balanced graph G1. The graph
G1 as outputted by the algorithm is shown in Figure 5.2 and the three clusters are shown in
Figure 5.3. As desired, these clusters do not contain negative edges.

By the way, for two clusters, the algorithm finds the bipartition of G1, as desired.

Next, we apply our algorithm to find three clusters for the unbalanced graph G2. The
graph G2 as outputted by the algorithm is shown in Figure 5.2 and the three clusters are
shown in Figure 5.3. As desired, these clusters do not contain negative edges.

The algorithm finds the same clusters, but this is probably due to the fact that G1 and
G2 only differ by the signs of two edges.
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Figure 5.2: The balanced graph G1.
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Figure 5.3: Three blocks of a normalized cut for the graph associated with G1.
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Figure 5.4: The unbalanced graph G2.
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Figure 5.5: Three blocks of a normalized cut for the graph associated with G2.
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5.5 Signed Graph Drawing

Following Kunegis et al. [16], if our goal is to draw a signed graph G = (V,W ) with m nodes,
a natural way to interpret negative weights is to assume that the endpoints vi and vj of an
edge with a negative weight should be placed far apart, which can be achieved if instead of
assigning the point ρ(vj) ∈ Rn to vj, we assign the point −ρ(vj). Then, if R is the m × n
matrix of a graph drawing of G in Rn, the energy function E(R) is redefined to be

E(R) =
∑

{vi,vj}∈E

|wij| ‖ρ(vi)− sgn(wij)ρ(vj)‖2 .

We obtain the following version of Proposition 3.1.

Proposition 5.8. Let G = (V,W ) be a signed graph, with |V | = m and with W a m ×m
symmetric matrix, and let R be the matrix of a graph drawing ρ of G in Rn (a m×n matrix).
Then, we have

E(R) = tr(R>LR).

Proof. Since ρ(vi) is the ith row of R (and ρ(vj) is the jth row of R), if we denote the kth
column of R by Rk, using Proposition 5.2, we have

E(R) =
∑

{vi,vj}∈E

|wij| ‖ρ(vi)− sgn(wij)ρ(vj)‖2

=
n∑
k=1

∑
{vi,vj}∈E

|wij|(Rik − sgn(wij)Rjk)
2

=
n∑
k=1

1

2

m∑
i,j=1

|wij|(Rik − sgn(wij)Rjk)
2

=
n∑
k=1

(Rk)>LRk = tr(R>LR),

as claimed.

Then, as in Chapter 3, we look for a graph drawing R that minimizes E(R) = tr(R>LR)
subject to R>R = I. The new ingredient is that L is positive definite iff G is not a balanced
graph. Also, in the case of a signed graph, 1 does not belong to the kernel of L, so we do
not get a balanced graph drawing.

If G is a signed balanced graph, then KerL is nontrivial, and if G is connected, then
KerL is spanned by a vector whose components are either +1 or −1. Thus, if we use the
first n unit eigenvectors (u1, u2, . . . , un) associated with the n smallest eigenvalues 0 = λ1 <
λ2 ≤ · · · ≤ λn of L, we obtain a drawing for which the nodes are partitionned into two
sets living in two hyperplanes corresponding to the value of their first coordinate. Let us
call such a drawing a bipartite drawing . However, if G is connected, the vector u2 does not
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belong to KerL, so if m ≥ 3, it must have at least three coordinates with distinct absolute
values, and using (u2, . . . , un+1) we obtain a nonbipartite graph. Then, the following version
of Theorem 3.2 is easily shown.

Theorem 5.9. Let G = (V,W ) be a signed graph with |V | = m ≥ 3, assume that G has
some negative edge and is connected, and let L = D −W be the signed Laplacian of G.

(1) If G is not balanced and if the eigenvalues of L are 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λm, then
the minimal energy of any orthogonal graph drawing of G in Rn is equal to λ1+ · · ·+λn
The m × n matrix R consisting of any unit eigenvectors u1, . . . , un associated with
λ1 ≤ . . . ≤ λn yields an orthogonal graph drawing of minimal energy.

(2) If G is balanced and if the eigenvalues of L are 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λm, then
the minimal energy of any orthogonal nonbipartite graph drawing of G in Rn is equal
to λ2 + · · · + λn+1 (in particular, this implies that n < m). The m × n matrix R
consisting of any unit eigenvectors u2, . . . , un+1 associated with λ2 ≤ . . . ≤ λn+1 yields
an orthogonal nonbipartite graph drawing of minimal energy.

(3) If G is balanced, for n = 2, a graph drawing of G as a bipartite graph (with positive edges
only withing the two blocks of vertices) is obtained from the m× 2 matrix consisting of
any two unit eigenvectors u1 and u2 associated with 0 and λ2.

In all cases, the graph drawing R satisfies the condition R>R = I (it is an orthogonal graph
drawing).

Our first example is the signed graph G4 defined by the weight matrix given by the
following Matlab program:

nn = 6; G3 = diag(ones(1,nn),1); G3 = G3 + G3’;

G3(1,nn+1) = 1; G3(nn+1,1) = 1; G4 = -G3;

All edges of this graph are negative. The graph obtained by using G3 is shown on the left
and the graph obtained by using the signed Laplacian of G4 is shown on the right in Figure
5.6.

The second example is the signed graph G5 obtained from G3 by making a single edge
negative:

G5 = G3; G5(1,2) = -1; G5(2,1) = -1;

The graph obtained by using G3 is shown on the left and the graph obtained by using the
signed Laplacian of G5 is shown on the right in Figure 5.7. Positive edges are shown in blue
and negative edges are shown in red.
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Figure 5.6: The signed graph G4.
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Figure 5.7: The signed graph G5.

The third example is the signed graph G6 defined by the weight matrix given by the
following Matlab program:

nn = 24; G6 = diag(ones(1,nn),1); G6 = G6 + G6’;

G6(1,nn+1) = 1; G6(nn+1,1) = 1;

G6(1,2) = -1; G6(2,1) = -1; G6(6,7) = -1; G6(7,6) = -1;

G6(11,12) = -1; G6(12,11) = -1; G6(16,17) = -1; G6(17,16) = -1;

G6(21,22) = -1; G6(22,21) = -1;

The graph obtained by using absolute values in G6 is shown on the left and the graph
obtained by using the signed Laplacian of G6 is shown on the right in Figure 5.8.

The fourth example is the signed graph G7 defined by the weight matrix given by the
following Matlab program:

nn = 26; G7 = diag(ones(1,nn),1); G7 = G7 + G7’;

G7(1,nn+1) = 1; G7(nn+1,1) = 1;

G7(1,2) = -1; G7(2,1) = -1; G7(10,11) = -1; G7(11,10) = -1;

G7(19,20) = -1; G7(20,19) = -1;

The graph obtained by using absolute values in G7 is shown on the left and the graph
obtained by using the signed Laplacian of G7 is shown on the right in Figure 5.9.
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Figure 5.8: The signed graph G6.
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Figure 5.9: The signed graph G7.

These graphs are all unbalanced. As predicted, nodes linked by negative edges are far
from each other.

Our last example is the balanced graph G1 from Figure 5.1. The graph obtained by using
absolute values in G1 is shown on the left and the bipartite graph obtained by using the
signed Laplacian of G1 is shown on the right in Figure 5.10.
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Figure 5.10: The balanced graph G1.



Chapter 6

Graph Clustering Using Ratio Cuts

In this short chapter, we consider the alternative to normalized cut, called ratio cut, and
show that the methods of Chapters 4 and 5 can be trivially adapted to solve the clustering
problem using ratio cuts. All that needs to be done is to replace the normalized Laplacian
Lsym by the unormalized Laplacian L, and omit the step of considering Problem (∗∗2). In
particular, there is no need to multiply the continuous solution Y by D−1/2. The idea of
ratio cut is to replace the volume vol(Aj) of each block Aj of the partition by its size, |Aj|
(the number of nodes in Aj). First, we deal with unsigned graphs, the case where the entries
in the symmetric weight matrix W are nonnegative.

Definition 6.1. The ratio cut Rcut(A1, . . . , AK) of the partition (A1, . . . , AK) is defined as

Rcut(A1, . . . , AK) =
K∑
i=1

cut(Aj, Aj)

|Aj|
.

As in Section 4.3, given a partition of V into K clusters (A1, . . . , AK), if we represent the
jth block of this partition by a vector Xj such that

Xj
i =

{
aj if vi ∈ Aj
0 if vi /∈ Aj,

for some aj 6= 0, then

(Xj)>LXj = a2j(cut(Aj, Aj)

(Xj)>Xj = a2j |Aj|.

Consequently, we have

Rcut(A1, . . . , AK) =
K∑
i=1

cut(Aj, Aj)

|Aj|
=

K∑
i=1

(Xj)>LXj

(Xj)>Xj
.
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On the other hand, the normalized cut is given by

Ncut(A1, . . . , AK) =
K∑
i=1

cut(Aj, Aj)

vol(Aj)
=

K∑
i=1

(Xj)>LXj

(Xj)>DXj
.

Therefore, ratio cut is the special case of normalized cut where D = I. If we let

X =
{

[X1 . . . XK ] | Xj = aj(x
j
1, . . . , x

j
N), xji ∈ {1, 0}, aj ∈ R, Xj 6= 0

}
(note that the condition Xj 6= 0 implies that aj 6= 0), then the set of matrices representing
partitions of V into K blocks is

K =
{
X = [X1 · · · XK ] | X ∈ X ,

(X i)>Xj = 0, 1 ≤ i, j ≤ K, i 6= j
}
.

Here is our first formulation of K-way clustering of a graph using ratio cuts, called
problem PRC1 :

K-way Clustering of a graph using Ratio Cut, Version 1:
Problem PRC1

minimize
K∑
j=1

(Xj)>LXj

(Xj)>Xj

subject to (X i)>Xj = 0, 1 ≤ i, j ≤ K, i 6= j,

X ∈ X .

The solutions that we are seeking are K-tuples (P(X1), . . . ,P(XK)) of points in RPN−1
determined by their homogeneous coordinates X1, . . . , XK . As in Chapter 4, chasing de-
nominators and introducing a trace, we obtain the following formulation of our minimization
problem:

K-way Clustering of a graph using Ratio Cut, Version 2:
Problem PRC2

minimize tr(X>LX)

subject to X>X = I,

X ∈ X .

The natural relaxation of problem PRC2 is to drop the condition that X ∈ X , and we
obtain the
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Problem (R∗2)

minimize tr(X>LX)

subject to X>X = I.

This time, since the normalization condition is X>X = I, we can use the eigenvalues and
the eigenvectors of L, and by Proposition A.2, the minimum is achieved by any K unit
eigenvectors (u1, . . . , uK) associated with the smallest K eigenvalues

0 = λ1 ≤ λ2 ≤ . . . ≤ λK

of L. The matrix Z = Y = [u1, . . . , uK ] yields a minimum of our relaxed problem (R∗2).
The rest of the algorithm is as before; we try to find Q = RΛ with R ∈ O(K), Λ diagonal
invertible, and X ∈ X such that ‖X − ZQ‖ is minimum.

In the case of signed graphs, we define the signed ratio cut sRcut(A1, . . . , AK) of the
partition (A1, . . . , AK) as

sRcut(A1, . . . , AK) =
K∑
j=1

cut(Aj, Aj)

|Aj|
+ 2

K∑
j=1

links−(Aj, Aj)

|Aj|
.

Since we still have

(Xj)>LXj = a2j(cut(Aj, Aj) + 2links−(Aj, Aj)),

we obtain

sRcut(A1, . . . , AK) =
K∑
j=1

(Xj)>LXj

(Xj)>Xj
.

Therefore, this is similar to the case of unsigned graphs, with L replaced with L. The same
algorithm applies, but as in Chapter 5, the signed Laplacian L is positive definite iff G is
unbalanced. Modifying the computer program implementing normalized cuts to deal with

ratio cuts is trivial (use L instead of Lsym and don’t multiply Y by D
−1/2

). Generally,
normalized cut seems to yield “better clusters,” but this is not a very satisfactory statement
since we haven’t defined precisely in which sense a clustering is better than another. We
leave this point as further research.
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Appendix A

Rayleigh Ratios and the
Courant-Fischer Theorem

The most important property of symmetric matrices is that they have real eigenvalues and
that they can be diagonalized with respect to an orthogonal matrix. Thus, if A is an
n× n symmetric matrix, then it has n real eigenvalues λ1, . . . , λn (not necessarily distinct),
and there is an orthonormal basis of eigenvectors (u1, . . . , un) (for a proof, see Gallier [8]).
Another fact that is used frequently in optimization problem is that the eigenvalues of a
symmetric matrix are characterized in terms of what is known as the Rayleigh ratio, defined
by

R(A)(x) =
x>Ax

x>x
, x ∈ Rn, x 6= 0.

The following proposition is often used to prove the correctness of various optimization
or approximation problems (for example PCA).

Proposition A.1. (Rayleigh–Ritz) If A is a symmetric n× n matrix with eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn and if (u1, . . . , un) is any orthonormal basis of eigenvectors of A, where ui is
a unit eigenvector associated with λi, then

max
x 6=0

x>Ax

x>x
= λn

(with the maximum attained for x = un), and

max
x 6=0,x∈{un−k+1,...,un}⊥

x>Ax

x>x
= λn−k

(with the maximum attained for x = un−k), where 1 ≤ k ≤ n− 1. Equivalently, if Vk is the
subspace spanned by (u1, . . . , uk), then

λk = max
x 6=0,x∈Vk

x>Ax

x>x
, k = 1, . . . , n.
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Proof. First, observe that

max
x 6=0

x>Ax

x>x
= max

x
{x>Ax | x>x = 1},

and similarly,

max
x 6=0,x∈{un−k+1,...,un}⊥

x>Ax

x>x
= max

x

{
x>Ax | (x ∈ {un−k+1, . . . , un}⊥) ∧ (x>x = 1)

}
.

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect
to an orthonormal basis of eigenvectors, so let (u1, . . . , un) be such a basis. If we write

x =
n∑
i=1

xiui,

a simple computation shows that

x>Ax =
n∑
i=1

λix
2
i .

If x>x = 1, then
∑n

i=1 x
2
i = 1, and since we assumed that λ1 ≤ λ2 ≤ · · · ≤ λn, we get

x>Ax =
n∑
i=1

λix
2
i ≤ λn

( n∑
i=1

x2i

)
= λn.

Thus,
max
x

{
x>Ax | x>x = 1

}
≤ λn,

and since this maximum is achieved for en = (0, 0, . . . , 1), we conclude that

max
x

{
x>Ax | x>x = 1

}
= λn.

Next, observe that x ∈ {un−k+1, . . . , un}⊥ and x>x = 1 iff xn−k+1 = · · · = xn = 0 and∑n−k
i=1 x

2
i = 1. Consequently, for such an x, we have

x>Ax =
n−k∑
i=1

λix
2
i ≤ λn−k

( n∑
i=k+1

x2i

)
= λn−k.

Thus,
max
x

{
x>Ax | (x ∈ {un−k+1, . . . , un}⊥) ∧ (x>x = 1)

}
≤ λn−k,

and since this maximum is achieved for en−k = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in position
n− k, we conclude that

max
x

{
x>Ax | (x ∈ {un−k+1, . . . , un}⊥) ∧ (x>x = 1)

}
= λn−k,

as claimed.
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For our purposes, we also need the version of Proposition A.1 applying to min instead of
max, whose proof is obtained by a trivial modification of the proof of Proposition A.1.

Proposition A.2. (Rayleigh–Ritz) If A is a symmetric n× n matrix with eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn and if (u1, . . . , un) is any orthonormal basis of eigenvectors of A, where ui is
a unit eigenvector associated with λi, then

min
x 6=0

x>Ax

x>x
= λ1

(with the minimum attained for x = u1), and

min
x 6=0,x∈{u1,...,ui−1}⊥

x>Ax

x>x
= λi

(with the minimum attained for x = ui), where 2 ≤ i ≤ n. Equivalently, if Wk = V ⊥k−1
denotes the subspace spanned by (uk, . . . , un) (with V0 = (0)), then

λk = min
x 6=0,x∈Wk

x>Ax

x>x
= min

x 6=0,x∈V ⊥k−1

x>Ax

x>x
, k = 1, . . . , n.

Propositions A.1 and A.2 together are known as the Rayleigh–Ritz theorem.

As an application of Propositions A.1 and A.2, we give a proof of a proposition which is
the key to the proof of Theorem 3.2. First, we need a definition. Given an n× n symmetric
matrix A and an m×m symmetric B, with m ≤ n, if λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues
of A and µ1 ≤ µ2 ≤ · · · ≤ µm are the eigenvalues of B, then we say that the eigenvalues of
B interlace the eigenvalues of A if

λi ≤ µi ≤ λn−m+i, i = 1, . . . ,m.

The following proposition is known as the Poincaré separation theorem; see Horn and John-
son [13], Section 4.3, Corollary 4.3.16.

Proposition A.3. Let A be an n × n symmetric matrix, R be an n ×m matrix such that
R>R = I (with m ≤ n), and let B = R>AR (an m ×m matrix). The following properties
hold:

(a) The eigenvalues of B interlace the eigenvalues of A.

(b) If λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A and µ1 ≤ µ2 ≤ · · · ≤ µm are the
eigenvalues of B, and if λi = µi, then there is an eigenvector v of B with eigenvalue
µi such that Rv is an eigenvector of A with eigenvalue λi.
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Proof. (a) Let (u1, . . . , un) be an orthonormal basis of eigenvectors for A, and let (v1, . . . , vm)
be an orthonormal basis of eigenvectors for B. Let Uj be the subspace spanned by (u1, . . . , uj)
and let Vj be the subspace spanned by (v1, . . . , vj). For any i, the subpace Vi has dimension
i and the subspace R>Ui−1 has dimension at most i − 1. Therefore, there is some nonzero
vector v ∈ Vi ∩ (R>Ui−1)

⊥, and since

v>R>uj = (Rv)>uj = 0, j = 1, . . . , i− 1,

we have Rv ∈ (Ui−1)
⊥. By Proposition A.2 and using the fact that R>R = I, we have

λi ≤
(Rv)>ARv

(Rv)>Rv
=
v>Bv

v>v
.

On the other hand, by Proposition A.1,

µi = max
x 6=0,x∈{vi+1,...,vn}⊥

x>Bx

x>x
= max

x 6=0,x∈{v1,...,vi}

x>Bx

x>x
,

so
w>Bw

w>w
≤ µi for all w ∈ Vi,

and since v ∈ Vi, we have

λi ≤
v>Bv

v>v
≤ µi, i = 1, . . . ,m.

We can apply the same argument to the symmetric matrices −A and −B, to conclude that

−λn−m+i ≤ −µi,

that is,
µi ≤ λn−m+i, i = 1, . . . ,m.

Therefore,
λi ≤ µi ≤ λn−m+i, i = 1, . . . ,m,

as desired.

(b) If λi = µi, then

λi =
(Rv)>ARv

(Rv)>Rv
=
v>Bv

v>v
= µi,

so v must be an eigenvector for B and Rv must be an eigenvector for A, both for the
eigenvalue λi = µi.

Observe that Proposition A.3 implies that

λ1 + · · ·+ λm ≤ tr(R>AR) ≤ λn−m+1 + · · ·+ λn.

The left inequality is used to prove Theorem 3.2.

For the sake of completeness, we also prove the Courant–Fischer characterization of the
eigenvalues of a symmetric matrix.
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Theorem A.4. (Courant–Fischer) Let A be a symmetric n × n matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn and let (u1, . . . , un) be any orthonormal basis of eigenvectors of A,
where ui is a unit eigenvector associated with λi. If Vk denotes the set of subspaces of Rn of
dimension k, then

λk = max
W∈Vn−k+1

min
x∈W,x6=0

x>Ax

x>x

λk = min
W∈Vk

max
x∈W,x6=0

x>Ax

x>x
.

Proof. Let us consider the second equality, the proof of the first equality being similar.
Observe that the space Vk spanned by (u1, . . . , uk) has dimension k, and by Proposition A.1,
we have

λk = max
x 6=0,x∈Vk

x>Ax

x>x
≥ min

W∈Vk
max

x∈W,x6=0

x>Ax

x>x
.

Therefore, we need to prove the reverse inequality; that is, we have to show that

λk ≤ max
x 6=0,x∈W

x>Ax

x>x
, for all W ∈ Vk.

Now, for any W ∈ Vk, if we can prove that W∩V ⊥k−1 6= (0), then for any nonzero v ∈ W∩V ⊥k−1,
by Proposition A.2 , we have

λk = min
x 6=0,x∈V ⊥k−1

x>Ax

x>x
≤ v>Av

v>v
≤ max

x∈W,x6=0

x>Ax

x>x
.

It remains to prove that dim(W ∩ V ⊥k−1) ≥ 1. However, dim(Vk−1) = k − 1, so dim(V ⊥k−1) =
n− k + 1, and by hypothesis dim(W ) = k. By the Grassmann relation,

dim(W ) + dim(V ⊥k−1) = dim(W ∩ V ⊥k−1) + dim(W + V ⊥k−1),

and since dim(W + V ⊥k−1) ≤ dim(Rn) = n, we get

k + n− k + 1 ≤ dim(W ∩ V ⊥k−1) + n;

that is, 1 ≤ dim(W ∩ V ⊥k−1), as claimed.
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Appendix B

Riemannian Metrics on Quotient
Manifolds

In order to define a metric on the projective space RPn, we need to review a few notions of
differential geometry. First, we need to define the quotient M/G of a manifold by a group
acting on M . This section relies heavily on Gallot, Hulin, Lafontaine [9] and Lee [17], which
contain thorough expositions and should be consulted for details.

Definition B.1. Recall that an action of a group G (with identity element 1) on a set X is
a map γ : G×X → X satisfying the following properties:

(1) γ(1, x) = x, for all x ∈ X.

(2) γ(g1, γ(g2, x)) = γ(g1g2, x), for all g1, g2 ∈ G, and all x ∈ X.

We usually abbreviate γ(g, x) by g · x.

If X is a topological space and G is a topological group, we say that the action is
continuous iff the map γ is continuous. In this case, for every g ∈ G, the map x 7→ g · x is
a homeomorphism. If X is a smooth manifold and G is a Lie group, we say that the action
is smooth iff the map γ is smooth. In this case, for every g ∈ G, the map x 7→ g · x is a
diffeomorphism.

Remark: To be more precise, what we have defined in Definition B.1 is a left action of the
group G on the set X. There is also a notion of a right action, but we won’t need it.

The quotient of X by G, denoted X/G, is the set of orbits of G; that is, the set of
equivalences classes of the equivalence relation ' defined such that, for any x, y ∈ X,

x ' y iff (∃g ∈ G)(y = g · x).

The orbit of x ∈ X (the equivalence class of x) is the set

O(x) = {g · x | g ∈ G},

113
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also denoted by G · x. If X is a topological space, we give X/G the quotient topology.

For any subset V of X and for any g ∈ G, we denote by gV the set

gV = {g · x | x ∈ V }.

One problem is that even if X is Hausdorff, X/G may not be. Thus, we need to find
conditions to ensure that X/G is Hausdorff.

By a discrete group, we mean a group equipped with the discrete topology (every subset
is open). In other words, we don’t care about the topology of G! The following conditions
prove to be useful.

Definition B.2. Let · : G×X → X be the action of a group G on a set X. We say that G
acts freely (or that the action is free) iff for all g ∈ G and all x ∈ X, if g 6= 1 then g · x 6= x.

If X is a locally compact space and G is a discrete group acting continuously on X, we
say that G acts properly (or that the action is proper) iff

(i) For every x ∈ X, there is some open subset V with x ∈ V such that gV ∩ V 6= ∅ for
only finitely many g ∈ G.

(ii) For all x, y ∈ X, if y /∈ G · x (y is not in the orbit of x), then there exist some open
sets V,W with x ∈ V and y ∈ W such that gV ∩W = 0 for all g ∈ G.

The following proposition gives necessary and sufficient conditions for a discrete group
to act freely and properly often found in the literature (for instance, O’Neill [18], Berger and
Gostiaux [3], and do Carmo [6], but beware that in this last reference Hausdorff separation
is not required!).

Proposition B.1. If X is a locally compact space and G is a discrete group, then a smooth
action of G on M is free and proper iff the following conditions hold:

(i) For every x ∈ X, there is some open subset V with x ∈ V such that gV ∩ V = ∅ for
all g ∈ G such that g 6= 1.

(ii) For all x, y ∈ X, if y /∈ G · x (y is not in the orbit of x), then there exist some open
sets V,W with x ∈ V and y ∈ W such that gV ∩W = 0 for all g ∈ G.

Proof. Condition (i) of Proposition B.1 implies condition (i) of Definition B.2, and condition
(ii) is the same in Proposition B.1 and Definition B.2. If (i) holds, then the action must be
free since if g · x = x, then gV ∩ V 6= ∅, which implies that g = 1.

Conversely, we just have to prove that the conditions of Definition B.2 imply condition
(i) of Proposition B.1. By (i) of Definition B.2, there is some open subset U containing x
and a finite number of elements of G, say g1, . . . , gm, with gi 6= 1, such that

giU ∩ U 6= ∅, i = 1, . . . ,m.
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Since our action is free and gi 6= 1, we have gi ·x 6= x, so by Hausdorff separation, there exist
some open subsets Wi,W

′
i , with x ∈ Wi and gi ·x ∈ W ′

i , such that Wi∩W ′
i = ∅, i = 1, . . . ,m.

Then, if we let

V = W ∩
( m⋂
i=1

(Wi ∩ g−1i W ′
i )

)
,

we see that V ∩ giV = ∅, and since V ⊆ W , we also have V ∩ gV = ∅ for all other g ∈ G.

Remark: The action of a discrete group satisfying the properties of Proposition B.1 is
often called “properly discontinuous.” However, as pointed out by Lee ([17], just before
Proposition 9.18), this term is self-contradictory since such actions are smooth, and thus
continuous!

We also need covering maps.

Definition B.3. Let X and Y be two topological spaces. A map π : X → Y is a covering
map iff the following conditions hold:

(1) The map π is continuous and surjective.

(2) For every y ∈ Y , there is some open subset W ⊆ Y with y ∈ W , such that

π−1(W ) =
⋃
i∈I

Ui,

where the Ui ⊆ X are pairwise disjoint open subsets such that the restriction of π to
Ui is a homeomorphism for every i ∈ I.

If X and Y are smooth manifolds, we assume that π is smooth and that the restriction of π
to each Ui is a diffeomorphism.

Then, we have the following useful result.

Theorem B.2. Let M be a smooth manifold and let G be discrete group acting smoothly,
freely and properly on M . Then there is a unique structure of smooth manifold on M/G
such that the projection map π : M →M/G is a covering map.

For a proof, see Gallot, Hulin, Lafontaine [9] (Theorem 1.88) or Lee [17] (Theorem 9.19).

Real projective spaces are illustrations of Theorem B.2. Indeed, if M is the unit n-
sphere Sn ⊆ Rn+1 and G = {I,−I}, where −I is the antipodal map, then the conditions of
Proposition B.1 are easily checked (since Sn is compact), and consequently the quotient

RPn = Sn/G

is a smooth manifold and the projection map π : Sn → RPn is a covering map. The fiber
π−1([x]) of every point [x] ∈ RPn consists of two antipodal points: x,−x ∈ Sn.

The next step is see how a Riemannian metric on M induces a Riemannian metric on
the quotient manifold M/G.
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Definition B.4. Given any two Riemmanian manifolds (M, g) and (N, h) a smooth map
f : M → N is a local isometry iff for all p ∈ M , the tangent map dfp : TpM → Tf(p)N is an
orthogonal transformation of the Euclidean spaces (TpM, gp) and (Tf(p)N, hf(p))). Further-
more, if f is a diffeomorphism, we say that f is an isometry .

The Riemannian version of a covering map is the following:

Definition B.5. Let (M, g) and (N, h) be two Riemannian manifolds. A map π : M → N
is a Riemannian covering map iff the following conditions hold:

(1) The map π is a smooth covering.

(2) The map π is a local isometry.

The following theorem is the Riemannian version of Theorem B.2.

Theorem B.3. Let (M,h) be a Riemannian manifold and let G be discrete group acting
smoothly, freely and properly on M , and such that the map x 7→ σ · x is an isometry for all
σ ∈ G. Then there is a unique structure of Riemannian manifold on N = M/G such that
the projection map π : M →M/G is a Riemannian covering map.

Proof sketch. For a complete proof see Gallot, Hulin, Lafontaine [9] (Proposition 2.20). To
define a Riemannian metric g on N = M/G we need to define an inner product gp on the
tangent space TpN for every p ∈ N . Pick any q1 ∈ π−1(p) in the fibre of p. Because π is a
Riemannian covering map, it is a local diffeomorphism, and thus dπq1 : Tq1M → TpM is an
isometry. Then, given any two tangent vectors u, v ∈ TpN , we define their inner product
gp(u, v) by

gp(u, v) = hq1(dπ
−1
q1

(u), dπ−1q1 (v)).

Now, we need to show that gp does not depend on the choice of q1 ∈ π−1(p). So, let
q2 ∈ π−1(p) be any other point in the fibre of p. By definition of N = M/G, we have
q2 = g · q1 for some g ∈ G, and we know that the map f : q 7→ g · q is an isometry of M .
Now, since π = π ◦ f we have

dπq1 = dπq2 ◦ dfq1 ,

and since dπq1 : Tq1M → TpM and dπq2 : Tq2M → TpM are isometries, we get

dπ−1q2 = dfq1 ◦ dπ−1q1 .

But dfq1 : Tq1M → Tq2M is also an isometry, so

hq2(dπ
−1
q2

(u), dπ−1q2 (v)) = hq2(dfq1(dπ
−1
q1

(u)), dfq1(dπ
−1
q2

(v))) = hq1(dπ
−1
q1

(u), dπ−1q1 (v)).

Therefore, the inner product gp is well defined on TpN .
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Theorem B.3 implies that every Riemannian metric g on the sphere Sn induces a Rieman-
nian metric ĝ on the projective space RPn, in such a way that the projection π : Sn → RPn
is a Riemannian covering. In particular, if U is an open hemisphere obtained by removing
its boundary Sn−1 from a closed hemisphere, then π is an isometry between U and its image
RPn − π(Sn−1) ≈ RPn − RPn−1.

We also observe that for any two points p = [x] and q = [y] in RPn, where x, y ∈ Sn, if
x · y = cos θ, with 0 ≤ θ ≤ π, then there are two possibilities:

1. x · y ≥ 0, which means that 0 ≤ θ ≤ π/2, or

2. x · y < 0, which means that π/2 < θ ≤ π.

In the second case, since [−y] = [y] and x · (−y) = −x ·y, we can replace the representative y
of q by −y, and we have x · (−y) = cos(π− θ), with 0 ≤ π− θ < π/2. Therefore, in all cases,
for any two points p, q ∈ RPn, we can find an open hemisphere U such that p = [x], q = [y],
x, y ∈ U , and x · y ≥ 0; that is, the angle θ ≥ 0 between x and y is at most π/2. This fact
together with the following simple proposition will allow us to figure out the distance (in the
sense of Riemannian geometry) between two points in RPn.

Proposition B.4. Let π : M → N be a Riemannian covering map between two Riemannian
manifolds (M, g) and (N, h). Then, the geodesics of (N, h) are the projections of geodesics
in (M, g) (i.e., curves π ◦ γ in (N, h), where γ is a geodesic in (M, g)), and the geodesics of
(M, g) are the liftings of geodesics in (N, h) (i.e., curves γ of (M, g), such that π ◦ γ is a
geodesic in (N, h)).

The proof of Proposition B.4 can be found in Gallot, Hulin, Lafontaine [9] (Proposition
2.81).

Now, if (M, g) is a connected Riemannian manifold, recall that we define the distance
d(p, q) between two points p, q ∈M as

d(p, q) = inf{L(γ) | γ : [0, 1]→M},

where γ is any piecewise C1-curve from p to q, and

L(γ) =

∫ 1

0

√
g(γ′(t), γ′(t)) dt

is the length of γ. It is well known that d is a metric on M . The Hopf-Rinow Theorem
(see Gallot, Hulin, Lafontaine [9], Theorem 2.103) says among other things that (M, g)
is geodesically complete (which means that every geodesics γ of M can be extended to a
geodesic γ̃ defined on all of R) iff any two points of M can be joined by a minimal geodesic
iff (M,d) is a complete metric space. Therefore, in a complete (connected) manifold

d(p, q) = inf{L(γ) | γ : [0, 1]→M is a geodesic}.
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In particular, compact manifolds are complete, so the distance between two points is the
infimum of the length of minimal geodesics joining these points.

Applying this to RPn and the canonical Euclidean metric induced by Rn+1, since geodesics
of Sn are great circles, by the discussion above, for any two points p = [x] and q = [y] in
RPn, with x, y ∈ Sn, the distance between them is given by

d(p, q) = d([x], [y]) =

{
cos−1(x · y) if x · y ≥ 0

cos−1(−x · y) if x · y < 0.

Here cos−1(z) = arccos(z) is the unique angle θ ∈ [0, π] such that cos(θ) = z. Equivalently,

d([x], [y]) = cos−1(|x · y|),

and
d([x], [y]) = min{cos−1(x · y), π − cos−1(x · y)}.

If the representatives x, y ∈ Rn+1 of p = [x] and q = [q] are not unit vectors, then

d([x], [y]) = cos−1
(
|x · y|
‖x‖ ‖y‖

)
.

Note that 0 ≤ d(p, q) ≤ π/2.

Now, the Euclidean distance between x and y on Sn is given by

‖x− y‖22 = ‖x‖22 + ‖y‖22 − 2x · y = 2− 2 cos θ = 4 sin2(θ/2).

Thus,
‖x− y‖2 = 2 sin(θ/2), 0 ≤ θ ≤ π.

It follows that for any x ∈ Sn, and for any subset A ⊆ Sn, a point a ∈ A minimizes
the distance dSn(x, a) = cos−1(x · a) = θ on Sn iff it minimizes the Euclidean distance
‖x− a‖2 = 2 sin(θ/2) (since 0 ≤ θ ≤ π). Then, on RPn, for any point p = [x] ∈ RPn and
any A ⊆ RPn, a point [a] ∈ A minimizes the distance d([x], [a]) on RPn iff it minimizes
min{‖x− a‖2 , ‖x+ a‖2}. So, we are looking for [b] ∈ A such that

min{‖x− b‖2 , ‖x+ b‖2} = min
[a]∈A

min{‖x− a‖2 , ‖x+ a‖2}

= min{min
[a]∈A
‖x− a‖2 , min

[a]∈A
‖x+ a‖2}.

If the subset A ⊆ Sn is closed under the antipodal map (which means that if x ∈ A, then
−x ∈ A), then finding mina∈A d([x], [a]) on RPn is equivalent to finding mina∈A ‖x− a‖2, the
minimum of the Euclidean distance. This is the case for the set X in Section 4.2 and the set
K in Section 4.3.
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