Chapter 4

RAM Programs, Turing Machines,
and the Partial Recursive Functions

4.1 Introduction

Anyone with some programming experience has an intuituive idea of the notion of “algo-
rithm”. Even Buclid’s algorithm was called an algorithm long before the invention of mod-
ern comptiters. However, it was not until the 1930°s that logicians such as Church, Godel,
Kleene, ‘furing, and Post, put forth formal definitions for the notions of effective procedure,
computable function, and algorithm.

There are surprisingly many different formalizations of the notion of an algorithm. A
remarkable fact is that all of these definitions have been shown to be equivalent, in the sense
that a function computable in one of these formulations is also computable in all of the
others. For most computer scientists, the notion of algorithm is synonymous with that of a
program written in some general purpose programming language.

To be more accurate, an algorithm refers to a program that halts for all inputs. A
program that halts for some inputs but diverges for others is calied a procedure. One of
the characterizations of the computable functions is that they are computed by programs
written in a very simple programming language, the language of RAM programs, also called
Post machines.

Another goal of the theory of computation is to explore the limitations of the computa-~
tional power of programs. For example, one can ask whether there exists an algorithm that
could be used as a debugging tool, to test whether any given program halts on any given
input. Another useful program would be one to test whether any two given programs are
equivalent for all inputs. As we shall see, such programs do not exist. We have stumbled
upon some undecidable problems.

Why is a question undecidable, that is, not answerable by a program halting for all *
inputs? What power must a programming language (or formal system) have, in order that
some questions about it are undecidable?

55

We shall be concerned with these issues as we develop a technical formulation of what is
an algorithm.

Before embarking on an extensive study of notions such as algorithms and procedures,
a few crucial remarks are in order. Firstly, a program is a finife object. It may use a very
large amount of memory, but still a bounded amount. However, there is no bound on the
size of data (strings) held in the registers used by programs. Secondly, all the programming
languages under consideration have the property that programs can be effectively coded as
strings or numbers. This means that there is an algorithm that assigns a code to each
program, and conversely, that there is an algorithm that, given a purported code name, tells
whether or not the code name represents a program, and if so, which program. For example,
we shall see that RAM programs can be encoded as positive natural nummbers.

Since we will be dealing with algorithms working on strings or natural numbers, we will
have the ability to give as input to a program input data that stand either for a true data, or
an encoding for a program. This situation is analogous to that in assembly languages, where
a memoty word either stands for a data or for an instruction, depending on its interpretation.

It turns out that it is the ability of encoding programs into numbers {or strings) and
to decode numbers back into programs, that is often the cause for the undecidability of a
question.

In the following Chapters, we study various algorithmic systems. We begin with RAM
programs, and continue with Turing machines. It turns out that RAM programs and Turing
machine compute precisely the same clas of (partial functions). This famous class of function
is called the class of partial recursive functions.

56

ABHL props (lowe bt fren)

The instructions are the following:

o i,

I Q'HSV}ART \

2. Transfer statements: ‘ y <« X |

3. add statements:

where a‘j is in %.

4, c¢lear statements: [Y < g

5. delete statements: ,wm§“+ wféii(y)

6. test statements:

We define the functions head and tail as follows:

head(e) =

m

head(aiu) = 3
tail{e)=¢

ta11(aiu) =

1.2,1 Definition A RAM flowchart program is a graph

obtained by interconnecting statements in such a way that:
1) There is a single START

2) There is a single STOP

3) Every entry point of a statement is connected to an exit
point of some statement and every exit point of a statement
is connected to the entry point of some statement.

The flowchart below is a program to concatenate two
strings X, and X The output is returned in X7 The variables
x and y are "working variables". We usually assume that
programs have input variables Xy, .., X and that programs
return a single output in xY. However, this is merely a

convenience and we could allow programs returning more than

one output. For our purposes, it will be necessary to also have a "linear
representation” of our flowchart programs. We now proceed with the definition.

1.2,2 Definition RAM programs in lineay form

RAM programs in linear form use a finite number of
registers denoted R1, RZ, Rn, and instructions may be labelled

with Tine labels of the form NO, N1, .. Nk. Note that

instructions do not have to be labelled, and that the same
Jabel can be reused in several places {thus, the term tine
label is rather unfortunate, but we will use it for the Tack
of a better name).

The allowable instructions are the following:

Example 1

iX*HXEl

.,
l y « tail(y)

s T

——t———

Program to concatenate two strings X1 and x

2

*
over {a,b}

. \L«“ _

o) Gt

h g

10

1.. N add, Y

J J

2. N del Y

3. N clr Y

4 N v « X

5, N jmp N'a or N jmp N'D
6j. N Y jmpj N'a or

7. N continue

N is a label or nothing.
X> Y are register names.- N'"is a Tabel and a stands
- for above and b stands for below. The meaning of the

instructions is as follows:

]j corresponds to y + yaj

2 corresponds to y +« tail(y)

3 corresponds to Yy < ¢

4 corresponds to Y < X

5 is a jump statement (like a qoto). Its effect is to

transfer control to the closest instruction above Tabelled with
the label Nrgin case we have jmp N'a, or transfer to the closest
instruction below labelled N' in case we have jmp N'b,
Gj is a conditional Jjump.

A jump to the closest address Tabelled N' occurs

depending on the suffix a or b, if and only if the head of

register y is aj. Otherwise, the next statement is executed.

11

Finally, continue is a no-op which does nothing.

A RAM program is a finite sequence of instructions such
that each jump has a target (e.g. if an instruction Y jmpj N'b
occurs in the program, some statement must be labelled N'), and
the last instruction is a continue statement,

It may not be immediately clear to the reader why we
allow the same label to be used in several places and why we
are using the jump statements defined above, It is also not
completely obvious that the flowchart form and the linear
form are equivalent.

First, the reason for allowing multiple occurrences of
labels is that we want to be able to concatenate programs
without having to rename the labels. But then, to avoid
ambiguities, we adopt jumps where the target address is
relative to the address of the jump. In the present case, we
jump to the closest address above or below. This may look a
bit strange, but we shall see that this choice is actually
very convenient later on in certain proofs.

As to the equivalence of the flowchart form and the Tinear
form, we now sketch the proof. We first sketch the translation
from a flowchart to a linear program,

First, we assign distinct lTabels to all the statements
in the flowchart except START. Then we translate the flowchart
into a linear program, starting from START. The translation
is not necessarily unique but this doesn't matter. Clearly,

one of the problems-is to transtate the tests of the form

Chead(y))

2 /2y \e
N

12

Assume that the target labels are
N1, .., Nk, N{k+1}.
Then we have the translation:
Y Jmp, Nlc
Y gmpy Nke
y Jmp N(k+1)c
where ¢ is either a or b, depending whether Ni already
occurs above or not.
Note that it may also be necessary to use a number of additional
{unconditional) jump statements to perform the translation
correctly., We leave the details to the reader. Also, the
last statement must be a continue.
Conversely, translating a linear program into a flowchart
is fairly obvious and we leave the details to the reader,
A careful reader may have noticed that our definition
of a RAM program, either in fiowchart or linear form, does not
exclude some rather strange programs which are not even connected

such as:

(iSTAR;:)

A ﬁuﬁ;Ligg

head(y;f)

-

13

We could fix the definition to avoid such cases, but such
pathological cases will not be a problem so we don't go into
this trouble now.

As an example of a program in linear form, the following

program is a linear version of the flowchart of example 1.

Example 2:
R3 <+ R1
R4 <« R2
NO R4 jmp, N1b
R4 jmpy NZ2b

jmp N3b
NT adda R3
del R4
jmp NOa
N2 addb R3
del R4
jmp NOa
N3 R1 <« R3
continue

1.2.3 Definition

A program P computes the partial function ¢ if when
the initial contents of the registers R1, R2, ..., Rn are
X7» ++e» Xp» P eventually halts if and only if @(x1, s xn)
is defined, and if and when P halts, the final contents of R}

are ¢(x], e xn).

14

We say that a partial function ¢ is RAM-computable if some
function computes it. For instance, the concatenation function
is RAM computable.

Here are some other programs computing the functions

n
E. Sj and Pi
1. c¢lr RI
continue
2. addj'RT
continue
3. Rl <« Ri
continue

E is the erase function such that E(x) = ¢ for all x.

Sj is the j-th successor function such that
S;{x) = xay for all x, P? is. the.projection function on
the “i-th coordinate such that ¢

n = . : S

Pi (X975 «evs xn) x; for 1 <1 <mn. Note that %_ is
the jdentity function.

Now that we have a programming language, we would like to
know how powerful it is, that is, we would Tike to know what
kind of functions are RAM computable. At first glance, RAM
program don't do much, but this is not so. Indeed, we will
see shortly that the class of RAM-computable functions is very
extensive.

One way of getting other programs from given ones is to

compose them.

15

1.2.4 Definition

Let g be a function of m = 1 arguments and h1, eaes hm
be m functions each of n = 1 arguments.
The function f of n = 1 arguments also denoted

go(h], cees hm) obtained from h1, ...s hy and g by composition

is the function such that for all Xy, ..., Xps
Flxys ooes X,) = g(h](xi,..,xn), cees hp{xys ooy xp))e

Note that if g or the h; are partial functions, the
function is defined for some x3 .., Xp if and only if both
all h;(x7,..,x,) are defined and g is defined for (hp(XqsersXy)s
ca hm(x],...,xn)). Also, two partial function ¢ and ¢ are
equal if and only if for all Xy, ..., Xu» either both
(Xys ous xn) and w(xl,...,xn) are undefined, or both are

defined and ¢(Xys.v.sXy) = w(x],...,xn).

1.2.5 Proposition

If ¢, 095 +.vs By are RAM-computable and ¢ is obtained
from them by composition, then ¢ is RAM-computable.
Proof: Let R, Py, 4. Pm be programs computing ¥, 8y, ...5 Op.
Let n be the number of arguments in the 6; and ¢. The idea
is to use P1, vees Ppoas "subroutines" to R. Let g be the
Jeast integer greater than m and n and such that no register
past Rq is used in R, Py, ..., Py

Then, the following program computes ¢.

16

Rq + 1 <« Rl
: save inputs
Rq + n « Rn .
clr Rn+l)
initialize for P}
clr Rg 5
P, compute e](x},...,xn)

Rl « Rq+1 |

Rn < Rg+n initialize for Pm
clr Rn+l
¢lr Rg

P compute Op{xys...aXy)

+n+ - e e
Rq+tn+m <- R1 save 6,(xy, xn)

Ry <- Rg+n+l

Rm <- Rg+n+m initialize for R

clr Rm+1

clr Rg

compute
R (%75 +res Xp)

17

Now, the reader probably understands why we are using
relative addresses in the jumps ~ this allows us to simply
"plug in" the programs acting as subroutines in the right
places. The other instructions simply make sure that programs
are correctly initialized.

Suppose we want to write a .program to compute the function

| x2l

f{xy, xp) = x1LX21 » Where X, denotes the string xy ... x4

hxal- times

1t .has .a-simple recursive.definition.
Namely, f{xy,e) = e and
flxy,%x0a5) = flxy,x,)%
Using the concatenation function explicitely,
f{xysxpay) = con{flxy,%x2),x7}).
Since we already have a program to compute con, the problem
boils down to expressing recursion. The following program

computes f,

18

Examples: Program to compute
X
f{xq, x2) = x]l 2]

f(xy, €) = ¢
f(x7, xpaj) = con(f{x),xp),xq)

(ms\Tw Ahj
-
Yy * €

N T

Yz“‘le

head(;;z%;
N

‘ Yo * tai](yzﬂ {y « tai}(yﬂ \

l X < xb}
y <« tai](y)l

ek

19

The type of recursive definition used above can

be generatlized as follows.

1.2.6 Definition

Let g be a function of n-1 arguments where n = 2 and
let hy, ..., hk be functions of n+l arguments. The function f

is obtained from g and h1, s hk by primitive recursion

if, for all y, for all x5, ..., x, in ¥, (where
o= {ay, ..., apl})

fle, X0 -vns xn) = glxgs vuvs Xp)

flyays Xps voos xn)

h](y:f(y,xza LR) Xn)s x2s LR Y Xn)

Ly
1

f(yaia X2> CRCREES Xn - hi(yaf(YsXZs + s ey xn)s X25 rery Xn)

hk(Y: f(Y:XZa RN Xn)s th ---s”xn)_

-
-
>
=
——
IE

flya,, xz,

If n =1 the definition is:
f(e) = u for some u e &*

flya;) = h;(y,fly)) for 1 =i < k.

1.,2.7 Proposition

If ¥, 81, ..., B are RAM-computable and ¢ is defined

from them by primitive recursion, then ¢ is RAM-computable.

Proof: The key to the problem is that ¢ can actually be
computed iteratively. Recall that ¢ is defined as follows:
#(e, Xx) = p(x)
b(yags x) = 0.(¥s o(y, x).x)
for 1 < i < k, where x is an abbreviation for (XZ’ cees Xpho

Consider the following iterative sequence:

20

Uy = e Vg, = ¥ (%)
u1 = ud'ai] V] < 911 (Uga O ;)
jo=1 Ug = Uy q vy o= 8y (uj“] FIRE X)
d J >
Uney = Y9y Vm+1 - e1 (¥, Vi x)
where y = ay, a4,
It is easy to see that v, = ¢uﬁ’ X) and so

Vel = ¢ (yaj, x).

The following program implements the above computation,

It is a good exercise to write the linear version of the
program.

There 1s another operation which is anafogous to’a-search
process, under which the RAM programs are closed. This operation
is simitar to the while statement.

1.2.8 Definition

Let ¢ be a given partial function of n arguments y, X175 v xn_1(n21).

¢ is obtained from % by minimization over {aj}* if for all

X'E’ « 2 8 3 Xn_]:

1. ¢(x], e Xn—l) is defined if and only if there is an integer

in

m = 0 such that for allp, 0 =<p M, w(ag, X732 oo xn-l) is

. m
defined and w(aj, S Xn-1) = g

2. If m exists above, then it is the least integer q such that
q m
¢(aj, X5 eeen xn_]) = ¢ and then ¢(x], ce s Xn-l) = a3y

We write ¢(xy ..., xqop) = mingy[wly, xq, ...y xpo1) = el

S !

[u <+ uai
! . e e

‘ [;;TMEJ%Q?TT;?YW 1
[

¢ is defined by primitive recursion from ¢ and 6],

22

Note that the statements
Ve Xy, cens xn—i) and

v o« e.i(x‘ls ey Xn-i'.f)

are really abbreviation for macrosubstitutions, If ¢ is

computed by the program R, v <« y(xy,

cees X) stands for

n-1
the piece of program

\

o

v o+ | X]“l

where it is assumed that the variables used by R (except

X1s +ees Xp_7) are not used elsewhere in the program.

Simi]ariy, v« 8.(xys ...s Xp47) Stands for

l

where P1 computes 61,

23

1.2.9 Proposition

Let ¢ be a RAM computable function. Then the function ¢
obtained from ¢ by minimization over {aj}* is RAM-computable,
Proof: The program below computes ¢.

It 1s a good exercise to write the Tinear RAM program.

It will be useful later to know that the RAM's can be
programmed with a smaller instruction set.

1.2.10 Proposition

Every RAM program can be effectively transformed intoc one
which uses only instructions of the form

1. N addj Y

2. N del Y

3. N Y jmpj N'e

4, continue
and which computes the same function,

Proof: We first eliminate instructions of the form Rf <« Rg.
Any instruction Rf <« Rf can be replaced by continue.

To replace Rf « Rg with f#g, we use a new register Rm not
named in the original program, transfer Rg into Rm {(destructively)
and then transfer Rm into Rg and Rf (destructively).

We leave to the reader the elimination of the statements
clr and jmp N'a or jmp N'b.

We now turn to a mathematical characterization of the

effectively computable functions.

24

Minimization

T

l..(.yz, e s YV (X e s x“ﬂ

i it § e U —

prd

[Ty) s oons ¥g)

We have ¢(x7, +... , Xn-1) = minjy(w(y,x}, , Xn—l)ze)

¢ is defined from ¢ by minimization over (aj)*

Note: x; < PIXTs ouns xn) stands for the piece of program

where Q computes .

25

Flimination of instructions Rf « Rg

use auxiliary m.

1m+e
=

(:;ééA(%z>
. w“"‘:::’;\\\

1

continue

N | AU

m < tail(m)

N

Nh
Ni

NJ

Jk

Nh
Ni

Jl

Ni

clr
jmp
del

Rg
Jmp
add]
jmp
add
Jmp
del
Rm

Rm
jmp
addy
add;

jmp

addk
addk

jmp

Rf
Rm
Nib
Rg

Jmpq

Jmpy
Nib
Rm
Nha

Rm
Nha

Rm
Jmp1
Jmpy
Nib
Rf

Nha
Rf

Rg
Nha

continue

26

Njib

Njgb copy Rg into Rm

Jt.
Njkb
copy Rm into

Rf and Rg

27

1.3 Primitive recursive functions

The idea 1s to define a set of functions by giving some
set of basic functions and then some operations to compute
new functions.

1.3.1 Definition

The class of primitive recursive functions over x* is the
smallest set of total functions over Z* containing the base
functions defined below and closed under composition

and primitive recursion,

1. Base functions:

1) The erase function E: E(x) = ¢

for all x.
2) The j-th successor function Sj:

Sj(x) = Xaj for all x.

3) The projection functions P?:

for all X1s +oes Xpo

p?(x]’ LI U ¥ Xn) = X.],

T = 1

A

n.

IT. Composition

Given g a function of m = 1 arguments and hi’ o res hm

m functions of n = 1 arguments,
go(h'lg “ v ey hm)(x1’ ey Xn) =
g(h](x-l, s+t 9 Xn), * v e 8 hm(X'I, ...,X))

28

III. Primitive recursion

Given a function ¢ of n-1 arguments n = 2, and k functions

h1, ey hk of n+tl arguments, f is defined by primitive recursion

if for all ¥y , x2, ..., X,, we have, abbreviating x = (xz, eees Xp)t

1]

fe,x) = g{x)

Flyag, x) = hy(y,Fly,x),0) 1 <4 <k
If n =1, then

fle) = u with uer*

fya;) = hyly, fly)) 1 <4 s k.

Proposition 1.3.2

Every primitive recursive function is RAM-computable,.
Proof: We have shown that the base functions are RAM-computable
and by proposition 1.2.5 and 1.2.7.

We now show that many usual functions are primitive
recursive. Primitive recursive will be abbreviated p.r.

(i) For each u = i .. a; e I, the constant function f, such

In
that fy{x) = u for all x is p.r. fu(x) = Sin(---(512(311(E(X)))'--)
To be rigorous, observe that f_ = E and f = S; (F,(x)).

(ii) The concatenation function is p.r. . This %é more tricky
than it looks. For example,
con (xy,e) = Pl{xy)
con {xy,yas) = Si(Pg(y,con(x],y),x]))
is not legitimate.
Indeed recursion is only allowed in the first argument.

The difficulty can be circumvented using the projection functions.

29

Define con'{e,y) = Pi(y)

con'(xaj,y) Si(Pg(x,con'(x,y),y))
{Note that con'(x,y) = yx)

Then, con(x,y) = con'(Pg(x,y),Pf(x,y)).

We also define the extended concatenation

Conn+'j (X't’ LI I 1 Xn_l_.[) = X-I LI xn_l_'ln

n+l
) = con(conn(PI (x], ceus xn+1),

n+l n+1
Pn (X'ls LIE B | xn+'l)): Pn+-i(x‘gs LR] Xn+-[))

conn+](x], cees X

ii1) [x1" = x".
(1" = con_ (P:(x), Cees Py (X))

{iv} The delete last function dell such that:

dell{e) = ¢
dell(xa;) = x.
pd
dell(e) = e, dell(xaj) = P](x, dell(x)).

(v) The sign function sg.

e if x = ¢
{‘a] if x # ¢

ey sglxag) = f, (P) (x, s9(x)))

sg(x)

i}

sg{e)
(vi) The function $sg such that:
sg(x) = J'ai if x = ¢
1 e if x # ¢
{vii) endj such that:

J

endj(x) = 'a] if x ends in a;
e otherwise

30

(viii) the reverse function rev,
{ix) the tail function such that:
tail{e) = ¢
tail(aix) = X
{x) The Tast function such that:
last(e) = ¢
last(xay) = a
(xi) The head function such that:
head(e) = ¢
head{a;x) = a
(xii) The function x-y such that:

x-y = e if |x|<|y|, and x minus its first |y| letters if

x> |yl

(xiii) The cond function such that:

cond(x,y,z}) = if x # ¢ then y else z°
Exercise: Prove that the functions in {vi}) - (xiii) are
primitive recursive.
Another useful way of defining primitive recursive

functions is to use primitive recursive predicates,

1.3.3.3 Definition

An n-ary predicate P {over £*) is a subset of (z*)". e

write a predicate either as (x], vens xn) e P or as

P(x}, Cees xn). The characteristic functjon of a predicate P

is the function Cp such that:

31

a, 1ff P(x cees Xp)
C (X], “e ey Xn) '_"{ 1 ["
P e iff not P(x7, «..» xp)

A predicate P is primitive recursive iff its characteristic
function is primitive recursive.
We can take Boolean combinations of predicates:

Por Q, P and Q, not P,

1.3.4 Proposition If P, Q are primitive recursive predicates,

then so are not P, P or Q, P and Q

Proof:
c (x) = sg (¢ (x))
Cp or Q = sq (con(CP(x), CQ(x))
Cp ang o = delt (conlep(x)s ¢plx))
It is also useful to be able to define functions by cases as shown

below:

1.3.5 Proposition

If Py, ..., P_ are pairwise disjoint primitive recursive
1 n

predicates and frs oo f f are primitive recursive functions,

n* ‘ntl

then the function g defined below is primitive recursive.
, f(x) iff P](i)

g(x) =% f (k) iff P (X)

f (x) otherwise

n+l

32

Proof: We do the proof when n =2 and there is only one
argument, but the proof extends immediately.
Define the function # such that

e if x = ¢
X #y =
y if x # ¢

is p.r since: ety E(y) and

xai#yngg(X:X#Ys y)
Then g{x) = cong(Cp (x) # f{(x), sz(x) # fz(x)s
1

CEP_E(P] or Pz)(X) # f,(x))

We also define the application of "bounded quantifiers

to predicates.

1.3.6 Definition (bounded quantification)

If P is a predicate with n+1 arguments, then

ly/x P(y,z) holds if and only if some prefix y of x makes
P(y,z) true.

wy/x Ply, 5) holds if and only if all prefixes y of x make

P(y,2) true

(z = (z}, cees Z)).

1.3.7 Proposition

If P is a primitive recursive predicate, then Jy/x P and

yy/x P are primitive recursive predicates.

33

Proofs: Let ¢C be the characteristic function of dy/xP.

1/P

Then:

CH/P(E’E) = Cp(e,z)

(xai,é) = sg(con(C, (x,z), CP(xai,E)))

“1/p 1/p

This says that Jy/e Py,z) iff
P(e,z) and
Hy/xaiP(y,E) iff Jy/x P(y,z) or
P(xa:, z).

i
Also, ¥ y/x P{y,z) iff not 3y/x not P(y,z).

As an application, we show that the equality predicate is p.r.
First, the predicate end{(x) = end{y) is p.r. because:
end(e) = end(y) iff y=g¢
end(xa;) = end(y) iff endi(y)

[x| =]y} is p.r. because x| = |y| iff

X-y = e and y-x = e.
Finally, x = y iff
Ix] = |y| and ¥z/x [end(z) = end(rev(rev(y)-(x-z)))]. ‘This réads:
{ and y have the same length, and every prefix of x ends in the same
symbol as the corresponding prefix of same length in y.

The following propositions are very useful and are left

as exercises.

34

1.3.8 Proposition

The predicate 3y < x P defined such that 3y < x P{y,z)
holds iff there is some y such that |y] < |x]| and P(y,z) holds

is primitive recursive.

1.3.9 Proposition {bounded minimization)

The function min y/x P defined such that:
min y/x P(y,z) is the shortest prefix y of x such that P{y,z) holds
if y exists, and Xa otherwise is p.r,
Simitarly, max y/x P(yJ:E) is the longest prefix y of x such
that P(y{i) holds and Xay otherwise is p.r. This last operation
is ca11ed bounded maximization.
The following propositions are quite useful to simplify
the definition of primitive recursive functions. They show
that arguments can be permuted, identified, replaced by constants,
or that apparent variables can be adjoined.

1.3.10 Proposition

Let f be a p.r function of n =z 1 arguments. Let
w: {1, ..., n} {1, ..., n} be a permutation of {1, ... n}
Then the function g such that g(x], vers Xp) = f(xﬂ(]), e xﬂ(n))

for all Xys wees X is p.r.
n

35

1.3.11 Proposition

Let f be a p.r. function of n = 2 arguments. Then the
function g of n-1 arguments such that

glxy, «ous Xn-l) = f(x], vees Xpo1o XT) for all

X1s vevs X is p.r.

n=1

Proof: g = fo (P?'1, ce.s P —: n-1

n
n...
Also the function

1 * L)
glxys woes X) = Flxgs eees X g u) with u et is p.r.

Proof: We know that the function of one argument fu such that

n
_ : n -
fu(x) =y for all x is p.r. Let fu(xl, e Xn) = fu(P](x1, - xn)).

n-t fn”])

= n-1
Then g = fo(P] s oeees P "

1.3.12 Proposition

Let ¢ be a p.r. function of n = 1 arguments. Then the
function f of n+l1 arguments such that f(x1, cees Xn+1) = glxys ... xn)

for all X3, ...> X0 4] is p.r.
n+1
0)
Finally, we leave to the reader to show that primitive

Proof: f = go(P?+1, cevs P

recursive definitions on any variable (not just the first one} are

allowable and that in primitive recursive definitions,
f(y319X250--3 Xn) = hi(y’f(ysXZs----a Xn)3 XZ’ [xn)

some or all of the arguments may be missing (f(y,xz, cees xn) is

considered as an argument in itself) or permuted.

36

1.4 The partial recursive functions

It should be noted that all primitive recursive functions
are total. This results from standard set theoretic arguments in
the case of recursion. Now, it is easy to show that there are
countably many primitive recursive functions., Consequently,
they can be enumerated. Actually, it can be shown that they can
be enumerated by a recursive function. However, they cannot be
enumerated by a primitive recursive function.

We can prove a stronger result. Let A be any countable set
of total functions containing the base functions and closed under
composition and primitive recursion (then A contains all the
primitive recursive functions). We say that a function f of i
arguments is universal for the one-argument functions in A, if
for every one-argument function g in A, there exists some n e N

*
such that f(a?, u) = g{u) for all u g X

1.4.17 Proposition

If A is any set of total functions containing the base
functions and closed under composition and primitive recursion,
if f is a universal function for all the one-argument functions in
A, then f is not in A,
Proof: Assume the universal function f is in A,
Let g{u)} = f(a1|p|, u),a] for all ue % . We claim that g is
Ll

in A. It suffices to show that the function h(u) = aj is

primitive recursive, which is left as an exercise.

37
But then, there is some m such that g{u) = f(a?, u) for

‘ m m - mo o m
all u e &%, Let u = aq. Then g(a, } = f(a1, a]) = (by definition

1
of g) f(aT, aT),a], a contradiction.

The above theorem shows that if we restrict -ourselves to
total functions, then either universal functions do not exist or
else they cannot be total. This suggests to consider partial
functions 1in order to expand our horizon, Note that this also
corresponds to our intuitive idea of an effectively computable
function: The program computing a function may diverge for some

input., It will turn out that universal functions do exist, but

they are only partial functions from the above theorem.

1.4.2 Definition The class of partial recursive functions
(over £") is the smallest class of partial functions containing
the base functions E, Sj, 1 < j < k and P?, 1 <41 <n and closed
under the following operations:

1} Composition extended to partial functions

I1} Primitive recursion extended to partial function,

ITI)Minimization.

Recall that if ¢ is a given partial function of n+l arguments,
than ¢ is obtained from ¢ by minimization over {aj}* if for all
X'i, LI A | Xn:
1) ¢(x], Chees xn) is defined iff there exists an m € N such that

for all p, 0 <p < m, ¥ (ag, x], Cees xn) is defined and

m
w(aj, X1s vens xn) = ¢
2} If such an m exists, then it is the least integer q such that
q
{p(aj, X‘Q “ v o2y Xn) =€and ¢(X1, ---,X) = a
We write

(P(X}a ey Xn) = minj b [Kb(ysx]a vy Xn) = g]

38

A partial recursive function which is total is called a
recursive function. Also, a predicate whose characteristic
function 1s recursive is called a recursive predicate.

1t is important to realize that condition 1 cannot be

relaxed to:

1? There exists some m.. such that
w(a?, X1s eves xn) = g,)

The problem is that this does not preclude the existénce of
some p < m for which w(ag, X1s oves xn) diverges. We leave
as an exercise to prove that functions which are not partial
recursive can be obtained if 1 is relaxed to 1°.

Using propositions 1.2.9 and 1.3.2 we have the important
Theorem:
1.4.3 Theorem

Every partial recursive function is RAM-computable,

The converse is also true and will be established Tlater.

The following proposition is quite obvious.

1.4.4 Proposition

Every primitive recursive function is a total recursive
function. The recursive predicates are closed under the Boolean
operations and, or, not and under bounded quantification (see 1.3.6).
The total recursive functions are closed under definitions by
cases 1.3.5 and bounded minimization {1.3.9) {and bounded
maximization).

We now turn to Turing machines,

39

1.5 Turing Machines

A Turing machine is an idealized computer whose memory is a two-way infinite
tape divided into squares or "tape symbols", and has a finite state control
consisting of internal states. It has a read-write head which can move along
the tape, scanning a single square at any given time. A Turing machine uses
a finite set of tape symbols. The operations of a Turing machine are the following:

1) erase the symbol under the head and print a new symbol (overprint);

2) move right or move left one square on the tape;

3) change state.

4) halt.

Formalisms for Turing machines differ a great deal with no difference in
computing power {unless one is concerned with the "complexity" of a computation:

humber of steps, number of squares visited, etc...}. We describe a Turing

machine in quintupie form.

Turing machines are defined over a specified finite set of symbols which

will be called the tape alphabet and is denoted r. Each such alphabet contains

a distinguished symbol called the "blank" symbol and is denoted B. We often

assume that T consists of two kinds of symbols: the input symbols form dn

alphabet T and the "working" symbols which belong to r-zr . Note that

B is inr-x% . At any given time, the tape contains only a finite number of squares
being non blank. We assume that T = {a],...ak, "8"} where B is the blank

symbol.

40

1.5.1 Definition
A Turing machine is a quintuple M = (K,F,A,é,qo) where,
K is a finite set of states
T is a finite alphabet with blank B
A =T {L,R} where L and R are two symbols not in Kor I
8 is a set of quintuples, that is a subset of K x T x I x {R,L} x K

which is weakly deterministic in the first two components:

For all (p,a) € K x T, there is at most one triple {(b,m,q) e I x {L,R} x K.

QO is a distinguished state called the initial state.

The action of a Turing Machine on some input is described using the notion

of an instantaneous description (ID).

1.5.2 Definition

An instantaneous description (ID) relative to a Turing machine M is a
word in I'* K F+, that is, a word of the form ugav where u, v are (possibly null)
strings in I'f g is a state in K and a is a symbol in r. (Note, a is not the
null string).

Intuitively, instead of viewing the tape as an infinite tape, we can view
it as a finite tape succeptible to extend itself at either ends during a compu-
tation. Then if a Turing Machine M is in an ID ugav, this means that it is
currently in state g, scanning the tape symbol a under its reading head, and
that its current tape contents is uav.

We now define the action of a Turing Machine by describing how instantaneous

descriptions are modified in a single-step move.

41

1.5.3 Definition
Let M be a Turing machine. Let ID1 and 192 be two ID's for M. We say
that 1Dy yields ID, denoted ID, ~ 1D, (or M moves from ID, to IDZ) if the

following conditions hold, where a,b,c e I, p,q e K, u,v e T¥*,

1]

(1) (i) (p,asb,R,q) ¢ & and ID upav, vée, 102 = ubgv or

1

(i) ID} = upa, ID2 = ubgB

(2) (i) {p,a,b,L,q} ¢ & and ID1 = ucpav, ¢ ¢ P, 102 = uqcbv or

(i1) ID, = pav , ID2 = qBbv
Note that in (1) (ii) and (2) (ii), it is necessary to "extend" the tape with
a blank to prevent the reading head from "falling off" the tape.
| Sometimes, in defining Turing Machines moves in which the position of the
head remains unchanged are allowed. In this case, in addition to L and R, we
are allowed to use N in an instruction (p,a,b,N,q) having the following effect
on ID's:

if ID] = upav then ID2 = ugbv.
We Teave as an exercise to the reader to prove that such instructions although
convenient are not needed.

We now explain how a Turing machine computes a partial function ¢, where
4 (=)15 5 %, We assume that Turing machines computing a function over =
have a tape alphabet T such that € r, B /£ and I also contains the special

symbol comma (,).

First, we define a computation and a halting ID,

1.5.4 Definition
An 1D upav is a halting ID if there is no quintuple (p,a,b,m,q) in §

starting with p and a. This is also called a "blocking" ID.

42

A computation of M is a sequence of ID's IDO’ ID],... such that either
(1) the sequence is finite, its last member IDn is a halting ID, and

ID]._1 -+ IDi for all i, 0 <1 < n-1 or
(2) the sequence is infinite and IDi—} »—IDi for all 1 > 1.

This is a infinite, or diverging computation. A starting ID is an ID of the
form quu: where 9 is the initial state, ae T, ue T *

For 1D's IDgs ID s 1D, 1 ID; 4 » ID; for all 1 > 1, we write

P

; *

IDO i IDn . This also includes the case ID0 > IDO. Otherwise, we write
+

IDO > ID (n>1).

1.5.5 Definition
Let ¢ be a partial function ¢ 4'(2*;-¥ n¥,

A Turing machine M computes ¢ if €1, B35, "," ¢T and:

(1) for every input (x1,..., xn) e £*, if M is started in a starting ID,
ID0 = Qg Xy Xgeees X ¢(x], RN xn) is defined iff M reaches a
halting ID of the form qu¢(x], cees xn)B} for some state q in K and
some integers k,1 > 0.

(2) if ¢(x1,..., xn) is undefined, then either M halts in an ID not in the
form described in (1) (that is, the output is "garbage"), or the computa-
tion does not halt.

A halting ID of the form Bk qu B], ue ¥ k, 1 >0 1is called proper.

Otherwise, it is called improper.

Note that we are assuming in (1) that M "cleans up" its tape of all the
working symbols used during the computation and returns the output string
surrounded by a number of blanks (possibly null). This is not strictly

necessary but it makes life easier. We say that ¢ is Turing-computable.

43

It is convenient to describe Turing machines using diagrams. We can use
a labeled graph representation where each transition (p,a,b,m,q) is represented

as;
(asb’m) a/b,m

® NG R S ()

There is another convenient notation which can be used if for each state, all

transitions entering that state cause the head to move in the same direction.
If this condition is not satisfied, by splitting states, an equivalent Turing
machine can be effectively constructed and we leave the construction as an
exercise. The situation is now the following. If (p.a,b,m,q) e & we have the

diagram:

There is a slight problem if P is not entered by any transition. But then,

either p is the initial state in which case we use the notation

ek a/b q

start BN
or else state p is inaccessible and we can get rid of the quintuple starting with p.
Otherwise, all transitions entering p cause the tape to move in the same

direction m' and we write

R

44

Further simplifications are possible. When no confusion arises, we can

omit the state names. Transitions {(p,a,a,m,q)} are represented as

P2 Q
O-——->(W)

and
transitions (p,a,a.m,p) aré simply omitted. In other words, "self loops" are
omitted.

For all "blocking pairs" (p,a) such that no quintuple in & begins with

(p,a) we draw an outgoing arrow from state p Tabeled a.

a

@

p

~ Example: M= (K, T, A, § , qp)
K

{qys Gy» Qs q3}
fa, b, B}

r

8§ is composed of the following quintuples:

(ag> B> Bs R, q5)
(9> @ b, R, ;)
(qps bs a5 R, 9y)
(a;, a, b, R, q)
(47> bs a5 R, qy)
(qy> B, B, L, q,)
(955 a5 a, L, gy)
(9, by b, L, 9,)

(qzn B, B, R, Q3)

45

Modified diagram:

mmjzgima R

S
4|

S

a/b

start

start

For any input u e {a,b}*, the output of the computation is the string

v obtained from u by changing each "a" into a "b" and each "b" into a "a".

We now prove that every RAM - computable function is Turing-computable.

46

1.5.6 Theorem

Every RAM-computable function is Turing - computable.
Furthermore, given a RAM program, we can effectively find a
Turina machine which computes the same function.
| Proof: Let P be a RAM program using exactly m registers
Rl, ..., Rm and having n instructions. The contents r1, ..., rm
of the registers will be represented on the Turing machine tape
by the string #rl#r2# ... #rm#, where # 1s a special marker.
Recall that we may assume that RAM programs use only instructions
of the form:

addj Y, del v, Y jmpj N'a (or N'b) and continue.

The simulating Turing machine M is built of n blocks
connected for the same "flow of control™ as the n instructions in P.
The j-th block of the Turing machine simulates the j-th instruction
in P.

The machine M beains with some initialization, whose purpose
is to make sure that the simulation starts with a tape representing
m reaisters. Indeed, the RAM proaram P could have a number of
input variables t < m, and it is necessary to add m+2-t symbols #
to the input string. Also, since the input 1S X7sXps +ovs Xg
commas have to be changed to #.

Initiatization:

B/#

47

To simplify our diagrams, we assume that the RAM alphabet
is % = {0, 1}. Then the alphabet of the Turing Machine is
Tt = {0, 1, #, B}, GEach RAM statement is translated as a Turing

machine block as follows: We have four blocks, one for each

instruction,

{a) add, Rg

B/#
to (j+1)-st
Weeo——3 plock
e i3 1
find rq addai shift right

48

(b) del Rq
q
/__#_m__w//‘____m\
(DA D OGS
U U
0/B
B
#
B
Ve , 5> to
{(j+1)~st block
4 Vi i1 }
find rq delete shift left
(c) Jump;Z
q i .
— . a, to block
e Z
@ B R £y e, AN YA # . to
N’ - "\‘/ ’

{j+1)-st block

find rq test

49

Finally, we clean up the tape by erasing all but the contents

of R1 from the tape. This block corresponds to the tast continue

statement

(d) 0/8

B # #/8 B #/8 : 0,1,8B

OO O S OO
1/B #/B

i IN [1

erase #re##rm# move back erase

first #

Finally, a continue statement which is not the last continue
in the RAM program is translated as an arrow from the exit of the
j-th block to the entry of the (j+1}-th block,

Notice that the Turing machine produced by the translation
has the nice property that it never moves left of the biank sauare
immediately to the left of its leftmost # - In other words, the
tape needs only be unbounded to the right. We leave as an exercise
to prove that every Turina-computable function is computable by a
Turing machine which never moves more than one square to the left

of its starting position.

50

OQur next goal is to show that every Turing computable
function is RAM-computable. This shows that RAM's and Turing
machines compute exactly the same class of functions. We will
also show that every RAM computable function is partial recursive,
proving that the partial recursive functions are exactly the
class of functions computed by RAM's and Turing machine. This
provides evidence for the Church - Turina thesis. The Church-Turina
thesis asserts that the class of partial recursive functions
is exactly the intuitively conceived class of effectively
computable functions, also called algorithmically computable
functions. The Church-Turing thesis is usually accepted on
intuitive grounds by Computer Scientists and Mathematicians.
It is strengthened by the fact that any known definition of
the notion of effectively computable functions has been shown
to be equivalent to the notion of partial recursive function.
Furthermore, the translation from one system to another is always
effective (but sometimes very tedious).

in order to prove that every Turing - computable function
is RAM-computable, recall that we showed that the concatenation
function con is RAM computable. Also, for any n 2 2, the extended
concatenation function con, such that conp(x1, ..., Xp) = X7 «.. X
for all Xy, ..., Xp is primitive recursive and consequently
RAM-computable. Finally, RAM programs are closed under
composition. This allows us to write RAM programs as a composition
of "blocks", avoiding the tedious task of writing the progranm

in full.

b1

1.5.7 Theorem

Every Turing-computable function is RAM-computable,

Furthermore, aiven a Turing machine M computing ¢, we can
effectively construct a RAM program P computing ¢.
Proof: The notion of an instantaneous description (ID)
will be crucial in the translation. Let's abbreviate Turing
Machine by T.M.

Let M be a given T.M.

M= (K, T, A, &; qO) where
K= fag, «vos Qpts T = {ags vovs 3y, By ", "}

Assume that M computes the partial function ¢ of n
arguments. Me construct a RAM prooram P simulating M and
computing ¢. The program P, after some initialization, contains
the current ID of M in register R1. For each move of M, P
updates the current ID to the next ID,

Initially, P takes the n inputs x7, ..., X, and creates
FID, #=Hqgx, sxg, «oos Xp# An R1 (1D, surrodrided by the marker #).
Then, P simulates M. If and when M halts in a halting configuration
quwBT, P places the output w in R1 and stops. If the output
is improper, P loops forever.

The alphabet ¥ for P is £ =T u ¥ u {#} where it is assumed
that f‘n K = @ and # is neither in I nor K,

We will denote B = ayp41 and # = ap,0

When P simulates a move of M by updating the ID, R1 contains

the current ID which is of the form uapa;v and is such that:

if u = & then aj = #, v is always nonempty, but if v is a

52

single symbol, then v = #. In the first phase in updating
the 1D, P transfers u into RZ and aj into R3. Then it reads
aj, and depending on (p,a;) it simulates the action of M. In
order to remember p and aj, P has labels of the form jp and
jpi. Right moves are accomplished at the addresses jpiR

and jpiR#. Left moves are accomplished at the addresses jpil
and jpilL#. The updated ID is placed back in R1. When a
halting ID is found, P checks that it is proper. [If the halting
1D is proper, the output is returned in R1, otherwise P loops
forever. For simplicity, we adopt a "subroutine notation",
We also omit the suffix a or b in the target labels of jumps,

which is not a problem since all jumps in P are uniquely defined.

53

Program P

The initialization of P is:]
con (#sq"'ax'is"s"s sy ”9“3 Xn’ #)
Zn+?2 :
initialize

BEGIN clr R?2

clr R3 i

jmp TEST
NU - del R1
TEST R1 jmp, Al

R1 impy 4o A(k+2)

R1 jmpq- no

0
R i Qm
) jmpg
m

Subroutine Ai:
A R3 jmp, uil]

R3 S dmpy L, ui(k+2) update R2 and R3

add. R3 ' R3 « a.

i i

jmp NU
uil add] RZ2

Jmp upr3

) R2 = con(R2,R3)
ui(k+2) addk+2 R2

jmp upr3

1)

upr3

For each p, O

For each jp,

R1

54

cir R3
addi R3
jmp NU

p- < m we have:

R3 jmp1

R3 Jmpy 4o

< j < k+2,

del R1

jmp] jpl

Jmoy 4 Ip(k+1)

We have 3 cases:

If tpsaisb,qsﬂ) e & then jpi is:

jpi

jpiR

del R1

R jmp,
R1 impy 41
R1 jmp#

con3(R2, ajbq,R1)
jmp BEGIN

This simulates the transition:

wagpagv o~ uajbqv

jpiR¥

where v # #
cony (P2, ajbqﬁ#l
jmp BEGIN

update R3

R3 <« a.
i

1

(k+2)p

0 < p <mwe have:

JpiR
JpiR
JpiR#

to remember

“p

to remember

ajP?i]t

55

This simylates the transition:
uajpai# > uajqu#
2) If (p,ai,b,q,L) e§ then jpi is:

ipi del R1
R3 jmp1 Jpil
R3- jmpk+] jpil
R3 jmp# jpit #

jpil cong(RZ, qajb,R1)
Jmp REGIN
This simulates the transition:
uajpaiv > uqajbv where aj £ #
jpiL# conz(#qu,RT)
jmp BEGIN
This simulates the transition:
#paiv + #qBbv
3) If no guintuple begins with (p,ai) then upajv is a halting
configquration., We test if it is proper. For each such jpi

we have:

ipi

PROPER

HEAD

MORE

del

jmp

56

R1
PROPER

cons(R2, ajpai,R1)

R2
R2
Jmp
R2
R2

R?
jmp
del

Jjmp

del
R2

R2
R?
R?

Jmp

R1

jmp
Looo
jmpp

Jmp

jmp
m

R2

R1
R2

jmp1

Jjmp
jmpg

jmp#

LOOP

HEAD

RES1

RESk
BTATL
STOP
LooP

1)

test if
ID starts
with

#BKq

to put
resuyl t
in Rl

57

For each RESi, 1 < i < k, we have:

RESH addi R1 adds ai to
imp MORE 3 cutput
BTAIL del R2]
R2 jmpB BTAIL test if
IQ ends with
po# -
R2 jmp# STOP
jmp LOOP |
LODP Jmp LOO0P
STOP continue

This concludes the proagram P.

The Tast phase of the program (PROPER) is not necessary if we
start with a Turing machine which only halts in proper ID's
(it it halts). We ledve the following proposition as an exercise

to the reader.

1.5.8 Proposition

Given a Turing machine M computing a function ¢, we can
effectively construct a T.M, M' computinag ¢ with the followinag
additional properties:

1} M' halts in a proper ID iff M

halts in a proper ID
2) M' diveraes iff either M diverges or M halts in an
improper ID.

The construction is possible because the TM M' can check

whether or not a halting ID of M is proper, and if improper, it

loops forever,

58

From now on, we assume that our Turing machines satisfy
proposition 1.5.8.

We conclude this chapter by proving that every Turing-
computable function is partial recursive. This will close the
circle, establishing the equivalence of the partial recursive
functions, the RAM-computable functions and the Turing-computable
functions.

Again the main technique will be to use instantaneous
descriptions. We are going to define a primitive recursive function
which simulates the transitions of a T.M. from a starting ID.
Instantaneous descriptions will be represented as #upav# where
p is a state, a ¢ T and u, v ¢ T'*,

Given a T.M. M = (K, F,A,G,qo) we associate the following
pairs of ID's describing the transitions of M.

For every (p, a,b,R,q) 6, we

have the pairs: (paaq, bqa])

(paay, bagay)
(pa#, bgB#)
For every (p,a,b, |,q)eé, we have

the pairs: (aypa, q%;b)

(a,pa, qakb)
(#pa, #qBb)

59

The set of pairs is called TRANS and is assumed to be
ordered in some way. Each pair will be denoted 21 > v We
have N such pairs.

e also need the 1ist BLOCKED of pairs of symbols pa, such
that no quintuple in & starts with pa. They are ordered as
follows: pffaif”"" pima1m°
Next, we need the following primitive recursive functions.

1.5.9 Proposition

The following functions are primitive recursive:
1. Oc(x,y), where 0c(x,y) holds iff x

is a substring of y.

2. u{x,z) the prefix of z to the left of the leftmost occurrence
of x in z if Oc{x,z).
3. v(x,z) = the suffix of z to the right of the leftmost occurrence
of x in z if Oc{x,z)
4, vrep{x,y,z) = the result of replacing the leftmost occurrence
of x by y in z if 0c(x,z).
Proof: 1. 0ci{x,y) iff 3dz/y 3Jw/ylz=wux]
2. ulx,z) = miny/z Ju/z[yx=w]
3. v{x,z) = z- u(x,z)x
4, vrep(x,y,z) = ul{x,z)y v{x,z)
Note that for every "legal" ID, there is at most one

for same Ri > ry in TRANS.

occurrence of either zi or ry

This is why it doesn't hurt to pick the leftmost occurrence.

60

1.5.10 Proposition
For any Tufing machine M, the following are primitive recursive:
1. The function T such that T(IDO, y) = 1D iff ID, ;; 1D
[yl
in {yl steps.
2. HALT(ID) iff ID is a halting ID.
3. STOP(ID,y) iff M halts in a halting ID after |y]| steps.
Proof: Note that we actually do not care what T, HALT and STOP

do if IDO and 1D are not proper representations of ID's. T is

defined as follows.

1. T(x,e) = x
rep(2ys rps> Tlxsy)}) 3FF 0c(2y,T(x,y))

rep(L,,r5,T{x,y)) Tff 0c(2y,T(x,¥))
and not Oc(ﬁ],T(x,y))

T(X,yai) =
rep(2ysrys T(x,y)) 1FF 0c(oy,T(x,¥))
and not 0Oc{2y, T(x,y))

2

and no

OC(QN_]: T(XQY))

|

T(x,y) otherwise
2. HALT(x) iff
[ﬂc(951ai{ X) or QE.OC(Pim aim,x)]
3. STOP{x,y) iff HALT(T(x,y))
The starting ID is defined as:
ID0 = #qox],xz, vees Xn#

(for a T.M. computing a function of n arquments).

61

Let INIT be the function such that INIT(xy,...,x,)

#%}x],....,xn#. Clearly, INIT is primitive recursive. Then, for

all X7, .0y Xp» We have:

*
0 ? | ID and ID is a halting ID iff:

Y A
T(INIT(X1,‘...,Xn),‘mih1y[STOP(INIT(x1, s Xn),y)])le

Let RES be the function which cleans up a halting ID to

b

produce the output.
RES is defined by primitive recursion as follows:

{recall that rev is the reverse function)

RES(e) = €
RES(x#) = RES(x)
RES(xB) = RES(x)

Tcick RES(xa,) = con(RES(x),a3)
RES{xq) = RES{rev(x)) for all geK
For any halting ID - #BKuB%# with uex*, it is easily seen

that k 2,
RES(#B"quB #) = u.

Therefore, we have shown the Theorem:

1.5,11 Theoren

Fvery T.M. - computable function ¢ of n .arguments’is partial
recursive. Moreover, given a T.M. M, we can effectively find a
definition of ¢ of the following form:

Xy, «vus xn) =

RES{T(INIT(x7, ...,xn),min1y[ST0P(INIT(x],...,xn),y)]))

1.5.12 Corollary

Fvery partial recursive function ¢ can be effectively obtained

in the form ¢ = fo minyg
where f and g are primitive recursive functions,

62

Consequently, every partial recursive function has a definition
in which minimization is applied at most once.

In the next section, we turn to the problem of encoding RAM
programs, aiming to prove that "universal programs" exist. In the
course of the proof, we will vreprove that every RAM-computable
function is partial recursive.

A key technical result needed in the proof is the fact that
pairs of integers can be encoded into integers using "pairina

functions". This is the object of the next section.

