CIS 540 Complements on Chapter 1

THE KLEENE-HERBRAND-GODEL
COMPUTABLE FUNCTIONS

In this section, we present another model of computation due to Kleene,
Herbrand and Godel. In this model, a function is defined by a finite set
of purely recursive equations. By allowing arbitrary recursion, it might
seem at first glance that we obtain a larger class of functions than the
partial recursive functions. However, this is not the case because the
process of computing a function defined by a K-H-G (Kleene-Herbrand-Godel)
system of equations can be encoded by primitive recursive functions, the
only step requiring partial recursive functions being the "guess" that the
computation halts. The reader will note that this time, the functions
defined in this model are obviously "recursive," which is not so obvious
in the RAM model, the Turing machine model and the definition in terms of
closure operations where the only type of recursion allowed is primitive
recursion. One might say that the K-H-G model justifies the name given
to this class of functions (partial recursive functions). Historically,
variants of the K-H-G model were given first by Herbrand (around 1920)
and Godel (around 1935) and the version presented here is due essentially
to Kleene: Introduction to Meta-Mathematics, by S. C. Kleene, North-
Holland, Amsterdam, first printing 1952,

To get the flayor of the K-H-G model, let us look at the following
example:

Example 1:
F(O,y) =y +1
F(x + 1,0) = F(x,1)

Fix + 1, y+1) = F(x,F(x + 1,y))
The above equations define a function called Ackermann's function.
The remarkable fact about this function is that it eventually grows faster
than any primitive recursive function, and therefore is not a primitive
recursive function. It can be shown that,
F(0,x) = x + 1
F(1,x) = x + 2

F(2,x) = 2x + 3

F(3,x) =

|
~nN

and F(4,x) = 2 -3
where the stack of exponentials has height x. For instance,

216

16 3 ra,2) =22 -3.

F(4,1) = 2

Actually, it is not even clear that F is recursive, but we will see that this
results from the following developments.

Let us give another example and see how computations proceed.

Consider the functions H and F defined by the following system of
equations:

Example 2:
(H(x,y) =7
5) F(0) = 4
) F(x + 1) = H(x,F(x))

We claim that S computes the constant function H(x,y) = 7 and the function
F(x) = if x = 0 then 4 else 7.

We now describe a sequence of very elementary steps which constitute
a computation of F(2). At each step, we are either allowed to substitute
an integer for all occurrences of a variable in an equation, or to substitute
the value of an expression where all the arguments have been evaluated. Let
us number the equations as follows:

1. H(x,y) =7

2. F(0) =4

3. F(x + 1) = H(x,F(x))
Computation:

1. Substitute 0 for x in (3) obtaining:

F(1) = H(0,F(0))
2. Replace F(0) by 4 in right-hand side of line 1 obtaining:

F(1) = H(0,4)

¥

3. Substitute O for x and 4 for y in (1) obtaining:
H(0,4) = 7

4. Replace right-hand side of line 2 by 7 obtaining:
F(1) = 7

5. Substitute 1 for x in (3) obtaining:
F(2) = H(1,F(1))

6. Replace F(1) by 7 in right-hand side of line 5 obtaining:
F(2) =H(1,7)

7. Substitute 1 for x and 7 for y in (1) obtaining:
H(1,7) = 7

8. Replace H(1,7) by 7 in line 6 obtaining: =
F(2) = 7

Line 8 is the desired equation. We say that equation F(2) = 7 has been
deduced from the System S. Clearly, each step of the computation, also
called deduction, is highly mechanical: either an integer is substituted for
all occurrences of a variable in an equation, or a subterm whose arguments
are already evaluated is replaced by its value in the right-hand side of an
equation.

Our next task is to define precisely the K-H-G model. The main definition
is that of a system of equations, and for that, we need some auxiliary definitions
given below. This section could have been written for functions with string
arguments, however it will be simpler especially in the coding scheme to use
functions of the natural numbers. From results in Chapter 2, we see that there is
actually no loss of generality.

Variables:

The formal system KHG uses a countable set of individual variables

v - { XgsXysXps ..} and

a countable set of function symbols

RS, O 2 m em
F = {FgsFys «- » FgsFrs. v e s FRaPYs ane }

where each FT is the i-th function symbol of arity m (taking m arguments).

It

Terms:
1. Each variable X; is a term
2. 0 is a term
3. If t is a term, so is S(t), where S is the successor function.

. m
4. If tys ...ty are terms, so is Fi(t], vis s B

m
A term of the form S(S(... S(0)...))with n occurrences of S is called a
numeral and represents the number n. Such a numeral is abbreviated as n for

convenience.
Equations:

An equation is an expression of the form t] = t2 where t] and t2 are
terms.

Substitution:

Given a term t, having occurrences of a variable x, we denote as
t,[t,/ x] the term obtained as the result of substituting t, for all
occurrences of x in t]. Substitution can be defined inductively as follows:

1. If t] is a variable y # x, then t][tz/ x] =y

2. If t] = x, then t][tz/ x] =t

2

3. If t] is the constant 0 then t][tz/ x] =0

4. If t] S(t), then t][tz/ x] = S(t[tz/ x])
_ (M _ m
5. If t, = Fi(s], ... ,sm), then t][tz/ x] = Fi(s1ft2/ s suq ’Sm[tZ/ x]) .
We now describe the only two rules which allow us to deduce a new equation
either from one equation or from two equations.

The Substitution Rule (SR):

If ty =ty is an equation and the variable x occurs either in ty or t,
(or both), then from ty = t, we can infer the new equation

t][ﬁ/Ax] = tz[ﬁ/ x] where n is any numeral. Sometimes, an application of (SR)

| L0

is written schematically as:

t1 =t

t][ﬁ/x]

2
tz[ﬁ/ x]

The Replacement Rule (RR):

Given an equation t, = t, with no variable in it, if t, is of the form

t2 = s[Fk(ﬁ], e ﬁk)/ x] where Fk is a function symbol of arity k, and
ﬁ], ... ’ﬁk are numerals, and if Fk(ﬁ], i e ,ﬁk) = n is an equation (with n
a numeral), from t) = s[Fk(ﬁ], bk g ﬁk)/ x] and Fk(ﬁ], ... ,ﬁk) = n we can

infer, t] = s[n/ x], the result of substituting n for Fk(ﬁ], - ,nk) in

the right-hand side of t] =t

Schematically, we write:

9 -

t1=s[Fk(ﬁ],...,ﬁk)/x] F(Rys oo af) = 0

t]=s[ﬁ/x]
where x does not occur in t, .
Deduction (Derivation)

Given a finite set EE of equations, we say that a sequence of equations
> ..., € s a deduction of e, from E , written as & F e if the
following conditions hold:

1. For each ey in the sequence, either:

a) e, belongs to €.
b) 4 i <k and e is obtained from e, by application of rule (SR).
c) di,j <k and e, is obtained from e, and ej by application of

rule (RR).

|2 |

K-H-G Computability

Given a finite set Ei of equations, assuming that the equations are
ordered as E - {e], . ,eN} and that among the function Tetters occurring

in the equations in Ei, a function letter M ys singled out as the

"principal function letter," we say that a function ¢ of m argument

is K-H-G computable if for all Xqs oo XY in N, q>(x1 _ ,xm) =y iff
m_ - -

EFr F (x], o ki ,xm) =y.
So, ¢ is K-H-G computable, if for all arguments Xys woe s X there is

a deduction (computation) of Fm(i], —_ ,im) = y from the equations in E.
For example, we note that the function ¢(x) = if x = 0 then 4 else 7

is K-H-G computable from the system of equations:

H(x,y) = 7
S-% F(0) = 4
LF(x + 1) = H(x,F(x))

with principal function letter F.

Our next goal is to show that the class of K-H-G computable functions is

exactly the class of partial recursive functions. First, we show that every

partial recursive function is K-H-G computable.
The base functions are obviously K-H-G computable:
(1) The function E such that E(x) = 0 for all x is computed by the
single equation:
Fl(x) = 0
(2) The successor function S such that S(x) = x + 1 for all x is

computed by the single equation:

(22

(3) The projection function P?(x], cee s X) = X is computed by
the single equation :

Fn(x], cee s X) = X,

Closure under composition, primitive recursion and minimization is done in the
following Lemmas. We only indicate the main line of the proofs, leaving details
to the reader.
Lemma 1

If gy --. 5, are m K-H-G computable functions of n arguments and h is a
K-H-G computable function of m arguments, then their composition
f=nho (g], 3 ,gm) is K-H-G computable.
Proof: Assume 9; is computed by the system of equations Ei with principal
function Gj , and that h is computed by the system Em + 1 with principal function
H. Then, the system of equations obtained by taking the union of the
E.,1 <i<m+ 1, together with the equation F(x1, ce. X) =

i n
H(G](x], von s X) s vee 58 (X

\ . L .
n Xy - ,xn,) , with principal function F, computes f .

(Note that we have to make sure that the function letters used in the
Ei ,1 <i<m+ 1 are distinct).
Lemma 2
If g is a K-H-G computable function of n arguments and h is a K-H-G
computable function of n + 2 arguments, then the function f of n + 1 arguments
obtained by primitive recursion from g and h is K-H-G computable.
Proof: Assume g is computed by a system of equations E] with principal function
G and H is computed by a system of equations E2 with principal function H. Then,
the system of equations E] U E2 together with the equations:
F(O,x], . ,xn) = G(x1, iad ’Xn)
F(S(y)sxqs «ov s Xy) = HOYsF(xqs won s X)aXgs on s Xp)

with principal function F, computes f .

(L3

Lemma 3
Let g be a K-H-G computable function of n + 1 arguments. The function
f obtained from g by minimization is K-H-G computable, where

f(x], 2o ,xn) = miny[g(y,x], ... ,xn) = 0].

Proof: Let g be computed by the system of equations E] with principal
function G. We need an auxiliary function g defined by primitive recursion
as follows:

@(O,x], ... ,xn) =]

gy + Toxys .o ,Xn) = 59(g(y X5 « v 2 Xp) é(y,x],.,. s Xp))

Since sg and multiplication are primitive recursive, they are K-H-G
computable, and since g is K-H-G computable, by Lemma 1 and Lemma 2,
g is K-H-G computable. Let E2 be the system of equations computing g with
principal function G. Note that g has the following property:

For any Xps wee s X if min‘y[g(y,x], ... ,xn) = 0] is undefined, then

I

for all vy, §(y,x], s ks ’Xn) 1. If miny[g(y,x], ""Xn) = 0] =z, then

for y <z, g(y,xqs .0y x)

" 1 and for y > z, Q(y,x], cee X) =0. In

particular, Q(z,x], ... 59X) =T1and g(z + 1,x

n s X.)=0.

10 - .

Therefore, if miny[g(y,x], ...,xn) = 0] is defined g tells us for which

value. Then, f(x], cen g K} = min‘y[g(y,x1, I ,xn)

) 0] is computed by

the system E2 together with the two equations:
F(x], .. ’Xn) = H(G(y,x], o53 ,xn),G(S(y),x], T ,xn),y)
H(1,0,y) = y,
with principal function F.
Collecting the above results, we have shown:

Theorem 4

Every partial recursive function is K-H-G computable.

|y

We now proceed to show the converse of Theorem 4. The technique
involved in showing that every K-H-G computable function is partial
recursive consists in coding the derivation of equations F(ﬁ], e ,nk) =n
from a system of equations E. Such coding schemes are sometimes referred to
as Godel numberings. In order to code derivations, we have to assign codes
to variables, 0, terms, equations and derivations. We proceed inductively
as follows:

Variable: The variable X; has the code

#i = <1i,0>
Constant 0: The code of 0 is #0 = <3,1,0>
Terms: Each term of the form S(t) has the code #S(t) = <3,1,#t>

Each term F?(t ., t) has the code #FT(t

1> - n 1> e -

<M+ 2, 1+ 2udta, oo s #E >
1 m

Equations: The code of an equation t] = t2 is #(t] =t

Sequences of Equations

The code of a sequence of equations €s€ys «-- € is
#(80’81’ - ,em) =<m+ 2,#e0,... ,#em>

Next, we define some useful primitive recursive predicates and functions.
For every integer n, let code (n) = #n, the code of the numeral n. Also, for
any x,

nif x = #n

x + 1 otherwise

val(x) =%

[2 5

10

The predicates are:

Var (x) iff x is the code of a variable
Num (x) iff x is the code of a numeral
Term (x) iff x is the code of a term

Eqn (x) iff x is the code of an equation

We postpone to the next section the proof that the above functions and
predicates are primitive recursive.

We also need two predicates Subs and Rep expressing whether an equation
has been obtained from another equation by the substitution rule, or whether
an equation has been obtained from two equations by the Replacement rule.

Subs(z1,22) hold iff z, and z, are codes of equations say e and e, ,
and €, is derivable from e by the rule (SR) .

Rep(z],zz,z3) holds iff Z1,25,24 are codes of equations, say €1,€,5,€,
and ey is derivable from e; and e, by the rule (RR) .

Next, we need a predicate Der expressing that a sequence of equations
constitute a derivation of an equation of the form Fé(ﬁ], g ,nk) =n. For
simplicity, we will consider the principal function letter Fé of one argument.

Der (u,z) holds iff z is the code of a sequence of equations constituting
a derivation from E of an equation of the form Fé(ﬁ) = n, where n is a numeral.

Der (u,z) has the following primitive recursive definition. First, given
the set of equations E, we also have the predicate EN (z) which holds iff z is the
code of an equation in E. Also, let L(z) = ﬂ1(2) (the "length" of z).

Then we have:

Der (u,z) iff Yk < L(z) - 2

[EN(m(k + 2, L(z),z)) or

11

14 <k-1(Subs(n(i+2,L(z),z),n(k + 2 » L(z2),2)))
or (disk-1)(35<k-1)(Rep(nli +2,L(z).2),
m(j +2,L(z),z) ,n(k + 2,L(z),2)))] and
n](ﬂ(L(z),L(z),z)) = <3,2,code(u) > and
Num (r ,(7(L(2),L(2),2))) .

Finally, we leave to the reader to check that the function f defined
by the system of equations E has the following definition:

Let g(u) = minz[Der(u,z)] .

Then, f(u) = Val(m,(n(L(g(u)),L(g(u)),g(u)))) .
Therefore, f is partial recursive.
Theorem 5

Every K-H-G computable function is a partial recursive function.

Appendix:

Proof that the auxiliary functions and predicates are primitive recursive.
code(0) = <3,1,0>
code(n + 1) = <3,1,code (n) >
val(z) = minx < z[code(x) = z]

Var(z) iff 4 «x

IA

z[x = n](z)] ggg_nz(z) =0

Num(z) iff 4 x < z[code(x) = z]

IA

The predicate term is defined by course of value recursion. Let T be
the characteristic function of the predicate term.

T(0) =0

12

[1ifvar(z+1)orz+1=<3,1,0> or
| (L(z +1) = 3 and w(2,3,z + 1) =1
% and T(n(3,3,z + 1))) or
T(z +1) =
m(2,L(z +1),z+1)>1 and
LY is Lz A1) - 3Tl 43,0z 1),z + 1))

|
{
\

. 0 otherwise
(Recall that L(z) = ﬂ](Z)).' Eqn(z) iff Term(w](z)) and Term(wz(z))
The predicate tsub(u,v,w) is defined as follows:

#(tw(tu/ tv)) ifu-s= #tu s VS #tv , W= #tw

tsub(u,v,w) =
w otherwise
(u,v,w are the codes of three terms tu,tv, and tw). The predicate tsub can
be defined by course of value recursion.
tsub(u,v,0) = 0
(U ifv=w+l
) w+ 1 if(v #w+ 1 and var(w+ 1))orw+1=<3,1,0>
tsub(u,v,w + 1) =-<\ h(u,v,w) if v # w + 1 and Term(w + 1) and not var(w + 1)
’ and w+ 1 # <3,1,0>
i w+ 1 otherwise
where h(u,v,w) = <L(z + 1) ,w(2,L(z + 1),z), tsub(u,v,n(3,L(z + 1),z)), ...
tsub(u,v,n(L(z + 1),L(z + 1),2)) >
Then, we can define Subs as follows:
Subs(z],zz) iff Eqn(z;) and Eqn(z,) and (inc< z,)(v < z1) [Num(n)
and Var(v) and (w](Zz) = tsub(n,v,w(z]))) and (w2(22) = tsub(n,v,nz)))]

124

13

Finally, recall that Rep(z1,22,z3) holds if Z, is the code of an equation

t] = s[F(n], e i nk)/ x], Z, is the code of an equation F(n1, - ,nk) =n
and Zq is the code of the equation t] = s[n/x] (also t] contains no variable

and s contains no variable but x) . A predicate Novar(z) which holds iff
Eqn(z) and the equation coded by z contains no variable can easily be defined
by primitive recursion. We leave the details as an exercise. The predicate

special(z) which holds iff Term(z) and z codes a term of the form

Fk(TIRTT ,ﬁk) where ﬁ], i ,ﬁk are numerals can also be defined by primitive

recursion. We then have the following definition for Rep(z],22,23).

Rep(z],zz,z) iff Egqn(z,) and ’Novar(z]) and Eqn(zz) and specia](n](zz)) and

3 1
Num(nz(zz)) and Eqn(z3) and (3 z < bound(z],zz))[Eqn(z) and n1(z]) = n](z) and

wz(z]) = tsub(n](zz) ,<1,0> ,nz(z)) and n](z3) = n](z) and nz(z
tSUb('ﬂ'Z(Zz) s <130 > Tr2(2)):] .

3)

Note that the auxiliary equation t] = s whose code is z is obtained from
the equation t, = s[Fk(ﬁ], e ,ﬁk)/ x] whose code is Z, by substituting x
for some occurrences of Fk(ﬁ1, e i ,ﬁk). Therefore, the code of t] =5 is
no more (by monotonicity) than the code of the equation obtained by substituting
x for all occurrences of Fk(ﬁ1, g g ,ﬁk) in the first equation whose code is
z] , and so we have:

bound(z],zz) = <tsub(<1,0:>,n](22) ,n](z])),

tSub(<] ,0>, TT2(22) s 7]'-](2-])) >

	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046

