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Preface

This book is primarily an introduction to geometric concepts and tools needed for solving
problems of a geometric nature with a computer. Our main goal is to provide an introduc-
tion to the mathematical concepts needed in tackling problems arising notably in computer
graphics, geometric modeling, computer vision, and motion planning, just to mention some
key areas. Many problems in the above areas require some geometric knowledge, but in our
opinion, books dealing with the relevant geometric material are either too theoretical, or else
rather specialized and application-oriented. This book is an attempt to fill this gap. We
present a coherent view of geometric methods applicable to many engineering problems at
a level that can be understood by a senior undergraduate with a good math background.
Thus, this book should be of interest to a wide audience including computer scientists (both
students and professionals), mathematicians, and engineers interested in geometric methods
(for example, mechanical engineers). In particular, we provide an introduction to affine ge-
ometry. This material provides the foundations for the algorithmic treatment of polynomial
curves and surfaces, which is a main theme of this book. We present some of the main tools
used in computer aided geometric design (CAGD), but our goal is not to write another text
on CAGD. In brief, we are writing about

Geometric Modeling Methods in Engineering

We refrained from using the expression “computational geometry” because it has a well
established meaning which does not correspond to what we have in mind. Although we will
touch some of the topics covered in computational geometry (for example, triangulations),
we are more interested in dealing with curves and surfaces from an algorithmic point of
view . In this respect, we are flirting with the intuitionist’s ideal of doing mathematics from
a “constructive” point of view. Such a point of view is of course very relevant to computer
science.

This book consists of four parts.

• Part I provides an introduction to affine geometry. This ensures that readers are on
firm grounds to proceed with the rest of the book, in particular the study of curves
and surfaces. This is also useful to establish the notation and terminology. Readers

1
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proficient in geometry may omit this section, or use it by need . On the other hand,
readers totally unfamiliar with this material will probably have a hard time with the
rest of the book. These readers are advised do some extra reading in order to assimilate
some basic knowledge of geometry. For example, we highly recommend Berger [5, 6],
Pedoe [59], Samuel [69], Hilbert and Cohn-Vossen [42], do Carmo [26], Berger and
Gostiaux [7], Boehm and Prautzsch [11], and Tisseron [83].

• Part II deals with an algorithmic treatment of polynomial curves (Bézier curves) and
spline curves.

• Part III deals with an algorithmic treatment of polynomial surfaces (Bézier rectangular
or triangular surfaces), and spline surfaces. We also include a section on subdivision
surfaces, an exciting and active area of research in geometric modeling and animation,
as attested by several papers in SIGGRAPH’98, especially the paper by DeRose et al
[24] on the animated character Geri, from the short movie Geri’s game.

• Part IV consists of appendices consisting of basics of linear algebra, certain technical
proofs that were omitted earlier, complements of affine geometry, analysis, and dif-
ferential calculus. This part has been included to make the material of parts I–III
self-contained. Our advice is to use it by need !

Our goal is not to write a text on the many specialized and practical CAGD methods.
Our main goal is to provide an introduction to the concepts needed in tackling problems
arising in computer graphics, geometric modeling, computer vision, and motion planning,
just to mention some key areas. As it turns out, one of the most spectacular application
of these concepts is the treatment of curves and surfaces in terms of control points, a tool
extensively used in CAGD. This is why many pages are devoted to an algorithmic treatment
of curves and surfaces. However, we only provide a cursory coverage of CAGD methods.
Luckily, there are excellent texts on CAGD, including Bartels, Beatty, and Barsky [4], Farin
[32, 31], Fiorot and Jeannin [35, 36], Riesler [68], Hoschek and Lasser [45], and Piegl and
Tiller [62]. Similarly, although we cover affine geometry in some detail, we are far from giving
a comprehensive treatments of these topics. For such a treatment, we highly recommend
Berger [5, 6], Pedoe [59], Tisseron [83], Samuel [69], Dieudonné [25], Sidler [76], and Veblen
and Young [85, 86], a great classic. Several sections of this book are inspired by the treatment
in one of several of the above texts, and we are happy to thank the authors for providing
such inspiration.

Lyle Ramshaw’s remarkably elegant and inspirational DEC-SRC Report, “Blossoming: A
connect–the–dots approach to splines” [65], radically changed our perspective on polynomial
curves and surfaces. We have happily and irrevocably adopted the view that the most
transparent manner for presenting much of the theory of polynomial curves and surfaces is
to stress the multilinear nature (really multiaffine) of these curves and surfaces. This is in
complete agreement with de Casteljau’s original spirit, but as Ramshaw, we are more explicit
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in our use of multilinear tools. As the reader will discover, much of the algorithmic theory
of polynomial curves and surfaces is captured by the three words:

Polarize, homogenize, tensorize!

We will be dealing primarily with the following kinds of problems:

• Approximating a shape (curve or surface).

We will see how this can be done using polynomial curves or surfaces (also called Bézier
curves or surfaces), spline curves or surfaces.

• Interpolating a set of points, by a curve or a surface.

Again, we will see how this can be done using spline curves or spline surfaces.

• Drawing a curve or a surface.

The tools and techniques developed for solving the approximation problem will be very
useful for solving the other two problems.

The material presented in this book is related to the classical differential geometry of
curves and surfaces, and to numerical methods in matrix analysis. In fact, it is often pos-
sible to reduce problems involving certain splines to solving systems of linear equations.
Thus, it is very helpful to be aware of efficient methods for numerical matrix analysis. For
further information on these topics, readers are referred to the excellent texts by Gray [39],
Strang [81], and Ciarlet [19]. Strang’s beautiful book on applied mathematics is also highly
recommended as a general reference [80]. There are other interesting applications of geom-
etry to computer vision, computer graphics, and solid modeling. Some great references are
Koenderink [46] and Faugeras [33] for computer vision, Hoffman [43] for solid modeling, and
Metaxas [53] for physics-based deformable models.

Novelties

As far as we know, there is no fully developed modern exposition integrating the basic
concepts of affine geometry as well as a presentation of curves and surfaces from the algo-
rithmic point of view in terms of control points (in the polynomial case). There is also no
reasonably thorough textbook presentation of the main surface subdivision schemes (Doo-
Sabin, Catmull-Clark, Loop), and a technical discussion of convergence and smoothness.

New Treatment, New Results

This books provides an introduction to affine geometry. Generally, background material
or rather technical proofs are relegated to appendices.
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We give an in-depth presentation of polynomial curves and surfaces from an algorith-
mic point of view. The approach (sometimes called blossoming) consists in multilinearizing
everything in sight (getting polar forms), which leads very naturally to a presentation of
polynomial curves and surfaces in terms of control points (Bézier curves and surfaces). We
present many algorithms for subdividing and drawing curves and surfaces, all implemented
in Mathematica. A clean and elegant presentation of control points is obtained by using
a construction for embedding an affine space into a vector space (the so-called “hat con-
struction”, originating in Berger [5]). We even include an optional chapter (chapter 11)
covering tensors and symmetric tensors to provide an in-depth understanding of the foun-
dations of blossoming and a more conceptual view of the computational material on curves
and surfaces. The continuity conditions for spline curves and spline surfaces are expressed
in terms of polar forms, which yields both geometric and computational insights into the
subtle interaction of knots and de Boor control points.

Subdivision surfaces are the topic of Chapter 9 (section 9.4). Subdivision surfaces form
an active and promising area of research. They provide an attractive alternative to spline
surfaces in modeling applications where the topology of surfaces is rather complex, and
where the initial control polyhedron consists of various kinds of faces, not just triangles
or rectangles. As far as we know, this is the first textbook presentation of three popular
methods due to Doo and Sabin [27, 29, 28], Catmull and Clark [17], and Charles Loop [50].
We discuss Loop’s convergence proof in some detail, and for this, we give a crash course on
discrete Fourier transforms and (circular) discrete convolutions. A glimpse at subdivision
surfaces is given in a new Section added to Farin’s Fourth edition [32]. Subdivision surfaces
are also briefly covered in Stollnitz, DeRose, and Salesin [79], but in the context of wavelets
and multiresolution representation.

A a general rule, we try to be rigorous, but we always keep the algorithmic nature of the
mathematical objects under consideration in the forefront.

Many problems and programming projects are proposed (over 200). Some are routine,
some are (very) difficult.

Many algorithms and their implementation

Although one of our main concerns is to be mathematically rigorous, which implies
that we give precise definitions and prove almost all of the results in this book, we are
primarily interested in the repesentation and the implementation of concepts and tools used
to solve geometric problems. Thus, we devote a great deal of efforts to the development and
implemention of algorithms to manipulate curves, surfaces, triangulations, etc. As a matter
of fact, we provide Mathematica code for most of the geometric algorithms presented in this
book. These algorithms were used to prepare most of the illustrations of this book. We also
urge the reader to write his own algorithms, and we propose many challenging programming
projects.

Open Problems
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Not only do we present standard material (although sometimes from a fresh point of
view), but whenever possible, we state some open problems, thus taking the reader to the
cutting edge of the field. For example, we describe very clearly the problem of finding an
efficient way to compute control points for Ck-continuous triangular surface splines. We also
discuss some of the problems with the convergence and smoothness of subdivision surface
methods.

What’s not covered in this book

Since this book is already quite long, we have omitted rational curves and rational sur-
faces, and projective geometry. A good reference on these topics is [31]. We are also writing
a text covering these topics rather extensively (and more). We also have omitted solid
modeling techniques, methods for rendering implicit curves and surfaces, the finite elements
method, and wavelets. The first two topics are nicely covered in Hoffman [43], a remarkably
clear presentation of wavelets is given in Stollnitz, DeRose, and Salesin [79], and a more
mathematical presentation in Strang [82], and the finite element method is the subject of so
many books that we will not even attempt to mention any references.

Acknowledgement
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Chapter 1

Introduction

1.1 Geometric Methods in Engineering

Geometry, what a glorious subject! For centuries, geometry has played a crucial role in
the development of many scientific and engineering disciplines such as astronomy, geodesy,
mechanics, balistics, civil and mechanical engineering, ship building, architecture, and in
this century, automobile and aircraft manufacturing, among others. What makes geometry
a unique and particularly exciting branch of mathematics is that it is primarily visual . One
might say that this is only true of geometry up to the end of the nineteenth century, but
even when the objects are higher-dimensional and very abstract, the intuitions behind these
fancy concepts almost always come from shapes that can somehow be visualized. On the
other hand, it was discovered at the end of the nineteenth century that there was a danger in
relying too much on visual intuition, and that this could lead to wrong results or fallacious
arguments. What happened then is that mathematicians started using more algebra and
analysis in geometry, in order to put it on firmer grounds and to obtain more rigorous
proofs. The consequence of the strive for more rigor and the injection of more algebra in
geometry is that mathematicians of the beginning of the twentieth century began suppressing
geometric intuitions from their proofs. Geometry lost some of its charm and became a rather
inpenetrable discipline, except for the initiated. It is interesting to observe that most College
textbooks of mathematics included a fair amount of geometry up to the fourties. Beginning
with the fifties, the amount of geometry decreases to basically disappear in the seventies.

Paradoxically, with the advent of faster computers, starting in the early sixties, automo-
bile and plane manufacturers realized that it was possible to design cars and planes using
computer-aided methods. These methods pioneered by de Casteljau, Bézier, and Ferguson,
used geometric methods. Although not very advanced, the type of geometry used is very el-
egant. Basically, it is a branch of affine geometry, and it is very useful from the point of view
of applications. Thus, there seems to be an interesting turn of events. After being neglected
for decades, stimulated by computer science, geometry seems to be making a come-back as
a fundamental tool used in manufacturing, computer graphics, computer vision, and motion
planning, just to mention some key areas.

7



8 CHAPTER 1. INTRODUCTION

We are convinced that geometry will play an important role in computer science and
engineering in the years to come. The demand for technology using 3D graphics, virtual
reality, animation techniques, etc, is increasing fast, and it is clear that storing and processing
complex images and complex geometric models of shapes (face, limbs, organs, etc) will be
required. We will need to understand better how to discretize geometric objects such as
curves, surfaces, and volumes. This book represents an attempt at presenting a coherent
view of geometric methods used to tackle problems of a geometric nature with a computer.
We believe that this can be a great way of learning about curves and surfaces, while having
fun. Furthermore, there are plenty of opportunities for applying these methods to real-world
problems.

Our main focus is on curves and surfaces, but our point of view is algorithmic. We
concentrate on methods for discretizing curves and surfaces in order to store them and
display them efficiently. Thus, we focus on polynomial curves defined in terms of control
points, since they are the most efficient class of curves and surfaces from the point of view
of design and representation. However, in order to gain a deeper understanding of this
theory of curves and surfaces, we present the underlying geometric concepts in some detail,
in particular, affine geometry. In turn, since this material relies on some algebra and analysis
(linear algebra, directional derivatives, etc), in order to make the book entirely self-contained,
we provide some appendices where this background material is presented.

In the next section, we list some problems arising in computer graphics and computer
vision that can be tackled using the geometric tools and concepts presented in this book.

1.2 Examples of Problems Using Geometric Modeling

The following is a nonexhaustive listing of several different areas in which geometric methods
(using curves and surfaces) play a crucial role.

• Manufacturing

• Medical imaging

• Molecular modeling

• Computational fluid dynamics

• Physical simulation in applied mechanics

• Oceanography, virtual oceans

• Shape reconstruction

• Weather analysis
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• Computer graphics (rendering smooth curved shapes)

• Computer animation

• Data compression

• Architecture

• Art (sculpture, 3D images, ...)

A specific subproblem that often needs to be solved, for example in manufacturing prob-
lems or in medical imaging, is to fit a curve or a surface through a set of data points. For
simplicity, let us discuss briefly a curve fitting problem.

Problem: Given N +1 data points x0, . . . , xN and a sequence of N +1 reals u0, . . . , uN ,
with ui < ui+1 for all i, 0 ≤ i ≤ N − 1, find a C2-continuous curve F , such that F (ui) = xi,
for all i, 0 ≤ i ≤ N .

As stated above, the problem is actually underdetermined. Indeed, there are many dif-
ferent types of curves that solve the above problem (defined by Fourier series, Lagrange
interpolants, etc), and we need to be more specific as to what kind of curve we would like to
use. In most cases, efficiency is the dominant factor, and it turns out that piecewise poly-
nomial curves are usually the best choice. Even then, the problem is still underdetermined.
However, the problem is no longer underdetermined if we specify some “end conditions”, for
instance the tangents at x0 and xN . In this case, it can be shown that there is a unique
B-spline curve solving the above problem (see section 6.8). The next figure shows N +1 = 8
data points, and a C2-continuous spline curve F passing through these points, for a uniform
sequence of reals ui.

Other points d−1, . . . , d8 are also shown. What happens is that the interpolating B-spline
curve is really determined by some sequence of points d−1, . . . , dN+1 called de Boor control
points (with d−1 = x0 and dN+1 = xN ). Instead of specifying the tangents at x0 and xN ,
we can specify the control points d0 and dN . Then, it turns out that d1, . . . , dN−1 can be
computed from x0, . . . , xN (and d0, dN) by solving a system of linear equations of the form




1
α1 β1 γ1

α2 β2 γ2 0
. . .

0 αN−2 βN−2 γN−2

αN−1 βN−1 γN−1

1







d0
d1
d2
...

dN−2

dN−1

dN




=




r0
r1
r2
...

rN−2

rN−1

rN




where r0 and rN may be chosen arbitrarily, the coefficients αi, βi, γi are easily computed from
the uj, and ri = (ui+1 − ui−1) xi for 1 ≤ i ≤ N − 1 (see section 6.8).
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Figure 1.1: A C2 interpolation spline curve passing through the points x0, x1, x2, x3, x4, x5,
x6, x7

The previous example suggests that curves can be defined in terms of control points .
Indeed, specifying curves and surfaces in terms of control points is one of the major techniques
used in geometric design. For example, in medical imaging, one may want to find the contour
of some organ, say the heart, given some discrete data. One may do this by fitting a B-
spline curve through the data points. In computer animation, one may want to have a person
move from one location to another, passing through some intermediate locations, in a smooth
manner. Again, this problem can be solved using B-splines. Many manufacturing problems
involve fitting a surface through some data points. Let us mention automobile design, plane
design, (wings, fuselage, etc), engine parts, ship hulls, ski boots, etc.

We could go on and on with many other examples, but it is now time to review some
basics of affine geometry!



Part I
Basics of Affine Geometry
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Chapter 2

Basics of Affine Geometry

2.1 Affine Spaces

Geometrically, curves and surfaces are usually considered to be sets of points with some
special properties, living in a space consisting of “points.” Typically, one is also interested
in geometric properties invariant under certain transformations, for example, translations,
rotations, projections, etc. One could model the space of points as a vector space, but this is
not very satisfactory for a number of reasons. One reason is that the point corresponding to
the zero vector (0), called the origin, plays a special role, when there is really no reason to have
a privileged origin. Another reason is that certain notions, such as parallelism, are handled
in an awkward manner. But the deeper reason is that vector spaces and affine spaces really
have different geometries. The geometric properties of a vector space are invariant under
the group of bijective linear maps, whereas the geometric properties of an affine space are
invariant under the group of bijective affine maps, and these two groups are not isomorphic.
Roughly speaking, there are more affine maps than linear maps.

Affine spaces provide a better framework for doing geometry. In particular, it is possible
to deal with points, curves, surfaces, etc, in an intrinsic manner, that is, independently
of any specific choice of a coordinate system. As in physics, this is highly desirable to
really understand what’s going on. Of course, coordinate systems have to be chosen to
finally carry out computations, but one should learn to resist the temptation to resort to
coordinate systems until it is really necessary.

Affine spaces are the right framework for dealing with motions, trajectories, and physical
forces, among other things. Thus, affine geometry is crucial to a clean presentation of
kinematics, dynamics, and other parts of physics (for example, elasticity). After all, a rigid
motion is an affine map, but not a linear map in general. Also, given an m × n matrix A
and a vector b ∈ Rm, the set U = {x ∈ Rn | Ax = b} of solutions of the system Ax = b is an
affine space, but not a vector space (linear space) in general.

13
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Use coordinate systems only when needed!

This chapter proceeds as follows. We take advantage of the fact that almost every affine
concept is the counterpart of some concept in linear algebra. We begin by defining affine
spaces, stressing the physical interpretation of the definition in terms of points (particles)
and vectors (forces). Corresponding to linear combinations of vectors, we define affine com-
binations of points (barycenters), realizing that we are forced to restrict our attention to
families of scalars adding up to 1. Corresponding to linear subspaces, we introduce affine
subspaces as subsets closed under affine combinations. Then, we characterize affine sub-
spaces in terms of certain vector spaces called their directions. This allows us to define a
clean notion of parallelism. Next, corresponding to linear independence and bases, we define
affine independence and affine frames. We also define convexity. Corresponding to linear
maps, we define affine maps as maps preserving affine combinations. We show that every
affine map is completely defined by the image of one point and a linear map. We investi-
gate briefly some simple affine maps, the translations and the central dilatations. Certain
technical proofs and some complementary material on affine geometry are relegated to an
appendix (see Chapter B).

Our presentation of affine geometry is far from being comprehensive, and it is biased
towards the algorithmic geometry of curves and surfaces. For more details, the reader is
referred to Pedoe [59], Snapper and Troyer [77], Berger [5, 6], Samuel [69], Tisseron [83], and
Hilbert and Cohn-Vossen [42].

Suppose we have a particle moving in 3-space and that we want to describe the trajectory
of this particle. If one looks up a good textbook on dynamics, such as Greenwood [40], one
finds out that the particle is modeled as a point, and that the position of this point x
is determined with respect to a “frame” in R3 by a vector. Curiously, the notion of a
frame is rarely defined precisely, but it is easy to infer that a frame is a pair (O, (−→e1 ,−→e2 ,−→e3 ))
consisting of an origin O (which is a point) together with a basis of three vectors (−→e1 ,−→e2 ,

−→
e3).

For example, the standard frame in R3 has origin O = (0, 0, 0) and the basis of three vectors
−→e1 = (1, 0, 0), −→e2 = (0, 1, 0), and −→e3 = (0, 0, 1). The position of a point x is then defined by
the “unique vector” from O to x.

But wait a minute, this definition seems to be defining frames and the position of a point
without defining what a point is! Well, let us identify points with elements of R3. If so,
given any two points a = (a1, a2, a3) and b = (b1, b2, b3), there is a unique free vector denoted−→
ab from a to b, the vector

−→
ab = (b1 − a1, b2 − a2, b3 − a3). Note that

b = a +
−→
ab,

addition being understood as addition in R3. Then, in the standard frame, given a point

x = (x1, x2, x3), the position of x is the vector
−→
Ox = (x1, x2, x3), which coincides with the

point itself. In the standard frame, points and vectors are identified.
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bc
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O

a

b

−→
ab

Figure 2.1: Points and free vectors

What if we pick a frame with a different origin, say Ω = (ω1, ω2, ω3), but the same basis

vectors (−→e1 ,−→e2 ,−→e3 )? This time, the point x = (x1, x2, x3) is defined by two position vectors:
−→
Ox = (x1, x2, x3) in the frame (O, (−→e1 ,−→e2 ,−→e3 )), and
−→
Ωx = (x1 − ω1, x2 − ω2, x3 − ω3) in the frame (Ω, (−→e1 ,−→e2 ,−→e3 )).
This is because −→

Ox =
−→
OΩ+

−→
Ωx and

−→
OΩ = (ω1, ω2, ω3).

We note that in the second frame (Ω, (−→e1 ,−→e2 ,−→e3 )), points and position vectors are no
longer identified. This gives us evidence that points are not vectors. It may be computation-
ally convenient to deal with points using position vectors, but such a treatment is not frame
invariant, which has undesirable effects. Inspired by physics, it is important to define points
and properties of points that are frame invariant. An undesirable side-effect of the present
approach shows up if we attempt to define linear combinations of points. First, let us review
the notion of linear combination of vectors. Given two vectors −→u and −→v of coordinates
(u1, u2, u3) and (v1, v2, v3) with respect to the basis (−→e1 ,−→e2 ,−→e3 ), for any two scalars λ, µ, we

can define the linear combination λ−→u + µ−→v as the vector of coordinates

(λu1 + µv1, λu2 + µv2, λu3 + µv3).

If we choose a different basis (
−→
e′1 ,

−→
e′2 ,

−→
e′3 ) and if the matrix P expressing the vectors (

−→
e′1 ,

−→
e′2 ,−→

e′3 ) over the basis (−→e1 ,−→e2 ,−→e3 ) is

P =



a1 b1 c1
a2 b2 c2
a3 b3 c3


 ,
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which means that the columns of P are the coordinates of the
−→
e′j over the basis (−→e1 ,−→e2 ,−→e3 ),

since

u1
−→e1 +u2

−→e2 +u3
−→e3 = u′

1

−→
e′1 +u′

2

−→
e′2 +u′

3

−→
e′3 and v1

−→e1 + v2
−→e2 + v3

−→e3 = v′1
−→
e′1 + v′2

−→
e′2 + v′3

−→
e′3 ,

it is easy to see that the coordinates (u1, u2, u3) and (v1, v2, v3) of
−→u and −→v with respect to

the basis (−→e1 ,−→e2 ,−→e3 ) are given in terms of the coordinates (u′
1, u

′
2, u

′
3) and (v′1, v

′
2, v

′
3) of

−→u
and −→v with respect to the basis (

−→
e′1 ,

−→
e′2 ,

−→
e′3 ) by the matrix equations



u1

u2

u3


 = P



u′
1

u′
2

u′
3


 and



v1
v2
v3


 = P



v′1
v′2
v′3


 .

From the above, we get



u′
1

u′
2

u′
3


 = P−1



u1

u2

u3


 and



v′1
v′2
v′3


 = P−1



v1
v2
v3


 ,

and by linearity, the coordinates

(λu′
1 + µv′1, λu

′
2 + µv′2, λu

′
3 + µv′3)

of λ−→u + µ−→v with respect to the basis (
−→
e′1 ,

−→
e′2 ,

−→
e′3 ) are given by



λu′

1 + µv′1
λu′

2 + µv′2
λu′

3 + µv′3


 = λP−1



u1

u2

u3


+ µP−1



v1
v2
v3


 = P−1



λu1 + µv1
λu2 + µv2
λu3 + µv3


 .

Everything worked out because the change of basis does not involve a change of origin.
On the other hand, if we consider the change of frame from the frame (O, (−→e1 ,−→e2 ,−→e3 )) to

the frame (Ω, (−→e1 ,−→e2 ,−→e3 )), where
−→
OΩ = (ω1, ω2, ω3), given two points a and b of coordinates

(a1, a2, a3) and (b1, b2, b3) with respect to the frame (O, (−→e1 ,−→e2 ,−→e3 )) and of coordinates

(a′1, a
′
2, a

′
3) and (b′1, b

′
2, b

′
3) of with respect to the frame (Ω, (−→e1 ,−→e2 ,−→e3 )), since

(a′1, a
′
2, a

′
3) = (a1 − ω1, a2 − ω2, a3 − ω3) and (b′1, b

′
2, b

′
3) = (b1 − ω1, b2 − ω2, b3 − ω3),

the coordinates of λa+ µb with respect to the frame (O, (−→e1 ,−→e2 ,−→e3 )) are

(λa1 + µb1, λa2 + µb2, λa3 + µb3),

but the coordinates
(λa′1 + µb′1, λa

′
2 + µb′2, λa

′
3 + µb′3)
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of λa+ µb with respect to the frame (Ω, (−→e1 ,−→e2 ,−→e3 )) are

(λa1 + µb1 − (λ+ µ)ω1, λa2 + µb2 − (λ+ µ)ω2, λa3 + µb3 − (λ+ µ)ω3)

which are different from

(λa1 + µb1 − ω1, λa2 + µb2 − ω2, λa3 + µb3 − ω3),

unless λ+ µ = 1.

Thus, we discovered a major difference between vectors and points: the notion of linear
combination of vectors is basis independent, but the notion of linear combination of points
is frame dependent. In order to salvage the notion of linear combination of points, some
restriction is needed: the scalar coefficients must add up to 1.

A clean way to handle the problem of frame invariance and to deal with points in a more
intrinsic manner is to make a clearer distinction between points and vectors. We duplicate
R3 into two copies, the first copy corresponding to points, where we forget the vector space
structure, and the second copy corresponding to free vectors, where the vector space structure
is important. Furthermore, we make explicit the important fact that the vector space R3 acts
on the set of points R3: given any point a = (a1, a2, a3) and any vector −→v = (v1, v2, v3),
we obtain the point

a+−→v = (a1 + v1, a2 + v2, a3 + v3),

which can be thought of as the result of translating a to b using the vector −→v . We can
imagine that −→v is placed such that its origin coincides with a and that its tip coincides with
b. This action +: R3 × R3 → R3 satisfies some crucial properties. For example,

a+
−→
0 = a,

(a+−→u ) +−→v = a+ (−→u +−→v ),

and for any two points a, b, there is a unique free vector
−→
ab such that

b = a +
−→
ab.

It turns out that the above properties, although trivial in the case of R3, are all that is
needed to define the abstract notion of affine space (or affine structure). The basic idea is

to consider two (distinct) sets E and
−→
E , where E is a set of points (with no structure) and

−→
E is a vector space (of free vectors) acting on the set E. Intuitively, we can think of the

elements of
−→
E as forces moving the points in E, considered as physical particles. The effect

of applying a force (free vector) u ∈ −→
E to a point a ∈ E is a translation. By this, we mean

that for every force u ∈ −→
E , the action of the force u is to “move” every point a ∈ E to the

point a + u ∈ E obtained by the translation corresponding to u viewed as a vector. Since

translations can be composed, it is natural that
−→
E is a vector space.
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For simplicity, it is assumed that all vector spaces under consideration are defined over
the field R of real numbers. It is also assumed that all families of vectors and scalars are
finite. The formal definition of an affine space is as follows.

Did you say “A fine space”?

Definition 2.1.1. An affine space is either the empty set, or a triple 〈E,
−→
E ,+〉 consisting

of a nonempty set E (of points), a vector space
−→
E (of translations, or free vectors), and an

action +: E ×−→
E → E, satisfying the following conditions.

(AF1) a+ 0 = a, for every a ∈ E;

(AF2) (a+ u) + v = a+ (u+ v), for every a ∈ E, and every u, v ∈ −→
E ;

(AF3) For any two points a, b ∈ E, there is a unique u ∈ −→
E such that a+ u = b. The unique

vector u ∈ −→
E such that a + u = b is denoted by

−→
ab, or sometimes by b− a. Thus, we

also write
b = a+

−→
ab

(or even b = a+ (b− a)).

The dimension of the affine space 〈E,
−→
E ,+〉 is the dimension dim(

−→
E ) of the vector space

−→
E . For simplicity, it is denoted as dim(E).

Note that −−−−−→
a(a + v) = v

for all a ∈ E and all v ∈ −→
E , since

−−−−−→
a(a + v) is the unique vector such that a+v = a+

−−−−−→
a(a+ v).

Thus, b = a + v is equivalent to
−→
ab = v. The following diagram gives an intuitive picture

of an affine space. It is natural to think of all vectors as having the same origin, the null
vector.

The axioms defining an affine space 〈E,
−→
E ,+〉 can be interpreted intuitively as saying

that E and
−→
E are two different ways of looking at the same object, but wearing different

sets of glasses, the second set of glasses depending on the choice of an “origin” in E. Indeed,
we can choose to look at the points in E, forgetting that every pair (a, b) of points defines a

unique vector ab in
−→
E , or we can choose to look at the vectors u in

−→
E , forgetting the points

in E. Furthermore, if we also pick any point a in E, point that can be viewed as an origin

in E, then we can recover all the points in E as the translated points a + u for all u ∈ −→
E .

This can be formalized by defining two maps between E and
−→
E .
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c = a + w
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Figure 2.2: Intuitive picture of an affine space

For every a ∈ E, consider the mapping from
−→
E to E:

u 7→ a + u,

where u ∈ −→
E , and consider the mapping from E to

−→
E :

b 7→ −→
ab,

where b ∈ E. The composition of the first mapping with the second is

u 7→ a+ u 7→ −−−−−→
a(a+ u),

which, in view of (AF3), yields u. The composition of the second with the first mapping is

b 7→ −→
ab 7→ a +

−→
ab,

which, in view of (AF3), yields b. Thus, these compositions are the identity from
−→
E to

−→
E

and the identity from E to E, and the mappings are both bijections.

When we identify E to
−→
E via the mapping b 7→ −→

ab, we say that we consider E as the
vector space obtained by taking a as the origin in E, and we denote it as Ea. Thus, an

affine space 〈E,
−→
E ,+〉 is a way of defining a vector space structure on a set of points E,

without making a commitment to a fixed origin in E. Nevertheless, as soon as we commit
to an origin a in E, we can view E as the vector space Ea. However, we urge the reader to

think of E as a physical set of points and of
−→
E as a set of forces acting on E, rather than

reducing E to some isomorphic copy of Rn. After all, points are points, and not vectors! For

notational simplicity, we will often denote an affine space 〈E,
−→
E ,+〉 as (E,

−→
E ), or even as

E. The vector space
−→
E is called the vector space associated with E.
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� One should be careful about the overloading of the addition symbol +. Addition is well-

defined on vectors, as in u+ v, the translate a + u of a point a ∈ E by a vector u ∈ −→
E

is also well-defined, but addition of points a+ b does not make sense. In this respect, the
notation b − a for the unique vector u such that b = a + u, is somewhat confusing, since it
suggests that points can be substracted (but not added!). Yet, we will see in section 10.1
that it is possible to make sense of linear combinations of points, and even mixed linear
combinations of points and vectors.

Any vector space
−→
E has an affine space structure specified by choosing E =

−→
E , and

letting + be addition in the vector space
−→
E . We will refer to this affine structure on a vector

space as the canonical (or natural) affine structure on
−→
E . In particular, the vector space Rn

can be viewed as an affine space denoted as An. In order to distinguish between the double
role played by members of Rn, points and vectors, we will denote points as row vectors, and
vectors as column vectors. Thus, the action of the vector space Rn over the set Rn simply
viewed as a set of points, is given by

(a1, . . . , an) +



u1
...
un


 = (a1 + u1, . . . , an + un).

The affine space An is called the real affine space of dimension n. In most cases, we will
consider n = 1, 2, 3.

2.2 Examples of Affine Spaces

Let us now give an example of an affine space which is not given as a vector space (at
least, not in an obvious fashion). Consider the subset L of A2 consisting of all points (x, y)
satisfying the equation

x+ y − 1 = 0.

The set L is the line of slope −1 passing through the points (1, 0) and (0, 1).

The line L can be made into an official affine space by defining the action +: L×R → L
of R on L defined such that for every point (x, 1− x) on L and any u ∈ R,

(x, 1− x) + u = (x+ u, 1− x− u).

It is immediately verified that this action makes L into an affine space. For example, for any
two points a = (a1, 1 − a1) and b = (b1, 1 − b1) on L, the unique (vector) u ∈ R such that
b = a + u is u = b1 − a1. Note that the vector space R is isomorphic to the line of equation
x+ y = 0 passing through the origin.
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Figure 2.3: An affine space: the line of equation x+ y − 1 = 0

Similarly, consider the subset H of A3 consisting of all points (x, y, z) satisfying the
equation

x+ y + z − 1 = 0.

The set H is the plane passing through the points (1, 0, 0), (0, 1, 0), and (0, 0, 1). The plane
H can be made into an official affine space by defining the action +: H ×R2 → H of R2 on

H defined such that for every point (x, y, 1− x− y) on H and any

(
u
v

)
∈ R2,

(x, y, 1− x− y) +

(
u
v

)
= (x+ u, y + v, 1− x− u− y − v).

For a slightly wilder example, consider the subset P of A3 consisting of all points (x, y, z)
satisfying the equation

x2 + y2 − z = 0.

The set P is a paraboloid of revolution, with axis Oz. The surface P can be made into an
official affine space by defining the action +: P × R2 → P of R2 on P defined such that for

every point (x, y, x2 + y2) on P and any

(
u
v

)
∈ R2,

(x, y, x2 + y2) +

(
u
v

)
= (x+ u, y + v, (x+ u)2 + (y + v)2).

This should dispell any idea that affine spaces are dull. Affine spaces not already equipped
with an obvious vector space structure arise in projective geometry.
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Figure 2.4: Points and corresponding vectors in affine geometry

2.3 Chasles’ Identity

Given any three points a, b, c ∈ E, since c = a+−→ac, b = a +
−→
ab, and c = b+

−→
bc , we get

c = b+
−→
bc = (a+

−→
ab) +

−→
bc = a + (

−→
ab +

−→
bc)

by (AF2), and thus, by (AF3), −→
ab +

−→
bc = −→ac,

which is known as Chasles’ identity .

Since a = a +−→aa and by (AF1), a = a + 0, by (AF3), we get

−→aa = 0.

Thus, letting a = c in Chasles’ identity, we get

−→
ba = −−→

ab.

Given any four points a, b, c, d ∈ E, since by Chasles’ identity

−→
ab +

−→
bc =

−→
ad+

−→
dc = −→ac,

we have
−→
ab =

−→
dc iff

−→
bc =

−→
ad (the parallelogram law).

2.4 Affine Combinations, Barycenters

A fundamental concept in linear algebra is that of a linear combination. The corresponding
concept in affine geometry is that of an affine combination, also called a barycenter . However,
there is a problem with the naive approach involving a coordinate system, as we saw in section
2.1. Since this problem is the reason for introducing affine combinations, at the risk of boring
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Figure 2.5: Two coordinates systems in R2

certain readers, we give another example showing what goes wrong if we are not careful in
defining linear combinations of points. Consider R2 as an affine space, under its natural

coordinate system with origin O = (0, 0) and basis vectors

(
1
0

)
and

(
0
1

)
. Given any two

points a = (a1, a2) and b = (b1, b2), it is natural to define the affine combination λa + µb as
the point of coordinates (λa1 + µb1, λa2 + µb2).

Thus, when a = (−1,−1) and b = (2, 2), the point a+ b is the point c = (1, 1). However,
let us now consider the new coordinate system with respect to the origin c = (1, 1) (and the
same basis vectors). This time, the coordinates of a are (−2,−2), and the coordinates of b
are (1, 1), and the point a + b is the point d of coordinates (−1,−1). However, it is clear
that the point d is identical to the origin O = (0, 0) of the first coordinate system. Thus,
a + b corresponds to two different points depending on which coordinate system is used for
its computation!

Thus, some extra condition is needed in order for affine combinations to make sense. It
turns out that if the scalars sum up to 1, the definition is intrinsic, as the following lemma
shows.

Lemma 2.4.1. Given an affine space E, let (ai)i∈I be a family of points in E, and let
(λi)i∈I be a family of scalars. For any two points a, b ∈ E, the following properties hold: (1)
If
∑

i∈I λi = 1, then

a+
∑

i∈I
λi
−→aai = b+

∑

i∈I
λi

−→
bai.

(2) If
∑

i∈I λi = 0, then
∑

i∈I
λi
−→aai =

∑

i∈I
λi

−→
bai.
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Proof. (1) By Chasles’ identity (see section 2.3), we have

a+
∑

i∈I
λi
−→aai = a+

∑

i∈I
λi(

−→
ab +

−→
bai)

= a+ (
∑

i∈I
λi)

−→
ab +

∑

i∈I
λi

−→
bai

= a+
−→
ab +

∑

i∈I
λi

−→
bai since

∑
i∈I λi = 1

= b+
∑

i∈I
λi

−→
bai since b = a+

−→
ab.

(2) We also have

∑

i∈I
λi
−→aai =

∑

i∈I
λi(

−→
ab +

−→
bai)

= (
∑

i∈I
λi)

−→
ab +

∑

i∈I
λi

−→
bai

=
∑

i∈I
λi

−→
bai,

since
∑

i∈I λi = 0.

Thus, by lemma 2.4.1, for any family of points (ai)i∈I in E, for any family (λi)i∈I of
scalars such that

∑
i∈I λi = 1, the point

x = a+
∑

i∈I
λi
−→aai

is independent of the choice of the origin a ∈ E. The unique point x is called the barycenter
(or barycentric combination, or affine combination) of the points ai assigned the weights λi.
and it is denoted as ∑

i∈I
λiai.

In dealing with barycenters, it is convenient to introduce the notion of a weighted point ,
which is just a pair (a, λ), where a ∈ E is a point, and λ ∈ R is a scalar. Then, given a family
of weighted points ((ai, λi))i∈I , where

∑
i∈I λi = 1, we also say that the point

∑
i∈I λiai is

the barycenter of the family of weighted points ((ai, λi))i∈I . Note that the barycenter x of
the family of weighted points ((ai, λi))i∈I is the unique point such that

−→ax =
∑

i∈I
λi
−→aai for every a ∈ E,
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and setting a = x, the point x is the unique point such that
∑

i∈I
λi
−→xai = 0.

In physical terms, the barycenter is the center of mass of the family of weighted points
((ai, λi))i∈I (where the masses have been normalized, so that

∑
i∈I λi = 1, and negative

masses are allowed).

Remarks:

(1) For all m ≥ 2, it is easy to prove that the barycenter of m weighted points can be
obtained by repeated computations of barycenters of two weighted points.

(2) When
∑

i∈I λi = 0, the vector
∑

i∈I λi
−→aai does not depend on the point a, and we may

denote it as
∑

i∈I λiai. This observation will be used in Chapter 10.1 to define a vector
space in which linear combinations of both points and vectors make sense, regardless
of the value of

∑
i∈I λi.

The figure below illustrates the geometric construction of the barycenters g1 and g2 of
the weighted points

(
a, 1

4

)
,
(
b, 1

4

)
, and

(
c, 1

2

)
, and (a,−1), (b, 1), and (c, 1).

The point g1 can be constructed geometrically as the middle of the segment joining c to
the middle 1

2
a+ 1

2
b of the segment (a, b), since

g1 =
1

2

(
1

2
a+

1

2
b

)
+

1

2
c.

The point g2 can be constructed geometrically as the point such that the middle 1
2
b+ 1

2
c of

the segment (b, c) is the middle of the segment (a, g2), since

g2 = −a + 2

(
1

2
b+

1

2
c

)
.

Later on, we will see that a polynomial curve can be defined as a set of barycenters of a
fixed number of points. For example, let (a, b, c, d) be a sequence of points in A2. Observe
that

(1− t)3 + 3t(1− t)2 + 3t2(1− t) + t3 = 1,

since the sum on the left-hand side is obtained by expanding (t + (1 − t))3 = 1 using the
binomial formula. Thus,

(1− t)3 a+ 3t(1− t)2 b+ 3t2(1− t) c+ t3 d

is a well-defined affine combination. Then, we can define the curve F : A → A2 such that

F (t) = (1− t)3 a+ 3t(1− t)2 b+ 3t2(1− t) c+ t3 d.

Such a curve is called a Bézier curve, and (a, b, c, d) are called its control points . Note that
the curve passes through a and d, but generally not through b and c. We will see in the next
chapter how any point F (t) on the curve can be constructed using an algorithm performing
three affine interpolation steps (the de Casteljau algorithm).
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bc bc

bc

bc

bc

bc bc

bc

bc

bc

a b

c

g1

a b

c
g2

Figure 2.6: Barycenters, g1 =
1
4
a+ 1

4
b+ 1

2
c, g2 = −a + b+ c.
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2.5 Affine Subspaces

In linear algebra, a (linear) subspace can be characterized as a nonempty subset of a vector
space closed under linear combinations. In affine spaces, the notion corresponding to the
notion of (linear) subspace is the notion of affine subspace. It is natural to define an affine
subspace as a subset of an affine space closed under affine combinations.

Definition 2.5.1. Given an affine space 〈E,
−→
E ,+〉, a subset V of E is an affine subspace if

for every family of weighted points ((ai, λi))i∈I in V such that
∑

i∈I λi = 1, the barycenter∑
i∈I λiai belongs to V .

An affine subspace is also called a flat by some authors. According to definition 2.5.1,
the empty set is trivially an affine subspace, and every intersection of affine subspaces is an
affine subspace.

As an example, consider the subset U of A2 defined by

U = {(x, y) ∈ R2 | ax+ by = c},

i.e. the set of solutions of the equation

ax+ by = c,

where it is assumed that a 6= 0 or b 6= 0. Given any m points (xi, yi) ∈ U and any m scalars
λi such that λ1 + · · ·+ λm = 1, we claim that

m∑

i=1

λi(xi, yi) ∈ U.

Indeed, (xi, yi) ∈ U means that
axi + byi = c,

and if we multiply both sides of this equation by λi and add up the resulting m equations,
we get

m∑

i=1

(λiaxi + λibyi) =
m∑

i=1

λic,

and since λ1 + · · ·+ λm = 1, we get

a

(
m∑

i=1

λixi

)
+ b

(
m∑

i=1

λiyi

)
=

(
m∑

i=1

λi

)
c = c,

which shows that (
m∑

i=1

λixi,

m∑

i=1

λiyi

)
=

m∑

i=1

λi(xi, yi) ∈ U.
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Thus, U is an affine subspace of A2. In fact, it is just a usual line in A2.

It turns out that U is closely related to the subset of R2 defined by

−→
U = {(x, y) ∈ R2 | ax+ by = 0},

i.e. the set of solution of the homogeneous equation

ax+ by = 0

obtained by setting the right-hand side of ax+ by = c to zero. Indeed, for any m scalars λi,
the same calculation as above yields that

m∑

i=1

λi(xi, yi) ∈
−→
U ,

this time without any restriction on the λi, since the right-hand side of the equation is

null. Thus,
−→
U is a subspace of R2. In fact,

−→
U is one-dimensional, and it is just a usual line

in R2. This line can be identified with a line passing through the origin of A2, a line which
is parallel to the line U of equation ax+ by = c. Now, if (x0, y0) is any point in U , we claim
that

U = (x0, y0) +
−→
U ,

where

(x0, y0) +
−→
U = {(x0 + u1, y0 + u2) | (u1, u2) ∈

−→
U }.

First, (x0, y0) +
−→
U ⊆ U , since ax0 + by0 = c and au1 + bu2 = 0 for all (u1, u2) ∈

−→
U . Second,

if (x, y) ∈ U , then ax+ by = c, and since we also have ax0 + by0 = c, by subtraction, we get

a(x− x0) + b(y − y0) = 0,

which shows that (x− x0, y − y0) ∈
−→
U , and thus (x, y) ∈ (x0, y0) +

−→
U . Hence, we also have

U ⊆ (x0, y0) +
−→
U , and U = (x0, y0) +

−→
U .

The above example shows that the affine line U defined by the equation

ax+ by = c

is obtained by “translating” the parallel line
−→
U of equation

ax+ by = 0

passing through the origin. In fact, given any point (x0, y0) ∈ U ,

U = (x0, y0) +
−→
U .
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U

U

Figure 2.7: An affine line U and its direction

More generally, it is easy to prove the following fact. Given any m×n matrix A and any
vector c ∈ Rm, the subset U of An defined by

U = {x ∈ Rn | Ax = c}

is an affine subspace of An. Furthermore, if we consider the corresponding homogeneous
equation Ax = 0, the set

−→
U = {x ∈ Rn | Ax = 0}

is a subspace of Rn, and for any x0 ∈ U , we have

U = x0 +
−→
U .

This is a general situation. Affine subspaces can be characterized in terms of subspaces of
−→
E . Let V be a nonempty subset of E. For every family (a1, . . . , an) in V , for any family
(λ1, . . . , λn) of scalars, for every point a ∈ V , observe that x ∈ E given by

x = a+
n∑

i=1

λi
−→aai

is the barycenter of the family of weighted points

((a1, λ1), . . . , (an, λn), (a, 1−
n∑

i=1

λi)),
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since
n∑

i=1

λi + (1−
n∑

i=1

λi) = 1.

Given any point a ∈ E and any subspace
−→
V of

−→
E , let a+

−→
V denote the following subset

of E:

a+
−→
V = {a+ v | v ∈ −→

V }.

Lemma 2.5.2. Let 〈E,
−→
E ,+〉 be an affine space. (1) A nonempty subset V of E is an affine

subspace iff, for every point a ∈ V , the set

−→
Va = {−→ax | x ∈ V }

is a subspace of
−→
E . Consequently, V = a +

−→
Va . Furthermore,

−→
V = {−→xy | x, y ∈ V }

is a subspace of
−→
E and

−→
Va =

−→
V for all a ∈ E. Thus, V = a +

−→
V .

(2) For any subspace
−→
V of

−→
E , for any a ∈ E, the set V = a+

−→
V is an affine subspace.

Proof. (1) Clearly,
−→
0 ∈ −→

V . If V is an affine subspace, then V is closed under barycentric
combinations, and by the remark before the lemma, for every x ∈ E,

−→ax =
n∑

i=1

λi
−→aai

iff x is the barycenter
n∑

i=1

λiai + (1−
n∑

i=1

λi)a

of the family of weighted points ((a1, λ1), . . . , (an, λn), (a, 1 −∑n
i=1 λi)). Then, it is clear

that
−→
Va is closed under linear combinations, and thus, it is a subspace of

−→
E . Since

−→
V =

{−→xy | x, y ∈ V } and
−→
Va = {−→ax | x ∈ V }, where a ∈ V , it is clear that

−→
Va ⊆ −→

V . Conversely,
since −→xy = −→ay −−→ax,
and since

−→
Va is a subspace of

−→
E , we have

−→
V ⊆ −→

Va . Thus,
−→
V =

−→
Va , for every a ∈ V .

(2) If V = a+
−→
V , where

−→
V is a subspace of

−→
E , then, for every family of weighted points,

((a+ vi, λi))1≤i≤n, where vi ∈
−→
V , and λ1 + · · ·+ λn = 1, the barycenter x being given by

x = a +
n∑

i=1

λi

−−−−−→
a(a + vi) = a +

n∑

i=1

λivi

is in V , since
−→
V is a subspace of

−→
E .
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bc

E
−→
E

a

V = a+
−→
V

−→
V

Figure 2.8: An affine subspace V and its direction
−→
V

In particular, when E is the natural affine space associated with a vector space
−→
E , lemma

2.5.2 shows that every affine subspace of
−→
E is of the form u+

−→
U , for a subspace

−→
U of

−→
E .

The subspaces of
−→
E are the affine subspaces of E that contain 0.

The subspace
−→
V associated with an affine subspace V is called the direction of V . It is

also clear that the map +: V × −→
V → V induced by +: E × −→

E → E confers to 〈V,−→V ,+〉
an affine structure.

By the dimension of the subspace V , we mean the dimension of
−→
V . An affine subspace

of dimension 1 is called a line, and an affine subspace of dimension 2 is called a plane. An
affine subspace of codimension 1 is called a hyperplane (recall that a subspace F of a vector
space E has codimension 1 iff there is some subspace G of dimension 1 such that E = F ⊕G,
the direct sum of F and G, see Appendix A). We say that two affine subspaces U and V are

parallel if their directions are identical. Equivalently, since
−→
U =

−→
V , we have U = a +

−→
U ,

and V = b +
−→
U , for any a ∈ U and any b ∈ V , and thus, V is obtained from U by the

translation
−→
ab.

By lemma 2.5.2, a line is specified by a point a ∈ E and a nonzero vector v ∈ −→
E , i.e. a

line is the set of all points of the form a + λv, for λ ∈ R. We say that three points a, b, c

are collinear , if the vectors
−→
ab and −→ac are linearly dependent. If two of the points a, b, c are

distinct, say a 6= b, then there is a unique λ ∈ R, such that −→ac = λ
−→
ab, and we define the

ratio
−→ac−→
ab

= λ.

A plane is specified by a point a ∈ E and two linearly independent vectors u, v ∈ −→
E , i.e.

a plane is the set of all points of the form a+ λu+µv, for λ, µ ∈ R. We say that four points

a, b, c, d are coplanar , if the vectors
−→
ab,−→ac, and −→

ad, are linearly dependent. Hyperplanes will
be characterized a little later.
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Lemma 2.5.3. Given an affine space 〈E,
−→
E ,+〉, for any family (ai)i∈I of points in E, the

set V of barycenters
∑

i∈I λiai (where
∑

i∈I λi = 1) is the smallest affine subspace containing
(ai)i∈I .

Proof. If (ai)i∈I is empty, then V = ∅, because of the condition
∑

i∈I λi = 1. If (ai)i∈I is
nonempty, then the smallest affine subspace containing (ai)i∈I must contain the set V of
barycenters

∑
i∈I λiai, and thus, it is enough to show that V is closed under affine combina-

tions, which is immediately verified.

Given a nonempty subset S of E, the smallest affine subspace of E generated by S is
often denoted as 〈S〉. For example, a line specified by two distinct points a and b is denoted
as 〈a, b〉, or even (a, b), and similarly for planes, etc.

Remark: Since it can be shown that the barycenter of n weighted points can be obtained
by repeated computations of barycenters of two weighted points, a nonempty subset V of
E is an affine subspace iff for every two points a, b ∈ V , the set V contains all barycentric
combinations of a and b. If V contains at least two points, V is an affine subspace iff for any
two distinct points a, b ∈ V , the set V contains the line determined by a and b, that is, the
set of all points (1− λ)a+ λb, λ ∈ R.

2.6 Affine Independence and Affine Frames

Corresponding to the notion of linear independence in vector spaces, we have the notion of
affine independence. Given a family (ai)i∈I of points in an affine space E, we will reduce the
notion of (affine) independence of these points to the (linear) independence of the families
(−−→aiaj)j∈(I−{i}) of vectors obtained by chosing any ai as an origin. First, the following lemma
shows that it is sufficient to consider only one of these families.

Lemma 2.6.1. Given an affine space 〈E,
−→
E ,+〉, let (ai)i∈I be a family of points in E. If

the family (−−→aiaj)j∈(I−{i}) is linearly independent for some i ∈ I, then (−−→aiaj)j∈(I−{i}) is linearly
independent for every i ∈ I.

Proof. Assume that the family (−−→aiaj)j∈(I−{i}) is linearly independent for some specific i ∈ I.
Let k ∈ I with k 6= i, and assume that there are some scalars (λj)j∈(I−{k}) such that

∑

j∈(I−{k})
λj
−−→akaj =

−→
0 .

Since
−−→akaj =

−−→akai +−−→aiaj ,
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we have
∑

j∈(I−{k})
λj
−−→akaj =

∑

j∈(I−{k})
λj
−−→akai +

∑

j∈(I−{k})
λj
−−→aiaj ,

=
∑

j∈(I−{k})
λj
−−→akai +

∑

j∈(I−{i,k})
λj
−−→aiaj ,

=
∑

j∈(I−{i,k})
λj
−−→aiaj −


 ∑

j∈(I−{k})
λj


−−→aiak,

and thus
∑

j∈(I−{i,k})
λj
−−→aiaj −


 ∑

j∈(I−{k})
λj


−−→aiak =

−→
0 .

Since the family (−−→aiaj)j∈(I−{i}) is linearly independent, we must have λj = 0 for all j ∈
(I − {i, k}) and ∑j∈(I−{k}) λj = 0, which implies that λj = 0 for all j ∈ (I − {k}).

We define affine independence as follows.

Definition 2.6.2. Given an affine space 〈E,
−→
E ,+〉, a family (ai)i∈I of points in E is affinely

independent if the family (−−→aiaj)j∈(I−{i}) is linearly independent for some i ∈ I.

Definition 2.6.2 is reasonable, since by Lemma 2.6.1, the independence of the family
(−−→aiaj)j∈(I−{i}) does not depend on the choice of ai. A crucial property of linearly independent

vectors (−→u1 , . . . ,
−→um) is that if a vector −→v is a linear combination

−→v =
m∑

i=1

λi
−→ui

of the −→ui , then the λi are unique. A similar result holds for affinely independent points.

Lemma 2.6.3. Given an affine space 〈E,
−→
E ,+〉, let (a0, . . . , am) be a family of m+1 points

in E. Let x ∈ E, and assume that x =
∑m

i=0 λiai, where
∑m

i=0 λi = 1. Then, the family
(λ0, . . . , λm) such that x =

∑m
i=0 λiai is unique iff the family (−−→a0a1, . . . ,

−−→a0am) is linearly
independent.

Proof. Recall that

x =
m∑

i=0

λiai iff −→a0x =
m∑

i=1

λi
−−→a0ai,

where
∑m

i=0 λi = 1. However, it is a well known result of linear algebra that the family
(λ1, . . . , λm) such that

−→a0x =

m∑

i=1

λi
−−→a0ai
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bc
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E
−→
E

a0 a1
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a0a1

a0a2

Figure 2.9: Affine independence and linear independence

is unique iff (−−→a0a1, . . . ,
−−→a0am) is linearly independent (for a proof, see Chapter A, Lemma

A.1.10). Thus, if (−−→a0a1, . . . ,
−−→a0am) is linearly independent, by lemma A.1.10, (λ1, . . . , λm)

is unique, and since λ0 = 1 −∑m
i=1 λi, λ0 is also unique. Conversely, the uniqueness of

(λ0, . . . , λm) such that x =
∑m

i=0 λiai implies the uniqueness of (λ1, . . . , λm) such that

−→a0x =

m∑

i=1

λi
−−→a0ai,

and by lemma A.1.10 again, (−−→a0a1, . . . ,
−−→a0am) is linearly independent.

Lemma 2.6.3 suggests the notion of affine frame. Affine frames are the affine analogs

of bases in vector spaces. Let 〈E,
−→
E ,+〉 be a nonempty affine space, and let (a0, . . . , am)

be a family of m + 1 points in E. The family (a0, . . . , am) determines the family of m

vectors (−−→a0a1, . . . ,
−−→a0am) in

−→
E . Conversely, given a point a0 in E and a family of m vectors

(u1, . . . , um) in
−→
E , we obtain the family of m+1 points (a0, . . . , am) in E, where ai = a0+ui,

1 ≤ i ≤ m.

Thus, for any m ≥ 1, it is equivalent to consider a family of m+ 1 points (a0, . . . , am) in

E, and a pair (a0, (u1, . . . , um)), where the ui are vectors in
−→
E .

When (−−→a0a1, . . . ,
−−→a0am) is a basis of

−→
E , then, for every x ∈ E, since x = a0 +

−→a0x, there
is a unique family (x1, . . . , xm) of scalars, such that

x = a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am.

The scalars (x1, . . . , xm) are coordinates with respect to (a0, (
−−→a0a1, . . . ,

−−→a0am)). Since

x = a0 +

m∑

i=1

xi
−−→a0ai iff x = (1−

m∑

i=1

xi)a0 +

m∑

i=1

xiai,
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x ∈ E can also be expressed uniquely as

x =
m∑

i=0

λiai

with
∑m

i=0 λi = 1, and where λ0 = 1 −∑m
i=1 xi, and λi = xi for 1 ≤ i ≤ m. The scalars

(λ0, . . . , λm) are also certain kinds of coordinates with respect to (a0, . . . , am). All this is
summarized in the following definition.

Definition 2.6.4. Given an affine space 〈E,
−→
E ,+〉, an affine frame with origin a0 is a

family (a0, . . . , am) of m+1 points in E such that (−−→a0a1, . . . ,
−−→a0am) is a basis of

−→
E . The pair

(a0, (
−−→a0a1, . . . ,

−−→a0am)) is also called an affine frame with origin a0. Then, every x ∈ E can be
expressed as

x = a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am

for a unique family (x1, . . . , xm) of scalars, called the coordinates of x w.r.t. the affine frame
(a0, (

−−→a0a1, . . . ,
−−→a0am)). Furthermore, every x ∈ E can be written as

x = λ0a0 + · · ·+ λmam

for some unique family (λ0, . . . , λm) of scalars such that λ0+· · ·+λm = 1 called the barycentric
coordinates of x with respect to the affine frame (a0, . . . , am).

The coordinates (x1, . . . , xm) and the barycentric coordinates (λ0, . . . , λm) are related by
the equations λ0 = 1 −∑m

i=1 xi and λi = xi, for 1 ≤ i ≤ m. An affine frame is called an
affine basis by some authors. The figure below shows affine frames for |I| = 0, 1, 2, 3.

A family of two points (a, b) in E is affinely independent iff
−→
ab 6= 0, iff a 6= b. If a 6= b, the

affine subspace generated by a and b is the set of all points (1−λ)a+λb, which is the unique
line passing through a and b. A family of three points (a, b, c) in E is affinely independent

iff
−→
ab and −→ac are linearly independent, which means that a, b, and c are not on a same line

(they are not collinear). In this case, the affine subspace generated by (a, b, c) is the set of all
points (1− λ− µ)a+ λb+ µc, which is the unique plane containing a, b, and c. A family of

four points (a, b, c, d) in E is affinely independent iff
−→
ab, −→ac, and −→

ad are linearly independent,
which means that a, b, c, and d are not in a same plane (they are not coplanar). In this
case, a, b, c, and d, are the vertices of a tetrahedron.

Given n+1 affinely independent points (a0, . . . , an) in E, we can consider the set of points
λ0a0+ · · ·+λnan, where λ0+ · · ·+λn = 1 and λi ≥ 0 (λi ∈ R). Such affine combinations are
called convex combinations . This set is called the convex hull of (a0, . . . , an) (or n-simplex
spanned by (a0, . . . , an)). When n = 1, we get the line segment between a0 and a1, including
a0 and a1. When n = 2, we get the interior of the triangle whose vertices are a0, a1, a2,
including boundary points (the edges). When n = 3, we get the interior of the tetrahedron
whose vertices are a0, a1, a2, a3, including boundary points (faces and edges). The set

{a0 + λ1
−−→a0a1 + · · ·+ λn

−−→a0an | where 0 ≤ λi ≤ 1 (λi ∈ R)},
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Figure 2.10: Examples of affine frames.
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Figure 2.11: A paralellotope

is called the parallelotope spanned by (a0, . . . , an). When E has dimension 2, a parallelotope
is also called a parallelogram, and when E has dimension 3, a parallelepiped . A parallelotope
is shown in figure 2.11: it consists of the points inside of the parallelogram (a0, a1, a2, d),
including its boundary.

More generally, we say that a subset V of E is convex if for any two points a, b ∈ V , we
have c ∈ V for every point c = (1− λ)a+ λb, with 0 ≤ λ ≤ 1 (λ ∈ R).

� Points are not vectors!

The following example illustrates why treating points as vectors may cause problems.
Let a, b, c be three affinely independent points in A3. Any point x in the plane (a, b, c) can
be expressed as

x = λ0a+ λ1b+ λ2c,

where λ0 + λ1 + λ2 = 1. How can we compute λ0, λ1, λ2? Letting a = (a1, a2, a3), b =
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(b1, b2, b3), c = (c1, c2, c3), and x = (x1, x2, x3) be the coordinates of a, b, c, x in the standard
frame of A3, it is tempting to solve the system of equations



a1 b1 c1
a2 b2 c2
a3 b3 c3





λ0

λ1

λ2


 =



x1

x2

x3


 .

However, there is a problem when the origin of the coordinate system belongs to the
plane (a, b, c), since in this case, the matrix is not invertible! What we should really be doing
is to solve the system

λ0
−→
Oa+ λ1

−→
Ob+ λ2

−→
Oc =

−→
Ox,

where O is any point not in the plane (a, b, c). An alternative is to use certain well chosen
cross-products. It can be shown that barycentric coordinates correspond to various ratios of
areas and volumes, see the Problems.

2.7 Affine Maps

Corresponding to linear maps, we have the notion of an affine map. An affine map is defined
as a map preserving affine combinations.

Definition 2.7.1. Given two affine spaces 〈E,
−→
E ,+〉 and 〈E ′,

−→
E ′ ,+′〉, a function f : E → E ′

is an affine map iff for every family ((ai, λi))i∈I of weighted points in E such that
∑

i∈I λi = 1,
we have

f(
∑

i∈I
λiai) =

∑

i∈I
λif(ai).

In other words, f preserves barycenters.

Affine maps can be obtained from linear maps as follows. For simplicity of notation, the
same symbol + is used for both affine spaces (instead of using both + and +′).

Given any point a ∈ E, any point b ∈ E ′, and any linear map h :
−→
E →

−→
E ′ , we claim that

the map f : E → E ′ defined such that

f(a+ v) = b+ h(v)

is an affine map. Indeed, for any family (λi)i∈I of scalars such that
∑

i∈I λi = 1, for any

family (−→vi )i∈I , since
∑

i∈I
λi(a + vi) = a+

∑

i∈I
λi

−−−−−→
a(a+ vi) = a+

∑

i∈I
λivi,

and ∑

i∈I
λi(b+ h(vi)) = b+

∑

i∈I
λi

−−−−−−−→
b(b+ h(vi)) = b+

∑

i∈I
λih(vi),
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Figure 2.12: The effect of a shear

we have

f(
∑

i∈I
λi(a+ vi)) = f(a+

∑

i∈I
λivi)

= b+ h(
∑

i∈I
λivi)

= b+
∑

i∈I
λih(vi)

=
∑

i∈I
λi(b+ h(vi))

=
∑

i∈I
λif(a+ vi).

Note that the condition
∑

i∈I λi = 1 was implicitly used (in a hidden call to Lemma
2.4.1) in deriving that

∑

i∈I
λi(a+ vi) = a +

∑

i∈I
λivi and

∑

i∈I
λi(b+ h(vi)) = b+

∑

i∈I
λih(vi).

As a more concrete example, the map

(
x1

x2

)
7→
(
1 2
0 1

)(
x1

x2

)
+

(
3
1

)

defines an affine map in A2. It is a “shear” followed by a translation. The effect of this shear
on the square (a, b, c, d) is shown in figure 2.12. The image of the square (a, b, c, d) is the
parallelogram (a′, b′, c′, d′).

Let us consider one more example. The map

(
x1

x2

)
7→
(
1 1
1 3

)(
x1

x2

)
+

(
3
0

)



2.7. AFFINE MAPS 39

bc bc

bc bc

bc

bc

bc

bc

a b

cd

a′

b′

c′

d′

Figure 2.13: The effect of an affine map

is an affine map. Since we can write

(
1 1
1 3

)
=

√
2

(√
2
2

−
√
2
2√

2
2

√
2
2

)(
1 2
0 1

)
,

this affine map is the composition of a shear, followed by a rotation of angle π/4, followed by
a magnification of ratio

√
2, followed by a translation. The effect of this map on the square

(a, b, c, d) is shown in figure 2.13. The image of the square (a, b, c, d) is the parallelogram
(a′, b′, c′, d′).

The following lemma shows the converse of what we just showed. Every affine map is
determined by the image of any point and a linear map.

Lemma 2.7.2. Given an affine map f : E → E ′, there is a unique linear map
−→
f :

−→
E →

−→
E ′,

such that

f(a+ v) = f(a) +
−→
f (v),

for every a ∈ E and every v ∈ −→
E .

Proof. The proof is not difficult, but very technical. It can be found in Appendix B, Section

B.1. We simply sketch the main ideas. Let a be any point in E. If a linear map
−→
f :

−→
E →

−→
E ′

satisfying the condition of the lemma exists, this map must satisfy the equation

−→
f (v) =

−−−−−−−−−→
f(a)f(a+ v)

for every v ∈ −→
E . We then have to check that the map defined in such a way is linear and

that its definition does not depend on the choice of a ∈ E.

The unique linear map
−→
f :

−→
E →

−→
E ′ given by lemma 2.7.2 is called the linear map

associated with the affine map f .
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Figure 2.14: An affine map f and its associated linear map
−→
f

Note that the condition

f(a+ v) = f(a) +
−→
f (v),

for every a ∈ E and every v ∈ −→
E can be stated equivalently as

f(x) = f(a) +
−→
f (−→ax), or

−−−−−→
f(a)f(x) =

−→
f (−→ax),

for all a, x ∈ E. Lemma 2.7.2 shows that for any affine map f : E → E ′, there are points

a ∈ E, b ∈ E ′, and a unique linear map
−→
f :

−→
E →

−→
E ′ , such that

f(a+ v) = b+
−→
f (v),

for all v ∈ −→
E (just let b = f(a), for any a ∈ E). Affine maps for which

−→
f is the identity

map are called translations . Indeed, if
−→
f = id,

f(x) = f(a)+
−→
f (−→ax) = f(a)+−→ax = x+−→xa+−−−→

af(a)+−→ax = x+−→xa+−−−→
af(a)−−→xa = x+

−−−→
af(a),

and so −−−→
xf(x) =

−−−→
af(a),

which shows that f is the translation induced by the vector
−−−→
af(a) (which does not depend

on a).
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Figure 2.15: An affine map mapping a0, a1, a2 to b0, b1, b2.

Since an affine map preserves barycenters, and since an affine subspace V is closed under
barycentric combinations, the image f(V ) of V is an affine subspace in E ′. So, for example,
the image of a line is a point or a line, the image of a plane is either a point, a line, or a
plane.

It is easily verified that the composition of two affine maps is an affine map. Also, given
affine maps f : E → E ′ and g : E ′ → E ′′, we have

g(f(a+ v)) = g(f(a) +
−→
f (v)) = g(f(a)) +−→g (

−→
f (v)),

which shows that
−−−−→
(g ◦ f) = −→g ◦ −→

f . It is easy to show that an affine map f : E → E ′ is

injective iff
−→
f :

−→
E →

−→
E ′ is injective, and that f : E → E ′ is surjective iff

−→
f :

−→
E →

−→
E ′

is surjective. An affine map f : E → E ′ is constant iff
−→
f :

−→
E →

−→
E ′ is the null (constant)

linear map equal to 0 for all v ∈ −→
E .

If E is an affine space of dimension m and (a0, a1, . . . , am) is an affine frame for E, for
any other affine space F , for any sequence (b0, b1, . . . , bm) of m + 1 points in F , there is a
unique affine map f : E → F such that f(ai) = bi, for 0 ≤ i ≤ m. Indeed, f must be such
that

f(λ0a0 + · · ·+ λmam) = λ0b0 + · · ·+ λmbm,

where λ0 + · · · + λm = 1, and this defines a unique affine map on the entire E, since
(a0, a1, . . . , am) is an affine frame for E. The following diagram illustrates the above result
when m = 2.

Using affine frames, affine maps can be represented in terms of matrices. We explain how
an affine map f : E → E is represented with respect to a frame (a0, . . . , an) in E, the more
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general case where an affine map f : E → F is represented with respect to two affine frames
(a0, . . . , an) in E and (b0, . . . , bm) in F being analogous. Since

f(a0 +
−→x ) = f(a0) +

−→
f (−→x )

for all −→x ∈ −→
E , we have −−−−−−−−−→

a0f(a0 +
−→x ) =

−−−−→
a0f(a0) +

−→
f (−→x ).

Since −→x ,
−−−−→
a0f(a0), and

−−−−−−−−−→
a0f(a0 +

−→x ), can be expressed as

−→x = x1
−−→a0a1 + · · ·+ xn

−−→a0an,−−−−→
a0f(a0) = b1

−−→a0a1 + · · ·+ bn
−−→a0an,

−−−−−−−−−→
a0f(a0 +

−→x ) = y1
−−→a0a1 + · · ·+ yn

−−→a0an,

if A = (ai j) is the n×n-matrix of the linear map
−→
f over the basis (−−→a0a1, . . . ,

−−→a0an), letting x,
y, and b denote the column vectors of components (x1, . . . , xn), (y1, . . . , yn), and (b1, . . . , bn),

−−−−−−−−−→
a0f(a0 +

−→x ) =
−−−−→
a0f(a0) +

−→
f (−→x )

is equivalent to
y = Ax+ b.

Note that b 6= 0 unless f(a0) = a0. Thus, f is generally not a linear transformation, unless it
has a fixed point , i.e., there is a point a0 such that f(a0) = a0. The vector b is the “translation
part” of the affine map. Affine maps do not always have a fixed point. Obviously, nonnull
translations have no fixed point. A less trivial example is given by the affine map

(
x1

x2

)
7→
(
1 0
0 −1

)(
x1

x2

)
+

(
1
0

)
.

This map is a reflection about the x-axis followed by a translation along the x-axis. The
affine map (

x1

x2

)
7→
(

1 −
√
3√

3
4

1
4

)(
x1

x2

)
+

(
1
1

)

can also be written as

(
x1

x2

)
7→
(
2 0
0 1

2

)( 1
2

−
√
3
2√

3
2

1
2

)(
x1

x2

)
+

(
1
1

)

which shows that it is the composition of a rotation of angle π/3, followed by a stretch
(by a factor of 2 along the x-axis, and by a factor of 1/2 along the y-axis), followed by a
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translation. It is easy to show that this affine map has a unique fixed point. On the other
hand, the affine map (

x1

x2

)
7→
(

8
5

−6
5

3
10

2
5

)(
x1

x2

)
+

(
1
1

)

has no fixed point, even though

(
8
5

−6
5

3
10

2
5

)
=

(
2 0
0 1

2

)(4
5

−3
5

3
5

4
5

)
,

and the second matrix is a rotation of angle θ such that cos θ = 4
5
and sin θ = 3

5
. For more

on fixed points of affine maps, see the problems.

There is a useful trick to convert the equation y = Ax + b into what looks like a linear
equation. The trick is to consider an (n + 1) × (n + 1)-matrix. We add 1 as the (n + 1)th
component to the vectors x, y, and b, and form the (n+ 1)× (n + 1)-matrix

(
A b
0 1

)

so that y = Ax+ b is equivalent to

(
y
1

)
=

(
A b
0 1

)(
x
1

)
.

This trick is very useful in kinematics and dynamics, where A is a rotation matrix. Such
affine maps are called rigid motions .

If f : E → E ′ is a bijective affine map, given any three collinear points a, b, c in E,
with a 6= b, where say, c = (1 − λ)a + λb, since f preserves barycenters, we have f(c) =
(1−λ)f(a)+λf(b), which shows that f(a), f(b), f(c) are collinear in E ′. There is a converse
to this property, which is simpler to state when the ground field is K = R. The converse
states that given any bijective function f : E → E ′ between two real affine spaces of the
same dimension n ≥ 2, if f maps any three collinear points to collinear points, then f is
affine. The proof is rather long (see Berger [5] or Samuel [69]).

Given three collinear points where a, b, c, where a 6= c, we have b = (1 − β)a + βc for
some unique β, and we define the ratio of the sequence a, b, c, as

ratio(a, b, c) =
β

(1− β)
=

−→
ab
−→
bc

,

provided that β 6= 1, i.e. that b 6= c. When b = c, we agree that ratio(a, b, c) = ∞. We warn

our readers that other authors define the ratio of a, b, c as −ratio(a, b, c) =
−→
ba−→
bc
. Since affine

maps preserves barycenters, it is clear that affine maps preserve the ratio of three points.
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2.8 Affine Groups

We now take a quick look at the bijective affine maps. Given an affine space E, the set of
affine bijections f : E → E is clearly a group, called the affine group of E, and denoted as
GA(E). Recall that the group of bijective linear maps of the vector space E is denoted as

GL(E). Then, the map f 7→ −→
f defines a group homomorphism L : GA(E) → GL(E). The

kernel of this map is the set of translations on E.

The subset of all linear maps of the form λ idE, where λ ∈ R − {0}, is a subgroup of
GL(E), and is denoted as R∗idE (where λ idE(u) = λu, and R∗ = R− {0}). The subgroup
DIL(E) = L−1(R∗idE) of GA(E) is particularly interesting. It turns out that it is the
disjoint union of the translations and of the dilatations of ratio λ 6= 1.

The elements of DIL(E) are called affine dilatations . Given any point a ∈ E, and any
scalar λ ∈ R, a dilatation (or central dilatation or homothety) of center a and ratio λ is a
map Ha,λ defined such that

Ha,λ(x) = a+ λ−→ax,
for every x ∈ E.

Remark: The terminology does not seem to be universally agreed upon. The terms affine
dilatation and central dilatation are used by Pedoe [59]. Snapper and Troyer use the term
dilation for an affine dilatation and magnification for a central dilatation [77]. Samuel uses
homothety for a central dilatation, a direct translation of the French “homothétie” [69]. Since
dilation is shorter than dilatation and somewhat easier to pronounce, perhaps we use use
that!

Observe that Ha,λ(a) = a, and when λ 6= 0 and x 6= a, Ha,λ(x) is on the line defined by
a and x, and is obtained by “scaling” −→ax by λ.

Figure 2.16 shows the effect of a central dilatation of center d. The triangle (a, b, c) is
magnified to the triangle (a′, b′, c′). Note how every line is mapped to a parallel line.

When λ = 1, Ha,1 is the identity. Note that Ha,λ = λ idE . When λ 6= 0, it is clear that
Ha,λ is an affine bijection. It is immediately verified that

Ha,λ ◦Ha,µ = Ha,λµ.

We have the following useful result.

Lemma 2.8.1. Given any affine space E, for any affine bijection f ∈ GA(E), if
−→
f = λ idE,

for some λ ∈ R∗ with λ 6= 1, then there is a unique point c ∈ E such that f = Hc,λ.

Proof. Choose some origin a in E. Since f is affine, we have

f(b) = f(a+
−→
ab) = f(a) + λ

−→
ab
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Figure 2.16: The effect of a central dilatation

for all b ∈ E. Thus, there is a point c ∈ E such that f(c) = c iff

c = f(a) + λ−→ac,

iff
−→ac = −−−→

af(a) + λ−→ac,
iff

(1− λ)−→ac = −−−→
af(a),

iff
−→ac = 1

1− λ

−−−→
af(a),

that is,

c =
1

1− λ
f(a)− λ

1− λ
a.

Taking this unique point c as the origin, we have f(b) = c + λ
−→
cb for all b ∈ E, which shows

that f = Hc,λ.

Clearly, if
−→
f = idE , the affine map f is a translation. Thus, the group of affine dilatations

DIL(E) is the disjoint union of the translations and of the dilatations of ratio λ 6= 0, 1. Affine
dilatations can be given a purely geometric characterization.

Another point worth mentioning is that affine bijections preserve the ratio of volumes of

parallelotopes. Indeed, given any basis B = (−→u 1, . . . ,
−→u m) of the vector space

−→
E associated

with the affine space E, given any m + 1 affinely independent points (a0, . . . , am), we can
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compute the determinant detB(
−−→a0a1, . . . ,

−−→a0am) w.r.t. the basis B. For any bijective affine
map f : E → E, since

detB(
−→
f (−−→a0a1), . . . ,

−→
f (−−→a0am)) = det(

−→
f )detB(

−−→a0a1, . . . ,
−−→a0am)

and the determinant of a linear map is intrinsic (i.e., only depends on
−→
f , and not on the

particular basis B), we conclude that the ratio

detB(
−→
f (−−→a0a1), . . . ,

−→
f (−−→a0am))

detB(
−−→a0a1, . . . ,

−−→a0am)
= det(

−→
f )

is independent of the basis B. Since detB(
−−→a0a1, . . . ,

−−→a0am) is the volume of the parallelotope
spanned by (a0, . . . , am), where the parallelotope spanned by any point a and the vectors

(−→u 1, . . . ,
−→u m) has unit volume (see Berger [5], Section 9.12), we see that affine bijections

preserve the ratio of volumes of parallelotopes. In fact, this ratio is independent of the choice
of the parallelotopes of unit volume. In particular, the affine bijections f ∈ GA(E) such

that det(
−→
f ) = 1 preserve volumes. These affine maps form a subgroup SA(E) of GA(E)

called the special affine group of E.

2.9 Affine Hyperplanes

We now consider affine forms and affine hyperplanes. In section 2.5, we observed that the
set L of solutions of an equation

ax+ by = c

is an affine subspace of A2 of dimension 1, in fact a line (provided that a and b are not both
null). It would be equally easy to show that the set P of solutions of an equation

ax+ by + cz = d

is an affine subspace of A3 of dimension 2, in fact a plane (provided that a, b, c are not all
null). More generally, the set H of solutions of an equation

λ1x1 + · · ·+ λmxm = µ

is an affine subspace of Am, and if λ1, . . . , λm are not all null, it turns out that it is a subspace
of dimension m− 1 called a hyperplane.

We can interpret the equation

λ1x1 + · · ·+ λmxm = µ

in terms of the map f : Rm → R defined such that

f(x1, . . . , xm) = λ1x1 + · · ·+ λmxm − µ
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for all (x1, . . . , xm) ∈ Rm. It is immediately verified that this map is affine, and the set H of
solutions of the equation

λ1x1 + · · ·+ λmxm = µ

is the null set, or kernel, of the affine map f : Am → R, in the sense that

H = f−1(0) = {x ∈ Am | f(x) = 0},

where x = (x1, . . . , xm).

Thus, it is interesting to consider affine forms , which are just affine maps f : E → R

from an affine space to R. Unlike linear forms f ∗, for which Ker f ∗ is never empty (since it
always contains the vector 0), it is possible that f−1(0) = ∅, for an affine form f . Given an
affine map f : E → R, we also denote f−1(0) as Ker f , and we call it the kernel of f . Recall
that an (affine) hyperplane is an affine subspace of codimension 1. The relationship between
affine hyperplanes and affine forms is given by the following lemma.

Lemma 2.9.1. Let E be an affine space. The following properties hold:

(a) Given any nonconstant affine form f : E → R, its kernel H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a nonconstant affine form f : E → R such that
H = Ker f . For any other affine form g : E → R such that H = Ker g, there is some
λ ∈ R such that g = λf (with λ 6= 0).

(c) Given any hyperplane H in E and any (nonconstant) affine form f : E → R such that
H = Ker f , every hyperplane H ′ parallel to H is defined by a nonconstant affine form
g such that g(a) = f(a)− λ, for all a ∈ E, for some λ ∈ R.

Proof. (a) Since f : E → R is nonconstant, by a previous observation,
−→
f :

−→
E → R is

not identically null, and since
−→
f is a linear form, it is surjective, which implies that f is

surjective. Thus, there is some a ∈ E such that f(a) = 0. Since f(a + v) =
−→
f (v) for all

v ∈ −→
E , we have f(a+v) = 0 iff

−→
f (v) = 0, and since by lemma A.5.1, Ker

−→
f is a hyperplane

H in
−→
E , clearly, f−1(0) = a+H is a hyperplane H is E.

(b) If H is an affine hyperplane, then by lemma 2.5.2, for any a ∈ H , we have H = a+H ,

where H is a hyperplane of
−→
E . By lemma A.5.1, H = Ker f ∗ for some nonnull linear form

f ∗, and thus, letting f : E → R be the affine form defined such that,

f(a+ v) = f ∗(v),

we have H = f−1(0), and f is non constant, since f ∗ is nonnull. The second part of (b) is
as in lemma A.5.1 (c).

(c) This follows easily from the proof of (b), and is left an exercise.
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When E is of dimension n, given an affine frame (a0, (
−→u1 , . . . ,

−→un)) of E with origin
a0, recall from definition 2.6.4 that every point of E can be expressed uniquely as x =
a0+ x1

−→u1 + · · ·+ xn
−→un , where (x1, . . . , xn) are the coordinates of x with respect to the affine

frame (a0, (
−→u1 , . . . ,

−→un)).

Also recall that every linear form f ∗ is such that f ∗(x) = λ1x1 + · · · + λnxn, for every

x = x1
−→u1 + · · · + xn

−→un , for some λ1, . . . , λn ∈ R. Since an affine form f : E → R satisfies

the property f(a0 + x) = f(a0) +
−→
f (x), denoting f(a0 + x) as f(x1, . . . , xn), we see that we

have
f(x1, . . . , xn) = λ1x1 + · · ·+ λnxn + µ,

where µ = f(a0) ∈ R, and λ1, . . . , λn ∈ R. Thus, an hyperplane is the set points whose
coordinates (x1, . . . , xn) satisfy the (affine) equation

λ1x1 + · · ·+ λnxn + µ = 0.

We are now ready to study polynomial curves.

2.10 Problems

Problem 1 (10 pts). Given a triangle (a, b, c), give a geometric construction of the barycen-
ter of the weighted points (a, 1/4), (b, 1/4), and (c, 1/2). Give a geometric construction of
the barycenter of the weighted points (a, 3/2), (b, 3/2), and (c,−2).

Problem 2 (20 pts). (a) Given a tetrahedron (a, b, c, d), given any two distinct points
x, y ∈ {a, b, c, d}, let let mx,y be the middle of the edge (x, y). Prove that the barycenter g of
the weighted points (a, 1/4), (b, 1/4), (c, 1/4), and (d, 1/4), is the common intersection of the
line segments (ma,b, mc,d), (ma,c, mb,d), and (ma,d, mb,c). Show that if gd is the barycenter of
the weighted points (a, 1/3), (b, 1/3), (c, 1/3) then g is the barycenter of (d, 1/4) and (gd, 3/4).

Problem 3 (20 pts). Let E be a nonempty set, and
−→
E a vector space, and assume that

there is a function Φ: E × E → −→
E , such that if we denote Φ(a, b) as

−→
ab, the following

properties hold:

(1)
−→
ab +

−→
bc = −→ac, for all a, b, c ∈ E;

(2) For every a ∈ E, the map Φa : E → −→
E defined such that for every b ∈ E, Φa(b) =

−→
ab,

is a bijection.

Let Ψa :
−→
E → E be the inverse of Φa : E → −→

E .

Prove that the function +: E ×−→
E → E defined such that

a+ u = Ψa(u)
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for all a ∈ E and all u ∈ −→
E , makes (E,

−→
E ,+) into an affine space.

Note: We showed in the text that an affine space (E,
−→
E ,+) satisfies the properties stated

above. Thus, we obtain an equivalent characterization of affine spaces.

Problem 4 (20 pts). Given any three points a, b, c in the affine plane A2, letting (a1, a2),
(b1, b2), and (c1, c2), be the coordinates of a, b, c, with respect to the standard affine frame
for A2, prove that a, b, c are collinear iff

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
1 1 1

∣∣∣∣∣∣
= 0

i.e., the determinant is null.

Letting (a0, a1, a2), (b0, b1, b2), and (c0, c1, c2), be the barycentric coordinates of a, b, c,
with respect to the standard affine frame for A2, prove that a, b, c are collinear iff

∣∣∣∣∣∣

a0 b0 c0
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣
= 0

Given any four points a, b, c, d in the affine space A3, letting (a1, a2, a3), (b1, b2, b3),
(c1, c2, c3), and (d1, d2, d3), be the coordinates of a, b, c, d, with respect to the standard affine
frame for A3, prove that a, b, c, d are coplanar iff

∣∣∣∣∣∣∣∣

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
1 1 1 1

∣∣∣∣∣∣∣∣
= 0

i.e., the determinant is null.

Letting (a0, a1, a2, a3), (b0, b1, b2, b3), (c0, c1, c2, c3), and (d0, d1, d2, d3), be the barycentric
coordinates of a, b, c, d, with respect to the standard affine frame for A3, prove that a, b, c, d
are coplanar iff

∣∣∣∣∣∣∣∣

a0 b0 c0 d0
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

∣∣∣∣∣∣∣∣
= 0

Problem 5 (10 pts). The function f : A → A3, given by

t 7→ (t, t2, t3),
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defines what is called a twisted cubic curve. Given any four pairwise distinct values t1, t2, t3, t4,
prove that the points f(t1), f(t2), f(t3), and f(t4), are not coplanar.

Hint . Have you heard of the Vandermonde determinant?

Problem 6 (20 pts). Given any two distinct points a, b in A2 of barycentric coordinates
(a0, a1, a2) and (b0, b1, b2) with respect to any given affine frame (O, i, j), show that the
equation of the line 〈a, b〉 determined by a and b is

∣∣∣∣∣∣

a0 b0 x
a1 b1 y
a2 b2 z

∣∣∣∣∣∣
= 0,

or equivalently
(a1b2 − a2b1)x+ (a2b0 − a0b2)y + (a0b1 − a1b0)z = 0,

where (x, y, z) are the barycentric coordinates of the generic point on the line 〈a, b〉.
Prove that the equation of a line in barycentric coordinates is of the form

ux+ vy + wz = 0,

where u 6= v, or v 6= w, or u 6= w. Show that two equations

ux+ vy + wz = 0 and u′x+ v′y + w′z = 0

represent the same line in barycentric coordinates iff (u′, v′, w′) = λ(u, v, w) for some λ ∈ R

(with λ 6= 0).

A triple (u, v, w) where u 6= v, or v 6= w, or u 6= w, is called a system of tangential
coordinates of the line defined by the equation

ux+ vy + wz = 0.

Problem 7 (30 pts). Given two lines D and D′ in A2 defined by tangential coordinates
(u, v, w) and (u′, v′, w′) (as defined in problem 6), let

d =

∣∣∣∣∣∣

u v w
u′ v′ w′

1 1 1

∣∣∣∣∣∣
= vw′ − wv′ + wu′ − uw′ + uv′ − vu′.

(a) Prove that D and D′ have a unique intersection point iff d 6= 0, and that when it
exists, the barycentric coordinates of this intersection point are

1

d
(vw′ − wv′, wu′ − uw′, uv′ − vu′).
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(b) Letting (O, i, j) be any affine frame for A2, recall that when x + y + z = 0, for any
point a, the vector

x
−→
aO + y

−→
ai + z

−→
aj

is independent of a and equal to

y
−→
Oi+ z

−→
Oj = (y, z).

The triple (x, y, z) such that x+ y+ z = 0 is called the barycentric coordinates of the vector

y
−→
Oi+ z

−→
Oj w.r.t. the affine frame (O, i, j).

Given any affine frame (O, i, j), prove that for u 6= v, or v 6= w, or u 6= w, the line of
equation

ux+ vy + wz = 0

in barycentric coordinates (x, y, z) (where x+ y + z = 1) has for direction the set of vectors
of barycentric coordinates (x, y, z) such that

ux+ vy + wz = 0

(where x+ y + z = 0).

Prove that D and D′ are parallel iff d = 0. In this case, if D 6= D′, show that the common
direction of D and D′ is defined by the vector of barycentric coordinates

(vw′ − wv′, wu′ − uw′, uv′ − vu′).

(c) Given three lines D, D′, and D′′, at least two of which are distinct, and defined by
tangential coordinates (u, v, w), (u′, v′, w′), and (u′′, v′′, w′′), prove that D, D′, and D′′ are
parallel or have a unique intersection point iff

∣∣∣∣∣∣

u v w
u′ v′ w′

u′′ v′′ w′′

∣∣∣∣∣∣
= 0.

Problem 8 (30 pts). Let (A,B,C) be a triangle in A2. Let M,N, P be three points
respectively on the line BC, CA, and AB, of barycentric coordinates (0, m′, m′′), (n, 0, n′′),
and (p, p′, 0), w.r.t. the affine frame (A,B,C).

(a) Assuming that M 6= C, N 6= A, and P 6= B, i.e. m′n′′p 6= 0, show that

−−→
MB
−−→
MC

−−→
NC
−−→
NA

−→
PA
−−→
PB

= −m′′np′

m′n′′p
.

(b) Prove Menelaus’ theorem: the points M,N, P are collinear iff

m′′np′ +m′n′′p = 0.
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When M 6= C, N 6= A, and P 6= B, this is equivalent to

−−→
MB
−−→
MC

−−→
NC
−−→
NA

−→
PA
−−→
PB

= 1.

(c) Prove Ceva’s theorem: the lines AM,BN,CP have a unique intersection point or are
parallel iff

m′′np′ −m′n′′p = 0.

When M 6= C, N 6= A, and P 6= B, this is equivalent to

−−→
MB
−−→
MC

−−→
NC
−−→
NA

−→
PA
−−→
PB

= −1.

Problem 9 (20 pts). This problem uses notions and results from problems 6, 7, and 8.

In view of (a) and (b) of problem 7, it is natural to extend the notion of barycentric
coordinates of a point in A2 as follows. Given any affine frame (a, b, c) in A2, we will say that
the barycentric coordinates (x, y, z) of a point M , where x + y + z = 1, are the normalized
barycentric coordinates of M . Then, any triple (x, y, z) such that x+ y+ z 6= 0 is also called
a system of barycentric coordinates for the point of normalized barycentric coordinates

1

x+ y + z
(x, y, z).

With this convention, the intersection of the two lines D and D′ is either a point or a vector,
in both cases of barycentric coordinates

(vw′ − wv′, wu′ − uw′, uv′ − vu′).

When the above is a vector, we can think of it as a point at infinity (in the direction of the
line defined by that vector).

Let (D0, D
′
0), (D1, D

′
1), and (D2, D

′
2) be three pairs of six distinct lines, such that the

four lines belonging to any union of two of the above pairs are neither parallel not concurrent
(have a common intersection point). If D0 and D′

0 have a unique intersection point, let M be
this point, and if D0 and D′

0 are parallel, let M denote a nonnull vector defining the common
direction of D0 and D′

0. In either case, let (m,m′, m′′) be the barycentric coordinates of M ,
as explained at the beginning of the problem. We call M the intersection of D0 and D′

0.
Similarly, define N = (n, n′, n′′) as the intersection of D1 and D′

1, and P = (p, p′, p′′) as the
intersection of D2 and D′

2.

Prove that

∣∣∣∣∣∣

m n p
m′ n′ p′

m′′ n′′ p′′

∣∣∣∣∣∣
= 0
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iff either

(i) (D0, D
′
0), (D1, D

′
1), and (D2, D

′
2) are pairs of parallel lines, or

(ii) The lines of some pair (Di, D
′
i) are parallel, each pair (Dj, D

′
j) (with j 6= i) has a

unique intersection point, and these two intersection points are distinct and determine a line
parallel to the lines of the pair (Di, D

′
i), or

(iii) Each pair (Di, D
′
i) (i = 0, 1, 2) has a unique intersection point, and these points

M,N, P are distinct and collinear.

Problem 10 (20 pts). Prove the following version of Desargues’ Theorem. Let A,B,C,
A′, B′, C ′ be six distinct points of A2. If no three of these points are collinear, then the lines
AA′, BB′, and CC ′ are parallel or collinear iff the intersection points M,N, P (in the sense
of problem 7) of the pairs of lines (BC,B′C ′), (CA,C ′A′), and (AB,A′B′) are collinear in
the sense of problem 9.

Problem 11 (20 pts). Prove the following version of Pappus’ Theorem. Let D and D′

be distinct lines, and let A,B,C, and A′, B′, C ′ be distinct points respectively on D and
D′. If these points are all distinct from the intersection of D and D′ (if it exists), then the
intersection points (in the sense problem 7) of the pairs of lines (BC ′, CB′), (CA′, AC ′), and
(AB′, BA′) are collinear in the sense of problem 9.

Problem 12 (30 pts). The purpose of this problem is to prove Pascal’s Theorem for the
nondegenerate conics. In the affine plane A2, a conic is the set of points of coordinates (x, y)
such that

αx2 + βy2 + 2γxy + 2δx+ 2λy + µ = 0,

where α 6= 0, or β 6= 0, or γ 6= 0. We can write the equation of the conic as

(x, y, 1)



α γ δ
γ β λ
δ λ µ





x
y
1


 = 0.

If we now use barycentric coordinates (x, y, z) (where x+ y + z = 1), we can write



x
y
1


 =



1 0 0
0 1 0
1 1 1





x
y
z


 .

Let

B =



α γ δ
γ β λ
δ λ µ


 , C =



1 0 0
0 1 0
1 1 1


 and X =



x
y
z


 .
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(a) Letting A = C⊤BC, prove that the equation of the conic becomes

X⊤AX = 0.

Prove that A is symmetric, that det(A) = det(B), and that X⊤AX is homogeneous of degree
2. The equation X⊤AX = 0 is called the homogeneous equation of the conic.

We say that a conic of homogeneous equation X⊤AX = 0 is nondegenerate if det(A) 6= 0,
and degenerate if det(A) = 0. Show that this condition does not depend on the choice of the
affine frame.

(b) Given any affine frame (A,B,C), prove that any conic passing through A,B,C has
an equation of the form

ayz + bxz + cxy = 0.

Prove that a conic containing more than one point is degenerate iff it contains three distinct
collinear points. In this case, the conic is the union of two lines.

(c) Prove Pascal’s Theorem. Given any six distinct points A,B,C, A′, B′, C ′, if no three
of the above points are collinear, then a nondegenerate conic passes through these six points
iff the intersection points M,N, P (in the sense of problem 7) of the pairs of lines (BC ′, CB′),
(CA′, AC ′), and (AB′, BA′), are collinear in the sense of problem 9.

Hint . Use the affine frame (A,B,C), and let (a, a′, a′′), (b, b′, b′′), and (c, c′, c′′), be the
barycentric coordinates of A′, B′, C ′ respectively, and show that M,N, P have barycentric
coordinates

(bc, cb′, c′′b), (c′a, c′a′, c′′a′), (ab′′, a′′b′, a′′b′′).

Problem 13 (10 pts). The centroid of a triangle (a, b, c) is the barycenter of (a, 1/3),
(b, 1/3), (c, 1/3). If an affine map takes the vertices of triangle ∆1 = {(0, 0), (6, 0), (0, 9)} to
the vertices of triangle ∆2 = {(1, 1), (5, 4), (3, 1)}, does it also take the centroid of ∆1 to the
centroid of ∆2? Justify your answer.

Problem 14 (20 pts). Let E be an affine space over R, and let (a1, . . . , an) be any n ≥ 3
points in E. Let (λ1, . . . , λn) be any n scalars in R, with λ1 + · · · + λn = 1. Show that
there must be some i, 1 ≤ i ≤ n, such that λi 6= 1. To simplify the notation, assume that
λ1 6= 1. Show that the barycenter λ1a1+ · · ·+λnan can be obtained by first determining the
barycenter b of the n− 1 points a2, . . . , an assigned some appropriate weights, and then the
barycenter of a1 and b assigned the weights λ1 and λ2 + · · ·+ λn. From this, show that the
barycenter of any n ≥ 3 points can be determined by repeated computations of barycenters
of two points. Deduce from the above that a nonempty subset V of E is an affine subspace iff
whenever V contains any two points x, y ∈ V , then V contains the entire line (1− λ)x+ λy,
λ ∈ R.

Problem 15 Extra Credit (20 pts). Assume that K is a field such that 2 = 1 + 1 6= 0,
and let E be an affine space over K. In the case where λ1 + · · · + λn = 1 and λi = 1, for
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1 ≤ i ≤ n and n ≥ 3, show that the barycenter a1 + a2 + · · ·+ an can still be computed by
repeated computations of barycenters of two points.

Finally, assume that the field K contains at least three elements (thus, there is some
µ ∈ K such that µ 6= 0 and µ 6= 1, but 2 = 1+ 1 = 0 is possible). Prove that the barycenter
of any n ≥ 3 points can be determined by repeated computations of barycenters of two
points. Prove that a nonempty subset V of E is an affine subspace iff whenever V contains
any two points x, y ∈ V , then V contains the entire line (1− λ)x+ λy, λ ∈ K.

Hint . When 2 = 0, λ1 + · · · + λn = 1, and λi = 1, for 1 ≤ i ≤ n, show that n must be
odd, and that the problem reduces to computing the barycenter of three points in two steps
involving two barycenters. Since there is some µ ∈ K such that µ 6= 0 and µ 6= 1, note that
µ−1 and (1− µ)−1 both exist, and use the fact that

−µ

1− µ
+

1

1− µ
= 1.

Problem 16 (20 pts). (i) Let (a, b, c) be three points in A2, and assume that (a, b, c)
are not collinear. For any point x ∈ A2, if x = λ0a + λ1b + λ2c, where (λ0, λ1, λ2) are the
barycentric coordinates of x with respect to (a, b, c), show that

λ0 =
det(

−→
xb,

−→
bc)

det(
−→
ab,−→ac)

, λ1 =
det(−→ax,−→ac)
det(

−→
ab,−→ac)

, λ2 =
det(

−→
ab,−→ax)

det(
−→
ab,−→ac)

.

Conclude that λ0, λ1, λ2 are certain signed ratios of the areas of the triangles (a, b, c), (x, a, b),
(x, a, c), and (x, b, c).

(ii) Let (a, b, c) be three points in A3, and assume that (a, b, c) are not collinear. For any
point x in the plane determined by (a, b, c), if x = λ0a+ λ1b+ λ2c, where (λ0, λ1, λ2) are the
barycentric coordinates of x with respect to (a, b, c), show that

λ0 =

−→
xb ×−→

bc
−→
ab ×−→ac

, λ1 =
−→ax×−→ac
−→
ab ×−→ac

, λ2 =

−→
ab ×−→ax
−→
ab ×−→ac

.

Given any point O not in the plane of the triangle (a, b, c), prove that

λ0 =
det(

−→
Ox,

−→
Ob,

−→
Oc)

det(
−→
Oa,

−→
Ob,

−→
Oc)

, λ1 =
det(

−→
Oa,

−→
Ox,

−→
Oc)

det(
−→
Oa,

−→
Ob,

−→
Oc)

, λ2 =
det(

−→
Oa,

−→
Ob,

−→
Ox)

det(
−→
Oa,

−→
Ob,

−→
Oc)

.

(iii) Let (a, b, c, d) be four points in A3, and assume that (a, b, c, d) are not coplanar. For
any point x ∈ A3, if x = λ0a + λ1b + λ2c + λ3d, where (λ0, λ1, λ2, λ3) are the barycentric
coordinates of x with respect to (a, b, c, d), show that

λ0 =
det(

−→
xb,

−→
bc,

−→
bd)

det(
−→
ab,−→ac,−→ad)

, λ1 =
det(−→ax,−→ac,−→ad)
det(

−→
ab,−→ac,−→ad)

, λ2 =
det(

−→
ab,−→ax,−→ad)

det(
−→
ab,−→ac,−→ad)

, λ3 =
det(

−→
ab,−→ac,−→ax)

det(
−→
ab,−→ac,−→ad)

.
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Conclude that λ0, λ1, λ2, λ3 are certain signed ratios of the volumes of the five tetrahedra
(a, b, c, d), (x, a, b, c), (x, a, b, d), (x, a, c, d), and (x, b, c, d).

(iv) Let (a0, . . . , am) bem+1 points in Am, and assume that they are affinely independent.
For any point x ∈ Am, if x = λ0a0 + · · · + λmam, where (λ0, . . . , λm) are the barycentric
coordinates of x with respect to (a0, . . . , am), show that

λi =
det(−−→a0a1, . . . ,

−−−→a0ai−1,
−→a0x,−−−→a0ai+1, . . . ,

−−→a0am)

det(−−→a0a1, . . . ,
−−−→a0ai−1,

−−→a0ai,−−−→a0ai+1, . . . ,
−−→a0am)

for every i, 1 ≤ i ≤ m, and

λ0 =
det(−→xa1,−−→a1a2, . . . ,

−−→a1am)

det(−−→a0a1, . . . ,
−−→a0ai, . . . ,−−→a0am)

.

Conclude that λi is the signed ratio of the volumes of the simplexes (a0, . . . , x, . . . am) and
(a0, . . . , ai, . . . am), where 0 ≤ i ≤ m.

Problem 17 (30 pts). With respect to the standard affine frame for the plane A2, consider
the three geometric transformations f1, f2, f3 defined by

x′ = −1

4
x−

√
3

4
y +

3

4
,

y′ =

√
3

4
x− 1

4
y +

√
3

4
,

x′ = −1

4
x+

√
3

4
y − 3

4
,

y′ = −
√
3

4
x− 1

4
y +

√
3

4
,

x′ =
1

2
x,

y′ =
1

2
y +

√
3

2
.

(a) Prove that these maps are affine. Can you describe geometrically what their action
is (rotation, translation, scaling?)

(b) Given any polygonal line L, define the following sequence of poygonal lines:

S0 = L,

Sn+1 = f1(Sn) ∪ f2(Sn) ∪ f3(Sn).
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Construct S1 starting from the line segment L = ((−1, 0), (1, 0)).

Can you figure out what Sn looks like in general? (you may want to write a computer
program). Do you think that Sn has a limit?

Problem 18 (20 pts). In the plane A2, with respect to the standard affine frame, a point
of coordinates (x, y) can be represented as the complex number z = x+ iy. Consider the set
of geometric transformations of the form

z 7→ az + b,

where a, b are complex numbers such that a 6= 0.

(a) Prove that these maps are affine. Describe what these maps do geometrically.

(b) Prove that the above set of maps is a group under composition.

(c) Consider the set of geometric transformations of the form

z 7→ az + b or z 7→ az + b,

where a, b are complex numbers such that a 6= 0, and where z = x − iy if z = x + iy.
Describe what these maps do geometrically. Prove that these maps are affine and that this
set of maps is a group under composition.

Problem 19 (20 pts). The purpose of this problem is to study certain affine maps of A2.

(1) Consider affine maps of the form

(
x1

x2

)
7→
(
cos θ − sin θ
sin θ cos θ

)(
x1

x2

)
+

(
b1
b2

)
.

Prove that such maps have a unique fixed point c if θ 6= 2kπ, for all integers k. Show that
these are rotations of center c, which means that with respect to a frame with origin c (the
unique fixed point), these affine maps are represented by rotation matrices.

(2) Consider affine maps of the form

(
x1

x2

)
7→
(
λ cos θ −λ sin θ
µ sin θ µ cos θ

)(
x1

x2

)
+

(
b1
b2

)
.

Prove that such maps have a unique fixed point iff (λ + µ) cos θ 6= 1 + λµ. Prove that if
λµ = 1 and λ > 0, there is some angle θ for which either there is no fixed point, or there are
infinitely many fixed points.

(3) Prove that the affine map

(
x1

x2

)
7→
(

8
5

−6
5

3
10

2
5

)(
x1

x2

)
+

(
1
1

)
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has no fixed point.

(4) Prove that an arbitrary affine map

(
x1

x2

)
7→
(
a1 a2
a3 a4

)(
x1

x2

)
+

(
b1
b2

)

has a unique fixed point iff the matrix

(
a1 − 1 a2
a3 a4 − 1

)

is invertible.

Problem 20 (20 pts). Let (E,E) be any affine space of finite dimension For every affine
map f : E → E, let Fix(f) = {a ∈ E | f(a) = a} be the set of fixed points of f .

(i) Prove that if Fix(f) 6= ∅, then Fix(f) is an affine subspace of E such that for every
b ∈ Fix(f),

Fix(f) = b+Ker (
−→
f − id).

(ii) Prove that Fix(f) contains a unique fixed point iff

Ker (
−→
f − id) = {0},

i.e.,
−→
f (u) = u iff u = 0.

Hint . Show that −−−→
Ωf(a)−−→

Ωa =
−−−−→
Ωf(Ω) +

−→
f (

−→
Ωa)−−→

Ωa,

for any two points Ω, a ∈ E.

Problem 21 (20 pts). Let (c1, . . . , cn) be n ≥ 3 points in Am (where m ≥ 2). Investigate
whether there is a closed polygon with n vertices (a1, . . . , an) such that ci is the middle of
the edge (ai, ai+1) for every i with 1 ≤ i ≤ n− 1, and cn is the middle of the edge (an, a0).

Hint . The parity (odd or even) of n plays an important role. When n is odd, there is a
unique solution, and when n is even, there are no solutions or infinitely many solutions.
Clarify under which conditions there are infinitely many solutions.

Problem 22 (20 pts). Let a, b, c, be any distinct points in A3, and assume that they are
not collinear. Let H be the plane of equation

αx+ βy + γz + δ = 0.
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(i) What is the intersection of the plane H and of the solid triangle determined by a, b, c
(the convex hull of a, b, c)?

(ii) Give an algorithm to find the intersection of the plane H and of the triangle deter-
mined by a, b, c.

(iii) (extra credit 20 pts) Implement the above algorithm so that the intersection can be
visualized (you may use, Maple, Mathematica, Matlab, etc).
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Part II
Polynomial Curves and Spline Curves
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Chapter 3

Introduction to the Algorithmic
Geometry of Polynomial Curves

3.1 Why Parameterized Polynomial Curves?

In order to be able to design, manipulate, and render curves and surfaces, we have to choose
some mathematical model for defining curves and surfaces. The kind of model that we will
adopt consists of specifying a curve or surface S in terms of a certain system of equations,
which is used to determine which points lie on S and which do not. Given that we adopt
such a model, we face a number of questions which are listed below.

A single piece, or several pieces joined together? We can model the entire shape S
via a single system of equations. This is usually mathematically simpler, and it works
well for very simple shapes. But for complex shapes, possibly composite, a combina-
torial explosion usually occurs which makes this approach impractical. Furthermore,
such an approach is not modular, and unsuitable to tackle problems for which it may
be necessary to modify certain parts and leave the other parts unchanged. Such de-
sign problems are usually handled by breaking the curve or surface into simpler pieces,
and by specifying how these pieces join together, with some degree of smoothness. In
CAGD jargon, we model composite shapes with splines . Nevertheless, since composite
shapes are decomposed into simpler pieces, it is very important to know how to deal
with these simpler building blocks effectively, and we will now concentrate on modelling
a single curve or surface. Later on, we will come back to splines.

Parametric or Implicit Model? Mathematically, when a shape S is modeled by a system
of equations, we view these equations as defining a certain function F , and the shape
S is viewed either as the range of this function, or as the zero locus of this function
(i.e., the set of points that are mapped to “zero” under F ). Oversimplifying a bit, the
shape S lives in some object space E of some dimension n (typically, the affine plane
A2, or the 3D affine space A3), and the shape has some dimension s ≤ n (s = 1 for a
curve, s = 2 for a surface). The two models just mentioned define S either in terms of

63
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Figure 3.1: A parabola

a function F : P → E , where P is another space called the parameter space (typically
P = A for a curve, where A denotes the affine line, and P = A2 for a surface, where
A2 denotes the affine plane), or a function F : E → P , in which case P doesn’t have a
standard name. In the first case where F : P → E , we say that we have a parametric
model , and in the second case where F : E → P , we say that we have an implicit model .
Let us examine each model.

In the parametric model , a shape S of dimension s specified by a function F : P → E ,
where E is of dimension n ≥ s, is defined as the range F (P ) of the function F . Thus,
the parameter space P also has dimension s ≤ n. Every point lying on the shape S
is represented as F (a), for some parameter value a ∈ P (possibly many parameter
values). For example, the function F : A → A2 defined such that

F1(t) = 2t + 1,

F2(t) = t− 1,

represents a straight line in the affine plane. The function F : A → A2 defined such
that

F1(t) = 2t,

F2(t) = t2,

represents a parabola in the affine plane.



3.1. WHY PARAMETERIZED POLYNOMIAL CURVES? 65

-2
-1

0
1

2

x

-2
-1

0
1

2y

-4

-2

0

2

4

z

-2
-1

0
1

2

x

-2
-1

0
1

2y

-4

-2

0

2

4

Figure 3.2: A hyperbolic paraboloid

For a fancier example of a space curve, the function F : A → A3 defined such that

F1(t) = t,

F2(t) = t2,

F3(t) = t3,

represents a curve known as a twisted cubic, in the 3D affine space A3. For an example
of a surface, the function F : A2 → A3 defined such that

F1(u, v) = u,

F2(u, v) = v,

F3(u, v) = u2 − v2,

represents what is known as a hyperbolic paraboloid . Roughly speaking, it looks like a
saddle (an infinite one!).

The function F : A2 → A3 defined such that

F1(u, v) = u,

F2(u, v) = v

F3(u, v) = 2u2 + v2,

represents what is known as an elliptic paraboloid .
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Figure 3.3: An elliptic paraboloid

For a more exotic example, the function F : A2 → A3 defined such that

F1(u, v) = u,

F2(u, v) = v,

F3(u, v) = u3 − 3v2u,

represents what is known as the monkey saddle.

In the implicit model , a shape S of dimension s specified by a function F : E → P ,
where E is of dimension n ≥ s, is defined as the zero locus F−1(0) of the function F ,
that is, as the set of zeros of the function F :

S = F−1(0) = {a | a ∈ E , F (a) = 0}.

In this case, the space P is a vector space, and it has some dimension d ≥ n − s. Of
course, it possible that F−1(0) = ∅. For example, if F : A2 → A is the function defined
such that

F (x, y) = x2 + y2 + 1,

since the equation x2 + y2 = −1 has no real solutions, F defines the empty curve. In
order to avoid such situations, we could assume that our spaces are defined over the
field of complex numbers (or more generally, an algebraically closed field). This would
have certain mathematical advantages, but does not help us much for visualizing the
shape, since we are primarily interested in the real part of shapes (curves and surfaces).
Thus, we will make the working assumption that we are only considering functions that
define nonempty shapes.



3.1. WHY PARAMETERIZED POLYNOMIAL CURVES? 67

-1
-0.5

0
0.5

1

x

-1

-0.5
0
0.5

1y

-2

-1

0

1

2

z

-1
-0.5

0
0.5

1

x

-1

-0.5
0
0.5

1y

-2

-1

0

1

2

Figure 3.4: A monkey saddle

� There are some serious problems with such an assumption. For example, it is not clear
that it can be decided whether an arbitrary algebraic equation has real solutions or
not. These complications are one of the motivations for paying more attention to the
parametric model. However, the implicit model is more natural to deal with certain
classes of problems, where implicit equations of shapes are directly available.

As a simple example of a curve defined implicitly, the function F : A2 → A defined
such that

F (x, y) = 2y − x+ 3

for all x, y ∈ A, defines a straight line (in fact, the same line as defined above para-
metrically). The function F : A2 → A defined such that

F (x, y) = 4y − x2,

for all x, y ∈ A, defines the same parabola as the above parametric definition, since
we immediately see that y = x2/4 for every point on this parabola. The function
F : A2 → A defined such that

F (x, y) = 2x2 + y2 − 1,

for all x, y ∈ A, defines an ellipse in the affine plane. Although this is not entirely
obvious, the twisted cubic is defined implicitly by the function F : A3 → A2, defined
such that

F1(x, y, z) = y − x2,

F2(x, y, z) = z − xy.
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The unit sphere is defined implicitly by the function F : A3 → A, defined such that

F (x, y, z) = x2 + y2 + z2 − 1.

The hyperbolic paraboloid discussed in the parametric model is defined by the function

F (x, y, z) = z − x2 + y2.

The elliptic paraboloid discussed in the parametric model is defined by the function

F (x, y, z) = z − 2x2 − y2.

If P has dimension d ≥ n− s, instead of saying that S is the zero locus of the function
F : E → P , since the function F corresponds to d scalar-valued functions (F1, . . . , Fd),
we usually say that S is defined by the set of equations

F1 = 0,

F2 = 0,

. . .

Fd = 0,

or that S is the zero locus of the above system of equations. For another familiar
example, the unit circle is defined implicitly by the equation

x2 + y2 − 1 = 0,

and it has the parametric representation

x = cos θ,

y = sin θ.

This last example leads us to another major question:

What Class of Functions for F? Although trigonometric functions are perfectly fine, for
computational (algorithmic) reasons, we may want to use a simpler class of functions.
Certainly, we should only consider continuous functions which are sufficiently differ-
entiable, to yield shapes that are reasonably smooth. The class of functions definable
by polynomials is very well-behaved, and turns out to be sufficient for most purposes.
When polynomials are insufficient, we can turn to the class of functions definable by
rational functions (fractions of polynomials), which is sufficient for most computa-
tional applications. As a matter of fact, dealing with rational fractions turns out to
be largely reduced to dealing with polynomials. From a practical point of view, using
polynomials is rarely a restriction (continuous functions on reasonable domains can
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be approximated by polynomial functions). Thus, we will be dealing with polynomial
functions (and rational functions).

In the implicit model, studying shapes S defined by systems of polynomial equations
is essentially the prime concern of algebraic geometry . This is a fascinating, venerable,
and very difficult subject, way beyond the scope of this course. Bold readers are
urged to consult Fulton [37] or Harris [41]. In the parametric model, since polynomials
are differentiable at any order, studying shapes S defined by systems of parametric
polynomials (or rational fractions) is in some sense subsumed by differential geometry ,
another venerable subject. We will make a very modest use of elementary notions
of differential geometry, and an even more modest use of very elementary notions of
algebraic geometry. In fact, what we use primarily is some elements of multilinear
algebra. Having decided that we will use polynomial (or rational) functions, there is
one more question.

What Degree for F? In most practical applications involving many small pieces joined
together (splines), the degree m = 2 or m = 3 is sufficient for the small pieces.
However, for a single piece, the degree could be quite high. In general, the choice of
degree depends on how many pieces are involved and how complex each piece is.

Because the study of shapes modelled as zero loci of polynomial equations is quite difficult,
we will focus primarily on the study of shapes modelled parametrically. There are other
advantages in dealing with the parametric model. For example, it is easier to “carve out”
portions of the shape, by simply considering subsets of the parameter space. Also, the
function F : P → E provides immediate access to points on the shape S: every parameter
value a ∈ P yields a point F (a) lying on the shape S. This is not so for the implicit model,
where the function F : E → P does not provide immediate access to points in S. Given
a point b ∈ E , to determine whether b ∈ S usually requires solving a system of algebraic
equations, which may be very difficult. Nevertheless, given a parametric definition F : P → E
for a shape S, it is often useful to find an implicit definition G : E → P for S. In the case
where F is given by rational functions, it can be shown that it is always possible to find an
algebraic implicit definition G for S.1 This is called implicitization, and is done using the
algebraic concept of a resultant .

� It should be noted that it is not always possible to go from an implicit algebraic definition
G : E → P for S to a parametric algebraic definition F : P → E for S. The discrepancy

shows up for m = 2 for polynomial functions, and for m = 3 for rational functions.

� It should also be noted that if we consider parametric curves F : A → E defined by
functions that are more general than polynomial or rational functions, for example,

functions that are only continuous, then some unexpected objects show up as the traces of

1Actually, as we shall see very soon, there are some subtleties regarding over which field we view the
curves or surfaces as being defined.
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curves. For example, Peano and Hilbert (among others) showed that there are space filling
curves , i.e., continuous curves F : [0, 1] → A2 whose trace is the entire unit square (including
its interior)! See the problems. This is a good motivation for assuming that the functions F
are sufficiently differentiable. Polynomials certainly qualify!

Before we launch into our study of parametric curves, we believe that it may be useful to
review briefly what kind of plane curves are defined in the implicit model, that is, what sort
of curves are defined by polynomial equations f(x, y) = 0, where f(x, y) is a polynomial in
x, y, with real coefficients, of total degree m ≤ 2.

For m = 1, we have the equation

ax+ by + c = 0,

which defines a straight line. It is very easy to see that straight lines are also definable in
the parametric model.

The general curve of degree 2 is defined by an equation of the form

ax2 + bxy + cy2 + dx+ ey + f = 0.

Such an equation defines a (plane) conic (because it is the curve obtained by intersecting a
circular cone, with a plane). Except for some degenerate cases, the conics can be classified
in three types (after some suitable change of coordinates):

Parabolas , of equation
y2 = 4ax.

Ellipses , of equation
x2

a2
+

y2

b2
= 1

(Without loss of generality, we can assume a ≥ b).

Hyperbolas , of equation
x2

a2
− y2

b2
= 1.

The above definitions are algebraic. It is possible to give more geometric characterizations
of the conics, and we briefly mention the classical bifocal definition.

Let us begin with the parabola. The point F of coordinates (a, 0) is called the focus of the
parabola, and the line D of equation x = −a (parallel to the y-axis), is called the directrix
of the parabola. For any point M in the plane, if H is the intersection of the perpendicular
through M to D, then the parabola of equation y2 = 4ax is the set of points in the plane
such that ‖MH‖ = ‖MF‖.2

2The above definition of the conics assumes a Euclidean structure on the affine plane, and ‖AB‖ denotes
the Euclidean length of the line segment AB.
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Figure 3.5: A Parabola

For example, the parabola of equation

y2 = 4x

has focus F = (1, 0), and directrix D of equation x = −1:

In the case of an ellipse, since we are assuming that a ≥ b, let c =
√
a2 − b2 (so that

a2 = b2 + c2). Let F and F ′ be the points of coordinates (−c, 0) and (c, 0). Each of F, F ′ is
a focus of the ellipse. Then, the ellipse defined by

x2

a2
+

y2

b2
= 1

is the set of points in the plane such that ‖MF‖ + ‖MF ′‖ = 2a (note that c ≤ a). This is
the “gardener’s definition” of an ellipse. Indeed, one can take a string, make two knots at
distance 2a from each other, and drive a nail through each knot in such a way that the nails
are positioned on the foci F and F ′. Then, using a stick, one can draw the ellipse, on the
ground, by moving the stick along the string (perpendicular to the ground) in such a way
that the string is kept stiff.
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Figure 3.6: An Ellipse

For example, the ellipse
x2

25
+

y2

9
= 1

is such that a = 5, b = 3, and thus c =
√
a2 − b2 =

√
25− 9 =

√
16 = 4. The foci are

F = (−4, 0), and F ′ = (4, 0):

The case where c = 0, that is, a = b, corresponds to a circle.

In the case of an hyperbola, we let c =
√
a2 + b2 (so that c2 = a2 + b2). Let F and F ′ be

the points of coordinates (−c, 0) and (c, 0). Each of F, F ′ is a focus of the hyperbola. Then,
the hyperbola defined by

x2

a2
− y2

b2
= 1

is the set of points in the plane such that | ‖MF‖ − ‖MF ′‖ | = 2a (note that c > a).

For example, the hyperbola
x2 − y2 = 1

is such that a = b = 1, and thus, c =
√
a2 + b2 =

√
1 + 1 =

√
2, and the foci are F =

(−
√
2, 0), and F ′ = (

√
2, 0):

In the case of an ellipse, parabola, or hyperbola (where c > 0), the constant

e =
c

a
> 0
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is called the exentricity of the conic. There is also a monofocal definition of ellipses, parabo-
las, and hyperbolas, involving the exentricity. For more details, the reader is referred to
standard geometry texts, for example, Berger or Pedoe.

We will see very soon that only the parabolas can be defined parametrically using poly-
nomials. On the other hand, all the conics can be defined parametrically using rational
fractions.

For m = 3, things become a lot tougher! The general curve of degree 3 is defined by an
equation of the form

ϕ3(x, y) + ϕ2(x, y) + ϕ1(x, y) + ϕ0 = 0,

where each ϕi(x, y) is a homogenous polynomial of total degree i, with i = 1, 2, 3, and ϕ0

is a scalar. The curve defined by such an equation is called a (plane) cubic. In general, a
plane cubic cannot be defined parametrically using rational functions (and a fortiori, using
polynomials). Since we assumed that we are only considering nonempty curves, we can pick
any point of the cubic as the origin. In this case ϕ0 = 0, and the equation of the cubic
becomes

ϕ3(x, y) + ϕ2(x, y) + ϕ1(x, y) = 0.

It can be shown that the cubics that have rational representations are characterized by the
fact that ϕ1(x, y) is the null polynomial. We will also characterize those cubics that can be
defined parametrically in terms of polynomials.
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After there general considerations, it is now time to focus on the parametric model for
defining curves, and we begin with a rigorous definition. For reasons that will become clear
later on, it is preferable to consider the parameter space R as the affine line A. Recall that
every point t ∈ A is expressed as t = (1 − t)0 + t1 in terms of the affine basis (0, 1). A
parameterized polynomial curve is defined as follows.

Definition 3.1.1. Given any affine space E of finite dimension n and any affine frame
(a0, (

−→e1 , . . . ,−→en )) for E , a (parameterized) polynomial curve of degree at most m is a map
F : A → E , such that for every t ∈ A,

F (t) = a0 + F1(t)
−→e1 + · · ·+ Fn(t)

−→en ,
where t = (1− t)0 + t1, and every Fi(X) is a polynomial in R[X ] of degree ≤ m, 1 ≤ i ≤ n.
Given any affine frame (r, s) for A with r < s, a (parameterized) polynomial curve segment
F [r, s] of degree (at most) m is the restriction F : [r, s] → E of a polynomial curve F : A → E
of degree at most m. The set of points F (A) in E is called the trace of the polynomial curve
F , and similarly, the set of points F ([r, s]) in E is called the trace of the polynomial curve
segment F [r, s],

For simplicity of notation, we view t ∈ A as the real number t ∈ R, and write F (t)
instead of F (t). Intuitively, a polynomial curve is obtained by bending and twisting the
affine line A using a polynomial map. It should be noted that if d is the maximum degree
of the polynomials F1, . . . , Fn defining a polynomial curve F of degree m, then d 6= m is
possible, and it is only required that d ≤ m. This decision, which may seem unusual, will in
fact be convenient later on for CAGD applications. For example, we will need to join curve
segments of possibly different degrees, and it will be convenient to “raise” the degree of some
of these curve segments to a common degree. Also, in most cases, we are more interested
in the trace of a curve than in its actual parametric representation. As a matter of fact,
many different parametric representations may yield the same trace, sometimes called the
geometric curve associated with F : A → E .

We will now try to gain some insight into polynomial curves by determining the shape
of the traces of plane polynomial curves (curves living in E = A2) of degree m ≤ 3. On the
way, we will introduce a major technique of CAGD, blossoming .

3.2 Polynomial Curves of degree 1 and 2

We begin with m = 1. A polynomial curve F of degree ≤ 1 is of the form

x(t) = F1(t) = a1t+ a0,

y(t) = F2(t) = b1t + b0.

If both a1 = b1 = 0, the trace of F reduces to the single point (a0, b0). Otherwise, a1 6= 0
or b1 6= 0, and we can eliminate t between x and y, getting the implicit equation

a1y − b1x+ a0b1 − a1b0 = 0,
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which is the equation of a straight line.

Let us now consider m = 2, that is, quadratic curves. A polynomial curve F of degree
≤ 2 is of the form

x(t) = F1(t) = a2t
2 + a1t+ a0,

y(t) = F2(t) = b2t
2 + b1t + b0.

Since we already considered the case where a2 = b2 = 0, let us assume that a2 6= 0 or
b2 6= 0. We first show that by a change of coordinates (amounting to a rotation), we can
always assume that either a2 = 0 (or b2 = 0). If a2 6= 0 and b2 6= 0, let ρ =

√
a22 + b22, and

consider the matrix R given below:

R =

(
b2
ρ

−a2
ρ

a2
ρ

b2
ρ

)

Under the change of coordinates

(
x1

y1

)
= R

(
x
y

)
,

we get

x1(t) =
a1b2 − a2b1

ρ
t +

a0b2 − a2b0
ρ

,

y1(t) = ρt2 +
a1a2 + b1b2

ρ
t+

a0a2 + b0b2
ρ

.

The effect of this rotation is that the curve now “stands straight up” (since ρ > 0).
If a1b2 = a2b1, then we have a degenerate case where x1(t) is equal to a constant and

y1(t) ≥ y1(t0), with t0 = − (a1a2+b1b2)
2ρ2

, which corresponds to a half line. Note that the
implicit equation

x1 =
a0b2 − a2b0

ρ

gives too much! The above equation yields the entire line, whereas the parametric representa-
tion yields the upper half line. Thus, there is a mismatch between the implicit representation
and the parametric representation. We will come back to this point later on.

If a1b2 − a2b1 6= 0, then we can eliminate t between x1 and y1. However, before doing
so, it is convenient to make a change of parameter, to suppress the term of degree 1 in t in
y1(t), by letting

t = u− (a1a2 + b1b2)

2ρ2
.
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Then, we have a parametric representation of the form

x1(u− µ) = au+ a′0,

y1(u− µ) = bu2 + b′0,

with b > 0.

Finally, we can change coordinates again (a translation), letting

X(u) = x1(u− µ)− a′0,

Y (u) = y1(u− µ)− b′0,

and we get a parametric representation of the form

X(u) = au,

Y (u) = bu2,

with b > 0. The corresponding implicit equation is

Y =
b

a2
X2.

This is a parabola, passing through the origin, and having the Y -axis as axis of symmetry.
The diagram below shows the parabola defined by the following parametric equations

F1(t) = 2t,

F2(t) = t2.

Intuitively, the previous degenerate case corresponds to b
a2

= ∞.

Conversely, since by an appropriate change of coordinates, every parabola is defined by
the implicit equation Y = aX2, every parabola can be defined as the parametric polynomial
curve

X(u) = u,

Y (u) = au2.

In summary, the nondegenerate polynomial curves of true degree 2 are the parabolas.
Thus, ellipses and hyperbolas are not definable as polynomial curves of degree 2. In fact, it
can be shown easily that ellipses and hyperbolas are not definable by polynomial curves of
any degree. On the other hand, it will be shown later that the conics (parabolas ellipses,
hyperbolas) are precisely the curves definable as rational curves of degree 2 (parametric
definitions involving rational fractions of quadratic polynomials).
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Figure 3.8: A parabola

Remark: In the degenerate case of a half line, the mismatch between the parametric rep-
resentation and the implicit representation can be resolved, if we view our curves as the real
trace of complex curves. In this case, since every polynomial has roots (possibly complex
numbers), the mismatch goes away.

We now show that there is another way of specifying quadratic polynomial curves which
yields a very nice geometric algorithm for constructing points on these curves. The general
philosophy is to linearize (or more exactly, multilinearize) polynomials.

3.3 First Encounter with Polar Forms (Blossoming)

As a warm up, let us begin with straight lines.

The parametric definition of a straight line F : A → A3, is of the form

x1(t) = a1t + b1,

x2(t) = a2t + b2,

x3(t) = a3t + b3.

Observe that each function t 7→ ait + bi is affine, where i = 1, 2, 3. Thus, F : A → A3 is
itself an affine map. Given any affine frame (r, s) for A, where r 6= s, every t ∈ A can be
writen uniquely as t = (1− λ)r + λs. In fact, we must have

t = (1− λ)r + λs = r + λ(s− r),
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and so, λ = t−r
s−r

(and 1− λ = s−t
s−r

).

Now, since F is affine, we have

F (t) = F ((1− λ)r + λs),

= (1− λ)F (r) + λF (s).

This means that F (t) is completely determined by the two points F (r) and
F (s), and the ratio of interpolation λ.

Furthermore, since F (t) is the barycenter of F (r) and F (s) assigned the weights 1 − λ
and λ, we know that −−−→

bF (t) = (1− λ)
−−−→
bF (r) + λ

−−−→
bF (s),

for every point b, and picking b = F (r), we have

−−−−−−→
F (r)F (t) = λ

−−−−−−→
F (r)F (s).

Substituting the value of λ in the above, we have

−−−−−−→
F (r)F (t) =

(
t− r

s− r

) −−−−−−→
F (r)F (s),

which shows that F (t) is on the line determined by F (r) and F (s), at “ t−r
s−r

of the way from

F (r)” (in particular, when r ≤ t ≤ s, F (t) is indeed between F (r) and F (s), at “ t−r
s−r

of the
way from F (r)”). For example, if r = 0, s = 1, and t = 0.25, then F (0.25) is a fourth of the
way from F (0) between F (0) and F (1).

Thus, in the case of an affine map F : A → A3, given any affine frame (r, s) for A, where
r 6= s, every point F (t) on the line defined by F is obtained by a single interpolation step

F (t) =

(
s− t

s− r

)
F (r) +

(
t− r

s− r

)
F (s),

as illustrated in the following diagram, where t−r
s−r

= 1
3
:

We would like to generalize the idea of determining the point F (t) on the the line defined
by F (r) and F (s) by an interpolation step, to determining the point F (t) on a polynomial
curve F , by several interpolation steps from some (finite) set of given points related to the
curve F . For this, it is first necessary to turn the polynomials involved in the definition of
F into multiaffine maps, that is, maps that are affine in each of their arguments. We now
show how to turn a quadratic polynomial into a biaffine map.
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bc

bc

bc

F (r)

F (s)

F (t)

Figure 3.9: Linear Interpolation

As an example, consider the polynomial

F (X) = X2 + 2X − 3.

Observe that the function of two variables

f1(x1, x2) = x1x2 + 2x1 − 3

gives us back the polynomial F (X) on the diagonal, in the sense that F (X) = f1(X,X), for
all X ∈ R, but f1 is also affine in each of x1 and x2. It would be tempting to say that f1 is
linear in each of x1 and x2, but this is not true, due to the presence of the term 2x1 and of
the constant −3, and f1 is only biaffine. Note that

f2(x1, x2) = x1x2 + 2x2 − 3

is also biaffine, and F (X) = f2(X,X), for all X ∈ R.

It would be nicer if we could find a unique biaffine function f such that F (X) = f(X,X),
for all X ∈ R, and of course, such a function should satisfy some additional property. It
turns out that requiring f to be symmetric is just what’s needed. We say that a function f
of two arguments is symmetric iff

f(x1, x2) = f(x2, x1),

for all x1, x2. To make f1 (and f2) symmetric, simply form

f(x1, x2) =
f1(x1, x2) + f1(x2, x1)

2
= x1x2 + x1 + x2 − 3.

The symmetric biaffine function

f(x1, x2) = x1x2 + x1 + x2 − 3

is called the (affine) blossom, or polar form, of F . For an arbitrary polynomial

F (X) = aX2 + bX + c
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of degree ≤ 2, we obtain a unique symmetric, biaffine map

f(x1, x2) = ax1x2 + b
x1 + x2

2
+ c

such that F (X) = f(X,X), for all X ∈ R, called the polar form, or blossom, of F . Note
that the fact that f is symmetric allows us to view the arguments of f as a multiset (the
order of the arguments x1, x2 is irrelevant).

This is all fine, but what have we gained? What we have gained is that using the fact
that a polar form is symmetric and biaffine, we can show that every quadratic curve is
completely determined by three points, called control points , and that furthermore, there is
a nice algorithm for determining any point on the curve from these control points, simply
using three linear interpolation steps. Thus, assume for simplicity that we have a quadradic
curve F : A → A3, given by three quadratic polynomials F1, F2, F3. We can compute their
polar forms f1, f2, f3 as we just explained, and we get a symmetric biaffine map f : A2 → A3,
such that F (X) = f(X,X), for all X ∈ A.

Let us pick an affine frame for A, that is, two distinct points r, s ∈ A, (we can if we
wish, assume that r < s, but this is not necessary). As we said already, every t ∈ A can be
expressed uniquely as a barycentric combination of r and s, say t = (1 − λ)r + λs, where
λ ∈ R.

Let us compute

f(t1, t2) = f((1− λ1)r + λ1s, (1− λ2)r + λ2s).

Since f is symmetric and biaffine, we get

f(t1, t2) = f((1− λ1)r + λ1s, (1− λ2)r + λ2s)

= (1− λ1) f(r, (1− λ2)r + λ2s) + λ1 f(s, (1− λ2)r + λ2s)

= (1− λ1)(1− λ2) f(r, r) + ((1− λ1)λ2 + λ1(1− λ2)) f(r, s) + λ1λ2 f(s, s).

The coefficients of f(r, r), f(r, s) and f(s, s) are obviously symmetric biaffine functions,
and they add up to 1, as it is easily verified by expanding the product

(1− λ1 + λ1)(1− λ2 + λ2) = 1.

This had to be expected, since f being biaffine preserves barycentric combinations in each
of its arguments.

Since λi =
ti−r
s−r

, for i = 1, 2, we get

f(t1, t2) =

(
s− t1
s− r

)(
s− t2
s− r

)
f(r, r)

+

[(
s− t1
s− r

)(
t2 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)]
f(r, s)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)
f(s, s).
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Thus, we showed that every symmetric biaffine map f : A2 → A3 is completely determined
by the sequence of three points f(r, r), f(r, s) and f(s, s) in A3, where r 6= s are elements of
A.

Conversely, it is clear that given any sequence of three points a, b, c ∈ A3, the map

(t1, t2) 7→
(
s− t1
s− r

)(
s− t2
s− r

)
a

+

[(
s− t1
s− r

)(
t2 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)]
b

+

(
t1 − r

s− r

)(
t2 − r

s− r

)
c

is symmetric biaffine, and that f(r, r) = a, f(r, s) = b, f(s, s) = c.

The points f(r, r), f(r, s) and f(s, s), are called control points , or Bézier control points ,
and as we shall see, they play a major role in the de Casteljau algorithm and its extensions.
If we let r = 0 and s = 1, then t1 = λ1 and t2 = λ2, and thus, the polynomial function
corresponding to f(t1, t2) being obtained by letting t1 = t2 = t, we get

F (t) = f(t, t) = (1− t)2 f(0, 0) + 2(1− t)t f(0, 1) + t2 f(1, 1).

The polynomials

(1− t)2, 2(1− t)t, t2

are known as the Bernstein polynomials of degree 2. Thus, F (t) is also determined by the
control points f(0, 0), f(0, 1), and f(1, 1), and the Bernstein polynomials. Incidently, this
also shows that a quadratic curve is necessarily contained in a plane, the plane determined
by the control points b0, b1, b2.

However, it is better to observe that the computation of

f(t1, t2) = f((1− λ1)r + λ1s, (1− λ2)r + λ2s),

that we performed above, can be turned into an algorithm, known as the de Casteljau
algorithm.

3.4 First Encounter with the de Casteljau Algorithm

Let us assume that we have a quadratic polynomial curve F given by its polar form f : A2 →
A3, or equivalently as we just showed, by the three control points b0 = f(r, r), b1 = f(r, s)
and b2 = f(s, s). Given any t ∈ A, we will show how to construct geometrically the point
F (t) = f(t, t) on the polynomial curve F . Let t = (1 − λ)r + λs. Then, f(t, t) is computed
as follows:
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0 1 2
f(r, r)

f(r, t)
f(r, s) f(t, t)

f(t, s)
f(s, s)

The algorithm consists of two stages. During the first stage, we compute the two points

f(r, t) = f(r, (1− λ)r + λs) = (1− λ) f(r, r) + λ f(r, s)

and
f(t, s) = f((1− λ)r + λs, s) = (1− λ) f(r, s) + λ f(s, s),

by linear interpolation, where f(r, t) is computed from the two control points f(r, r) and
f(r, s), and f(t, s) is computed from the two control points f(r, s) and f(s, s), the ratio of
interpolation being

λ =
t− r

s− r
.

Since by symmetry, f(r, t) = f(t, r), during the second stage, we compute the point

f(t, t) = f(t, (1− λ)r + λs) = (1− λ) f(t, r) + λ f(t, s),

from the points f(t, r) and f(t, s) computed during the first stage, the ratio of interpolation
also being

λ =
t− r

s− r
.

Thus, by three linear interpolation steps, we obtain the point F (t) on the curve. Note
that the two control points f(r, r) = F (r) and f(s, s) = F (s) are on the curve, but f(r, s) is
not. We will give a geometric interpretation of the polar value f(r, s) in a moment.

If r ≤ λ ≤ s, then only convex combinations are constructed. Geometrically, the algo-
rithm consists of a diagram consisting of two polylines, the first one consisting of the two
line segments

(f(r, r), f(r, s)) and (f(r, s), f(s, s)),

and the second one of the single line segment

(f(t, r), f(t, s)),
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bcbc

bc

bcbc bc

f(r, r) f(s, s)

f(r, s)

f(t, r) f(t, s)

f(t, t)

Figure 3.10: A de Casteljau diagram

with the desired point f(t, t) determined by λ. Each polyline given by the algorithm is called
a shell , and the resulting diagram is called a de Casteljau diagram. The first polyline is also
called a control polygon of the curve. Note that the shells are nested nicely. Actually, when
t is outside [r, s], we still obtain two polylines and a de Casteljau diagram, but the shells are
not nicely nested.

The example below shows the construction of the point F (t) corresponding to t = 1/2,
on the curve F , for r = 0, s = 1.

This example also shows the construction of another point on the curve, assuming differ-
ent control points. The parabola of the previous example is actually given by the parametric
equations

F1(t) = 2t,

F2(t) = −t2.

The polar forms are

f1(t1, t2) = t1 + t2,

f2(t1, t2) = −t1t2.

The de Casteljau algorithm can also applied to compute any polar value f(t1, t2):
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bc

bc

bc

bc

bc

bcbc bc
bc

bc

bc

F (r) = f(r, r) F (s) = f(s, s)

f(r, s)

f(r, t) f(t, s)

f(t, t)

Figure 3.11: The de Casteljau algorithm

1 2
f(r, r)

f(r, t1)
f(r, s) f(t1, t2)

f(t1, s)
f(s, s)

The only difference is that we use different λ’s during each of the two stages. During the
first stage, we use the scalar λ1 such that t1 = (1− λ1)r + λ1s, to compute the two points

f(r, t1) = f(r, (1− λ1)r + λ1s) = (1− λ1) f(r, r) + λ1 f(r, s)

and
f(t1, s) = f((1− λ1)r + λ1s, s) = (1− λ1) f(r, s) + λ1 f(s, s),

by linear interpolation, where f(r, t1) is computed from the two control points f(r, r) and
f(r, s), and f(t1, s) is computed from the two control points f(r, s) and f(s, s), the ratio of
interpolation being

λ1 =
t1 − r

s− r
.

During the second stage, we use the scalar λ2 such that t2 = (1− λ2)r + λ2s, to compute

f(t1, t2) = f(t1, (1− λ2)r + λ2s) = (1− λ2) f(t1, r) + λ2 f(t1, s),
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from the points f(t1, r) = f(r, t1) and f(t1, s) computed during the first stage, the ratio of
interpolation being

λ2 =
t2 − r

s− r
.

Thus, the polar values f(t1, t2), also called blossom values , can be viewed as meaningful
labels for the node of de Casteljau diagrams. It is in this sense that the term blossom is used:
by forming the blossom of the polynomial function F , some hidden geometric information is
revealed. We recommend reading de Casteljau’s original presentation in de Casteljau [23].

A nice geometric interpretation of the polar value f(t1, t2) can be obtained. For this, we
need to look closely at the intersection of two tangents to a parabola. Let us consider the
parabola given by

x(t) = at

y(t) = bt2.

The equation of the tangent to the parabola at (x(t), y(t)) is

x′(t)(y − y(t))− y′(t)(x− x(t)) = 0,

that is,
a(y − bt2)− 2bt(x− at) = 0,

or
ay − 2btx+ abt2 = 0.

To find the intersection of the two tangents to the parabola corresponding to t = t1 and
t = t2, we solve the system of linear equations

ay − 2bt1x+ abt21 = 0

ay − 2bt2x+ abt22 = 0,

and we easily find that

x = a
t1 + t2

2
,

y = bt1t2.

Thus, the coordinates of the point of intersection of any two tangents to the parabola
are given by the polar forms of the polynomials expressing the coordinates of the parabola.
Turning this property around, we can say that the polar form f(t1, t2) of the polynomial
function defining a parabola gives precisely the intersection point of the two tangents at
F (t1) and F (t2) to the parabola. There is a natural generalization of this nice geometric
interpretation of polar forms to cubic curves, but unfortunately, it does not work in general,
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and when it does, for curves not contained in a plane (it involves intersecting the osculating
planes at three points on the curve).

The de Casteljau algorithm, in addition to having the nice property that the line deter-
mined by F (r) and f(r, s) is the tangent at F (r), and that the line determined by F (s) and
f(r, s) is the tangent at F (s), also has the property that the line determined by f(r, t) and
f(s, t) is the tangent at F (t) (this will be shown in section 5.4). Let us give an example of
the computation of the control points from the parametric definition of a quadratic curve.

Example. Consider the parabola given by

F1(t) = 2t,

F2(t) = t2.

The polar forms of F1 and F2 are

f1(t1, t2) = t1 + t2,

f2(t1, t2) = t1t2.

The control points b0 = f(0, 0), b1 = f(0, 1), and b2 = f(1, 1), have coordinates:

b0 = (0, 0),

b1 = (1, 0),

b2 = (2, 1).

For t = 1/2, the point F (1/2) = (1, 1/4) on the parabola, is the middle of the line
segment joining the middle of the segment (b0, b1), to the middle of the segment (b1, b2).

Let us now consider m = 3, that is, cubic curves.

3.5 Polynomial Curves of Degree 3

A polynomial curve F of degree ≤ 3 is of the form

x(t) = F1(t) = a3t
3 + a2t

2 + a1t+ a0,

y(t) = F2(t) = b3t
3 + b2t

2 + b1t + b0.

Since we already considered the case where a3 = b3 = 0, let us assume that a3 6= 0 or
b3 6= 0. As in the case of quadratic curves, we first show that by a change of coordinates
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bc
b0

bc
b1

bc
b2

bc

bc
bc

F (1/2)

Figure 3.12: A parabola

(amounting to a rotation), we can always assume that either a3 = 0 (or b3 = 0). If a3 6= 0
and b3 6= 0, let ρ =

√
a23 + b23, and consider the matrix R given below:

R =

(
b3
ρ

−a3
ρ

a3
ρ

b3
ρ

)

Under the change of coordinates

(
x1

y1

)
= R

(
x
y

)
, we get

x1(t) =
a2b3 − a3b2

ρ
t2 +

a1b3 − a3b1
ρ

t+
a0b3 − a3b0

ρ
,

y1(t) = ρt3 +
a2a3 + b2b3

ρ
t2 +

a1a3 + b1b3
ρ

t+
a0a3 + b0b3

ρ
.

The effect of this rotation is that the curve now “stands straight up” (since ρ > 0).

Case 1. a2b3 = a3b2.

Then we have a degenerate case where x1(t) is equal to a linear function. If a1b3 = a3b1
also holds, then x1(t) is a constant and y1(t) can be arbitrary, since its leading term is ρt3,
and we get the straight line

X =
a0b3 − a3b0

ρ
.

If a1b3 − a3b1 6= 0, let us assume that a1b3 − a3b1 > 0, the other case being similar. Then,
we can eliminate t between x1(t) and y1(t), and we get an implicit equation of the form

y = a′x3 + b′x2 + c′x+ d′,
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with a′ > 0. As in the case of quadratic curves, we can suppress the term b′X2 by the change
of coordinates

x = X − b′

3a′
.

We get an implicit equation of the form

y = aX3 + bX + c,

with a > 0. By one more change of coordinates, where Y = y − c, we get the implicit
equation

Y = aX3 + bX,

with a > 0. This curve is symmetric with respect to the origin. Its shape will depend on the
variations of sign of its derivative

Y ′ = 3aX2 + b.

Also, since Y ′′ = 6aX , and Y ′′(0) = 0, the origin is an inflexion point.

If b > 0, then Y ′(X) is always strictly positive, and Y (X) is strictly increasing with X .
It has a flat S-shape, the slope b of the tangent at the origin being positive.

If b = 0, then Y ′(0) = 0, and 0 is a double root of Y ′, which means that the origin is
an inflexion point. The curve still has a flat S-shape, and the tangent at the origin is the
X-axis.

If b < 0, then Y ′(X) has two roots,

X1 = +

√
−b

3a
, X2 = −

√
−b

3a
.

Then, Y (X) is increasing when X varies from −∞ to X1, decreasing when X varies from X1

to X2, and increasing again when X varies from X2 to +∞. The curve has an S-shape, the
slope b of the tangent at the origin being negative. The following diagram shows the cubic
of implicit equation

y = 3x3 − 3x.

In all three cases, note that a line parallel to the Y -axis intersects the curve in a single
point. This is the reason why we get a parametric representation.

Case 2. a2b3 − a3b2 6= 0.

In this case, we say that we have a nondegenerate cubic (recall that ρ > 0). First, as
in the quadratic case, by a change of parameter, we can suppress the term of degree 1 in t
in x1(t), and by a change of coordinates, we can make the constant terms disapear, which
yields parametric equations of the form

x(t) = F1(t) = a2t
2,

y(t) = F2(t) = b3t
3 + b2t

2 + b1t,
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Figure 3.13: “S-shaped” Cubic

with b3 > 0. We now apply a bijective affine transformation that will suppress the term b2t
2

in y(t). Consider the matrix S below

S =

(
1 0

−b2 a2

)

and the change of coordinates (
x1

y1

)
= S

(
x
y

)
.

We get

x1(t) = a2t
2,

y1(t) = a2t(b3t
2 + b1),

with b3 > 0.

We can now eliminate t between x1(t) and y1(t) as follows: first, square y1(t), getting

(y1(t))
2 = a22t

2(b3t
2 + b1)

2,

and express t2 in terms of x1(t) from x1(t) = a2t
2, getting the implicit equation

(y1)
2 = a2x1

(
b3
a2

x1 + b1

)2

.

In terms of the original coordinates x, y, we have the implicit equation

(a2y − b2x)
2 = a2x

(
b3
a2

x+ b1

)2

.
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In fact, as it will be clearer in a moment, it is preferable to make the change of coordinates
(translation)

x = X − b1a2
b3

,

y = Y − b1b2
b3

,

and we get the implicit equation

a2

(
a2
b3
Y − b2

b3
X

)2

+
b1a2
b3

X2 = X3,

with b3 > 0. Then, we can show the following lemma.

Lemma 3.5.1. Given any nondegenerate cubic polynomial curve F , i.e., any polynomial
curve of the form

x(t) = F1(t) = a2t
2,

y(t) = F2(t) = b3t
3 + b2t

2 + b1t,

where b3 > 0, after the translation of the origin given by

x = X − b1a2
b3

,

y = Y − b1b2
b3

,

the trace of F satisfies the implicit equation

a2

(
a2
b3
Y − b2

b3
X

)2

+
b1a2
b3

X2 = X3.

Furthermore, if b1 ≤ 0, then the curve defined by the above implicit equation is equal to the
trace of the polynomial curve F , and when b1 > 0, the curve defined by the above implicit
equation, excluding the origin (X, Y ) = (0, 0), is equal to the trace of the polynomial curve
F . The origin (X, Y ) = (0, 0) is called a singular point of the curve defined by the implicit
equation.

Proof. It is straightforward and not very informative. We leave it as an exercise. Simply
observe that if b1 > 0, since we assumed that b3 > 0 and a2 6= 0, the point (X, Y ) = (0, 0)
corresponds in the old coordinates to the point (−(b1a2)/b3,−(b1b2)/b3), so in order for this
point to be on the trace of the curve we should find t such that

a2t
2 = −b1a2

b3
,
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which means that

t2 = −b1
b3
,

but this is impossible since the number on the right-hand side is negative (since b1, b3 >
0).

Thus, lemma 3.5.1 shows that every nondegenerate polynomial cubic is defined by some
implicit equation of the form

c(aY − bX)2 + cdX2 = X3,

with the exception that when d > 0, the singular point (X, Y ) = (0, 0) must be excluded
from the trace of the polynomial curve. The case where d > 0 is another illustration of
the mismatch between the implicit and the explicit representation of curves. Again, this
mismatch can be resolved if we treat these curves as complex curves.

The reason for choosing the origin at the singular point is that if we intersect the trace of
the polynomial curve with a line of slope m passing through the singular point, we discover
a nice parametric representation of the polynomial curve in terms of the parameter m.

Lemma 3.5.2. For every nondegenerate cubic polynomial curve F , there is some parametric
definition G of the form

X(m) = c(am− b)2 + cd,

Y (m) = m(c(am− b)2 + cd),

such that F and G have the same trace, which is also the set of points on the curve defined
by the implicit equation

c(aY − bX)2 + cdX2 = X3,

excluding the origin (X, Y ) = (0, 0), when d > 0. Furthermore, unless it is a tangent at the
origin to the trace of the polynomial curve F (which only happens when d ≤ 0), every line
of slope m passing through the origin (X, Y ) = (0, 0) intersects the trace of the polynomial
curve F in a single point other than the singular point (X, Y ) = (0, 0). The line aY −bX = 0
is an axis of symmetry for the curve, in the sense that for any two points (X, Y1) and (X, Y2)
such that

Y1 + Y2 =
2b

a
X,

(X, Y1) belongs to the trace of F iff (X, Y2) belongs to the trace of F . The tangent at the
point

(X, Y ) =

(
cd,

bcd

a

)

of the trace of F (also on the axis of symmetry) is vertical.
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Proof. Lemma 3.5.1 shows that every nondegenerate polynomial cubic is defined by some
implicit equation of the form

c(aY − bX)2 + cdX2 = X3,

with the exception that when d > 0, the singular point (X, Y ) = (0, 0) must be excluded
from the trace of the polynomial curve. Since every line of slope m through the origin has
the equation Y = mX , to find the intersection of this line with the trace of the polynomial
curve F , we substitute mX for Y in the implicit equation, getting

X2(c(am− b)2 + cd−X) = 0.

Thus, either X = 0, which is a double root, or c(am− b)2 + cd−X = 0.

In the second case, if X 6= 0, then

X = c(am− b)2 + cd.

The other possibility is that X = 0 and c(am− b)2+ cd = 0, i.e (am− b)2+ d = 0, iff d ≤ 0.
In this case, the roots of the equation (am− b)2 + d = 0 give us the slopes of the tangent to
the trace of F at the origin.

We conclude that if X 6= 0, then we get a unique point

X(m) = c(am− b)2 + cd,

Y (m) = m(c(am− b)2 + cd),

on the trace of F , distinct from the origin. The fact that the line aY − bX = 0 is an axis of
symmetry for the curve results from a trivial computation. Since X(m) = c(am− b)2 + cd,
we have X ′(m) = 2ac(am − b), and thus, we have a vertical tangent if X ′(m) = 0, which
happens for m = b

a
, the slope of the axis of symmetry. This value of m corresponds to the

point

(X, Y ) =

(
cd,

bcd

a

)

on the trace of F .

We can now specify more precisely what is the shape of the trace of F , by studying the
changes of sign of the derivative of Y (m). Since

Y (m) = m(c(am− b)2 + cd) = a2c m3 − 2abc m2 + (b2c + cd)m,

we have
Y ′(m) = 3a2c m2 − 4abc m+ (b2c+ cd).

Let us compute the discriminant ∆ of the polynomial Y ′(m), to see if it has roots. We have

∆ = 16a2b2c2 − 12a2c(b2c+ cd) = 4a2c2(b2 − 3d).
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Thus, Y ′(m) has roots iff b2 − 3d ≥ 0. Then, we obtain the following classification for the
nondegenerate polynomial cubic curves defined by

X(m) = c(am− b)2 + cd,

Y (m) = m(c(am− b)2 + cd).

3.6 Classification of the Polynomial Cubics

We treat the case where c > 0, the case c < 0 being similar.

Case 1: 3d > b2.

In this case, we must have d > 0, which means that the singular point (X, Y ) = (0, 0)
is not on the trace of the cubic. When b2 − 3d < 0, the polynomial Y ′(m) has no roots, and
since we assumed c > 0, the polynomial Y ′(m) is always positive, which means that Y (m) is
strictly increasing. We get a kind of “humpy” curve, tangent to the vertical line X = cd at
the intersection of this line with the axis of symmetry aY − bX = 0, and only intersecting
the X-axis for m = 0, that is, for

X = cd+ cb2.

The cubic of equation

3(Y −X)2 + 6X2 = X3

is shown below:

Case 2: b2 ≥ 3d > 0.

In this case, since d > 0, the singular point (X, Y ) = (0, 0) is not on the trace of the
cubic either. When b2 − 3d > 0, the polynomial Y ′(m) has two roots m1, m2, and since
we assumed c > 0, then Y (m) increases when m varies from −∞ to m1, decreases when m
varies from m1 to m2, and increases when m varies from m2 to +∞. We also get a kind of
“humpy” curve, tangent to the vertical line X = cd at the intersection of this line with the
axis of symmetry aY − bX = 0, and only intersecting the X-axis for m = 0, that is, for

X = cd+ cb2,

but between the two vertical lines X = cd and X = cd + cb2, the curve makes two turns.
When b2 − 3d = 0, Y ′(m) has a double root m0 = 2b

3a
, and Y ′(m) is positive except for

m = m0. Thus, Y (m) increases when m varies from −∞ to ∞, and there is an inflexion
point for m = m0. We also get a kind of “humpy” curve. The cubic of equation

3(Y − 2X)2 + 3X2 = X3

is shown below:
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Figure 3.14: “Humpy” Cubic (3d > b2)
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Figure 3.15: “Humpy” Cubic (b2 ≥ 3d > 0)
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Figure 3.16: Cuspidal Cubic (d = 0)

Case 3: d = 0 (a cuspidal cubic).

In this case, we have b2 − 3d > 0, and Y ′(m) has two roots, which are easily computed:

m1 =
b

3a
, m2 =

b

a
.

For m2, we note that X(m2) = 0, Y (m2) = 0, X ′(m2) = 0 and Y ′(m2) = 0, which means
that the origin is a cusp, which belongs to the trace of the cubic. Thus, Y (t) increases as m
varies from −∞ to m1, then Y (t) decreases as m varies from m1 to m2, reaching the cusp
point, and finally Y (t) increases as m varies from m2 to +∞. The curve is tangential to the
axis aY − bX = 0 at the origin (the cusp), and intersects the X-axis only at X = b2c. The
cubic of equation

3(Y −X)2 = X3

is shown below:

Case 4: d < 0 (a nodal cubic).
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Figure 3.17: Nodal Cubic (d < 0)

In this case, b2 − 3d > 0, and Y ′(m) has two roots m1 and m2. Furthermore, since
d < 0, the singular point (X, Y ) = (0, 0) belongs to the trace of the cubic, Since d < 0,
the polynomial X(m) = c(am − b)2 + cd, has two distinct roots, and thus, the cubic is
self-intersecting at the singular point (X, Y ) = (0, 0). Since we assumed c > 0, then Y (m)
increases when m varies from −∞ to m1, decreases when m varies from m1 to m2, and
increases when m varies from m2 to +∞. The trace of the cubic is a kind of “loopy curve”
in the shape of an α, tangent to the vertical line X = cd at the intersection of this line with
the axis of symmetry aY − bX = 0, having the origin as a double point. The curve also
intersects the X-axis for m = 0, that is, for X = cd+ cb2. The cubic of equation

3

4
(Y −X)2 − 3X2 = X3

is shown below:

One will observe the progression of the shape of the curve, from “humpy” to “loopy”,
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through “cuspy”.

Remark: The implicit equation

c(aY − bX)2 + cdX2 = X3

of a nondegenerate polynomial cubic (with the exception of the singular point) is of the form

ϕ2(X, Y ) = X3,

where ϕ2(X, Y ) is a homogeneous polynomial in X and Y of total degree 2 (in the case of
a degenerate cubic of equation y = aX3 + bX2 + cX + d, the singular point is at infinity.
To make this statement precise, projective geometry is needed). Note that X3 itself is a
homogeneous polynomial in X and Y of degree 3. Using some algebraic geometry, it can
be shown that the (nondegenerate) cubics that can be represented by parametric rational
curves of degree 3 (i.e., fractions of polynomials of degree ≤ 3) are exactly those cubics whose
implicit equation is of the form

ϕ2(X, Y ) = ϕ3(X, Y ),

where ϕ2(X, Y ) and ϕ3(X, Y ) are homogeneous polynomials in X and Y of total degree
respectively 2 and 3. These cubics have a singular point at the origin. Thus, the polynomial
case is obtained in the special case where ϕ3(X, Y ) = X3. Furthermore, there are some
cubics that cannot be represented even as rational curves. For example, the cubics defined
by the implicit equation

Y 2 = X(X − 1)(X − λ),

where λ 6= 0, 1, cannot be parameterized rationally. Such cubics are elliptic curves . Elliptic
curves are a venerable and fascinating topic, but definitely beyond the scope of this course!

Returning to polynomial cubics, inspired by our treatment of quadratic polynomials, we
would like to extend blossoming to polynomials of degree 3.

3.7 Second Encounter with Polar Forms (Blossoming)

First, we need to define the polar form (or blossom) of a polynomial of degree 3. Given any
polynomial of degree ≤ 3,

F (X) = aX3 + bX2 + cX + d,

the polar form of F is a symmetric triaffine function f : A3 → A, that is, a function which
takes the same value for all permutations of x1, x2, x3, i.e., such that

f(x1, x2, x3) = f(x2, x1, x3) = f(x1, x3, x2) = f(x2, x3, x1) = f(x3, x1, x2) = f(x3, x2, x1),

which is affine in each argument, and such that

F (X) = f(X,X,X),
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for all X ∈ R. We easily verify that f must be given by

f(x1, x2, x3) = ax1x2x3 + b
x1x2 + x1x3 + x2x3

3
+ c

x1 + x2 + x3

3
+ d.

Then, given a polynomial cubic curve F : A → A3, determined by three polynomials
F1, F2, F3 of degree ≤ 3, we can determine their polar forms f1, f2, f3, and we obtain a
symmetric triaffine map f : A3 → A3, such that F (X) = f(X,X,X), for all X ∈ A. Again,
let us pick an affine basis (r, s) in A, with r 6= s, and let us compute

f(t1, t2, t3) = f((1− λ1)r + λ1s, (1− λ2)r + λ2s, (1− λ3)r + λ3s).

Since f is symmetric and triaffine, we get

f(t1, t2, t3) = f((1− λ1)r + λ1s, (1− λ2)r + λ2s, (1− λ3)r + λ3s)

= (1− λ1)(1− λ2)(1− λ3) f(r, r, r)

+ ((1− λ1)(1− λ2)λ3 + (1− λ1)λ2(1− λ3) + λ1(1− λ2)(1− λ3)) f(r, r, s)

+ ((1− λ1)λ2λ3 + λ1(1− λ2)λ3 + λ1λ2(1− λ3)) f(r, s, s)

+ λ1λ2λ3 f(s, s, s).

The coefficients of f(r, r, r), f(r, r, s), f(r, s, s), and f(s, s, s), are obviously symmetric
triaffine functions, and they add up to 1, as it is easily verified by expanding the product

(1− λ1 + λ1)(1− λ2 + λ2)(1− λ3 + λ3) = 1.

Since λi =
ti−r
s−r

, for i = 1, 2, 3, we get

f(t1, t2, t3) =

(
s− t1
s− r

)(
s− t2
s− r

)(
s− t3
s− r

)
f(r, r, r)

+

[(
s− t1
s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)
+

(
s− t1
s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)

+

(
t1 − r

s− r

)(
s− t2
s− r

)(
s− t3
s− r

)]
f(r, r, s)

+

[(
s− t1
s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)]
f(r, s, s)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
f(s, s, s).
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Thus, we showed that every symmetric triaffine map f : A3 → A3 is completely deter-
mined by the sequence of four points f(r, r, r), f(r, r, s), f(r, s, s), and f(s, s, s) in A3, where
r 6= s are elements of A.

Conversely, it is clear that given any sequence of four points a, b, c, d ∈ A3, the map

(t1, t2, t3) 7→
(
s− t1
s− r

)(
s− t2
s− r

)(
s− t3
s− r

)
a

+

[(
s− t1
s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)
+

(
s− t1
s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)

+

(
t1 − r

s− r

)(
s− t2
s− r

)(
s− t3
s− r

)]
b

+

[(
s− t1
s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)]
c

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
d

is symmetric triaffine, and that f(r, r, r) = a, f(r, r, s) = b, f(r, s, s) = c, and f(s, s, s) = d.

The points f(r, r, r), f(r, r, s), f(r, s, s), and f(s, s, s), are called control points , or Bézier
control points . They play a major role in the de Casteljau algorithm and its extensions. Note
that the polynomial curve defined by f passes through the two points f(r, r, r) and f(s, s, s),
but not through the other control points. If we let r = 0 and s = 1, so that λ1 = t1,
λ2 = t2, and λ3 = t3, the polynomial function associated with f(t1, t2, t3) is obtained by
letting t1 = t2 = t3 = t, and we get

F (t) = f(t, t, t) = (1− t)3 f(0, 0, 0) + 3(1− t)2t f(0, 0, 1) + 3(1− t)t2 f(0, 1, 1) + t3 f(1, 1, 1).

The polynomials

(1− t)3, 3(1− t)2t, 3(1− t)t2, t3,

are the Bernstein polynomials of degree 3. They form a basis of the vector space of poly-
nomials of degree ≤ 3. Thus, the point F (t) on the curve can be expressed in terms of the
control points f(r, r, r), f(r, r, s), f(r, s, s), and f(s, s, s), and the Bernstein polynomials.
However, it is more useful to extend the de Casteljau algorithm.

It is immediately verified that the above arguments do not depend on the fact that the
affine space in which the curves live is A3, and thus, we will assume any affine space E of
dimension ≥ 2. Summarizing what we have done, we have shown the following result.
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Lemma 3.7.1. Given any sequence of four points a, b, c, d in E , there is a unique polynomial
curve F : A → E of degree 3, whose polar form f : A3 → E satisfies the conditions f(r, r, r) =
a, f(r, r, s) = b, f(r, s, s) = c, and f(s, s, s) = d (where r, s ∈ A, r 6= s). Furthermore, the
polar form f of F is given by the formula

f(t1, t2, t3) =

(
s− t1
s− r

)(
s− t2
s− r

)(
s− t3
s− r

)
a

+

[(
s− t1
s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)
+

(
s− t1
s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)

+

(
t1 − r

s− r

)(
s− t2
s− r

)(
s− t3
s− r

)]
b

+

[(
s− t1
s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)]
c

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
d.

It is easy to generalize the de Casteljau algorithm to polynomial cubic curves.

3.8 Second Encounter with the de Casteljau Algorithm

Let us assume that the cubic curve F is specified by the control points f(r, r, r) = b0,
f(r, r, s) = b1, f(r, s, s) = b2, and f(s, s, s) = b3 (where r, s ∈ A, r < s). Given any t ∈ [r, s],
the computation of F (t) can be arranged in a triangular array, as shown below, consisting
of three stages:

0 1 2 3
f(r, r, r)

f(r, r, t)
f(r, r, s) f(t, t, r)

f(r, t, s) f(t, t, t)
f(r, s, s) f(t, t, s)

f(t, s, s)
f(s, s, s)
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The above computation is usually performed for t ∈ [r, s], but it works just as well for
any t ∈ A, even outside [r, s]. When t is outside [r, s], we usually say that F (t) = f(t, t, t) is
computed by extrapolation.

Let us go through the stages of the computation. During the first stage, we compute the
three points

f(r, r, t) = f(r, r, (1− λ)r + λs) = (1− λ) f(r, r, r) + λ f(r, r, s),

from f(r, r, r) and f(r, r, s),

f(r, t, s) = f(r, (1− λ)r + λs, s) = (1− λ) f(r, r, s) + λ f(r, s, s),

from f(r, r, s) and f(r, s, s), and

f(t, s, s) = f((1− λ)r + λs, s, s) = (1− λ) f(r, s, s) + λ f(s, s, s),

from f(r, s, s) and f(s, s, s), the ratio of interpolation being

λ =
t− r

s− r
.

During the second stage, since by symmetry, f(r, r, t) = f(t, r, r) and f(r, t, s) = f(t, s, r) =
f(t, r, s), we compute the two points

f(t, t, r) = f(t, (1− λ)r + λs, r) = (1− λ) f(t, r, r) + λ f(t, s, r),

from f(t, r, r) and f(t, s, r), and

f(t, t, s) = f(t, (1− λ)r + λs, s) = (1− λ) f(t, r, s) + λ f(t, s, s),

from f(t, r, s) and f(t, s, s), the ratio of interpolation also being

λ =
t− r

s− r
.

During the third stage, we compute the point

f(t, t, t) = f(t, t, (1− λ)r + λs) = (1− λ) f(t, t, r) + λ f(t, t, s),

from f(t, t, r) and f(t, t, s), the ratio of interpolation still being

λ =
t− r

s− r
.

In order to describe the above computation more conveniently as an algorithm, let us
denote the control points b0 = f(r, r, r), b1 = f(r, r, s), b2 = f(r, s, s) and b3 = f(s, s, s), as
b0,0, b1,0, b2,0, and b3,0, and the intermediate points f(r, r, t), f(r, t, s), f(t, s, s) as b0,1, b1,1, b2,1,
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the intermediate points f(t, t, r), f(t, t, s) as b0,2, b1,2, and the point f(t, t, t) as b0,3. Note that
in bi,j, the index j denotes the stage of the computation, and F (t) = b0,3. Then the triangle
representing the computation is as follows:

0 1 2 3
b0 = b0,0

b0,1
b1 = b1,0 b0,2

b1,1 b0,3
b2 = b2,0 b1,2

b2,1
b3 = b3,0

Then, we have the following inductive formula for computing bi,j :

bi,j =

(
s− t

s− r

)
bi,j−1 +

(
t− r

s− r

)
bi+1,j−1,

where 1 ≤ j ≤ 3, and 0 ≤ i ≤ 3− j. We have F (t) = b0,3.

As will shall see in section 5.1, the above formula generalizes to any degree m. When
r ≤ t ≤ s, each interpolation step computes a convex combination, and bi,j lies between
bi,j−1 and bi+1,j−1. In this case, geometrically, the algorithm constructs the three polylines

(b0, b1), (b1, b2), (b2, b3) (b0,1, b1,1), (b1,1, b2,1) (b0,2, b1,2)

called shells , and with the point b0,3, they form the de Casteljau diagram.

Note that the shells are nested nicely. The polyline

(b0, b1), (b1, b2), (b2, b3)

is also called a control polygon of the curve. When λ is outside [r, s], we still obtain three
shells and a de Casteljau diagram, but the shells are not nicely nested. The following diagram
illustrates the de Casteljau algorithm for computing the point F (t) on a cubic, where r = 0,
and s = 6:

The above example shows the construction of the point F (3) corresponding to t = 3, on
the curve F .
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bc

bc

bc

bc

bc

bc

bc

bc bcbc

b0

b1

b2

b3

b0, 1

b1, 1

b2, 1

b0, 2 b1, 2b0, 3

Figure 3.18: A de Casteljau diagram

bc

bc

bc

bc

bc

bc

bc

bc bcbc

F (0) = f(0, 0, 0)

f(0, 0, 6)

f(0, 6, 6)

F (6) = f(6, 6, 6)

f(0, 0, 3)

f(0, 3, 6)

f(3, 6, 6)

f(0, 3, 3) f(6, 3, 3)F (3) = f(3, 3, 3)

Figure 3.19: The de Casteljau algorithm for t = 3
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The de Casteljau algorithm also gives some information about some of the tangents to
the curve. It will be shown in section 5.4, that the tangent at b0 is the line (b0, b1), the
tangent at b3 is the line (b2, b3), and the tangent at F (t) is the line (b0,2, b1,2), where b0,2 and
b1,2 are computed during the second stage of the de Casteljau algorithm.

Remark: The above statements only make sense when b0 6= b1, b2 6= b3, and b0,2 6= b1,2. It is
possible for some (even all!) of the control points to coincide. The algorithm still computes
f(t, t, t) correctly, but the tangents may not be computed as easily as above.

As in the quadratic case, the de Casteljau algorithm can also be used to compute any
polar value f(t1, t2, t3) (which is not generally on the curve). All we have to do is to use a
different ratio of interpolation λj during phase j, given by

λj =
tj − r

s− r
.

The computation can also be represented as a triangle:

0 1 2 3
f(r, r, r)

f(r, r, t1)
f(r, r, s) f(t1, t2, r)

f(r, t1, s) f(t1, t2, t3)
f(r, s, s) f(t1, t2, s)

f(t1, s, s)
f(s, s, s)

As above, it is convenient to denote the intermediate points f(r, r, t1), f(r, t1, s), f(t1, s, s)
as b0,1, b1,1, b2,1, the intermediate points f(t1, t2, r), f(t1, t2, s) as b0,2, b1,2, and the point
f(t1, t2, t3) as b0,3. Note that in bi,j , the index j denotes the stage of the computation,
and f(t1, t2, t3) = b0,3. Then the triangle representing the computation is as follows:
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0 1 2 3
b0 = b0,0

b0,1
b1 = b1,0 b0,2

b1,1 b0,3
b2 = b2,0 b1,2

b2,1
b3 = b3,0

We also have the following inductive formula for computing bi,j :

bi,j =

(
s− tj
s− r

)
bi,j−1 +

(
tj − r

s− r

)
bi+1,j−1,

where 1 ≤ j ≤ 3, and 0 ≤ i ≤ 3− j. We have f(t1, t2, t3) = b0,3.

Thus, there is very little difference between this more general version of de Casteljau
algorithm computing polar values and the version computing the point F (t) on the curve:
just use a new ratio of interpolation at each stage. The de Casteljau algorithm enjoys many
nice properties that will be studied in chapter 5 (section 5.1).

Let us give a few examples of the computation of polar forms associated with parametric
representation of cubics, and computations of the coordinates of control points.

3.9 Examples of Cubics Defined by Control Points

We begin with example of plane cubics.

Example 1. Consider the plane cubic defined as follows:

F1(t) = 3t,

F2(t) = 3t3 − 3t.

The polar forms of F1(t) and F2(t) are:

f1(t1, t2, t3) = t1 + t2 + t3,

f2(t1, t2, t3) = 3t1t2t3 − (t1 + t2 + t3).
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b

b

b

b

Figure 3.20: Bezier Cubic 1

With respect to the affine frame r = −1, s = 1, the coordinates of the control points are:

b0 = (−3, 0)

b1 = (−1, 4)

b2 = (1,−4)

b3 = (3, 0).

The curve has the following shape.

The above cubic is an example of degenerate “S-shaped” cubic.

Example 2. Consider the plane cubic defined as follows:

F1(t) = 3(t− 1)2 + 6,

F2(t) = 3t(t− 1)2 + 6t.

Since

F1(t) = 3t2 − 6t+ 9,

F2(t) = 3t3 − 6t2 + 9t,

we get the polar forms

f1(t1, t2, t3) = (t1t2 + t1t3 + t2t3)− 2(t1 + t2 + t3) + 9

f2(t1, t2, t3) = 3t1t2t3 − 2(t1t2 + t1t3 + t2t3) + 3(t1 + t2 + t3).
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b

b

b

b

Figure 3.21: Bezier Cubic 2

With respect to the affine frame r = 0, s = 1, the coordinates of the control points are:

b0 = (9, 0)

b1 = (7, 3)

b2 = (6, 4)

b3 = (6, 6).

The curve has the following shape.

We leave as an exercise to verify that this cubic corresponds to case 1, where 3d > b2.
The axis of symmetry is y = x.

Example 3. Consider the plane cubic defined as follows:

F1(t) = 3(t− 2)2 + 3,

F2(t) = 3t(t− 2)2 + 3t.

Since

F1(t) = 3t2 − 12t+ 15,

F2(t) = 3t3 − 12t2 + 15t,

we get the polar forms

f1(t1, t2, t3) = (t1t2 + t1t3 + t2t3)− 4(t1 + t2 + t3) + 15

f2(t1, t2, t3) = 3t1t2t3 − 4(t1t2 + t1t3 + t2t3) + 5(t1 + t2 + t3).
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b

b

b

b

Figure 3.22: Bezier Cubic 3

With respect to the affine frame r = 0, s = 2, the coordinates of the control points are:

b0 = (15, 0)

b1 = (7, 10)

b2 = (3, 4)

b3 = (3, 6).

The curve has the following shape.

We leave as an exercise to verify that this cubic corresponds to case 2, where b2 ≥ 3d > 0.
The axis of symmetry is y = 2x. It is interesting to see which control points are obtained
with respect to the affine frame r = 0, s = 1:

b′0 = (15, 0)

b′1 = (11, 5)

b′2 = (8, 6)

b′3 = (6, 6).
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The second “hump” of the curve is outside the convex hull of this new control polygon.
This shows that it is far from obvious, just by looking at some of the control points, to
predict what the shape of the entire curve will be!

Example 4. Consider the plane cubic defined as follows:

F1(t) = 3(t− 1)2,

F2(t) = 3t(t− 1)2.

Since

F1(t) = 3t2 − 6t+ 3,

F2(t) = 3t3 − 6t2 + 3t,

we get the polar forms

f1(t1, t2, t3) = (t1t2 + t1t3 + t2t3)− 2(t1 + t2 + t3) + 3

f2(t1, t2, t3) = 3t1t2t3 − 2(t1t2 + t1t3 + t2t3) + (t1 + t2 + t3).

With respect to the affine frame r = 0, s = 2, the coordinates of the control points are:

b0 = (3, 0)

b1 = (−1, 2)

b2 = (−1,−4)

b3 = (3, 6).

The curve has the following shape.

We leave as an exercise to verify that this cubic corresponds to case 3, where d = 0, a
cubic with a cusp at the origin. The axis of symmetry is y = x. It is interesting to see which
control points are obtained with respect to the affine frame r = 0, s = 1:

b′0 = (3, 0)

b′1 = (1, 1)

b′2 = (0, 0)

b′3 = (0, 0).

Thus, b′2 = b′3. This indicates that there is a cusp at the origin.

Example 5. Consider the plane cubic defined as follows:

F1(t) =
3

4
(t− 1)2 − 3,

F2(t) =
3

4
t(t− 1)2 − 3t.
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b

b

b

b

Figure 3.23: Bezier Cubic 4
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Since

F1(t) =
3

4
t2 − 3

2
t− 9

4
,

F2(t) =
3

4
t3 − 3

2
t2 − 9

4
t,

we get the polar forms

f1(t1, t2, t3) =
1

4
(t1t2 + t1t3 + t2t3)−

1

2
(t1 + t2 + t3)−

9

4

f2(t1, t2, t3) =
3

4
t1t2t3 −

1

2
(t1t2 + t1t3 + t2t3)−

3

4
(t1 + t2 + t3).

With respect to the affine frame r = −1, s = 3, the coordinates of the control points are:

b0 = (0, 0)

b1 = (−4, 4)

b2 = (−4,−12)

b3 = (0, 0).

The curve has the following shape.

Note that b0 = b3. We leave as an exercise to verify that this cubic corresponds to case
4, where d < 0, a cubic with a node at the origin. The axis of symmetry is y = x. The
two tangents at the origin are y = −x, and y = 3x (this explains the choice of r = −1, and
s = 3). Here is a more global view of the same cubic:

It is interesting to see which control points are obtained with respect to the affine frame
r = 0, s = 1:

b′0 = (−9

4
, 0)

b′1 = (−1,−3

4
)

b′2 = (−3,−2)

b′3 = (−3,−3).

As in example 3, this example shows that it is far from obvious, just by looking at some
of the control points, to predict what the shape of the entire curve will be!

The above examples suggest that it may be interesting, and even fun, to investigate which
properties of the shape of the control polygon (b0, b1, b2, b3) determine the nature of the plane
cubic that it defines. Try it!

Challenge: Given a planar control polygon (b0, b1, b2, b3), is it possible to find the singular
point geometrically? Is it possible to find the axis of symmetry geometrically?
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b

b

b

b

Figure 3.24: Bezier Cubic 5
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Figure 3.25: Nodal Cubic (d < 0)
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Let us consider one more example, this time, of a space curve.

Example 6. Consider the cubic, known as a twisted cubic (it is not a plane curve), defined
as follows:

F1(t) = t,

F2(t) = t2,

F3(t) = t3.

We get the polar forms

f1(t1, t2, t3) =
1

3
(t1 + t2 + t3)

f2(t1, t2, t3) =
1

3
(t1t2 + t1t3 + t2t3)

f3(t1, t2, t3) = t1t2t3.

With respect to the affine frame r = 0, s = 1, the coordinates of the control points are:

b0 = (0, 0, 0)

b1 = (
1

3
, 0, 0)

b2 = (
2

3
,
1

3
, 0)

b3 = (1, 1, 1).

The reader should apply the de Casteljau algorithm to find the point on the twisted cubic
corresponding to t = 1/2. This curve has some very interesting algebraic properties. For
example, it is the zero locus (the set of common zeros) of the two polynomials

y − x2 = 0,

z − xy = 0.

It can also be shown that any four points on the twisted cubic are affinely independent.

We would like to extend polar forms and the de Casteljau algorithm to polynomial
curves of arbitrary degrees (not only m = 2, 3), and later on, to rational curves and also to
polynomial and rational surfaces. In order to do so, we need to investigate some of the basic
properties of multiaffine maps. This is the object of the next two chapters.

3.10 Problems

Problem 1 (40 pts). Write a computer program implementing the the de Casteljau algo-
rithm for cubic curves, over some interval [r, s].
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You may use Mathematica, or any other available software in which graphics primitives
are available.

Problem 2 (20 pts). Consider (in the plane) the cubic curve F defined by the following 4
control points, assuming that r = 0 and s = 1:

b0 = (6,−6),

b1 = (−6, 10),

b2 = (−6,−10),

b3 = (6, 6).

Use the de Casteljau algorithm to find the coordinates of the points F (1/3), F (1/2), and
F (2/3). Plot the cubic as well as you can.

Problem 3 (30 pts). Consider the cubic defined by the equations:

x(t) = 9p(3t2 − 1),

y(t) = 9pt(3t2 − 1),

where p is any scalar.

(1) Find the polar forms of x(t) and y(t). Find the control points with respect to the
affine frame r = −1, s = 1.

(2) What are the slopes of the tangents at the origin. Give a geometric construction of
the tangent to the cubic for t = 0. Plot the curve as well as possible (choose some convenient
value for p).

Remark: This cubic is known as the “Tchirnhausen cubic”.

Problem 4 (20 pts). Consider (in the plane) the cubic curve F defined by the following 4
control points, assuming that r = 0 and s = 1:

b0 = (−4, 0),

b1 = (−1, 6),

b2 = (1, 6),

b3 = (4, 0).

Give a geometric construction of the point F (1/2). Construct the points F (1/4) and
F (3/4). Plot the curve as well as you can.

Problem 5 (25 pts). Explain how to treat a parabola as a degenerate cubic. More
specifically, given three control points b0, b1, b2 specifying a parabola, determine control points
b′0, b

′
1, b

′
2, b

′
3 yielding the same parabola, viewed as a cubic.
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Problem 6 (30 pts). (The “four tangents theorem”)

(i) Given any sequence (a, b, c, d) of four distinct points on a line, we define the cross-ratio
[a, b, c, d] of these points as

[a, b, c, d] =
−→ca
−→
cb

/−→
da
−→
db

In any affine space E , given any sequence (a, b, c, d) of four distinct points, such that
c = (1− α)a+ αb and d = (1− β)a+ βb, show that

[a, b, c, d] =
α

(1− α)

(1− β)

β
.

Show that [a, b, c, d] = −1 iff
1

α
+

1

β
= 2.

In this case, we say that (a, b, c, d) forms a harmonic division.

(ii) Given any parabola F defined by some bilinear symmetric affine map f : A2 → A2,
given any four distinct values t1, t2, t3, t4, consider the four collinear points (f(t, t1), f(t, t2),
f(t, t3), f(t, t4)), for any t. Prove that

[f(t, t1), f(t, t2), f(t, t3), f(t, t4)]

only depends on t1, t2, t3, t4.

Given t1, t2, find the values of t3, t4 such that

[f(t, t1), f(t, t2), f(t, t3), f(t, t4)] = −1.

Problem 7 (20 pts). Prove lemma 3.5.1.

Problem 8 (30 pts). Given a plane cubic specified by its control points (b0, b1, b2, b2),
explain what happens when two control points are identical. In particular, consider the
following questions:

Does the degree of the curve drop?

Does the curve have a cusp at some control point?

Does the curve have an inflexion point at some control point?

Assuming that A2 is equipped with its usual Euclidean inner product, does the curve
have points where the curvature is null?

What happens when three control points are identical? What if the four control points
are identical?
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Problem 9 (20 pts). What is the maximum number of intersection points of two plane
cubics? Give the control points of two plane cubics that intersect in the maximum number
of points.

Problem 10 (20 pts). Plot the Bernstein polynomials B3
i (t), 0 ≤ i ≤ 3, over [0, 1].

Problem 11 (80 pts) Challenge. Consider the cubic of problem 3 (except that a new
origin is chosen), defined by the equations:

x(t) = 27pt2,

y(t) = 9pt(3t2 − 1),

where p is any scalar. Let F be the point of coordinates (p, 0). Any line D through F
intersects the cubic in three points N1, N2, N3.

(i) Let Hi be the foot of the perpendicular from F to the tangent to the cubic at Ni.
Prove that H1, H2, H3 belong to the parabola of equation y2 = 4px.

Hint . Consider the following construction: for every point M on the parabola y2 = 4px,
let ω be the intersection of the normal at M to the parabola with the mediatrix of the line
segment FM , and let N be the symmetric of F with respect to ω. Show that when M varies
on the parabola, N varies on the cubic, and that MN is tangent to the cubic at N . It is
best to use polar coordinates (with pole F = (p, 0)). You can check that you are right if you
find that the cubic is defined by:

x(θ) = 3p+ 6p
cos θ

1− cos θ
,

y(θ) = 2p
sin θ(1 − 2 cos θ)

(1− cos θ)2
.

(ii) Prove that the tangents to the cubic at N1, N2, N3 intersect in three points forming
an equilateral triangle.

(iii) What is the locus of the center of gravity of this triangle.

Hint . Use the representation in polar coordinates. You may want to use Mathematica to
play around with these curves.



Chapter 4

Multiaffine Maps and Polar Forms

4.1 Multiaffine Maps

In this chapter, we discuss the representation of certain polynomial maps in terms of mul-
tiaffine maps. This has applications to curve and surface design, and more specifically to
Bézier curves, splines, and the de Casteljau algorithm, in a form usually called “blossoming”.
This material is quite old, going back as early as 1879, and it is not very easily accessible. A
presentation of the polarization of polynomials can be found in Hermann Weyl’s The Clas-
sical Groups [87] (Chapter I, page 4-6), which first appeared in 1939. An equivalent form of
polarization is discussed quite extensively in Cartan [16] (Chapter I, section 6), in the case of
polynomial maps between vector spaces, and some discussion of the affine case can be found
in Berger [5] (Chapter 3, Section 3). It should be pointed out that de Casteljau pioneered
the approach to polynomial curves and surfaces in terms of polar forms (see de Casteljau
[23]). In fact, there is little doubt that the polar approach led him to the discovery of the
beautiful algorithm known as the “de Casteljau algorithm”.

The chapter proceeds as follows. After a quick review of the binomial and multinomial
coefficients, multilinear and multiaffine maps are defined. Next, we prove a generalization
of lemma 2.7.2, characterizing multiaffine maps in terms of multilinear maps. This result
is quite technical in nature, but it plays a crucial role in section 10.1. The proof can be
omitted at first reading. Affine polynomial functions and their polar forms are defined.
Affine polynomial functions h : E → F are described explicitly in the case where E has
finite dimension, showing that they subsume the usual multivariate polynomial functions.
Polynomial curves in polar form are defined, and their characterization in terms of control
points and Bernstein polynomials is shown. The uniqueness of the polar form of an affine
polynomial function is proved next. It is shown how polynomials in one or several variables
are polarized, and the equivalence between polynomials and symmetric multiaffine maps is
established. We conclude by showing that the definition of a polynomial curve in polar form
is equivalent to the more traditional definition (definition 3.1.1), and that the Bernstein
polynomials of degree ≤ m form a basis of the vector space of polynomials of degree ≤ m.

119
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We first review quickly some elementary combinatorial facts.

For every n ∈ N, we define n! (read “n factorial”) as follows:

0! = 1,

(n+ 1)! = (n + 1)n!

It is well known that n! is the number of permutations on n elements. For n ∈ N, and

k ∈ Z, we define

(
n
k

)
(read “n choose k”) as follows:

(
n
k

)
= 0, if k /∈ {0, . . . , n},

(
0
0

)
= 1,

(
n
k

)
=

(
n− 1
k

)
+

(
n− 1
k − 1

)
, if n ≥ 1.

It is immediately shown by induction on n that

(
n
k

)
=

n!

k!(n− k)!
,

for 0 ≤ k ≤ n. Furthermore, when n ≥ 0, we can prove by induction that

(
n
k

)
is the

number of subsets of {1, . . . , n} consisting of k elements. Indeed, when n = 0, we have the
empty set which has only one subset, namely itself. When n ≥ 1, there are two kinds of
subsets of {1, . . . , n} having k elements: those containing 1, and those not containing 1. Now,
there are as many subsets of k elements from {1, . . . , n} containing 1 as there are subsets

of k − 1 elements from {2, . . . , n}, namely

(
n− 1
k − 1

)
, and there are as many subsets of k

elements from {1, . . . , n} not containing 1 as there are subsets of k elements from {2, . . . , n},
namely

(
n− 1
k

)
. Thus, the number of subsets of {1, . . . , n} consisting of k elements is

(
n− 1
k

)
+

(
n− 1
k − 1

)
, which is equal to

(
n
k

)
. The numbers

(
n
k

)
are also called binomial

coefficients , because they arise in the expansion of the binomial expression (a + b)n. It is
easy to see that (

n
k

)
=

(
n

n− k

)
.

The binomial coefficients can be computed inductively by forming what is usually called
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Pascal’s triangle, which is based on the recurrence for

(
n
k

)
:

n

(
n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

) (
n
6

) (
n
7

)
. . .

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
...

...
...

...
...

...
...

...
...

...

For any a, b ∈ R, the following identity holds for all n ≥ 0:

(a+ b)n =

n∑

k=0

(
n
k

)
akbn−k.

The proof is a simple induction. More generally, for any a1, . . . , am ∈ R, m ≥ 2, and n ≥ 0,
we have the identity

(a1 + · · ·+ am)
n =

∑

k1+···+km=n
0≤ki≤n

n!

k1! · · ·km!
ak11 · · · akmm .

Again, the proof is by induction. The coefficients n!
k1!···km!

, where k1 + · · ·+ km = n, are
called multinomial coefficients , and they are also denoted as

(
n

k1, . . . , km

)
.

We now proceed with multiaffine maps. For the reader’s convenience, we recall the
definition of a multilinear map. Let E1, . . . , Em, and F , be vector spaces over R, where
m ≥ 1.

Definition 4.1.1. A function f : E1 × . . .× Em → F is a multilinear map (or an m-linear
map), iff it is linear in each argument, holding the others fixed. More explicitly, for every

i, 1 ≤ i ≤ m, for all −→x1 ∈ E1 . . .,
−−→xi−1 ∈ Ei−1,

−−→xi+1 ∈ Ei+1, . . .,
−→xm ∈ Em, for every family

(−→yj )j∈J of vectors in Ei, for every family (λj)j∈J of scalars,

f(−→x1 , . . . ,
−−→xi−1,

∑

j∈J
λj
−→yj , −−→xi+1, . . . ,

−→xn) =
∑

j∈J
λjf(

−→x1 , . . . ,
−−→xi−1,

−→yj , −−→xi+1, . . . ,
−→xn).
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Having reviewed the definition of a multilinear map, we define multiaffine maps. Let
E1, . . . , Em, and F , be affine spaces over R, where m ≥ 1.

Definition 4.1.2. A function f : E1 × . . . × Em → F is a multiaffine map (or an m-
affine map), iff it is affine in each argument, that is, for every i, 1 ≤ i ≤ m, for all a1 ∈
E1, . . . , ai−1 ∈ Ei−1, ai+1 ∈ Ei+1, . . . , am ∈ Em, a ∈ Ei, the map a 7→ f(a1, . . . , ai−1, a, ai+1,
. . . , am) is an affine map, i.e. iff it preserves barycentric combinations. More explicitly, for
every family (bj)j∈J of points in Ei, for every family (λj)j∈J of scalars such that

∑
j∈J λj = 1,

we have

f(a1, . . . , ai−1,
∑

j∈J
λjbj , ai+1, . . . , am) =

∑

j∈J
λjf(a1, . . . , ai−1, bj , ai+1, . . . , am).

An arbitrary function f : Em → F is symmetric (where E and F are arbitrary sets, not
just vector spaces or affine spaces), iff

f(xπ(1), . . . , xπ(m)) = f(x1, . . . , xm),

for every permutation π : {1, . . . , m} → {1, . . . , m}.

It is immediately verified that a multilinear map is also a multiaffine map (viewing a
vector space as an affine space).

Let us try to gain some intuition for what multilinear maps and multiaffine maps are, in
the simple case where E = A and F = A, the affine line associated with R. Since R is of
dimension 1, every linear form f : R → R must be of the form x 7→ λx, for some λ ∈ R. An
affine form f : A → A must be of the form x 7→ λ1x + λ2, for some λ1, λ2 ∈ R. A bilinear
form f : R2 → R must be of the form

(x1, x2) 7→ λx1x2,

for some λ ∈ R, and a little thinking shows that a biaffine form f : A2 → A must be of the
form

(x1, x2) 7→ λ1x1x2 + λ2x1 + λ3x2 + λ4,

for some λ1, λ2, λ3, λ4 ∈ R. For any n ≥ 2, an n-linear form f : Rn → R must be of the form

(x1, . . . , xn) 7→ λx1 · · ·xn.

What about an n-affine form f : An → A?

The next lemma will show that an n-affine form can be expressed as the sum of 2n − 1
k-linear forms, where 1 ≤ k ≤ n, plus a constant. Thus, we see that the main difference
between multilinear forms and multiaffine forms, is that multilinear forms are homogeneous
in their arguments, whereas multiaffine forms are not, but they are sums of homogeneous
forms. A good example of n-affine forms is the elementary symmetric functions. Given n
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variables x1, . . . , xn, for each k, 0 ≤ k ≤ n, we define the k-th elementary symmetric function
σk(x1, . . . , xn), for short, σk, as follows:

σ0 = 1;

σ1 = x1 + · · ·+ xn;

σ2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn;

σk =
∑

1≤i1<...<ik≤n xi1 · · ·xik ;

σn = x1x2 · · ·xn.

A concise way to express σk is as follows:

σk =
∑

I⊆{1,...,n}
|I|=k

(∏

i∈I
xi

)
.

Note that σk consists of a sum of

(
n
k

)
= n!

k!(n−k)!
terms of the form xi1 · · ·xik . As a

consequence,

σk(x, x, . . . , x) =

(
n
k

)
xk.

Clearly, each σk is symmetric.

We will prove a generalization of lemma 2.7.2, characterizing multiaffine maps in terms
of multilinear maps. The proof is more complicated than might be expected, but luckily, an
adaptation of Cartan’s use of “successive differences” allows us to overcome the complica-
tions.

In order to understand where the proof of the next lemma comes from, let us consider the
special case of a biaffine map f : E2 → F , where F is a vector space. Because f is biaffine,
note that by Lemma 2.7.2,

f(a1 +
−→v1 , a2 +−→v2 )− f(a1, a2 +

−→v2 ) = g(−→v1 , a2 +−→v2 )

is a linear map in −→v1 , and as a difference of affine maps in a2 +
−→v2 , it is affine in a2 +

−→v2 .
But then again by Lemma 2.7.2, we have

g(−→v1 , a2 +−→v2 ) = g(−→v1 , a2) + h1(
−→v1 ,−→v2 ),

where h1(
−→v1 ,−→v2 ) is linear in −→v2 . But g(−→v1 , a2) is obtained by setting −→v2 = 0 in g(−→v1 , a2+−→v2 ),

so
f(a1 +

−→v1 , a2)− f(a1, a2) = g(−→v1 , a2),
and thus we have

f(a1 +
−→v1 , a2 +−→v2 )− f(a1, a2 +

−→v2 ) = f(a1 +
−→v1 , a2)− f(a1, a2) + h1(

−→v1 ,−→v2 ),
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which yields

f(a1+
−→v1 , a2+−→v2 ) = f(a1, a2)+h1(

−→v1 ,−→v2 )+f(a1, a2+
−→v2 )−f(a1, a2)+f(a1+

−→v1 , a2)−f(a1, a2).

Since
g(−→v1 , a2 +−→v2 )− g(−→v1 , a2) = h1(

−→v1 ,−→v2 ),
where both g(−→v1 , a2 +−→v2 ) and and g(−→v1 , a2) are linear in −→v1 , h1(

−→v1 ,−→v2 ) is also linear in −→v1 ,
and since we already know that h1(

−→v1 ,−→v2 ) is linear in −→v2 , then h1 is bilinear. But by Lemma

2.7.2, f(a1, a2 +
−→v2 )− f(a1, a2) is linear in

−→v2 , and f(a1 +
−→v1 , a2)− f(a1, a2) is linear in

−→v1 ,
which shows that we can write

f(a1 +
−→v1 , a2 +−→v2 ) = f(a1, a2) + h1(

−→v1 ,−→v2 ) + h2(
−→v1 ) + h3(

−→v2 ),

where h1 is bilinear, and h2 and h3 are linear. The uniqueness of h1 is clear, and as a
consequence, the uniqueness of h2 and h3 follows easily.

The above argument uses the crucial fact that the expression

f(a1 +
−→v1 , a2 +−→v2 )− f(a1, a2 +

−→v2 )− f(a1 +
−→v1 , a2) + f(a1, a2) = h1(

−→v1 ,−→v2 ),

is bilinear. Thus, we are led to consider differences of the form

∆v1f(a1, a2) = f(a1 +
−→v1 , a2)− f(a1, a2).

The slight trick is that if we compute the difference

∆v2∆v1f(a1, a2) = ∆v1f(a1, a2 +
−→v2 )−∆v1f(a1, a2),

where we incremented the second argument instead of the first argument as in the previous
step, we get

∆v2∆v1f(a1, a2) = f(a1 +
−→v1 , a2 +−→v2 )− f(a1, a2 +

−→v2 )− f(a1 +
−→v1 , a2) + f(a1, a2),

which is precisely the bilinear map h1(
−→v1 ,−→v2 ). This idea of using successive differences

(where at each step, we move from argument k to argument k + 1) will be central to the
proof of the next lemma.

Lemma 4.1.3. For every m-affine map f : Em → F , there are 2m − 1 unique multilinear

maps fS :
−→
Ek → −→

F , where S ⊆ {1, . . . , m}, k = |S|, S 6= ∅, S = {i1, . . . , ik}, i1 < · · · < ik,
such that

f(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +

∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

i1<···<ik

fS(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E .
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Proof. It is extremely technical, and can be found in Chapter B, Section B.1.

When f : Em → F is a symmetric m-affine map, we can obtain a more precise charac-
terization in terms of m symmetric k-linear maps, 1 ≤ k ≤ m.

Lemma 4.1.4. For every symmetric m-affine map f : Em → F , there are m unique sym-

metric multilinear maps fk :
−→
Ek → −→

F , where 1 ≤ k ≤ m, such that

f(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +

m∑

k=1

∑

1≤i1<...<ik≤m

fk(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E .

Proof. Since f is symmetric, for every k, 1 ≤ k ≤ m, for every sequences 〈i1 . . . , ik〉 and
〈j1 . . . , jk〉 such that 1 ≤ i1 < . . . < ik ≤ m and 1 ≤ j1 < . . . < jk ≤ m, there is a
permutation π such that π(i1) = j1, . . . , π(ik) = jk, and since

f(xπ(1), . . . , xπ(m)) = f(x1, . . . , xm),

by the uniqueness of the sum given by lemma 4.1.3, we must have

f{i1,...,ik}(
−→vj1, . . . ,−→vjk) = f{j1,...,jk}(

−→vj1 , . . . ,−→vjk),

which shows that,

f{i1,...,ik} = f{j1,...,jk},

and then that each f{i1,...,ik} is symmetric, and thus, letting fk = f{1,...,k}, we have

f(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +

m∑

k=1

∑

S⊆{1,...,m}
S={i1,...,ik}
i1<···<ik

fk(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E .

Thus, a symmetric m-affine map is obtained by making symmetric in −→v1 , . . .−→vm, the
sum fm + fm−1 + · · · + f1 of m symmetric k-linear maps, 1 ≤ k ≤ m. The above lemma
shows that it is equivalent to deal with symmetric m-affine maps, or with symmetrized sums
fm+fm−1+ · · ·+f1 of symmetric k-linear maps, 1 ≤ k ≤ m. In the next section, we will use
multiaffine maps to define generalized polynomial functions from an affine space to another
affine space.
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4.2 Affine Polynomials and Polar Forms

The beauty and usefulness of symmetric affine maps lies is the fact that these maps can be
used to define the notion of a polynomial function from an affine (vector) space E of any
dimension to an affine (vector) space F of any dimension. In the special case where E = An

and F = A, this notion is actually equivalent to the notion of polynomial function induced by
a polynomial in n variables. The added benefit is that we achieve a “multilinearization”, and
also that we can define (parameterized) “polynomial curves” in a very elegant and convenient
manner. Such an approach, sometimes called “blossoming” (a term introduced by Ramshaw,
who was among the first to introduce it in the context of curve and surface representation),
also leads to an elegant and effective presentation of the main algorithms used in CAGD, in
particular splines.

Definition 4.2.1. Let m ≥ 1. Given two affine spaces E and F , an affine polynomial
function of polar degree m, or for short an affine polynomial of polar degree m, is a map
h : E → F such that there is some symmetric m-affine map f : Em → F , called the m-polar
form of h, with

h(a) = f(a, . . . , a︸ ︷︷ ︸
m

),

for all a ∈ E. A homogeneous polynomial function of degree m is a map h :
−→
E → −→

F such

that there is some symmetric m-linear map f :
−→
Em → −→

F , called the polar form of h, with

h(−→v ) = f(−→v , . . . ,−→v︸ ︷︷ ︸
m

),

for all −→v ∈ −→
E . A polynomial function of polar degree m is a map h :

−→
E → −→

F such that

there are m symmetric k-linear map fk :
−→
Ek → −→

F , 1 ≤ k ≤ m, and some f0 ∈
−→
F , with

h(−→v ) = fm(
−→v , . . . ,−→v︸ ︷︷ ︸

m

) + fm−1(
−→v , . . . ,−→v︸ ︷︷ ︸

m−1

) + · · ·+ f1(
−→v ) + f0,

for all −→v ∈ −→
E .

If m = 0, we extend all three definitions above by saying that they define a constant
map.

The definition of a homogeneous polynomial function of degree m given in definition 4.2.1
is the definition given by Cartan [16] (Chaper I, Section 6). The definition of a polynomial
function of polar degree m given in definition 4.2.1 is almost the definition given by Cartan
[16] (Chaper I, Section 6), except that Cartan says that this polynomial function has degree
≤ m, and then observes that it also has degree p for all p > m, since null multilinear maps
fi can be added for i > m. This is why we used the term polar degree in our definition.
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For example, if
−→
E = Rn and

−→
F = R, we have the bilinear map f : (Rn)2 → R (called

inner product), defined such that

f((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

The corresponding polynomial h : Rn → R, such that

h(x1, . . . , xn) = x2
1 + x2

2 + · · ·+ x2
n,

is a polynomial of polar degree 2 and also of total degree 2 in n variables.

However the triaffine map f : R3 → R defined such that

f(x, y, z) = xy + yz + xz,

induces the polynomial h : R → R such that

h(x) = 3x2,

which is of polar degree 3 but a polynomial of degree 2 in x.

From the point of view of terminology, it is cumbersome to constantly have to say “polar
degree” rather than degree, although degree is confusing (and wrong, from the point of view
of algebraic geometry). Nevertheless, we will usually allow ourselves this abuse of language,
having been sufficiently forwarned.

Clearly, if a map h :
−→
E → −→

F is a polynomial function of polar degree m defined by m
symmetric k-linear maps fk, and by f0, then f is also defined by the symmetric m-affine
map

g(−→v1 , . . . ,−→vm) =
m∑

k=1

(
m
k

)−1
( ∑

1≤i1<...<ik≤m

fk(
−→vi1 , . . . ,−→vik)

)
+ f0.

Conversely, in view of lemma 4.1.4, if a map h :
−→
E → −→

F is defined by some symmetric

m-affine map f :
−→
Em → −→

F , with

h(−→v ) = f(−→v , . . . ,−→v ),

for all −→v ∈ −→
E , then h is also defined by the m symmetric k-linear maps gk =

(
m
k

)
fk and

g0 = f(
−→
0 , . . . ,

−→
0 ), where fm, . . . , f1 are the unique (symmetric) multilinear maps associated

with f , and g0 = f(
−→
0 , . . . ,

−→
0 ). Thus, a polynomial function h of polar degree m can be

defined by a symmetric m-affine map f :
−→
Em → −→

F . This is the definition commonly used
by the CAGD community.

Let us see what homogeneous polynomials of degree m are, when
−→
E is a vector space

of finite dimension n, and
−→
F is a vector space (readers who are nervous, may assume for

simplicity that
−→
F = R). Let (−→e1 , . . . ,−→en ) be a basis of

−→
E .
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Lemma 4.2.2. Given any vector space
−→
E of finite dimension n, and any vector space

−→
F ,

for any basis (−→e1 , . . . ,−→en ) of
−→
E , for any symmetric multilinear map f :

−→
Em → −→

F , for any
m vectors

−→vj = v1, j
−→e1 + · · ·+ vn, j

−→en ∈ −→
E ,

we have

f(−→v1 , . . . ,−→vm) =
∑

k1+···+kn=m

( ∑

I1∪···∪In={1,...,m}
Ii∩Ij=∅, i 6=j, |Ij|=kj

(∏

i1∈I1
v1, i1

)
· · ·
(∏

in∈In
vn, in

))
f(−→e1 , . . . ,−→e1︸ ︷︷ ︸

k1

, . . . ,−→en , . . . ,−→en︸ ︷︷ ︸
kn

),

and for any −→v ∈ −→
E , the homogeneous polynomial function h associated with f is given by

h(−→v ) =
∑

k1+···+kn=m
0≤ki, 1≤i≤n

(
m

k1, . . . , kn

)
vk11 · · · vknn f(−→e1 , . . . ,−→e1︸ ︷︷ ︸

k1

, . . . ,−→en , . . . ,−→en︸ ︷︷ ︸
kn

).

Proof. By multilinearity of f , we have

f(−→v1 , . . . ,−→vm) =
∑

(i1,...,im)∈{1,...,n}m
vi1, 1 · · · vim, mf(

−→ei1 , . . . ,−→eim).

Since f is symmetric, we can reorder the basis vectors arguments of f , and this amounts to
choosing (k1, . . . , kn) so that k1 + · · ·+ kn = m and n disjoint sets I1, . . . , In with each Ij of
size kj such that I1∪ . . .∪ In = {1, . . . , m}, where each Ij specifies which arguments of f are

the basis vector −→ej . Thus, we get

f(−→v1 , . . . ,−→vm) =
∑

k1+···+kn=m

( ∑

I1∪···∪In={1,...,m}
Ii∩Ij=∅, i 6=j, |Ij|=kj

(∏

i1∈I1
v1, i1

)
· · ·
(∏

in∈In
vn, in

))
f(−→e1 , . . . ,−→e1︸ ︷︷ ︸

k1

, . . . ,−→en , . . . ,−→en︸ ︷︷ ︸
kn

).

When we calculate h(−→v ) = f(−→v , . . . ,−→v︸ ︷︷ ︸
m

), we get the same product vk11 · · · vknn a multiple

number of times, which is the number of ways of choosing n disjoints sets Ij, each of car-

dinality ki, where k1 + · · · + kn = m, which is precisely

(
m

k1, . . . , kn

)
, which explains the

second formula.

Thus, lemma 4.2.2 shows that we can write h(−→v ) as

h(−→v ) =
∑

k1+···+kn=m
0≤ki, 1≤i≤n

vk11 · · · vknn ck1,...,kn,
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for some “coefficients” ck1,...,kn ∈ −→
F , which are vectors. When

−→
F = R, the homogeneous

polynomial function h of degree m in n arguments v1, . . . , vn, agrees with the notion of
polynomial function defined by a homogeneous polynomial. Indeed, h is the homogeneous
polynomial function induced by the homogeneous polynomial of degree m in the variables
X1, . . . , Xn, ∑

(k1,...,kn), kj≥0
k1+···+kn=m

ck1,...,knX
k1
1 · · ·Xkn

n .

Thus, when
−→
E = Rn and

−→
F = R, the notion of (affine) polynomial of polar degree m in n

arguments, agrees with the notion of polynomial function induced by a polynomial of degree
≤ m in n variables (X1, . . . , Xn).

Using the characterization of symmetric multiaffine maps given by lemma 4.1.4, and
lemma 4.2.2, we obtain the following useful characterization of multiaffine maps f : E → F ,
when E is of finite dimension.

Lemma 4.2.3. Given any affine space E of finite dimension n, and any affine space F , for

any basis (−→e1 , . . . ,−→en ) of
−→
E , for any symmetric multiaffine map f : Em → F , for any m

vectors
−→vj = v1, j

−→e1 + · · ·+ vn, j
−→en ∈ −→

E ,

for any points a1, . . . , am ∈ E, we have

f(a1 +
−→v1 , . . . , am +−→vm)

= b+
∑

1≤p≤m

∑

k1+···+kn=p

( ∑

I1∪...∪In={1,...,p}
Ii∩Ij=∅, i 6=j, |Ij |=kj

(∏

i1∈I1
v1, i1

)
· · ·
(∏

in∈In
vn, in

))
−→w k1,...,kn

,

for some b ∈ F , and some −→w k1,...,kn ∈ −→
F , and for any a ∈ E, and −→v ∈ −→

E , the affine
polynomial function h associated with f is given by

h(a +−→v ) = b+
∑

1≤p≤m

∑

k1+···+kn=p
0≤ki, 1≤i≤n

vk11 · · · vknn −→w k1,...,kn,

for some b ∈ F , and some −→w k1,...,kn ∈ −→
F .

Lemma 4.2.3 shows the crucial role played by homogeneous polynomials. We could have
taken the form of an affine map given by this lemma as a definition, when E is of finite
dimension.
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� When
−→
F is a vector space of dimension greater than one, or an affine space, one should

not confuse such polynomial functions with the polynomials defined as usual, say in
Lang [47], Artin [1], or Mac Lane and Birkhoff [52]. The standard approach is to define
formal polynomials whose coefficients belong to a (commutative) ring. Then, it is shown
how a polynomial defines a polynomial function. In the present approach, we define directly
certain functions that behave like generalized polynomial functions. Another major difference
between the polynomial functions of definition 4.2.1 and formal polynomials, is that formal
polynomials can be added and multiplied. Although we can make sense of addition as affine
combination in the case of polynomial functions with range an affine space, multiplication
does not make any sense.

Nevertheless, this generalization of the notion of a polynomial function is very fruitful,
as the next example will show. Indeed, we can define (parameterized) polynomial curves in
polar form. Recall that the canonical affine space associated with the field R is denoted as
A, unless confusions arise.

Definition 4.2.4. A (parameterized) polynomial curve in polar form of degree m is an affine
polynomial map F : A → E of polar degree m, defined by its m-polar form, which is some
symmetric m-affine map f : Am → E , where A is the real affine line, and E is any affine space
(of dimension at least 2). Given any r, s ∈ A, with r < s, a (parameterized) polynomial
curve segment F ([r, s]) in polar form of degree m is the restriction F : [r, s] → E of an affine
polynomial curve F : A → E in polar form of degree m. We define the trace of F as F (A),
and the the trace of F [r, s] as F ([r, s]).

Typically, the affine space E is the real affine space A3 of dimension 3. Definition 4.2.4 is
not the standard definition of a parameterized polynomial curve, as given in section 3.1 (see
definition 3.1.1). However, definition 4.2.4 turns out to be more general and equivalent to
definition 3.1.1 when E is of finite dimension, and it is also more convenient for the purpose
of designing curves satisfying some simple geometric constraints.

Remark: When defining polynomial curves, it is convenient to denote the polynomial map
defining the curve by an upper-case letter, such as F : A → E , and the polar form of F by
the same, but lower-case letter, f . It would then be confusing to denote the affine space
which is the range of the maps F and f also as F , and thus, we denote it as E (or at
least, we use a letter different from the letter used to denote the polynomial map defining
the curve). Also note that we defined a polynomial curve in polar form of degree at most
m, rather than a polynomial curve in polar form of degree exactly m, because an affine
polynomial map f of polar degree m may end up being degenerate, in the sense that it could
be equivalent to a polynomial map of lower polar degree (the symmetric multilinear maps
fm, fm−1, . . . , fm−k+1 involved in the unique decomposition of f as a sum of multilinear maps
may be identically null, in which case, f is also defined by a polynomial map of polar degree
m−k). For convenience, we will allows ourselves the abuse of language where we abbreviate
“polynomial curve in polar form” to “polynomial curve”.
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Thus, we are led to consider symmetric m-affine maps f : Am → E , where E is any affine
space, for example, E = A3.

4.3 Polynomial Curves and Control Points

In section 3.1, we considered the case of symmetric biaffine functions f : A2 → A3 and
symmetric triaffine functions f : A3 → A3, and we saw a pattern emerge. Let us now
consider the general case of a symmetric m-affine map f : Am → E , where E is any affine
space. Let us pick an affine basis (r, s) in A, with r 6= s, and let us compute

f(t1, . . . , tm) = f((1− λ1)r + λ1s, . . . , (1− λm)r + λms).

Since f is symmetric and m-affine, by a simple induction, we get

f(t1, . . . , tm) = f((1− λ1)r + λ1s, t2, . . . , tm)

= (1− λ1) f(r, t2, . . . , tm) + λ1 f(s, t2, . . . , tm)

=
m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I
(1− λi)

∏

j∈J
λj f(r, . . . , r︸ ︷︷ ︸

m−k

, s, . . . , s︸ ︷︷ ︸
k

),

and since λi =
ti−r
s−r

, for 1 ≤ i ≤ m, we get

f(t1, . . . , tm) =
m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r

s− r

)
f(r, . . . , r︸ ︷︷ ︸

m−k

, s, . . . , s︸ ︷︷ ︸
k

),

The coefficient

pk(t1, . . . , tm) =
∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r

s− r

)

of

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

)

is obviously a symmetric m-affine function, and these functions add up to 1, as it is easily
verified by expanding the product

i=m∏

i=1

(
s− ti
s− r

+
ti − r

s− r

)
= 1.
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Thus, we showed that every symmetricm-affine map f : Am → E is completely
determined by the sequence of m+ 1 points

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

),

where r 6= s are elements of A.

Conversely, given any sequence of m+ 1 points a0, . . . , am ∈ E , the map

(t1, . . . , tm) 7→
m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r

s− r

)
ak

is symmetric m-affine, and we have

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

) = ak.

The points

ak = f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

)

are called control points , or Bézier control points , and as we have already said several times,
they play a major role in the de Casteljau algorithm and its extensions.

The polynomial function associated with f is given by h(t) = f(t, . . . , t), that is,

h(t) =

m∑

k=0

(
m
k

)(
s− t

s− r

)m−k (
t− r

s− r

)k

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

).

The polynomials

Bm
k [r, s](t) =

(
m
k

)(
s− t

s− r

)m−k (
t− r

s− r

)k

are the Bernstein polynomials of degree m over [r, s]. These polynomials form a partition of
unity :

m∑

k=0

Bm
k [r, s](t) = 1.
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This is shown using the binomial expansion formula:
m∑

k=0

Bm
k [r, s](t) =

m∑

k=0

(
m
k

)(
s− t

s− r

)m−k (
t− r

s− r

)k

=

(
s− t

s− r
+

t− r

s− r

)m

= 1.

For r = 0 and s = 1, since ti = λi, some simplifications take place, and the polynomial
function h associated with f is given by

h(t) =
m∑

k=0

(
m
k

)
(1− t)m−ktk f(0, . . . , 0︸ ︷︷ ︸

m−k

, 1, . . . , 1︸ ︷︷ ︸
k

).

The polynomials

Bm
k (t) =

(
m
k

)
(1− t)m−ktk

are the Bernstein polynomials of degree m (over [0, 1]). It is not hard to show that they
form a basis for the vector space of polynomials of degree ≤ m. Clearly, we have

Bm
k [r, s](t) = Bm

k

(
t− r

s− r

)
.

Summarizing the above considerations, we showed the following lemma.

Lemma 4.3.1. Given any sequence of m+1 points a0, . . . , am in some affine space E , there
is a unique polynomial curve F : A → E of degree m, whose polar form f : Am → E satisfies
the conditions

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

) = ak,

(where r, s ∈ A, r 6= s). Furthermore, the polar form f of F is given by the formula

f(t1, . . . , tm) =

m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r

s− r

)
ak,

and F (t) is given by the formula

F (t) =

m∑

k=0

Bm
k [r, s](t) ak,

where the polynomials

Bm
k [r, s](t) =

(
m
k

)(
s− t

s− r

)m−k (
t− r

s− r

)k

are the Bernstein polynomials of degree m over [r, s].

Of course, we will come back to polynomial curves and the de Casteljau algorithm and
its generalizations, but we hope that the above considerations are striking motivations for
using polar forms.
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4.4 Uniqueness of the Polar Form of an Affine Polyno-

mial Map

Remarkably, we can prove in full generality that the polar form f defining an affine polyno-
mial h of polar degree m is unique. We could use Cartan’s proof in the case of polynomial
functions, but we can give a slightly more direct proof which yields an explicit expression
for f in terms of h. All the ingredients to prove this result are in Bourbaki [14] (chapter A.I,
section §8.2, proposition 2), and [15] (chapter A.IV, section §5.4, proposition 3), but they
are deeply buried!

We now prove a general lemma giving the polar form of a polynomial in terms of this
polynomial. Before plunging into the proof of lemma 4.4.1, you may want to verify that for
a polynomial h(X) of degree 2, the polar form is given by the identity

f(x1, x2) =
1

2

[
4h

(
x1 + x2

2

)
− h(x1)− h(x2)

]
.

You may also want to try working out on your own, a formula giving the polar form for a
polynomial h(X) of degree 3. Note that when h(X) is a homogeneous polynomial of degree
2, the above identity reduces to the (perhaps more familiar) identity

f(x1, x2) =
1

2
[h(x1 + x2)− h(x1)− h(x2)] ,

used for passing from a quadratic form to a bilinear form.

Lemma 4.4.1. Given two affine spaces E and E , for any polynomial function h of polar
degree m, the polar form f : Em → E of h is unique, and is given by the following expression:

f(a1, . . . , am) =
1

m!




∑

H⊆{1,...,m}
k=|H|, k≥1

(−1)m−k km h

(∑
i∈H ai

k

)

 .

Proof. It is quite technical, and can be found in Chapter B, Section B.1.

It should be noted that lemma 4.4.1 is very general, since it applies to arbitrary affine
spaces, even of infinite dimension (for example, Hilbert spaces). The expression of lemma
4.4.1 is far from being economical, since it contains 2m − 1 terms. In particular cases, it is
often possible to reduce the number of terms.

4.5 Polarizing Polynomials in One or Several Variables

We now use lemma 4.4.1 to show that polynomials in one or several variables are uniquely
defined by polar forms which are multiaffine maps. We first show the following simple lemma.
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Lemma 4.5.1. (1) For every polynomial p(X) ∈ R[X ], of degree ≤ m, there is a symmetric
m-affine form f : Rm → R, such that p(x) = f(x, x, . . . , x) for all x ∈ R. If p(X) ∈ R[X ]
is a homogeneous polynomial of degree exactly m, then the symmetric m-affine form f is
multilinear.

(2) For every polynomial p(X1, . . . , Xn) ∈ R[X1, . . . , Xn], of total degree ≤ m, there is
a symmetric m-affine form f : (Rn)m → R, such that p(x1, . . . , xn) = f(x, x, . . . , x), for all
x = (x1, . . . , xn) ∈ Rn. If p(X1, . . . , Xn) ∈ R[X1, . . . , Xn] is a homogeneous polynomial of
total degree exactly m, then f is a symmetric multilinear map f : (Rn)m → R.

Proof. (1) It is enough to prove it for a monomial of the form Xk, k ≤ m. Clearly,

f(x1, . . . , xm) =
k!(m− k)!

m!
σk

is a symmetricm-affine form satisfying the lemma (where σk is the k-th elementary symmetric

function, which consists of

(
m
k

)
= m!

k!(m−k)!
terms), and when k = m, we get a multilinear

map.

(2) It is enough to prove it for a homogeneous monomial of the form Xk1
1 · · ·Xkn

n , where
ki ≥ 0, and k1 + · · ·+ kn = d ≤ m. Let f be defined such that

f((x1, 1, . . . , xn, 1), . . . , (x1, m, . . . , xn,m)) =

k1! · · · kn!(m− d)!

m!

∑

I1∪...∪In⊆{1,...,m}
Ii∩Ij=∅, i 6=j, |Ij |=kj

(∏

i1∈I1
x1, i1

)
· · ·
(∏

in∈In
xn, in

)
.

The idea is to split any subset of {1, . . . , m} consisting of d ≤ m elements into n disjoint
subsets I1, . . . , In, where Ij is of size kj (and with k1 + · · ·+ kn = d). There are

m!

k1! · · · kn!(m− d)!
=

(
m

k1, . . . , kn, m− d

)

such families of n disjoint sets, where k1 + · · · + kn = d ≤ m. Indeed, this is the number
of ways of choosing n+ 1 disjoint subsets of {1, . . . , m} consisting respectively of k1, . . . , kn,

and m−d elements, where k1+ · · ·+kn = d. One can also argue as follows: There are

(
m
k1

)

choices for the first subset I1 of size k1, and then

(
m− k1

k2

)
choices for the second subset I2

of size k2, etc, and finally,

(
m− (k1 + · · ·+ kn−1)

kn

)
choices for the last subset In of size kn.

After some simple arithmetic, the number of such choices is indeed

m!

k1! · · · kn!(m− d)!
=

(
m

k1, . . . , kn, m− d

)
.
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It is clear that f is symmetric m-affine in x1, . . . , xm, where xj = (x1, j , . . . , xn, j), and that

f(x, . . . , x︸ ︷︷ ︸
m

) = xk1
1 · · ·xkn

n ,

for all x = (x1, . . . , xn) ∈ Rn. Also, when d = m, it is easy to see that f is multilinear.

As an example, if
p(X) = X3 + 3X2 + 5X − 1,

we get

f(x1, x2, x3) = x1x2x3 + x1x2 + x1x3 + x2x3 +
5

3
(x1 + x2 + x3)− 1.

When n = 2, which corresponds to the case of surfaces, we can give an expression which
is easier to understand. Writing U = X1 and V = X2, to minimize the number of subscripts,
given the monomial UhV k, with h+ k = d ≤ m, we get

f((u1, v1), . . . , (um, vm)) =
h!k!(m− (h+ k))!

m!

∑

I∪J⊆{1,...,m}
I∩J=∅

|I|=h, |J |=k

(∏

i∈I
ui

)(∏

j∈J
vj

)
.

For a concrete example involving two variables, if

p(U, V ) = UV + U2 + V 2,

we get

f((u1, v1), (u2, v2)) =
u1v2 + u2v1

2
+ u1u2 + v1v2.

We can now prove the following theorem showing a certain equivalence between polyno-
mials and multiaffine maps.

Theorem 4.5.2. There is an equivalence between polynomials in R[X1, . . . , Xn], of total
degree ≤ m, and symmetric m-affine maps f : (Rn)m → R, in the following sense:

(1) If f : (Rn)m → R is a symmetric m-affine map, then the function p : Rn → R defined
such that

p(x1, . . . , xn) = f(x, x, . . . , x)

for all x = (x1, . . . , xn) ∈ Rn, is a polynomial (function) corresponding to a unique polyno-
mial p(X1, . . . , Xn) ∈ R[X1, . . . , Xn] of total degree ≤ m.

(2) For every polynomial p(X1, . . . , Xn) ∈ R[X1, . . . , Xn], of total degree ≤ m, there is a
unique symmetric m-affine map f : (Rn)m → R, such that

p(x1, . . . , xn) = f(x, x, . . . , x)

for all x = (x1, . . . , xn) ∈ Rn.

Furthermore, when p(X1, . . . , Xn) ∈ R[X1, . . . , Xn] is a homogeneous polynomial of total
degree exactly m, f is a symmetric multilinear map f : (Rn)m → R, and conversely.
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Proof. Part (1) is trivial. To prove part (2), observe that the existence of some symmetric
m-affine map f : (Rn)m → R with the desired property is given by lemma 4.5.1, and the
uniqueness of such an f is given by lemma 4.4.1.

We can now relate the definition of a (parameterized) polynomial curve in polar form of
degree (at most) m given in definition 4.2.4 to the more standard definition (definition 3.1.1)
given in section 3.1.

First, we show that a standard polynomial curve of degree at most m in the sense of
definition 3.1.1, is an affine polynomial curve of polar degree m, in the sense of definition
4.2.4. Indeed, using lemma 4.5.1, every polynomial Fi(t) corresponds to a unique m-polar
form fi : R

m → R, 1 ≤ i ≤ n, and the map f : Am → E , defined such that

f(t1, . . . , tm) = a0 + f1(t1, . . . , tm)
−→e1 + · · ·+ fn(t1, . . . , tm)

−→en ,

is clearly a symmetric affine map such that F (t) = f(t, . . . , t).

Conversely, when E is of finite dimension n, we show that an affine polynomial curve of
polar degree m, in the sense of definition 4.2.4, is a standard polynomial curve of degree at
most m, in the sense of definition 3.1.1. Assume that the affine polynomial curve F of polar
degree m is defined by a polar form f : Am → E . Let r, s ∈ A, with r < s. Let us introduce
the following abbreviations. We will denote

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

),

as f(rm−k sk), with

f(rm) = f(r, . . . , r︸ ︷︷ ︸
m

), and f(sm) = f(s, . . . , s︸ ︷︷ ︸
m

).

Remark: The abbreviation f(rm−k sk) can be justified rigorously in terms of symmetric
tensor products (see section 11.1).

By lemma 4.3.1, the curve F is completely determined by them+1 points bk = f(rm−k sk),
0 ≤ k ≤ m, and in fact, we showed that

f(t1, . . . , tm) =
m∑

k=0

pk(t1, . . . , tm) f(r
m−k sk),

where the coefficient

pk(t1, . . . , tm) =
∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r

s− r

)
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of f(rm−k sk), is a symmetric m-affine function. Thus, if we let (bk,1, . . . , bk,n) denote the

coordinates of the point bk = f(rm−k sk) over the affine basis (a0, (
−→e1 , . . . ,−→en )), we have

F (t) = f(t, . . . , t) = b0 +

n∑

i=1

(
m∑

k=0

pk(t, . . . , t)bk,i

)
−→ei ,

and since the pk(t, . . . , t) are polynomials of degree ≤ m, this shows that F is a standard
polynomial curve of degree at most m.

We will see later on, how polar forms of polynomials simplify quite considerably the
treatment of Bézier curves and splines, among other things.

We conclude this chapter by proving that the Bernstein polynomials Bm
0 (t), . . . , Bm

m(t)
also form a basis of the polynomials of degree≤ m . For this, we express each ti, 0 ≤ i ≤ m, in
terms of the Bernstein polynomials Bm

j (t) (over [0, 1]). Recall that the Bernstein polynomials
Bm

j (t) form a partition of unity:
m∑

j=0

Bm
j (t) = 1.

Using this identity for m− i (instead of m), where 0 ≤ i ≤ m, we have

m−i∑

j=0

Bm−i
j (t) = 1.

Multiplying both side by ti, we get

ti =
m−i∑

j=0

tiBm−i
j (t).

However, we know that Bm−i
j (t) =

(
m− i
j

)
(1− t)m−i−jtj, and thus,

tiBm−i
j (t) = ti

(
m− i
j

)
(1− t)m−i−jtj =

(
m− i
j

)
(1− t)m−(i+j)ti+j .

Since Bm
i+j(t) =

(
m

i+ j

)
(1− t)m−(i+j)ti+j, we just have to prove that

(
m
i

)(
m− i
j

)
=

(
m

i+ j

)(
i+ j
i

)
,

to conclude that

tiBm−i
j (t) =

(
m− i
j

)
(1− t)m−(i+j)ti+j =

(
i+ j
i

)

(
m
i

) Bm
i+j(t).
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The verification consists in showing that

m!

(m− i)!i!

(m− i)!

(m− (i+ j))!j!
=

m!

(m− (i+ j))!(i+ j)!

(i+ j)!

j!i!
,

which is indeed true! Thus, substituting

tiBm−i
j (t) =

(
i+ j
i

)

(
m
i

) Bm
i+j(t)

in

ti =

m−i∑

j=0

tiBm−i
j (t),

we get

ti =

m−i∑

j=0

(
i+ j
i

)

(
m
i

) Bm
i+j(t).

Since 1, t, t2, . . . , tm form a basis of the polynomials of degree ≤ m, the m + 1 Bernstein
polynomials Bm

0 (t), . . . , Bm
m(t) also form a basis of the polynomials of degree ≤ m (since

they generate this space, and there are m+ 1 of them).

4.6 Problems

Problem 1 (20 pts). Prove that for any a, b ∈ R, the following identity holds for all n ≥ 0:

(a+ b)n =

n∑

k=0

(
n
k

)
akbn−k.

More generally, for any a1, . . . , am ∈ R, m ≥ 2, and n ≥ 0, prove the identity

(a1 + · · ·+ am)
n =

∑

k1+···+km=n
0≤ki≤n

n!

k1! · · ·km!
ak11 · · · akmm .

Problem 2 (20 pts). Prove the following statement assumed in the proof of lemma 4.1.3:

∆vm · · ·∆v1f(a) =

m∑

k=0

(−1)m−k
∑

1≤i1<...<ik≤m

f(a1, . . . , ai1 +
−→vi1 , . . . , aik +−→vik , . . . , am).
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Problem 3 (10 pts). Show that the Bernstein polynomial

Bm
k (t) =

(
m
k

)
(1− t)m−ktk

reaches a maximum for t = k
m
.

Problem 4 (20 pts). Let F : A → E be a polynomial cubic curve. Prove that the polar
form f : A3 → E of F can be expressed as

f(u, v, w) =
1

24

[
27F

(
u+ v + w

3

)
− F (u+ v − w)− F (u+ w − v)− F (v + w − u)

]

Problem 5 (20 pts). Let F : A → E be a polynomial cubic curve. Prove that the polar
form f : A3 → E of F can be expressed as

f(u, v, w) =
(w − v)2F (u)

3(w − u)(u− v)
+

(w − u)2F (v)

3(w − v)(v − u)
+

(v − u)2F (w)

3(v − w)(w − u)
.

Advice: There is no need to do horrendous calculations. Think hard!

Problem 6 (50 pts).

(i) Write a computer program taking a polynomial F (X) of degree n (in one variable X),
and returning its m-polar form f , where n ≤ m. You may use Mathematica of any other
language with symbolic facilities.

Estimate the complexity of your algorithm.

(ii) Let

fm
k =

1(
m
k

)
∑

I⊆{1,...,m}
|I|=k

(∏

i∈I
ti

)
.

and σm
k =

(
m
k

)
fm
k . Prove the following recurrence equations:

σm
k =

{
σm−1
k + tmσ

m−1
k−1 if 1 ≤ k ≤ m;

1 if k = 0 and m ≥ 0;
0 otherwise.

Alternatively, show that fm
k can be computed directly using the recurrence formula

fm
k =

(m− k)

m
fm−1
k +

k

m
tm fm−1

k−1 ,

where 1 ≤ k ≤ m.
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Can you improve the complexity of the algorithm of question (i) if you just want to
compute the polar values f(0m−i, 1i), where 0 ≤ i ≤ m.

Problem 7 (20 pts). Plot the Bernstein polynomials B4
i (t), 0 ≤ i ≤ 4, over [0, 1].

Problem 8 (20 pts). Give the matrix expressing the polynomials 1, t, t2, t3 in terms of the
Bernstein polynomials B3

0(t), B
3
1(t), B

3
2(t), B

3
3(t). Show that in general,

Bm
i (t) =

m∑

j=i

(−1)j−i

(
m
j

)(
j
i

)
tj .
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Chapter 5

Polynomial Curves as Bézier Curves

5.1 The de Casteljau Algorithm

In this chapter, the de Casteljau algorithm presented earlier for curves of degree 3 in section
3.8 is generalized to polynomial curves of arbitrary degree m. The powerful method of
subdivision is also discussed extensively. Some programs written in Mathematica illustrate
concretely the de Casteljau algorithm and its version using subdivision. In preparation
for the discussion of spline curves, the de Boor algorithm is also introduced. Finally, the
formulae giving the derivatives of polynomial curves are given, and the conditions for joining
polynomial curve segments with Ck-continuity are shown.

We saw in section 4.3, lemma 4.3.1, that an affine polynomial curve F : A → E of degree
m defined by its m-polar form f : Am → E , is completely determined by the sequence of
m+ 1 points bk = f(rm−k sk), where r, s ∈ A, r 6= s, 0 ≤ k ≤ m, and we showed that

f(t1, . . . , tm) =

m∑

k=0

pk(t1, . . . , tm) f(r
m−k sk),

where the coefficient

pk(t1, . . . , tm) =
∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r

s− r

)

of f(rm−k sk), is a symmetric m-affine function.

Typically, we are interested in a polynomial curve segment F ([r, s]). The de Casteljau
algorithm gives a geometric iterative method for determining any point F (t) = f(t, . . . , t) on
the curve segment F ([r, s]), specified by the sequence of its m+ 1 control points, or Bézier
control points , b0, b1, . . . , bm, where bk = f(rm−k sk). Actually, the de Casteljau algorithm
can be used to calculate any point F (t) = f(t, . . . , t) on the curve F specified by the sequence
of control points b0, b1, . . . , bm, for t ∈ A not necessarily in [r, s]. The only difference is that

143
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in the more general case, certain properties holding for the curve segment F ([r, s]) may not
hold for larger curve segments of F , such as the fact that the curve segment F ([r, s]) is
contained in the convex hull of the control polygon (or control polyline) determined by the
control points b0, b1, . . . , bm.

What’s good about the algorithm is that it does not assume any prior knowledge of
the curve. All that is given is the sequence b0, b1, . . . , bm of m + 1 control points, and the
idea is to approximate the shape of the polygonal line consisting of the m line segments
(b0, b1), (b1, b2), . . ., (bm−1, bm).

1 The curve goes through the two end points b0 and bm,
but not through the other control points. The essence of the de Casteljau algorithm is to
compute f(t, . . . , t) by repeated linear interpolations, using the fact that f is symmetric and
m-affine. The computation consists of m phases, where in phase j, m+ 1− j interpolations
are performed. In phase m (the last phase), only one interpolation is performed, and the
result is the point F (t) on the curve, corresponding to the parameter value t ∈ A.

Since f is symmetric, we can think of its m arguments as a multiset rather than a
sequence, and thus, we can write the arguments in any order we please.

We already discussed the de Casteljau algorithm in some detail in section 3.8. We strongly
advise our readers to look at de Casteljau’s original presentation in de Casteljau [23]. Let us
review this case (polynomial cubic curves). As we observed, the computation of the point
F (t) on a polynomial cubic curve F can be arranged in a triangular array, as shown below:

1 2 3
f(r, r, r)

f(r, r, t)
f(r, r, s) f(t, t, r)

f(r, t, s) f(t, t, t)
f(r, s, s) f(t, t, s)

f(t, s, s)
f(s, s, s)

The above computation is usually performed for t ∈ [r, s], but it works just as well for
any t ∈ A, even outside [r, s]. When t is outside [r, s], we usually say that F (t) = f(t, t, t) is
computed by extrapolation.

The following diagram shows an example of the de Casteljau algorithm for computing
the point F (t) on a cubic, where r, s, and t, are arbitrary:

The de Casteljau algorithm can also be used to compute any polar value f(t1, t2, t3)
(which is not generally on the curve). All we have to do is to use tj during phase j, as shown

1Actually, some of the points bk and bk+1 may coincide, but the algorithm still works fine.
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bc

bc

bc

bc

bc

bc

bc

bc bcbc

F (r) = f(r, r, r)

f(r, r, s)

f(r, s, s)

F (s) = f(s, s, s)

f(r, r, t)

f(r, t, s)

f(t, s, s)

f(r, t, t) f(s, t, t)F (t) = f(t, t, t)

Figure 5.1: The de Casteljau algorithm

below in the case where m = 3:

1 2 3
f(r, r, r)

f(r, r, t1)
f(r, r, s) f(t1, t2, r)

f(r, t1, s) f(t1, t2, t3)
f(r, s, s) f(t1, t2, s)

f(t1, s, s)
f(s, s, s)

Since control points are polar values, the de Casteljau algorithm can also be used for
computing other control points. This turns out to be very useful.

The following diagram shows an example of the de Casteljau algorithm for computing
the polar value f(t1, t2, t3) on a cubic, where r = 0, s = 6, t1 = 2, t2 = 3, and t3 = 4. There
are several possible computations. The diagram below shows the computation of the polar
values f(0, 0, t1), f(0, t1, 6), f(t1, 6, 6), f(0, t1, t2), and f(6, t1, t2):

The polar value f(t1, t2, t3) is also obtained by computing the polar values f(0, 0, t3),
f(0, t3, 6), f(t3, 6, 6), f(0, t2, t3), and f(6, t2, t3):

The general case for computing the point F (t) on the curve F determined by the sequence
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bc

bc

bc

bc

bc

bc

bcbc

bc
bc

F (0) = f(0, 0, 0)

f(0, 0, 6)

f(0, 6, 6)

F (6) = f(6, 6, 6)

f(0, 0, t1)

f(0, t1, 6)

f(t1, 6, 6)f(0, t1, t2)

f(6, t1, t2)f(t1, t2, t3)

Figure 5.2: The de Casteljau algorithm, for t1 = 2, t2 = 3, t3 = 4

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

F (0) = f(0, 0, 0)

f(0, 0, 6)

f(0, 6, 6)

F (6) = f(6, 6, 6)

f(0, 0, t3)

f(0, t3, 6)

f(t3, 6, 6)

f(0, t2, t3)

f(6, t2, t3)

f(t1, t2, t3)

Figure 5.3: The de Casteljau algorithm, for t1 = 2, t2 = 3, t3 = 4
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of control points b0, . . . , bm, where bk = f(rm−k sk), is shown below. We will abbreviate

f(t, . . . , t︸ ︷︷ ︸
i

, r, . . . , r︸ ︷︷ ︸
j

, s, . . . , s︸ ︷︷ ︸
k

),

as f(tirjsk), where i+ j + k = m. The point f(tjrm−i−jsi) is obtained at step i of phase j,
for 1 ≤ j ≤ m, 0 ≤ i ≤ m− j, by the interpolation step

f(tjrm−i−jsi) =

(
s− t

s− r

)
f(tj−1rm−i−j+1si) +

(
t− r

s− r

)
f(tj−1rm−i−jsi+1).

0 1 2 . . . j − 1 j . . . m− 1 m
f(rm)

f(trm−1)
f(rm−1s)

. . .
f(tj−1rm−j+1)

f(tjrm−j)
f(tj−1rm−js)

. . . . . . . . .
f(tj−1rm−i−j+1si)

f(tjrm−i−jsi)
f(tj−1rm−i−jsi+1)

f(tm−1r)
. . . . . . f(tm)

f(tm−1s)
f(tj−1rsm−j)

f(tjsm−j)
f(tj−1sm−j+1)

. . .
f(rsm−1)

f(tsm−1)
f(sm)

In order to make the above triangular array a bit more readable, let us define the following
points bi,j , used during the computation:

bi,j =

{
bi if j = 0, 0 ≤ i ≤ m,
f(tjrm−i−jsi) if 1 ≤ j ≤ m, 0 ≤ i ≤ m− j.

Then, we have the following equations:

bi,j =

(
s− t

s− r

)
bi,j−1 +

(
t− r

s− r

)
bi+1,j−1.
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Such a computation can be conveniently represented in the following triangular form:

0 1 . . . j − 1 j . . . m− k . . . m
b0,0

b0,1

b1,0
. . .

b0,j−1
... b0,j

bi,j−1
...

. . .

bi,j b0,m−k

bi+1,j−1
...

... bm−k−j,j
... b0,m

bm−k−j+1,j−1
... bk,m−k

bm−k−1,1
...

bm−k,0 bm−j,j
... bm−j+1,j−1

...
bm−1,0

bm−1,1

bm,0

When r ≤ t ≤ s, each interpolation step computes a convex combination, and bi,j lies
between bi,j−1 and bi+1,j−1. In this case, geometrically, the algorithm consists of a diagram
consisting of the m polylines

(b0,0, b1,0), (b1,0, b2,0), (b2,0, b3,0), (b3,0, b4,0), . . . , (bm−1,0, bm,0)

(b0,1, b1,1), (b1,1, b2,1), (b2,1, b3,1), . . . , (bm−2,1, bm−1,1)

(b0,2, b1,2), (b1,2, b2,2), . . . , (bm−3,2, bm−2,2)

. . .

(b0,m−2, b1,m−2), (b1,m−2, b2,m−2)

(b0,m−1, b1,m−1)

called shells , and with the point b0,m, they form the de Casteljau diagram. Note that the
shells are nested nicely. The polyline

(b0, b1), (b1, b2), (b2, b3), (b3, b4), . . . , (bm−1, bm)

is also called a control polygon of the curve. When t is outside [r, s], we still obtain m shells
and a de Casteljau diagram, but the shells are not nicely nested.
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By lemma 4.3.1, we have an explicit formula giving any point F (t) associated with a
parameter t ∈ A, on the unique polynomial curve F : A → E of degree m determined by the
sequence of control points b0, . . . , bm. The point F (t) is given by the formula

F (t) =
m∑

k=0

Bm
k [r, s](t) bk,

where the polynomials

Bm
k [r, s](t) =

(
m
k

)(
s− t

s− r

)m−k (
t− r

s− r

)k

are the Bernstein polynomials of degree m over [r, s]. Thus, the de Casteljau algorithm
provides an iterative method for computing F (t), without actually using the Bernstein poly-
nomials. This can be advantageous for numerical stability. We will sometimes denote the
Bézier curve determined by the sequence of control points b0, . . . , bm, and defined with respect
to the interval [r, s], in the sense that

f(r, . . . , r︸ ︷︷ ︸
m−i

, s, . . . , s︸ ︷︷ ︸
i

) = bi,

where f is the polar form of the Bézier curve, as B
[
b0, . . . , bm; [r, s]

]
, or B[r, s], and the point

corresponding to the parameter value t as B
[
b0, . . . , bm; [r, s]

]
(t). Note that the parameter

t can take any value in A, and not necessarily only in [r, s], but when we refer to the Bézier
curve segment over [r, s], we are assuming that t ∈ [r, s].

The de Casteljau algorithm is very easy to implement, and we give below several versions
in Mathematica. These functions all use a simple function lerp performing affine interpo-
lation between two points p1 and p2, with respect to the affine frame [r, s], for a value t
of the parameter. The function badecas simply computes the point F (t) on a polynomial
curve F specified by a control polygon cpoly (over [r, s]). The result is the point F (t).
The function decas computes the point F (t) on a polynomial curve F specified by a control
polygon cpoly (over [r, s]), but also the shells of the de Casteljau diagram. The output is a
list consisting of two sublists, the first one being the shells of the de Casteljau diagram, and
the second one being F (t) itself.

(* Performs general affine interpolation between two points p, q *)

(* w.r.t. affine basis [r, s], and interpolating value t *)

lerp[p_List,q_List,r_,s_,t_] :=

(s - t)/(s - r) p + (t - r)/(s - r) q;
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(* computes a point F(t) on a curve using the de Casteljau algorithm *)

(* this is the simplest version of de Casteljau *)

(* the auxiliary points involved in the algorithm are not computed *)

badecas[{cpoly__}, r_, s_, t_] :=

Block[

{bb = {cpoly}, b = {}, m, i, j},

(m = Length[bb] - 1;

Do[

Do[

b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, t]], {i, 1, m - j + 1}

]; bb = b; b = {}, {j, 1, m}

];

bb[[1]]

)

];

(* computes the point F(t) and the line segments involved in

computing F(t) using the de Casteljau algorithm *)

decas[{cpoly__}, r_, s_, t_] :=

Block[

{bb = {cpoly}, b = {},

m, i, j, lseg = {}, res},

(m = Length[bb] - 1;

Do[

Do[

b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, t]];

If[i > 1, lseg = Append[lseg, {b[[i - 1]], b[[i]]}]]

, {i, 1, m - j + 1}

]; bb = b; b = {}, {j, 1, m}

];

res := Append[lseg, bb[[1]]];

res

)

];

The following function pdecas creates a list consisting of Mathematica line segments and
of the point of the curve, ready for display.
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(* this function calls decas, and computes the line segments

in Mathematica, with colors *)

pdecas[{cpoly__}, r_, s_, t_] :=

Block[

{bb = {cpoly}, pt, ll, res, i, l1, edge},

res = decas[bb, r, s, t];

pt = Last[res]; res = Drop[res, -1];

l1 = Length[res];

ll = {};

Do[

edge = res[[i]];

ll = Append[ll, Line[edge]], {i, 1, l1}

];

res = Append[ll, {RGBColor[1,0,0], PointSize[0.01], Point[pt]}];

res

];

The general computation of the polar value f(t1, . . . , tm) is shown below.

0 1 j − 1 j m
f(rm)

f(t1r
m−1)

f(rm−1s)
. . .

f(t1 . . . tj−1r
m−j+1)

f(t1 . . . tjr
m−j)

f(t1 . . . tj−1r
m−js)

. . . . . . . . .
f(t1 . . . tj−1r

m−i−j+1si)
f(t1 . . . tjr

m−i−jsi)
f(t1 . . . tj−1r

m−i−jsi+1)

. . . . . . f(t1 . . . tm)

f(t1 . . . tj−1rs
m−j)

f(t1 . . . tjs
m−j)

f(t1 . . . tj−1s
m−j+1)

. . .
f(rsm−1)

f(t1s
m−1)

f(sm)
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We abbreviate
f(t1, . . . , tj︸ ︷︷ ︸

j

, r, . . . , r︸ ︷︷ ︸
m−i−j

, s, . . . , s︸ ︷︷ ︸
i

),

as f(t1 . . . tjr
m−i−jsi), where 1 ≤ j ≤ m, and 0 ≤ i ≤ m − j, and in the case where j = 0,

we abbreviate
f(r, . . . , r︸ ︷︷ ︸

m−i

, s, . . . , s︸ ︷︷ ︸
i

),

as f(rm−isi), where 0 ≤ i ≤ m. The point f(t1 . . . tjr
m−i−jsi) is obtained at step i of phase

j, for 1 ≤ j ≤ m, 0 ≤ i ≤ m− j, by the interpolation step

f(t1 . . . tjr
m−i−jsi) =

(
s− tj
s− r

)
f(t1 . . . tj−1r

m−i−j+1si) +

(
tj − r

s− r

)
f(t1 . . . tj−1r

m−i−jsi+1).

Again, defining the points bi,j used during the computation as

bi,j =

{
bi if j = 0, 0 ≤ i ≤ m,
f(t1 . . . tjr

m−i−jsi) if 1 ≤ j ≤ m, 0 ≤ i ≤ m− j,

we have the following more readable equations:

bi,j =

(
s− tj
s− r

)
bi,j−1 +

(
tj − r

s− r

)
bi+1,j−1.

The computation of polar values is implemented in Mathematica as follows.

(* computes a polar value using the de Casteljau algorithm *)

(* and the line segments involved in computing f(t1, ..., tm) *)

(* the input is a list tt of m numbers *)

gdecas[{cpoly__}, {tt__}, r_, s_] :=

Block[

{bb = {cpoly}, b = {}, t = {tt},

m, i, j, lseg = {}, res},

(m = Length[bb] - 1;

Do[

Do[

b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, t[[j]]]];

If[i > 1, lseg = Append[lseg, {b[[i - 1]], b[[i]]}]]
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, {i, 1, m - j + 1}

]; bb = b; b = {}, {j, 1, m}

];

res := Append[lseg, bb[[1]]];

res

)

];

Remark: The version of the de Casteljau algorithm for computing polar values provides
a geometric argument for proving that the function f(t1, . . . , tm) that it computes, is a
symmetric multiaffine map. Since the algorithm proceeds by affine interpolation steps, it
is clear that it yields a multiaffine map. What is not entirely obvious, is symmetry. Since
every permutation is a product of transpositions, we only need to show that f(t1, . . . , tm)
remains invariant if we exchange any two arguments. We can establish this fact, as follows.
Let A,B,C be three points, and let

Pλ = (1− λ)A + λB, Pµ = (1− µ)A+ µB,

and also
Qλ = (1− λ)B + λC, Qµ = (1− µ)B + µC.

Then, we claim that
(1− µ)Pλ + µQλ = (1− λ)Pµ + λQµ,

which is obvious, since both of these points coincide with the point

R = (1− λ)(1− µ)A+ (λ+ µ− 2λµ)B + λµC.

Thus, interpolating first with respect to λ, and then with respect to µ, yields the same result
a interpolating first with respect to µ, and then with respect to λ.

The above result is closely related to a standard result known as Menelaüs’s theorem.

We now consider a number of remarkable properties of Bézier curves.

Affine Invariance. This means that if an affine map h is applied to a Bézier curve F
specified by the sequence of control points b0, . . . , bm, obtaining a curve h(F ), then the
Bézier curve F ′ determined by the sequence of control points h(b0), . . . , h(bm), images
of the original control points b0, . . . , bm, is identical to the curve h(F ). This can be
expressed as

h(B
[
b0, . . . , bm; [r, s]

]
) = B [h(b0), . . . , h(bm), [r, s]] .

This is because, points on a Bézier curve specified by a sequence of control points
b0, . . . , bm are obtained by computing affine combinations, and that affine maps preserve
affine combinations.
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b

b

b

b

b b

b

b

A

B
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Pλ

Pµ Qλ

Qµ

R

Figure 5.4: Symmetry of biaffine interpolation

This property can be used to save a lot of computation time. If we want to move
a curve using an affine map, rather than applying the affine map to all the points
computed on the original curve, we simply apply the affine map to the control points,
and then contruct the new Bézier curve. This is usually a lot cheaper than moving
every point around.

Invariance under affine parameter change. The Bézier curve F (t) specified by the se-
quence of control points b0, . . . , bm, over the interval [r, s], is the same as the Bézier
curve F

(
t−r
r−s

)
, over [0, 1], with the same sequence of control points b0, . . . , bm. This

can be expressed as

B
[
b0, . . . , bm; [r, s]

]
(t) = B

[
b0, . . . , bm; [0, 1]

]( t− r

r − s

)
.

This fact is basically obvious, and left to the reader, who can also verify the following
two properties:

B
[
b0, . . . , bm; [r, r + h]

]
(t) = B

[
b0, . . . , bm; [0, h]

]
(t− r),

and
B
[
b0, . . . , bm; [r, s]

]
(t) = B

[
bm, . . . , b0; [s, r]

]
(t).

Convex Hull Property. The segment of Bézier curve F (t) specified by the sequence of
control points b0, . . . , bm and defined over the interval [r, s] (r < s), is contained within
the convex hull of the control points b0, . . . , bm. This is because, when r ≤ t ≤ s,
all affine combinations involved in computing a point F (t) on the curve segment are
convex barycentric combinations.
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This property can be used to determine whether two Bézier curve segments intersect
each other.

Endpoint Interpolation. The Bézier curve F (t) specified by the sequence of control points
b0, . . . , bm, over the interval [r, s], passes trough the points b0 and bm.

Symmetry. The Bézier curve F (r + s − t) specified by the sequence of control points
b0, . . . , bm, over the interval [r, s], is equal to the Bézier curve F ′(t) specified by the
sequence of control points bm, . . . , b0, over the interval [r, s]. This can be expressed as

B
[
b0, . . . , bm; [r, s]

]
(r + s− t) = B

[
bm, . . . , b0; [r, s]

]
(t).

This can be seen easily using the symmetry of the Bernstein polynomials. Another
way to see it, is to observe that the curve F (r + s− t), whose polar form is

g(t1, . . . , tm) = f(r + s− t1, . . . , r + s− tm),

where f is the polar form of the original curve F (t) specified by the sequence of control
points b0, . . . , bm, satisfies the conditions

g(r, . . . , r︸ ︷︷ ︸
m−i

, s, . . . , s︸ ︷︷ ︸
i

) = f(s, . . . , s︸ ︷︷ ︸
m−i

, r, . . . , r︸ ︷︷ ︸
i

) = bm−i,

and since this curve is unique, it is indeed F ′(t).

Linear Precision. If the points b0, . . . , bm are collinear (belong to the same line), then the
Bézier curve determined by the sequence of control points b0, . . . , bm is that same line.
This is obvious since the points on the curve are obtained by affine combinations.

Pseudo-local control. Given a Bézier curve F specified by a sequence of control points
b0, . . . , bm, if some control point bi is moved a little bit, the curve is most affected
around the points whose parameter value is close to i

n
. This is because it can be shown

that the Bernstein polynomial Bn
i reaches its maximum at t = i

n
.

Determination of tangents. It will be shown in section 5.4, that when b0 and b1 are
distinct, the tangent to the Bézier curve at the point b0 is the line determined by b0
and b1. Similarly, the tangent at the point bm is the line determined by bm−1 and
bm (provided that these points are distinct). Furthermore, the tangent at the current
point F (t) determined by the parameter t, is determined by the two points

b0, m−1 = f(t, . . . , t︸ ︷︷ ︸
m−1

, r) and b1, m−1 = f(t, . . . , t︸ ︷︷ ︸
m−1

, s),

given by the de Casteljau algorithm.
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Variation Diminishing Property. Given a Bézier curve F specified by a sequence of
control points b0, . . . , bm, over [r, s], for every hyperplane H , the number of intersections
between the Bézier curve segment F [r, s] and the hyperplane H , is less than or equal
to the number of intersections between the control polygon determined by b0, . . . , bm,
and the hyperplane H . As a consequence, a convex control polygon corresponds to a
convex curve. We will prove the variation diminishing property as a consequence of
another property, the subdivision property.

5.2 Subdivision Algorithms for Polynomial Curves

We now consider the subdivision method. As we will see, subdivision can be used to ap-
proximate a curve using a polygon, and the convergence is very fast. Given a sequence of
control points b0, . . . , bm, and an interval [r, s], for every t ∈ A, we saw how the de Casteljau

algorithm gives a way of computing the point B
[
b0, . . . , bm; [r, s]

]
(t) = b0,m on the Bézier

curve, and the computation can be conveniently represented in the following triangular form:

0 1 . . . j − 1 j . . . m− k . . . m
b0,0

b0,1

b1,0
. . .

b0,j−1
... b0,j

bi,j−1
...

. . .

bi,j b0,m−k

bi+1,j−1
...

... bm−k−j,j
... b0,m

bm−k−j+1,j−1
... bk,m−k

bm−k−1,1
...

bm−k,0 bm−j,j
... bm−j+1,j−1

...
bm−1,0

bm−1,1

bm,0

Let us now assume that r < t < s. Observe that the two diagonals

b0,0, b0,1, . . . , b0,j, . . . , b0,m,
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and
b0,m, b1,m−1, . . . , bm−j,j, . . . , bm,0,

each consist of m+ 1 points. We claim that we have

B
[
b0, . . . , bm; [r, s]

]
(u) = B

[
b0,0, . . . , b0,j, . . . , b0,m; [r, t]

]
(u)

= B
[
b0,m, . . . , bm−j,j, . . . , bm,0; [t, s]

]
(u),

for all u ∈ A.

Indeed, if f is the polar form associated with the Bézier curve specified by the sequence
of control points b0, . . . , bm over [r, s], g is the polar form associated with the Bézier curve
specified by the sequence of control points b0,0, . . . , b0,j , . . . , b0,m over [r, t], and h is the
polar form associated with the Bézier curve specified by the sequence of control points
b0,m, . . . , bm−j,j, . . . , bm,0 over [t, s], since f and g agree on the sequence of m+ 1 points

b0,0, . . . , b0,j, . . . , b0,m,

and f and h agree on the sequence of m+ 1 points

b0,m, . . . , bm−j,j, . . . , bm,0,

by lemma 4.3.1, we have f = g = h.

For t ∈ [r, s] as above, we say that the two curve segments

B
[
b0,0, . . . , b0,j, . . . , b0,m; [r, t]

]

and
B
[
b0,m, . . . , bm−j,j, . . . , bm,0; [t, s]

]
,

form a subdivision of the curve segment B
[
b0, . . . , bm; [r, s]

]
. Clearly, we can in turn subdi-

vide each of the two segments, and continue recursively in this manner. It seems intuitively
clear that the polygon obtained by repeated subdivision converges to the original curve
segment. This is indeed the case, and the convergence is in fact very fast. Assuming for
simplicity that r = 0 and s = 1, if we first choose t = 1

2
, and then t = 1

4
and t = 3

4
, and so

on, at the n-th step, we have 2n Bézier segments, and 2n control subpolygons, whose union
forms a polygon Πn with m2n+1 nodes. Among these points, there are 2n+1 points on the
original curve, the points corresponding to parameter values t = k

2n
, 0 ≤ k ≤ 2n. For the

following lemma, we assume that E is a normed affine space. Also, given a control polygon
Π with m sides, we assume that Π is viewed as the piecewise linear curve defined such that
over [i/m, (i+ 1)/m], with 0 ≤ i ≤ m− 1,

Π(u) = (i+ 1−mu)ai + (mu− i)ai+1.
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Lemma 5.2.1. Given a Bézier curve specified by a sequence of m+1 control points b0, . . . , bm,
over the interval [0, 1], if we subdivide in a binary fashion, the polygon Πn obtained after n

steps of subdivision, converges uniformly to the curve segment F = B
[
b0, . . . , bm; [0, 1]

]
, in

the sense that

max
0≤u≤1

∥∥∥
−−−−−−−→
Πn(u)F (u)

∥∥∥ ≤ C

2n
,

for some constant C > 0 independent of n.

Proof. If Π is any control polygon with m+ 1 nodes, for a Bézier curve segment F , since F
is contained in the convex hull of the control polygon, the distance between the Bézier curve
segment F and the control polygon satisfies the inequality

max
0≤u≤1

∥∥∥
−−−−−−→
Π(u)F (u)

∥∥∥ ≤ max
0≤i,j≤m

∥∥∥−→bibj
∥∥∥ ≤ m max

0≤i≤m−1

∥∥∥−−−→bibi+1

∥∥∥ ,

by the triangle inequality. Let M = max
∥∥∥−−−→bibi+1

∥∥∥, for the original control polygon with

control points b0, . . . , bm. Since we are subdividing in a binary fashion, and since only convex
combinations are involved, by the triangle inequality, the maximum length of the sides of
the polygon Πn is M

2n
. Then, from above, we have

max
0≤u≤1

∥∥∥
−−−−−−−→
Πn(u)F (u)

∥∥∥ ≤ max
Π⊆Πn,|Π|=m

max
0≤u≤1

∥∥∥
−−−−−−→
Π(u)F (u)

∥∥∥ ≤ mM

2n
,

where Π is any subpolygon of Πn consisting of m sides, whose endpoints are on the curve F ,
which proves the lemma.

The above lemma is the key to efficient methods for rendering polynomial (and rational)
curves. After a certain number of steps, due to the screen resolution, the polygon obtained
by subdivision becomes indistinguishable from the curve, and thus, this yields a fast method
for plotting the curve segment! The subdivision method can easily be implemented. Given a
polynomial curve F defined by a control polygon B = (b0, . . . , bm) over an affine frame [r, s],
for every t ∈ A, we denote as B[r,t] the control polygon

b0,0, b0,1, . . . , b0,j, . . . , b0,m,

and as B[t,s] the control polygon

b0,m, b1,m−1, . . . , bm−j,j, . . . , bm,0.

The following Mathematica function returns a pair consisting of B[r,t] and B[t,s], from an input
control polygon cpoly.
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(* Performs a single subdivision step using the de Casteljau algorithm *)

(* Returns the control poly (f(r,...,r, t, ..., t)) and *)

(* (f(t, ..., t, s, ..., s)) *)

subdecas[{cpoly__}, r_, s_, t_] :=

Block[

{bb = {cpoly}, b = {}, ud = {}, ld = {},

m, i, j, res},

(m = Length[bb] - 1; ud = {bb[[1]]}; ld = {bb[[m + 1]]};

Do[

Do[

b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, t]], {i, 1, m - j + 1}

];

ud = Append[ud, b[[1]]];

ld = Prepend[ld, b[[m - j + 1]]];

bb = b; b = {}, {j, 1, m}

];

res := Join[{ud},{ld}];

res

)

];

In order to approximate the curve segment over [r, s], we recursively apply subdivision to
a list consisting originally of a single control polygon. The function subdivstep subdivides
each control polygon in a list of control polygons. The function subdiv performs n calls to
subdivstep. Finally, in order to display the resulting curve, the function makedgelis makes
a list of Mathematica line segments from a list of control polygons.

(* subdivides each control polygon in a list of control polygons *)

(* using subdecas. Uses t = (r + s)/2 *)

subdivstep[{poly__}, r_, s_] :=

Block[

{cpoly = {poly}, lpoly = {}, t, l, i},

(l = Length[cpoly]; t = (r + s)/2;

Do[

lpoly = Join[lpoly, subdecas[cpoly[[i]], r, s, t]] , {i, 1, l}

];

lpoly

)
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];

(* calls subdivstep n times *)

subdiv[{poly__}, r_, s_, n_] :=

Block[

{pol1 = {poly}, newp = {}, i},

(

newp = {pol1};

Do[

newp = subdivstep[newp, r, s], {i, 1, n}

];

newp

)

];

(* To create a list of line segments from a list of control polygons *)

makedgelis[{poly__}] :=

Block[

{res, sl, newsl = {poly},

i, j, l1, l2},

(l1 = Length[newsl]; res = {};

Do[

sl = newsl[[i]]; l2 = Length[sl];

Do[If[j > 1, res = Append[res, Line[{sl[[j-1]], sl[[j]]}]]], {j, 1, l2}

], {i, 1, l1}

];

res

)

];

The subdivision method is illustrated by the following example of a curve of degree 4
given by the control polygon

cpoly = ((0, −4), (10, 30), (5, −20), (0, 30), (10, −4)).

The following 6 pictures show polygonal approximations of the curve segment over [0, 1]
using subdiv, for n = 1, 2, 3, 4, 5, 6.



5.2. SUBDIVISION ALGORITHMS FOR POLYNOMIAL CURVES 161

Figure 5.5: Subdivision, 1 iteration
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Figure 5.6: Subdivision, 2 iterations
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Figure 5.7: Subdivision, 3 iterations
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Figure 5.8: Subdivision, 4 iterations
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Figure 5.9: Subdivision, 5 iterations
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Figure 5.10: Subdivision, 6 iterations
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The convergence is indeed very fast. Another nice application of the subdivision method
is that we can compute very cheaply the control polygon B[a,b] over a new affine frame [a, b]
of a polynomial curve given by a control polygon B over [r, s]. Indeed, assuming a 6= r, by
subdividing once w.r.t. [r, s] using the parameter a, we get the control polygon B[r,a], and
then we reverse this control polygon and subdivide again w.r.t. [a, r] using b, to get B[a,b].
When r = a, we subdivide w.r.t. [r, s], using b.

(* Computes the control polygon wrt new affine frame (a, b) *)

(* Assumes that a = (1 - lambda) r + lambda t and *)

(* that b = (1 - mu) r + mu t, wrt original frame (s, t) *)

(* Returns control poly (f(a, ..., a, b, ..., b)) *)

newcpoly[{cpoly__}, r_, s_, a_, b_] :=

Block[

{poly = {cpoly}, m, i, pol1, pola, pol2, npoly, pt},

(

If[a =!= r, pol1 = subdecas[poly, r, s, a];

pola = pol1[[1]]; pol2 = {};

m = Length[pola];

Do[

pt = pola[[i]];

pol2 = Prepend[pol2, pt], {i, 1, m}

];

npoly = subdecas[pol2, a, r, b],

(* Print[" npoly: ", npoly] *)

npoly = subdecas[poly, r, s, b]

];

npoly[[1]]

)

];

The above function can be used to render curve segments over intervals [a, b] different
from the interval [r, s] over which the original control polygon is defined.

We can now prove the variation diminishing property. Observe that the subdivision
process only involves convex affine combinations. Given any two adjacent edges (a, b) and
(b, c) of the control polygon, if we contruct the points b′ = (1−λ)a+λb and b′′ = (1−λ)b+λc,
where 0 ≤ λ ≤ 1, and modify the control polygon so that instead of having the two edges
(a, b) and (b, c), we now have the three edges (a, b′), (b′, b′′), and (b′′, c), we observe that a
hyperplane intersects the new polygon in a number of points which is at most the number of
times that it intersects the original polygon. This immediately follows by convexity. Then,
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by induction, we can show that a hyperplane intersects any polygon obtained by subdivision
in a number of points which is at most the number of times that it intersects the original
control polygon. Since these polygons obtained via subdivision converge to the Bézier curve,
a hyperplane intersects the Bézier curve in a number of points which is at most the number
of times that it intersects its control polygon.

We consider one more property of Bézier curves, degree raising . Given a Bézier curve
F of polar degree m, and specified by a sequence of m + 1 control points b0, . . . , bm, it is
sometimes necessary to view F as a curve of polar degree m + 1. For example, certain
algorithms can only be applied to curve segments of the same degree. Or a system may only
accept curves of a specified degree, say 3, and thus, in order to use such a system on a curve
of lower degree, for example, a curve of degree 2, it may be necessary to raise the (polar)
degree of the curve. This can be done very easily in terms of polar forms. Indeed, if F is
defined by the polar form f : Am → E , the polar form g : Am+1 → E that will yield the same
curve F , in the sense that

g(t, . . . , t︸ ︷︷ ︸
m+1

) = f(t, . . . , t︸ ︷︷ ︸
m

) = F (t),

is necessarily

g(t1, . . . , tm+1) =
1

m+ 1

( ∑

1≤i1<...<im≤m+1

f(ti1 , . . . , tim)

)
.

Indeed, g as defined above is clearly m + 1-affine and symmetric, it is equal to F on the
diagonal, and since it is unique, it is the desired polar form. Instead of the above notation,
the following notation is often used,

g(t1, . . . , tm+1) =
1

m+ 1

m+1∑

i=1

f(t1, . . . , t̂i, . . . , tm+1),

where the hat over the argument t̂i indicates that this argument is omitted. For example, if
f is biaffine, we have

g(t1, t2, t3) =
f(t1, t2) + f(t1, t3) + f(t2, t3)

3
.

If F (and thus f) is specified by the m + 1 control points b0, . . . , bm, then F considered of
degree m + 1 (and thus g), is specified by m + 2 control points b10, . . . , b

1
m+1, and it is an

easy exercise to show that the points b1j are given in terms of the original points bi, by the
equations:

b1i =
i

m+ 1
bi−1 +

m+ 1− i

m+ 1
bi,

where 1 ≤ i ≤ m, with b10 = b0, and b1m+1 = bm.
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One can also raise the degree again, and so on. It can be shown that the control polygons
obtained by successive degree raising, converge to the original curve segment. However, this
convergence is much slower than the convergence obtained by subdivision, and it is not useful
in practice.

5.3 The Progressive Version of the de Casteljau Algo-

rithm (the de Boor Algorithm)

We now consider one more generalization of the de Casteljau algorithm that will be useful
when we deal with splines. Such a version will be called the progressive version, for reasons
that will become clear shortly. When dealing with splines, it is convenient to consider control
points not just of the form f(rm−i si), but of the form f(uk+1, . . . , uk+m), where the ui are
real numbers taken from a sequence 〈u1, . . . , u2m〉 of length 2m, satisfying certain inequality
conditions. Let us begin with the case m = 3.

Given a sequence 〈u1, u2, u3, u4, u5, u6〉, we say that this sequence is progressive iff the
inequalities indicated in the following array hold:

u1 6=
u2 6= 6=
u3 6= 6= 6=

u4 u5 u6

Then, we consider the following four control points:

f(u1, u2, u3), f(u2, u3, u4), f(u3, u4, u5), f(u4, u5, u6).

Observe that these points are obtained from the sequence 〈u1, u2, u3, u4, u5, u6〉, by sliding
a window of length 3 over the sequence, from left to right. This explains the name “progres-
sive case”. Now, we can compute any polar value f(t1, t2, t3) from the above control points,
using the following triangular array obtained using the de Casteljau algorithm:

0 1 2 3
f(u1, u2, u3)

f(t1, u2, u3)
f(u2, u3, u4) f(t1, t2, u3)

f(t1, u3, u4) f(t1, t2, t3)
f(u3, u4, u5) f(t1, t2, u4)

f(t1, u4, u5)
f(u4, u5, u6)
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bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

f(u1, u2, u3)

f(u2, u3, u4)

f(u3, u4, u5)

f(u4, u5, u6)

f(t1, u2, u3)

f(t1, u3, u4)

f(t1, u4, u5)

f(t1, t2, u3)

f(t1, t2, u4)

f(t1, t2, t3)

Figure 5.11: The de Casteljau algorithm, progressive case

At stage 1, we can successfully interpolate because u1 6= u4, u2 6= u5, and u3 6= u6. This
corresponds to the inequalities on the main descending diagonal of the array of inequality
conditions. At stage 2, we can successfully interpolate because u2 6= u4, and u3 6= u5. This
corresponds to the inequalities on the second descending diagonal of the array of inequality
conditions. At stage 3 we can successfully interpolate because u3 6= u4. This corresponds
to the third lowest descending diagonal. Thus, we used exactly all of the “progressive”
inequality conditions.

The following diagram shows an example of the de Casteljau algorithm for computing
the polar value f(t1, t2, t3) on a cubic, given the progressive sequence 〈u1, u2, u3, u4, u5, u6〉:

In the general case, we have a sequence 〈u1, . . . , u2m〉 of numbers ui ∈ R.

Definition 5.3.1. A sequence 〈u1, . . . , u2m〉 of numbers ui ∈ R is progressive iff uj 6= um+i,

for all j, and all i, 1 ≤ i ≤ j ≤ m. These m(m+1)
2

conditions correspond to the lower
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triangular part of the following array:

u1 6=
u2 6= 6=
...
uj 6= 6= . . . 6=
... . . . . . .
... . . . . . . 6=
... . . . . . . . . .

um−1 6= 6= . . . 6= . . . 6= . . . 6=
um 6= 6= . . . 6= . . . 6= . . . 6= 6=

um+1 um+2 . . . um+j . . . u2m−j+1 . . . u2m−1 u2m

Note that the j-th descending diagonal of the array of progressive inequalities begins with
uj (on the vertical axis), and ends with u2m−j+1 (on the horizontal axis). The entry u2m−j+1

will be before or after um+j , depending on the inequality 2j ≤ m+ 1. We will abbreviate

f(t1, . . . , tj︸ ︷︷ ︸
j

, ui+j+1, . . . , um+i︸ ︷︷ ︸
m−j

),

as f(t1 . . . tjui+j+1 . . . um+i), and when j = 0, we abbreviate

f(ui+1, . . . , um+i︸ ︷︷ ︸
m

),

as f(ui+1 . . . um+i).

The point f(t1 . . . tjui+j+1 . . . um+i) is obtained at step i of phase j, for 1 ≤ j ≤ m,
0 ≤ i ≤ m− j, by the interpolation step

f(t1 . . . tjui+j+1 . . . um+i) =

(
um+i+1 − tj

um+i+1 − ui+j

)
f(t1 . . . tj−1ui+j . . . um+i)

+

(
tj − ui+j

um+i+1 − ui+j

)
f(t1 . . . tj−1ui+j+1 . . . um+i+1).

Phase j of the general computation of the polar value f(t1, . . . , tm), in the progressive
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case, is shown below:

j − 1 j
f(t1 . . . tj−1uj . . . um)

f(t1 . . . tjuj+1 . . . um)
f(t1 . . . tj−1uj+1 . . . um+1)

. . . . . .
f(t1 . . . tj−1ui+j . . . um+i)

f(t1 . . . tjui+j+1 . . . um+i)
f(t1 . . . tj−1ui+j+1 . . . um+i+1)

. . . . . .
f(t1 . . . tj−1um . . . u2m−j)

f(t1 . . . tjum+1 . . . u2m−j)
f(t1 . . . tj−1um+1 . . . u2m−j+1)

Note that the reason why the interpolation steps can be performed is that we have the
inequalities

uj 6= um+1, uj+1 6= um+2, . . . , ui+j 6= um+i+1, . . . , um 6= u2m−j+1,

which corresponds to the j-th descending diagonal of the array of progressive inequalities,
counting from the main descending diagonal.

In order to make the above triangular array a bit more readable, let us define the following
points bi,j , used during the computation:

bi,j = f(t1 . . . tjui+j+1 . . . um+i),

for 1 ≤ j ≤ m, 0 ≤ i ≤ m− j, with

bi,0 = f(ui+1, . . . , um+i),

for 0 ≤ i ≤ m. Then, we have the following equations:

bi,j =

(
um+i+1 − tj

um+i+1 − ui+j

)
bi,j−1 +

(
tj − ui+j

um+i+1 − ui+j

)
bi+1,j−1.

The progressive version of the de Casteljau algorithm is also called the de Boor algorithm.
It is the major algorithm used in dealing with splines.

One may wonder whether it is possible to give a closed form for f(t1, . . . , tm), as computed
by the progressive case of the de Casteljau algorithm, and come up with a version of lemma
4.3.1. This turns out to be difficult, as the case m = 2 already reveals!



5.3. THE PROGRESSIVE VERSION OF THE DE CASTELJAU ALGORITHM 173

Consider a progressive sequence 〈u1, u2, u3, u4〉, where the following inequalities hold:

u1 6=
u2 6= 6=

u3 u4

We would like to compute f(t1, t2) in terms of f(u1, u2), f(u2, u3), and f(u3, u4). We
could apply the algorithm, but we can also proceed directly as follows. Since u1 6= u3 and
u2 6= u4, we can express t1 in two ways using two parameters λ1 and λ2, as

t1 = (1− λ1)u1 + λ1u3 = (1− λ2)u2 + λ2u4,

and since u2 6= u3, we can express t2 in terms of λ3, as

t2 = (1− λ3)u2 + λ3u3.

Now, we compute f(t1, t2), by first expanding t2:

f(t1, t2) = f(t1, (1− λ3)u2 + λ3u3)

= (1− λ3) f(t1, u2) + λ3 f(t1, u3),

= (1− λ3) f((1− λ1)u1 + λ1u3, u2) + λ3 f((1− λ2)u2 + λ2u4, u3),

= (1− λ1)(1− λ3) f(u1, u2) + [λ1(1− λ3) + λ3(1− λ2)] f(u2, u3) + λ2λ3 f(u3, u4),

and by expressing λ1, λ2, λ3 in terms of t1 and t2, we get

f(t1, t2) =

(
u3 − t1
u3 − u1

)(
u3 − t2
u3 − u2

)
f(u1, u2)

+

[(
t1 − u1

u3 − u1

)(
u3 − t2
u3 − u2

)
+

(
t2 − u2

u3 − u2

)(
u4 − t1
u4 − u2

)]
f(u2, u3)

+

(
t1 − u2

u4 − u2

)(
t2 − u2

u3 − u2

)
f(u3, u4).

The coefficients of f(u1, u2) and f(u3, u4) are symmetric in t1 and t2, but it is certainly
not obvious that the coefficient of f(u2, u3) is symmetric in t1 and t2. Actually, by doing
more calculations, it can be verified that

[(
t1 − u1

u3 − u1

)(
u3 − t2
u3 − u2

)
+

(
t2 − u2

u3 − u2

)(
u4 − t1
u4 − u2

)]

is symmetric.

These calculations are already rather involved for m = 2. What are we going to do for
the general case m ≥ 3?

We can still prove the following theorem generalizing lemma 4.3.1 to the progressive case.
The easy half follows from the progressive version of the de Casteljau algorithm, and the
converse will be proved later.
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Theorem 5.3.2. Let 〈u1, . . . , u2m〉 be a progressive sequence of numbers ui ∈ R. Given any
sequence of m+1 points b0, . . . , bm in some affine space E , there is a unique polynomial curve
F : A → E of degree m, whose polar form f : Am → E satisfies the conditions

f(uk+1, . . . , um+k) = bk,

for every k, 0 ≤ k ≤ m.

Proof. If such a curve exists, and f : Am → E is its polar form, the progressive version of the
de Casteljau algorithm shows that f(t1, . . . , tm) = b0,m, where b0,m is uniquely determined
by the inductive computation

bi,j =

(
um+i+1 − tj

um+i+1 − ui+j

)
bi,j−1 +

(
tj − ui+j

um+i+1 − ui+j

)
bi+1,j−1,

where
bi,j = f(t1 . . . tjui+j+1 . . . um+i),

for 1 ≤ j ≤ m, 0 ≤ i ≤ m− j, and with

bi,0 = f(ui+1, . . . , um+i) = bi,

for 0 ≤ i ≤ m. The above computation is well-defined because the sequence 〈u1, . . . , u2m〉 is
progressive.

The existence of a curve is much more difficult to prove, and we postpone giving such an
argument until section 11.1.

There are at least two ways of proving the existence of a curve satisfying the conditions
of theorem 5.3.2. One proof is fairly computational, and requires computing a certain de-
terminant, which turns out to be nonzero precisely because the sequence is progressive. The
other proof, is more elegant and conceptual, but it uses the more sophisticated concept of
symmetric tensor product (see section 11.1).

5.4 Derivatives of Polynomial Curves

In this section, it is assumed that E is some affine space An, with n ≥ 2. Our intention is
to give the formulae for the derivatives of polynomial curves F : A → E in terms of control
points. This way, we will be able to describe the tangents to polynomial curves, as well as the
higher-order derivatives, in terms of control points. This characterization will be used in the
next section dealing with the conditions for joining polynomial curves with Ck-continuity.

A more general treatment of (directional) derivatives of affine polynomial functions
F : Am → E will be given in section 10.5, as an application of the homogenization of an
affine space presented in chapter 10. In this section, we decided to go easy on our readers,
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and proofs are omitted. Such proofs are easily supplied (by direct computation). Our expe-
rience shows that most readers are happy to skip proofs, since they can find them later in
chapter 10.

In this section, following Ramshaw, it will be convenient to denote a point in A as a, to
distinguish it from the vector a ∈ R. The unit vector 1 ∈ R is denoted as δ. When dealing

with derivatives, it is also more convenient to denote the vector
−→
ab as b− a.

Given a polynomial curve F : A → E , for any a ∈ A, recall that the derivative DF (a) is
the limit

lim
t→0, t6=0

F (a+ tδ)− F (a)

t
,

if it exists.

� Recall that since F : A → E , where E is an affine space, the derivative DF (a) of F at a

is a vector in
−→E , and not a point in E .

Since coefficients of the form m(m−1) · · · (m−k+1) occur a lot when taking derivatives,
following Knuth, it is useful to introduce the falling power notation. We define the falling
power mk, as

mk = m(m− 1) · · · (m− k + 1),

for 0 ≤ k ≤ m, with m0 = 1, and with the convention that mk = 0 when k > m. The falling
powers mk have some interesting combinatorial properties of their own.

The following lemma giving the k-th derivative DkF (r) of F at r in terms of polar values,
can be shown.

Lemma 5.4.1. Given an affine polynomial function F : A → E of polar degree m, for any
r, s ∈ A, with r 6= s, the k-th derivative DkF (r) can be computed from the polar form f of
F as follows, where 1 ≤ k ≤ m:

DkF (r) =
mk

(s− r)k

i=k∑

i=0

(
k
i

)
(−1)k−i f(r, . . . , r︸ ︷︷ ︸

m−i

, s, . . . , s︸ ︷︷ ︸
i

).

A proof is given in section 10.5. It is also possible to obtain this formula by expressing
F (r) in terms of the Bernstein polynomials and computing their derivatives.

If F is specified by the sequence of m+ 1 control points bi = f(rm−i s i), 0 ≤ i ≤ m, the
above lemma shows that the k-th derivative DkF (r) of F at r, depends only on the k + 1
control points b0, . . . , bk In terms of the control points b0, . . . , bk, the formula of lemma 5.4.1
reads as follows:

DkF (r) =
mk

(s− r)k

i=k∑

i=0

(
k
i

)
(−1)k−i bi.
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In particular, if b0 6= b1, then DF (r) is the velocity vector of F at b0, and it is given by

DF (r) =
m

s− r

−−→
b0b1 =

m

s− r
(b1 − b0).

This shows that when b0 and b1 are distinct, the tangent to the Bézier curve at the point
b0 is the line determined by b0 and b1. Similarly, the tangent at the point bm is the line
determined by bm−1 and bm (provided that these points are distinct).

More generally, the tangent at the current point F (t) defined by the parameter t, is
determined by the two points

b0, m−1 = f(t, . . . , t︸ ︷︷ ︸
m−1

, r) and b1, m−1 = f(t, . . . , t︸ ︷︷ ︸
m−1

, s),

given by the de Casteljau algorithm. It can be shown that

DF (t) =
m

s− r
(b1,m−1 − b0,m−1).

The acceleration vector D2F (r) is given by

D2F (r) =
m(m− 1)

(s− r)2
(
−−→
b0b2 − 2

−−→
b0b1) =

m(m− 1)

(s− r)2
(b2 − 2b1 + b0).

More generally, if b0 = b1 = . . . = bk, and bk 6= bk+1, it can be shown that the tangent at the
point b0 is determined by the points b0 and bk+1.

In the next section, we use lemma 5.4.1 to give a very nice condition for joining two
polynomial curves with certain specified smoothness conditions. This material will be useful
when we deal with splines. We also urge the readers who have not yet looked at the treatment
of derivatives given in section 10.5 to read chapter 10.

5.5 Joining Affine Polynomial Functions

When dealing with splines, we have several curve segments that need to be joined with
certain required continuity conditions ensuring smoothness. The typical situation is that we
have two intervals [p, q] and [q, r], where p, q, r ∈ A, with p < q < r, and two affine curve
segments F : [p, q] → E and G : [q, r] → E , of polar degree m, that we wish to join at q.

The weakest condition is no condition at all, called C−1-continuity. This means that we
don’t even care whether F (q) = G(q), that is, there could be a discontinuity at q. In this
case, we say that q is a discontinuity knot . The next weakest condition, called C0-continuity,
is that F (q) = G(q). In other words, we impose continuity at q, but no conditions on the
derivatives. Generally, we have the following definition.
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Definition 5.5.1. Two curve segments F ([p, q]) and G[q, r]) of polar degree m are said to
join with Ck-continuity at q, where 0 ≤ k ≤ m, iff

DiF (q) = DiG(q),

for all i, 0 ≤ i ≤ k, where by convention, D0F (q) = F (q), and D0G(q) = G(q).

As we will see, for curve segments F and G of polar degreem, Cm-continuity imposes that
F = G, which is too strong, and thus, we usually consider Ck-continuity, where 0 ≤ k ≤ m−1
(or even k = −1, as mentioned above). The continuity conditions of definition 5.5.1 are
ususally referred to as parametric continuity . There are other useful kinds of continuity, for
example geometric continuity .

We can characterize Ck-continuity of joins of curve segments very conveniently in terms
of polar forms. A more conceptual proof of a slightly more general lemma, will be given
in section 11.1, using symmetric tensor products (see lemma B.4.5). The proof below uses
lemma 10.5.1, which is given in section 10.5. As a consequence, readers who have only read
section 5.4 may skip the proof.

Lemma 5.5.2. Given two intervals [p, q] and [q, r], where p, q, r ∈ A, with p < q < r, and
two affine curve segments F : [p, q] → E and G : [q, r] → E , of polar degree m, the curve
segments F ([p, q]) and G[q, r]) join with continuity Ck at q, where 0 ≤ k ≤ m, iff their polar
forms f : Am → E and g : Am → E agree on all multisets of points that contain at most k
points distinct from q, i.e.,

f(u1, . . . , uk, q, . . . , q︸ ︷︷ ︸
m−k

) = g(u1, . . . , uk, q, . . . , q︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ A.

Proof. First, assume that the polar forms f and g satisfy the condition

f(u1, . . . , uk, q, . . . , q︸ ︷︷ ︸
m−k

) = g(u1, . . . , uk, q, . . . , q︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ A. If ui = q, 1 ≤ i ≤ k, we are requiring that

f(q, . . . , q︸ ︷︷ ︸
m

) = g(q, . . . , q︸ ︷︷ ︸
m

),

that is, F (q) = G(q), which is C0-continuity. Let f̂ : (Â)m → Ê and ĝ : (Â)m → Ê be the
homogenized versions of f and g. For every j, 1 ≤ j ≤ k, by lemma 5.4.1, the j-th derivative
DjF (q) can be computed from the polar form f of F as follows:

DjF (q) =
mj

(r − q)j

i=j∑

i=0

(
j
i

)
(−1)j−i f(q, . . . , q︸ ︷︷ ︸

m−i

, r, . . . , r︸ ︷︷ ︸
i

).
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Similarly, we have

DjG(q) =
mj

(r − q)j

i=j∑

i=0

(
j
i

)
(−1)j−i g(q, . . . , q︸ ︷︷ ︸

m−i

, r, . . . , r︸ ︷︷ ︸
i

).

Since i ≤ j ≤ k, by the assumption, we have

f(q, . . . , q︸ ︷︷ ︸
m−i

, r, . . . , r︸ ︷︷ ︸
i

) = g(q, . . . , q︸ ︷︷ ︸
m−i

, r, . . . , r︸ ︷︷ ︸
i

),

and thus, DjF (q) = DjG(q). Thus, we have Ck-continuity of the join at q.

Conversely, assume that we have Ck-continuity at q. Thus, we have

DiF (q) = DiG(q),

for all i, 0 ≤ i ≤ k, where by convention, D0F (q) = F (q), and D0G(q) = G(q). Thus, for
i = 0, we get

f(q, . . . , q︸ ︷︷ ︸
m

) = g(q, . . . , q︸ ︷︷ ︸
m

).

By lemma 10.5.1, we have

DiF (q) = mi f̂(q, . . . , q︸ ︷︷ ︸
m−i

, δ, . . . , δ︸ ︷︷ ︸
i

),

and similarly,
DiG(q) = mi ĝ(q, . . . , q︸ ︷︷ ︸

m−i

, δ, . . . , δ︸ ︷︷ ︸
i

),

for 1 ≤ i ≤ m. Then, the assumption of Ck-continuity implies that

f̂(q, . . . , q︸ ︷︷ ︸
m−i

, δ, . . . , δ︸ ︷︷ ︸
i

) = ĝ(q, . . . , q︸ ︷︷ ︸
m−i

, δ, . . . , δ︸ ︷︷ ︸
i

),

for 1 ≤ i ≤ k. However, for any ui ∈ A, we have (in Â)

ui = q + (ui − q)δ,

and thus, for any j, 1 ≤ j ≤ k, we have

f̂(u1, . . . , uj, q, . . . , q︸ ︷︷ ︸
m−j

) = f̂(q + (u1 − q)δ, . . . , q + (uj − q)δ, q, . . . , q︸ ︷︷ ︸
m−j

),

which can be expanded using multilinearity and symmetry, and yields

f̂(u1, . . . , uj, q, . . . , q︸ ︷︷ ︸
m−j

) =

i=j∑

i=0

∑

L⊆{1,...,j}
|L|=i

∏

l∈L
(ul − q) f̂(δ, . . . , δ︸ ︷︷ ︸

i

, q, . . . , q︸ ︷︷ ︸
m−i

).
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Similarly, we have

ĝ(u1, . . . , uj, q, . . . , q︸ ︷︷ ︸
m−j

) =

i=j∑

i=0

∑

L⊆{1,...,j}
|L|=i

∏

l∈L
(ul − q) ĝ(δ, . . . , δ︸ ︷︷ ︸

i

, q, . . . , q︸ ︷︷ ︸
m−i

).

However, we know that

f̂(δ, . . . , δ︸ ︷︷ ︸
i

, q, . . . , q︸ ︷︷ ︸
m−i

) = ĝ(δ, . . . , δ︸ ︷︷ ︸
i

, q, . . . , q︸ ︷︷ ︸
m−i

),

for all i, 1 ≤ i ≤ k, and thus, we have

f̂(u1, . . . , uj, q, . . . , q︸ ︷︷ ︸
m−j

) = ĝ(u1, . . . , uj, q, . . . , q︸ ︷︷ ︸
m−j

),

for all j, 1 ≤ j ≤ k. Since f̂ extends f and ĝ extends g, together with

f(q, . . . , q︸ ︷︷ ︸
m

) = g(q, . . . , q︸ ︷︷ ︸
m

),

which we already proved, we have established the conditions of the lemma.

Another way to state lemma 5.5.2 is to say that the curve segments F ([p, q]) and G[q, r])
join with continuity Ck at q, where 0 ≤ k ≤ m, iff their polar forms f : Am → E and
g : Am → E agree on all multisets of points that contain at least m−k copies of the argument
q. Thus, the number k is the number of arguments that can be varied away from q without
disturbing the values of the polar forms f and g. When k = 0, we can’t change any of the
arguments, and this means that f and g agree on the multiset

q, . . . , q︸ ︷︷ ︸
m

,

i.e., the curve segments F and G simply join at q, without any further conditions. On the
other hand, for k = m− 1, we can vary m− 1 arguments away from q without changing the
value of the polar forms, which means that the curve segments F and G join with a high
degre of smoothness (Cm−1-continuity). In the extreme case where k = m (Cm-continuity),
the polar forms f and g must agree when all arguments vary, and thus f = g, i.e. F and
G coincide. We will see that lemma 5.5.2 yields a very pleasant treatment of parametric
continuity for splines.

The following diagrams illustrate the geometric conditions that must hold so that two
segments of cubic curves F : A → E and G : A → E defined on the intervals [p, q] and [q, r],
join at q with Ck-continuity, for k = 0, 1, 2, 3. Let f and g denote the polar forms of F and
G.



180 CHAPTER 5. POLYNOMIAL CURVES AS BÉZIER CURVES

bc

bc

bc b

bc

bc

bc

f(p, p, p)

f(p, p, q)

f(p, q, q) f = g(q, q, q)

g(q, q, r)

g(q, r, r)

g(r, r, r)

Figure 5.12: Cubic curves joining at q with C0-continuity

The curve segments F and G join at q with C0-continuity iff the polar forms f and g
agree on the (multiset) triplet q, q, q.

The curve segments F and G join at q with C1-continuity iff the polar forms f and g
agree on all (multiset) triplets including two copies of the argument q.

The curve segments F and G join at q with C2-continuity iff the polar forms f and g
agree on all (multiset) triplets including the argument q.

The curve segments F and G join at q with C3-continuity iff the polar forms f and g
agree on all (multiset) triplets, i.e., iff f = g.

The above examples show that the points corresponding to the common values

f(p i, r j , q 3−i−j) = g(p i, r j, q 3−i−j)

of the polar forms f and g, where i + j ≤ k ≤ 3, constitute a de Casteljau diagram with
k shells, where k is the degree of continuity required. These de Casteljau diagrams are
represented in bold. This is a general fact. When two polynomial curves F and G of degree
m join at q with Ck-continuity (where 0 ≤ k ≤ m), then

f(p i, r j , q m−i−j) = g(p i, r j, q m−i−j)

for all i, j with i+ j ≤ k ≤ m, and these points form a de Casteljau diagram with k shells.
We are now ready to consider B-spline curves.
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b b b
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f(p, p, p)

f(p, p, q)

f = g(p, q, q) f = g(q, q, q) f = g(q, q, r)

g(q, r, r)

g(r, r, r)

Figure 5.13: Cubic curves joining at q with C1-continuity
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b

f(p, p, p)

f = g(p, p, q)

f = g(p, q, q)

f = g(p, q, r)

f = g(q, q, r)

f = g(q, r, r)

g(r, r, r)

f = g(q, q, q)

Figure 5.14: Cubic curves joining at q with C2-continuity
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b

b b

b

b b

b bb

f = g(p, p, p)

f = g(p, p, q)

f = g(p, p, r) f = g(p, q, r) f = g(p, r, r)

f = g(q, r, r)

f = g(r, r, r)

f = g(p, q, q) f = g(q, q, r)

f = g(q, q, q)

Figure 5.15: Cubic curves joining at q with C3-continuity

5.6 Problems

Problem 1 (60 pts). Write a computer program implementing the subdivision version of
the de Casteljau algorithm, over some interval [r, s].

You may use Mathematica, or any other available software in which graphics primitives
are available. Test your program extensively.

In the next three problems, it is assumed that r = 0 and s = 1.

Problem 2 (10 pts). Consider (in the plane) the curve F defined by the following 5 control
points:

b0 = (6, 0),

b1 = (0, 0),

b2 = (6, 6),

b3 = (0, 6),

b4 = (6,−1).

Use the de Casteljau algorithm to find the coordinates of the points F (1/2) and F (3/4).
Does the curve self intersect? Plot the curve segment (in the convex hull of the control
polygon) as well as you can.

Problem 3 (10 pts). Consider (in the plane) the curve F defined by the following 5 control
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points:

b0 = (6, 0),

b1 = (3,−1),

b2 = (6, 6),

b3 = (0, 6),

b4 = (6.5,−1).

Use the de Casteljau algorithm to find the coordinates of the points F (1/4) and F (1/2).
Does the curve self intersect? Plot the curve segment (in the convex hull of the control
polygon) as well as you can.

Problem 4 (20 pts). Consider (in the plane) the curve F defined by the following 5 control
points:

b0 = (0,−4),

b1 = (10, 30),

b2 = (5,−20),

b3 = (0, 30),

b4 = (10,−4).

Use the de Casteljau algorithm to find the coordinates of the points F (1/2). Does the
curve self intersect? Plot the curve segment (in the convex hull of the control polygon) as
well as you can.

Problem 5 (10 pts). (baby Lagrange interpolation via control points)

Given any affine space E , given any four distinct values t0 < t1 < t2 < t3, and given any
sequence of four points (x0, x1, x2, x3), we would like to find a cubic F : A → E such that
F (ti) = xi (i.e., an interpolating cubic curve). To simplify the calculations, assume that
t0 = 0 and t3 = 1.

Prove that there exists a unique cubic satisfying the above conditions, and compute its
control points b0, b1, b2, b3, in terms of x0, x1, x2, x3, and t1 < t2.

Problem 6 (20 pts). Let F be a cubic curve given by its control points b0, b1, b2, b3.
Consider the arc of cubic F [0, 1]. If any of the control points bi changes (one only) to a new
point b′i, we get a different cubic F ′. Show that for any t ∈ [0, 1], we have

‖F ′(t)− F (t)‖ = B3
i (t) ‖b′i − bi‖ ,

where B3
i (t) is the i-th Bernstein polynomial of degree 3. What is ‖F ′(t)− F (t)‖ for i = 2,

t = 1/2, and t = 1/4?
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Problem 7 (30 pts). (Cubic Hermite interpolation)

Let a0, a1 be any two points in A3, and let −→u0 and −→u1 be any two vectors in R3. Show
that there is a unique cubic curve F : A → A3 such that

F (0) = a0,

F (1) = a1,

F ′(0) = −→u0 ,

F ′(1) = −→u1 ,

and show that its control points are given by

b0 = a0, b1 = a0 +
1

3
−→u0 , b2 = a1 −

1

3
−→u1 , b3 = a1.

Show that
F (t) = a0H

3
0 (t) +

−→u0H
3
1 (t) +

−→u1H
3
2 (t) + a1H

3
3 (t),

where

H3
0 (t) = B3

0(t) +B3
1(t),

H3
1 (t) =

1

3
B3

1(t),

H3
2 (t) = −1

3
B3

2(t),

H3
3 (t) = B3

2(t) +B3
3(t).

Compute explicitly the polynomials H3
i (t), 0 ≤ i ≤ 3. The polynomials H3

i (t) are called the
cubic Hermite polynomials . Show that they are linearly independent.

Problem 8 (40 pts). (Quintic Hermite interpolation)

Let a0, a1 be any two points in A3, and let −→u0 ,
−→u1 ,

−→v0 , −→v1 , be any four vectors in R3.
Show that there is a unique quintic curve F : A → A3 such that

F (0) = a0,

F (1) = a1,

F ′(0) = −→u0 ,

F ′(1) = −→u1 ,

F ′′(0) = −→v0 ,
F ′′(1) = −→v1 ,

and compute its control points. Show that

F (t) = a0H
5
0 (t) +

−→u0H
5
1 (t) +

−→v0H5
2 (t) +

−→v1H5
3 (t) +

−→u1H
5
4 (t) + a1H

5
5 (t),
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where

H5
0 (t) = B5

0(t) +B5
1(t) +B5

2(t),

H5
1 (t) =

1

5
(B5

1(t) + 2B5
2(t)),

H5
2 (t) =

1

20
B5

2(t),

H5
3 (t) =

1

20
B5

3(t),

H5
4 (t) = −1

5
(2B5

3(t) +B5
4(t)),

H5
5 (t) = B5

3(t) +B5
4(t) +B5

5(t).

Compute explicitly the polynomials H5
i (t), 0 ≤ i ≤ 5. The polynomials H5

i (t) are called the
quintic Hermite polynomials . Show that they are linearly independent.

Problem 9 (30 pts). Use your implementation of the subdivision version of the Casteljau
algorithm to experiment with cubic and quintic Hermite interpolants. Try many different
cases.

Problem 10 (20 pts). Hermite interpolants were defined with respect to the interval [0, 1].
What happens if the affine map t 7→ (1 − t)a + tb is applied to the domain of the Hermite
interpolants? How can you modify the Hermite polynomials to obtain the same kind of
expression as in problems 7 and 8?

Problem 11 (20 pts). Plot the Hermite polynomials H3
i (t), 0 ≤ i ≤ 3, over [0, 1]. Plot the

Hermite polynomials H5
i (t), 0 ≤ i ≤ 5, over [0, 1].

Problem 12 (20 pts). Use the de Casteljau algorithm to design a curve of degree four
whose third control point b2 belongs to the curve (in fact, for t = 1/2).

Problem 13 (30 pts). Assume that two Bezier curve segments F and G are defined over
[0, 1] in terms of their control points. Give a method for finding all the intersection points
between the curve segments F and G. What if F and G have a common component? What
if F and G have different degrees?

Problem 14 (30 pts). Write a computer program implementing the progressive version of
the de Casteljau algorithm, over some interval [r, s].

You may use Mathematica, or any other available software in which graphics primitives
are available.

Problem 15 (30 pts). Draw diagrams showing C3-continuity for curves of degree 4. Draw
diagrams showing C4-continuity for curves of degree 5. Draw diagrams showing C5-continuity
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for curves of degree 6. You may want to write computer programs to draw such diagrams.

Problem 16 (30 pts). Write a computer program implementing a version of the de Castel-
jau algorithm applied to curves of degree four modified as exlained below. During a subdivi-
sion step, allow the middle control point (b2) to be perturbed in each of the two subpolygons.
Experiment with various ways of perturbing the middle control point, by a random displace-
ment, or a controlled displacement. After a number of subdivision steps, you should get
“fractal-style” curves with C1-continuity.

Problem 17 (20 pts). Let F be a polynomial curve defined by its control polygon B =

(b0, . . . , bm). Let B(r) = (b
(r)
0 , . . . , b

(r)
m+r) be the control polygon for the curve F obtained after

r steps of degree elevation. Prove that

b
(r)
i =

m∑

j=0

(
m
j

)
(

r
i− j

)

(
m+ r

i

) bj .

Remark: For any t ∈ [0, 1], for each r ≥ 1, there is some i such that i/(m+ r) is closest to
t. Then, as r → ∞, it can be shown (using Stirling’s formula) that

lim
i/(m+r)→t

(
r

i− j

)

(
m+ r

i

) = tj(1− t)m−j .

As a consequence,

lim
i/(m+r)→t

b
(r)
i =

m∑

j=0

bjB
m
j (t) = F (t).

This means that the control polygons B(r) converge towards the curve segment F [0, 1]. How-
ever, this convergence is very slow, and is not useful in practice.



Chapter 6

B-Spline Curves

6.1 Introduction: Knot Sequences, de Boor Control

Points

Polynomial curves have many virtues for CAGD, but they are also unsatisfactory in a number
of ways:

1. Given a control polygon containing m sides (m + 1 vertices), the degree of the poly-

nomial curve determined by these control points is m. We know that it takes m(m+1)
2

steps to compute a point on the curve. When m is large, this may be too costly, and
thus impractical.

2. Moving any control point will affect the entire curve. It would be desirable to have
better local control, in the sense that moving a control point only affects a small region
of the curve.

3. If we are interested in interpolation rather than just approximating a shape, we will
have to compute control points from points on the curve. This leads to systems of
linear equations, and solving such a system can be impractical when the degree of the
curve is large.

For the above reasons, people thought about segmenting a curve specified by a complex
control polygon into smaller and more manageable segments. This is the idea behind splines.
In this chapter, we present a class of spline curves known as B-splines and explain how to
use knots to control the degree of continuity between the curve segments forming a spline
curve. We show how knot sequences and sequences of de Boor control points can be used to
specify B-splines and we present the de Boor algorithm for B-splines, as well as the useful
knot insertion algorithm. We also discuss interpolation using B-splines, and briefly present
the more traditional approach to B-splines in terms of basis functions.

Each segment of the curve will be controlled by some small subpolygon of the global
polygon, and the segments will be joined together in some smooth fashion. In order to
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achieve this, it becomes necessary to consider several contiguous parameter intervals, rather
than a single interval [r, s] as in the case of polynomial curves. For example, we could have
the intervals

[1, 2], [2, 3], [3, 5], [5, 6], [6, 9],

and if we want to use cubic segments, we would need four control points for each of these
intervals. Let us denote the corresponding cubic curve segments as F [1, 2], F [2, 3], F [3, 5],
F [5, 6], F [6, 9]. Since we want to join these cubic curve segments, we will assume that the
fourth control point of the curve segment F [1, 2] is equal to the first control point of the
curve segment F [2, 3], that the fourth control point of the curve segment F [2, 3] is equal to
the first control point of the curve segment F [3, 5], and so on, and finally, that the fourth
control point of the curve segment F [5, 6] is equal to the first control point of the curve
segment F [6, 9].

Usually, we will want better continuity at the junction points (2, 3, 5, 6) than just con-
tact. This can be achieved, as we will explain shortly.

Why did we choose a nonuniform spacing of the intervals? Because it would not really
simplify anything, and that such flexibility is in fact useful, as we shall see later. Clearly,
we may also want to be more careful about endpoints (in this case, 1 and 9). For the time
being, we can assume that we are dealing with infinite sequences of contiguous intervals,
where the sequences extend to infinity in both directions. When looking at a finite sequence
such as

. . . , [1, 2], [2, 3], [3, 5], [5, 6], [6, 9], . . . ,

we are just focusing on a particular subsequence of some bi-infinite sequence. It is also
possible to handle cyclic sequences.

Note that it is slightly more economical to specify the sequence of intervals by just listing
the junction points of these intervals, as in the following sequence:

. . . , 1, 2, 3, 5, 6, 9, . . . .

Such a sequence is called a knot sequence.

We will see that it is useful to collapse intervals, since this is a way to lower the degree
of continuity of a join. This can be captured by a knot sequence by letting a knot appear
more than once. For example, if we want to collapse the interval [3, 5] to [3, 3], the above
knot sequence becomes

. . . , 1, 2, 3, 3, 6, 9, . . . .

We also allow collapsing several consecutive intervals. For example, we can also collapse
[2, 3] to [3, 3], obtaining the sequence

. . . , 1, 3, 3, 3, 6, 9, . . . .

The number of consecutive occurrences of a knot is called its multiplicity . Thus, in the above
sequence, 3 has multiplicity 3. Extending our sequence a bit, say to

. . . , 1, 3, 3, 3, 6, 9, 10, 12, 15, . . . ,
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we can collapse several intervals, and get several multiple knots, as shown by collapsing
[10, 12] to [10, 10]:

. . . , 1, 3, 3, 3, 6, 9, 10, 10, 15, . . . .

The above sequence has a triple knot 3, and a double knot 10. Knots of multiplicity 1 are
called simple knots , and knots of multiplicity greater than 1 are called multiple knots . As
we will see, it does not make sense for the knot multiplicity to exceed m+1, where m is the
degree of each curve segment (in fact, multiplicity m + 1 corresponds to a discontinuity at
the control point associated with that multiple knot).

The problem now is to find a convenient way of specifying the degree of continuity that we
want at each join, and to find more convenient control points than the Bézier control points
of the curve segments (in our example, F [1, 2], F [2, 3], F [3, 5], F [5, 6], F [6, 9]). Fortunately,
there is a nice answer to both questions. Lemma 5.5.2 will yield a very pleasant answer to the
problem of continuity of joins and this answer will also show that there are natural control
points called de Boor points, which turn out to be more convenient (and more economical)
than the Bézier control points of the curve segments. We will also see how to extend the de
Casteljau algorithm in order to compute points on any curve segment directly from the de
Boor control points, without having to first compute the Bézier control points for the given
curve segment. However, we could compute the Bézier control points using this algorithm,
which is called the de Boor algorithm.

Since we are now using knot sequences to represent contiguous intervals, we can simplify
our notation of curve segments by using the index (position) of the knot corresponding to
the beginning of an interval as the index of the curve segment on that interval. For example,
given the knot sequence

. . . , 1, 2, 3, 5, 6, 9, . . . ,

we will denote F [1, 2], F [2, 3], F [3, 5], F [5, 6], F [6, 9], simply as F1, F2, F3, F4, and F5. Note
that we need to take care of multiple knots, as in the sequence

. . . , 1, 3, 3, 3, 6, 9, 10, 10, 15, 16 . . . .

We simply consider the subsequence of strictly increasing knots, and we index each curve
segment by the index (position) of the last occurrence of the knot corresponding to the left
of its interval domain, and thus, we have curve segments: F1, F4, F5, F6, F8, F9.

We now have to explain how the de Boor control points arise. There are several possible
presentations. The more mathematical presentation is to consider the polar form fi of each
curve segment Fi associated with an interval [ui, ui+1], and to figure out the conditions that
Cn-continuity at ui+1 impose on the polar forms fi and fi+1. If the degree of all curve
segments is ≤ m, and for simplicity, we allow knot multiplicity at most m (although it is
easy to accommodate knots of multiplicity m + 1), it turns out that we are led to consider
sequences of consecutive knots of length m of the form

〈uk+1, . . . , uk+m〉,
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and that for all i ∈ [k, k +m], the value

fi(uk+1, . . . , uk+m)

of the polar form fi associated with the interval beginning with knot ui is constant and
denoted as

dk = fk(uk+1, . . . , uk+m).

These points dk are the de Boor points . Then, for any simple knot uk, that is, a knot such
that uk < uk+1, the sequence of 2m consecutives knots

〈uk−m+1, . . . , uk, uk+1, . . . , uk+m〉

yields m+ 1 sequences of consecutive knots

〈uk−m+i+1, . . . , uk+i〉,

each of length m, where 0 ≤ i ≤ m, and these sequences turn out to define m + 1 de Boor
control points for the curve segment Fk associated with the middle interval [uk, uk+1]. In
fact, if fk is the polar form of Fk, these de Boor points are the polar values

dk−m+i = fk(uk−m+i+1, . . . , uk+i),

where 0 ≤ i ≤ m. If we let j = k −m+ i, then we have

dj = fk(uj+1, . . . , uj+m),

with k − m ≤ j ≤ k, which is the formula shown in Theorem 6.2.4, except that j here is
denoted k in the proof of the theorem and k here is denoted i there.

For example, given the following (portion of a) knot sequence

. . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . . ,

if m = 3, k = 6, and uk = u6 = 6, we have the sequence

〈3, 5, 6, 8, 9, 11〉

consisting of 6 = 2 · 3 knots, and so uk+1 = u7 = 8, the middle interval is [6, 8], uk−m+1 =
u4 = 3, and uk+m = u9 = 11.

Since uk < uk+1, the sequence

〈uk−m+1, . . . , uk, uk+1, . . . , uk+m〉

is progressive, and thus, it is possible to use the progressive version of the de Casteljau
algorithm presented in section 5.3, also called the de Boor algorithm, to compute points on
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the curve Fk, and more generally, any polar value of fk for parameter values in [uk, uk+1].
This is illustrated by the following progressive sequence of 6 knots:

〈3, 5, 6, 8, 9, 11〉.

Observe that if uk is a simple knot as above, then the m + 1 sequences of consecutive
knots

〈uk−m+i+1, . . . , uk+i〉,
each of length m (where 0 ≤ i ≤ m), overlap precisely on the middle interval [uk, uk+1] of
the sequence

〈uk−m+1, . . . , uk, uk+1, . . . , uk+m〉.
This property is the point of departure of another rather intuitive explanation of the de Boor
algorithm, due to Ken Shoemake. Let us now forget that we have curve segments. Instead,
we fix the maximum degree m of the curve segments that will arise, and we assume that we
are given a bi-infinite knot sequence 〈uj〉,

. . . , uj, . . . , uj+k, . . . ,

which for simplicity, consists only of simple knots (i.e. where uj < uj+1 for all j), and a
bi-infinite sequence 〈di〉

. . . , di, . . . , di+l, . . . ,

of (distinct) control points, with an additional constraint: we assume that there is a bijective
function from the sequence 〈di〉 of control points to the knot sequence 〈uj〉, with the property
that for every control point di, if di is mapped to the knot uk+1, then di+1 is mapped to uk+2.

Since consecutive control points map to consecutive knots, there is obviously an affine
bijection mapping the interval [uk+1, uk+m+1] onto the line segment (di, di+1), defined as

u 7→ uk+m+1 − u

uk+m+1 − uk+1
di +

u− uk+1

uk+m+1 − uk+1
di+1,

where u ∈ [uk+1, uk+m+1]. Thus, we can view each side (di, di+1) of the control polygon as
being divided into m subsegments. If we color the m intervals

[uk+1, uk+2], . . . , [uk+m, uk+m+1]

with different colors, the line segment (di, di+1) is also colored in a similar fashion. Assuming
that we color all intervals [uk+1, uk+2] (assuming infinitely many colors), we can see that m
consecutive line segments (di, di+1), . . . , (di+m−1, di+m) of the control polygon share exactly
one color: that of the interval [uk+m, uk+m+1].

For example, assuming m = 3, given the following (portion of a) knot sequence

. . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . . ,
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and given the following (portion of a) sequence of control points

. . . , d1, d2, d3, d4, d5, d6, d7, d8, . . . ,

figure 6.1 shows part of a cubic spline, and the interval [1, 5] maps onto (d1, d2), the interval
[2, 6] maps onto (d2, d3), . . ., the interval [9, 15] maps onto (d7, d8).

For k = 6, and uk = u6 = 6, the sequence

〈3, 5, 6, 8, 9, 11〉,

whose middle interval is [6, 8], corresponds to the three line segments (d3, d4), (d4, d5), and
(d5, d6). The line segment (d4, d5) is the affine image of the interval [5, 9], which itself
consists of the three subintervals [5, 6], [6, 8], and [8, 9].

Therefore, m consecutive line segments (di, di+1), . . . , (di+m−1, di+m) on the control poly-
gon, or equivalently, m+1 consecutive control points di, . . . , di+m, correspond to a sequence
of 2m knots

〈uk+1, uk+2, . . . , uk+2m〉.
Note that any two consecutive line segments (di, di+1) and (di+1, di+2) are the affine images
of intervals that overlap on exactly m− 1 consecutive subintervals of the knot sequence.

For example, the line segments (d3, d4) and (d4, d5) both contain images of the interval
[5, 8], which consists of [5, 6] and [6, 8], and the line segments (d4, d5) and (d5, d6) both
contain images of the interval [6, 9], which consists of [6, 8] and [8, 9].

The connection with the previous explanation becomes clearer. Since any two consecu-
tive line segments (di, di+1) and (di+1, di+2) correspond to intervals that overlap on m − 1
consecutive subintervals of the knot sequence, we can index each control point di by the knot
sequence

〈uk+1, . . . , uk+m〉
of m knots, where di is mapped to uk+1. Note that the control point di corresponds to
the knot sequence 〈uk+1, . . . , uk+m〉, and that the control point di+1 corresponds to the knot
sequence 〈uk+2, . . . , uk+m+1〉. Thus, the interval [uk+1, uk+m+1], which is mapped affinely
onto the line segment (di, di+1), corresponds to the leftmost knot in the sequence associated
with di, and to the rightmost knot in the sequence associated with di+1. This is an easy way
to remember which interval maps onto the line segment (di, di+1).

For example, d1 corresponds to 〈1, 2, 3〉, d2 corresponds to 〈2, 3, 5〉, . . ., and d8 corre-
sponds to 〈11, 14, 15〉.

Given a sequence of 2m knots

〈uk+1, uk+2, . . . , uk+2m〉,
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Figure 6.1: Part of a cubic spline with knot sequence . . . , 1, 2,3, 5,6, 8,9, 11,14, 15, . . .. Thick
segments are images of [6, 8].
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for any parameter value in the middle interval t ∈ [uk+m, uk+m+1], a point on the curve
segment specified by the m + 1 control points di, di+1, . . . , di+m (where di is mapped onto
uk+1), is computed by repeated affine interpolation, as follows:

Using the mapping

t 7→ uk+m+j+1 − t

uk+m+j+1 − uk+j+1

di+j +
t− uk+j+1

uk+m+j+1 − uk+j+1

di+j+1,

mapping the interval [uk+j+1, uk+m+j+1] onto the line segment (di+j, di+j+1), where 0 ≤ j ≤
m − 1, we map t ∈ [uk+m, uk+m+1] onto the line segment (di+j, di+j+1), which gives us a
point dj,1. Then, we consider the new control polygon determined by the m points

d0, 1, d1, 1, . . . , dm−1, 1,

and we map affinely each of the m − 1 intervals [uk+j+2, uk+m+j+1] onto the line segment
(dj,1, dj+1, 1), where 0 ≤ j ≤ m − 2, and for t ∈ [uk+m, uk+m+1], we get a point dj,2 on
(dj,1, dj+1, 1). Note that each interval [uk+j+2, uk+m+j+1] now consists of m − 1 consecutive
subintervals, and that the leftmost interval [uk+2, uk+m+1] starts at knot uk+2, the immediate
successor of the starting knot uk+1 of the leftmost interval used at the previous stage. The
above round gives us a new control polygon determined by the m− 1 points

d0, 2, d1, 2, . . . , dm−2, 2,

and we repeat the procedure.

At every round, the number of consecutive intervals affinely mapped onto a line segment
of the current control polygon decreases by one, and the starting knot of the leftmost interval
used during this round is the (right) successor of the starting knot of the leftmost interval
used at the previous round, so that at the m-th round, we only have one interval, the middle
interval [uk+m, uk+m+1], the intersection of them original intervals [uk+j+1, uk+m+j+1], where
0 ≤ j ≤ m − 1. The point d0,m obtained during the m-th round is a point on the curve
segment.

Figure 6.2 illustrates the computation of the point corresponding to t = 7 on the spline
of the previous figure. These points are also shown as labels of polar values. For example, we
have d0,1 : 567, d1,1 : 678, d2,1 : 789, d0,2 : 677, d1,2 : 778, and d0,3 : 777. The interpolation
ratio associated with the point d0,1 is

7− 3

8− 3
=

4

5
,

the interpolation ratio associated with the point d1,1 is

7− 5

9− 5
=

2

4
=

1

2
,
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the interpolation ratio associated with the point d2,1 is

7− 6

11− 6
=

1

5
,

the interpolation ratio associated with the point d0,2 is

7− 5

8− 5
=

2

3
,

the interpolation ratio associated with the point d1,2 is

7− 6

9− 6
=

1

3
,

and the interpolation ratio associated with the point d0,3 is

7− 6

8− 6
=

1

2
.

We recognize the progressive version of the de Casteljau algorithm presented in section
5.3. The bookkeeping which consists in labeling control points using sequences of m consec-
utive knots becomes clearer: it is used to keep track of the consecutive intervals (on the knot
line) and how they are mapped onto line segments of the current control polygon. Figure
6.3 shows the construction of the Bézier control points of the five Bézier segments forming
this part of the spline.

We can now provide a better intuition for the use of multiple knots. Going back to the
previous example of the (portion of a) knot sequence

. . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . . ,

and the (portion of a) sequence of control points

. . . , d1, d2, d3, d4, d5, d6, d7, d8, . . . ,

we can see that these control points determine five curve segments, corresponding to the
intervals [3, 5], [5, 6], [6, 8], [8, 9], and [9, 11]. If we “squeeze” any of these intervals, say
[5, 6], to the empty interval [5, 5] this will have the effect that the corresponding curve
segment shrinks to a single point, and the result will be that the degree of continuity of
the junction between the curve segments associated with [3, 5] and [5, 8] (which used to be
[6, 8]) will be lower. If we also squeeze the interval [5, 8] to the empty interval, we are also
shrinking the corresponding curve segment to a single point. This time, the curve segments
corresponding to the intervals [3, 5] and [5, 9] (previously [8, 9]) will join with even less
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Figure 6.2: Part of a cubic spline with knot sequence . . . , 1, 2,3, 5,6, 8,9, 11,14, 15, . . ., and
construction of the point corresponding to t = 7. Thick segments are images of [6, 8].
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Figure 6.3: Part of a cubic spline with knot sequence . . . , 1, 2,3, 5,6, 8,9, 11,14, 15, . . ., and
some of its Bézier control points
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continuity, and in fact, now that 5 is a triple knot, we may not even have C1-continuity,
meaning that the tangents may not agree. The extreme is to squeeze one more interval, say
[5, 9] (previously [8, 9]), and now, we may even have a discontinuity at the parameter value
5, in the sense that the curve segments associated with [3, 5] and [5, 11] (previously [9, 11])
may not even join at the point associated with the knot 5.

Thus, we see how the knot multiplicity can be used to control the degree of continuity of
joins between curve segments.

We can now be more precise and prove some results showing that splines are uniquely
determined by de Boor control points (given a knot sequence).

6.2 Infinite Knot Sequences, Open B-Spline Curves

We begin with knot sequences. As usual, to distinguish between real numbers in R and
points in A, we will denote knots as points of the real affine line A, as u ∈ A (as explained
in section 5.4).

Definition 6.2.1. A knot sequence is a bi-infinite nondecreasing sequence 〈uk〉k∈Z of points
uk ∈ A (i.e. uk ≤ uk+1 for all k ∈ Z), such that every knot in the sequence has finitely many
occurrences. A knot uk in a knot sequence 〈uk〉k∈Z has multiplicity n (n ≥ 1) iff it occurs
exactly n (consecutive) times in the knot sequence. Given any natural number m ≥ 1, a
knot sequence has degree of multiplicity at most m+1 iff every knot has multiplicity at most
m + 1, i.e. there are at most m + 1 occurrences of identical knots in the sequence. Thus,
for a knot sequence of degree of multiplicity at most m+ 1, we must have uk ≤ uk+1 for all
k ∈ Z, and for every k ∈ Z, if

uk+1 = uk+2 = . . . = uk+n,

then 1 ≤ n ≤ m+1. A knot uk of multiplicity m+1 is called a discontinuity (knot). A knot
of multiplicity 1 is called a simple knot . A knot sequence 〈uk〉k∈Z is uniform iff uk+1 = uk+h,
for some fixed h ∈ R+.

We can now define spline (B-spline) curves.

Definition 6.2.2. Given any natural number m ≥ 1, and any knot sequence 〈uk〉k∈Z of
degree of multiplicity at most m+ 1, a piecewise polynomial curve of degree m based on the
knot sequence 〈uk〉k∈Z is a function F : A → E , where E is some affine space (of dimension
at least 2), such that, for any two consecutive distinct knots ui < ui+1, if ui+1 is a knot of
multiplicity n, the next distinct knot being ui+n+1 (since we must have ui+1 = . . . = ui+n <
ui+n+1), then the following condition holds:

1. The restriction of F to [ui, ui+1[ agrees with a polynomial curve Fi of polar degree m,
with associated polar form fi.
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A spline curve F of degree m based on the knot sequence 〈uk〉k∈Z is a piecewise polynomial
curve F : A → E , such that, for every two consecutive distinct knots ui < ui+1, the following
condition holds:

2. The curve segments Fi and Fi+n join with continuity (at least) Cm−n at ui+1, in the
sense of definition 5.5.1, where n is the multiplicity of the knot ui+1 (1 ≤ n ≤ m+ 1).

Thus, in particular, if ui+1 is a discontinuity knot, that is, a knot of multiplicity m+ 1,
then we have C−1-continuity, and Fi(ui+1) and Fi+n(ui+1) may differ. The set F (A) is called
the trace of the spline F .

Remarks:

(1) Note that by definition, F agrees with a polynomial curve Fi on the interval [ui, ui+1[,
and with a polynomial curve Fi+n on the interval [ui+1, ui+n+1[, so that the junction
knot is indeed ui+1. Thus, it is more convenient to index the curve segment on the
interval [ui, ui+1[ by the last occurrence of the knot p = ui in the knot sequence, rather
than its first occurrence.

(2) If we assume that there are no discontinuities, i.e. that every knot has multiplicity ≤ m,
then clause (1) can be simplified a little bit: we simply require that the restriction of
F to the closed interval [ui, ui+1] agrees with a polynomial curve Fi of polar degree
m. However, when ui+1 is a knot of multiplicity m+ 1, we want the spline function F
to be defined at ui+1, although possibly discontinuous. This is achieved by requiring
that the restriction of F to the interval [ui+1, ui+m+2[, open on the right , agrees with a
polynomial curve Fi+m+1. This ensures that F (ui+1) = Fi+m+1(ui+1). Since F agrees
with Fi on [ui, ui+1[, the limit F (ui+1−) of F (t) when t approaches ui+1 from below,
is equal to the limit of Fi(t) when t approaches ui+1 (from below), and thus,

F (ui+1−) = lim
t→ui+1, t<ui+1

F (t) = Fi(ui+1).

Thus, when ui+1 has multiplicity n ≤ m, we have

F (ui+1) = Fi(ui+1) = Fi+n(ui+1),

since we have at least C0-continuity.

(3) The number m+ 1 is often called the order of the B-spline curve.

We could have instead used intervals ]ui+1, ui+m+2], open on the left. The first option
seems the one used in most books. We could also have used a more symmetric approach,
where we require that the restriction of F to the open interval ]ui+1, ui+m+2[, agrees
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with a polynomial curve Fi+m+1, and by giving an arbitrary value to F (ui+1). In this
case, when ui+1 has multiplicity m+ 1, we would have

F (ui+1−) = lim
t→ui+1, t<ui+1

F (t) = Fi(ui+1),

and
F (ui+1+) = lim

t→ui+1, t>ui+1

F (t) = Fi+m+1(ui+1).

However, this would complicate the treatment of control points (we would need special
control points corresponding to the “dicontinuity values” F (ui+1)). For the curious
reader, we mention that the kind of discontinuity arising at a discontinuity knot ui+1,
are called a discontinuity of the first kind (see Schwartz, [71]). Practically, discontinu-
ities are rare anyway, and one can safely ignore these subtleties.

(4) Note that no requirements at all are placed on the joins of a piecewise polynomial
curve, which amounts to say that each join has continuity C−1 (but may be better).

(5) It is possible for a piecewise polynomial curve, or for a spline curve, to have Cm-
continuity at all joins: this is the case when F is a polynomial curve! In this case,
there is no advantage in viewing F as a spline.

The following figure represents a part of a cubic spline based on the uniform knot sequence

. . . , 0, 1, 2, 3, 4, 5, 6, 7, . . . .

For simplicity of notation, the polar values are denoted as triplets of consecutive knots
uiui+1ui+2, when in fact, they should be denoted as fk(ui, ui+1, ui+2), for some appropriate
k.

When considering part of a spline curve obtained by restricting our attention to a finite
subsequence of an infinite knot sequence, we often say that the spline has floating ends .
Figure 6.5 shows the construction of the control points for the three Bézier curve segments
constituting this part of the spline (with floating ends).

By lemma 5.5.2, the curve segments Fi and Fi+n join with continuity Cm−n at q = ui+1

(where 1 ≤ n ≤ m + 1), iff their polar forms fi : A
m → E and fi+n : A

m → E agree on all
multisets of points that contain at most m−n points distinct from q = ui+1, or equivalently,
iff the polar forms fi : A

m → E and fi+n : A
m → E agree on all multisets (supermultisets) of

m points from A containing the multiset

{ui+1, ui+2, . . . , ui+n} = {q, . . . , q︸ ︷︷ ︸
n

}.

Thus, the continuity conditions for joining curve segments forming a spline impose con-
straints on the polar forms of adjacent curve segments. In fact, two non-adjacent curve
segments Fi and Fj are still related to each other, as long as the number j − i of inter-
vening knots is at most m. As we will prove, the polar forms fi and fj must agree on all
supermultisets (of m elements) of the multiset {ui+1, ui+2, . . . , uj}.
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Figure 6.4: Part of a cubic spline with knot sequence . . . , 0, 1,2, 3,4, 5,6, 7, . . .



202 CHAPTER 6. B-SPLINE CURVES

b

b

b b

b b

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

012

122

222

123

234 345

456

223

233

334

333

344

445

444

455

556

555

567

Figure 6.5: Construction of part of a cubic spline with knot sequence . . . , 0, 1,2, 3,4, 5,6, 7, . . .



6.2. INFINITE KNOT SEQUENCES, OPEN B-SPLINE CURVES 203

Lemma 6.2.3. Given any m ≥ 1, and any knot sequence 〈uk〉k∈Z of degree of multiplicity
at most m+ 1, for any piecewise polynomial curve F of (polar) degree m based on the knot
sequence 〈uk〉k∈Z, the curve F is a spline iff the following condition holds:

For all i, j, with i < j ≤ i+m, ui < ui+1 and uj < uj+1, the polar forms fi and fj agree
on all multisets of m elements from A (supermultisets) containing the multiset of intervening
knots

{ui+1, ui+2, . . . , uj}.

Proof. If the polar forms fi and fj agree on all multisets of m elements from A containing
the multiset of intervening knots

{ui+1, ui+2, . . . , uj},

where i < j ≤ i +m, ui < ui+1 and uj < uj+1, then for any two adjacent line segments Fi

and Fi+n (1 ≤ n ≤ m), fi and fi+n agree on all multisets containing the multiset

{ui+1, ui+2, . . . , ui+n},

which by lemma 5.5.2, implies that the join at ui+1 = ui+n has continuity at least Cm−n.
When n = m + 1, the condition is vacuous, but that’s fine, since C−1-continuity does not
impose any continuity at all!

In the other direction, suppose that the curve segments Fi fit together to form a spline.
Consider any two curve segments Fi and Fj , where i < j ≤ i+m, ui < ui+1 and uj < uj+1.
Let n1, n2, . . . , nh be the multiplicities of the knots of the intervening sequence of knots

{ui+1, . . . , uj},

so that n1 + n2 + · · ·+ nh = j − i. We proceed by induction on h. Since Fi and Fi+n1 join
with Cm−n1-continuity at ui+1 = ui+n1 , by lemma 5.5.2, fi and fi+n1 agree on all multisets
containing the multiset

{ui+1, . . . , ui+n1}.
By the induction hypothesis, fi+n1 and fj agree on all multisets containing the multiset

{ui+n1+1, . . . , uj},

and by transitivity, fi and fj agree on all multisets containing the multiset

{ui+1, . . . , uj}.

The following figure shows part of a cubic spline corresponding to the knot sequence

. . . , r, s, u, v, t, . . .
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Figure 6.6: Part of a cubic spline with C2-continuity at the knots s, u, v
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Figure 6.7: Part of a cubic spline with C1-continuity at the knot u

with C2-continuity at the knots s, u, v. Recall that C2-continuity at the knots s, u, v means
that, if we let f, g, h, k denote the polar forms corresponding to the intervals [r, s], [s, u],
[u, v], and [v, t], then f and g agree on all (multiset) triplets including the argument s, g and
h agree on all triplets including the argument u, and h and k agree on all triplets including
the argument v:

The fact that a knot u of multiplicity 2 generally corresponds to a join with only C1-
continuity can be derived by the following reasoning. If we assume that the points labeled
f(r, r, r), f(r, r, s), f(r, s, u), f(s, u, v), g(u, v, t), k(v, t, t), and k(t, t, t) do not change, and if
we let u and v converge to a common value, in the limit, the curve segment between g(u, u, u)
and h(v, v, v) (displayed as a dashed curve) is contracted to the single point g(u, u, u) on
the line segment between f(s, u, v) = f(s, u, u) and g(u, v, t) = g(u, u, t) (since the polar
form h vanishes), and the two curve segments between f(s, s, s) and g(u, u, u), and between
k(v, v, v) and k(t, t, t), end up joining at the new point g(u, u, u) with different acceleration
vectors, that is, only with C1-continuity. The following figure illustrates this situation.

Note that C1-continuity at the double knot u corresponds to the fact that the polar forms
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Figure 6.8: Part of a cubic spline with C2-continuity at the knots s, u, v

g and k agree on all (multiset) triplets that include two copies of the argument u. Let us
now go back to our original figure showing part of a cubic spline corresponding to the knot
sequence

. . . , r, s, u, v, t, . . .

with C2-continuity at the knots s, u, v, and let us see what happens when the knot s becomes
a knot of multiplicity 3.

The fact that a knot s of multiplicity 3 generally corresponds to a join with only C0-
continuity can be derived by the following reasoning. As in the previous case, if we as-
sume that the points labeled f(r, r, r), f(r, r, s), f(r, s, u), f(s, u, v), g(u, v, t), k(v, t, t), and
k(t, t, t) do not change, and if we let s, u, and v converge to a common value, in the limit,
the two curve segments between f(s, s, s) and g(u, u, u) and between g(u, u, u) and h(v, v, v)
(displayed as dashed curves) are contracted to the single point f(s, u, v) = f(s, s, s) (since
the polar forms g and h vanish), and the two curve segments between f(r, r, r) and f(s, s, s)
and between k(v, v, v) and k(t, t, t) end up joining at f(s, u, v) = f(s, s, s) with different
tangents, that is, only with C0-continuity. The following figure illustrates this situation.
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Figure 6.9: Part of a cubic spline with C0-continuity at the triple knot s
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Note that C0-continuity at the triple knot s corresponds to the fact that the polar forms
f and k agree on the (multiset) triplet s, s, s.

If F is a spline curve of degree m, let us see what lemma 6.2.3 tells us about the values
of polar forms on multisets of arguments of the form

{uk+1, . . . , uk+m}.

Consider i < j such that k ≤ i < j ≤ k + m. Then, the multiset {ui+1, . . . , uj} is
a submultiset of the multiset {uk+1, . . . , uk+m}, and by lemma 6.2.3, fi and fj agree on
{uk+1, . . . , uk+m}.

The polar values fi(uk+1, . . . , uk+m) (where k ≤ i ≤ k +m), are called de Boor points ,
and they play an important role for splines. Basically, they play for splines the role that
Bézier control points play for polynomial curves. This is confirmed formally by the following
theorem, which can be viewed as a generalization of lemma 4.3.1. The proof is due to
Ramshaw.

Theorem 6.2.4. Given any m ≥ 1, and any knot sequence 〈uk〉k∈Z of degree of multiplicity
at most m + 1, for any bi-infinite sequence 〈dk〉k∈Z of points in some affine space E , there
exists a unique spline curve F : A → E , such that the following condition holds:

dk = fi(uk+1, . . . , uk+m),

for all k, i, where ui < ui+1 and k ≤ i ≤ k +m.

Proof. Assume that such a spline curve F exists. Let ui < ui+1 be two consecutive distinct
knots, and consider the sequence of 2m knots

〈ui−m+1, . . . , ui+m〉,

centered at the interval [ui, ui+1]. Since we have

ui−m+1 ≤ . . . ≤ ui < ui+1 ≤ . . . ≤ ui+m,

the sequence is progressive. Then, by theorem 5.3.2, there is a unique polynomial curve Fi

of polar degree m, such that

dk = fi(uk+1, . . . , uk+m),

for all k, where i−m ≤ k ≤ i.

Since the requirements of theorem 6.2.4 uniquely determine every curve segment Fi, we
have shown that the spline curve F is unique, if it exists. Thus, we need to show the existence
of such a spline curve. For this, we have to show that the curve segments Fi fit together in
the right way to form a spline with the required continuity conditions. We will use lemma
6.2.3. Let i, j, be such that i < j ≤ i+m, ui < ui+1 and uj < uj+1. We must show that the
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polar forms fi and fj agree on all multisets of m elements from A (supermultisets) containing
the multiset of intervening knots

{ui+1, . . . , uj}.

From the requirements of theorem 6.2.4, we know that

fi(uk+1, . . . , uk+m) = fj(uk+1, . . . , uk+m) = dk,

for k, with j − m ≤ k ≤ i. This means that fi and fj agree on the rows of the following
parallelogram:

uj−m+1 uj−m+2 . . . ui ui+1 . . . uj

uj−m+2 . . . ui ui+1 . . . uj uj+1

. . .
...

...
...

. . .

ui ui+1 . . . uj uj+1 . . . ui+m−1

ui+1 . . . uj uj+1 . . . ui+m−1 ui+m

Now, cut the middle j − i columns out of this parallelogram, and collapse the remaining
two triangles to form a smaller parallelogram.

Let l = m − j + i, and let gi : A
l → E and gj : A

l → E denote the symmetric multiaffine
functions of l arguments defined as follows:

gi(v1, . . . , vl) = fi(v1, . . . , vl, ui+1, . . . , uj),

and
gj(v1, . . . , vl) = fj(v1, . . . , vl, ui+1, . . . , uj),

for all v1, . . . , vl ∈ A. Proving that fi and fj agree on all supermultisets of {ui+1, . . . , uj}, is
equivalent to proving that gi = gj . Note that the sequence of 2l knots

〈uj−m+1, . . . , ui, uj+1, . . . , ui+m〉
is progressive, since each element of the left half is strictly less than each element of the right
half (since ui < ui+1 ≤ uj), and since fi and fj agree on the previous parallelogram, then gi
and gj agree on the l + 1 sequences associated with the progressive sequence

〈uj−m+1, . . . , ui, uj+1, . . . , ui+m〉,
which by theorem 5.3.2, implies that gi = gj, and thus, that fi = fj.

Given a knot ui in the knot sequence, such that ui < ui+1, the inequality k ≤ i ≤ k +m
can be interpreted in two ways. If we think of k as fixed, the theorem tells us which curve
segments Fi of the spline F are influenced by the specific de Boor point dk: the de Boor point
dk influences at most m+ 1 curve segments. This is achieved when all the knots are simple.
On the other hand, we can consider i as fixed, and think of the inequalities as i−m ≤ k ≤ i.
In this case, the theorem tells us which de Boor points influence the specific curve segment
Fi: there arem+1 de Boor points that influence the curve segment Fi. This does not depend
on the knot multiplicity.
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� Given a spline curve F : A → E , it is important to realize that F itself is generally not
the polar form of some (unique) symmetric multiaffine map, although for every knot ui

such that ui < ui+1, the curve segment Fi that is the restriction of F to [ui, ui+1[, is defined
by a unique symmetric multiaffine map. We can only say that F is a piecewise polar form.
Nevertheless, it is convenient to denote polar values fi(uk+1, . . . , uk+m), corresponding to
control points, simply as f(uk+1, . . . , uk+m), omitting the subscript i, and we will often do
so. We may even denote polar values fi(t1, . . . , tm) as f(t1, . . . , tm), when the index i is clear
from the context.

A clean way to handle this overloading problem is to define the notion of a validity
interval . Given a knot sequence 〈uk〉k∈Z of degree of multiplicity at most m + 1, for any
multiset of arguments {u1, . . . , um}, if we know that for some nonempty set S of knots, the
polar forms fi, where i ∈ S, agree on the multiset {u1, . . . , um}, we denote this common
value fi(u1, . . . , um) as fS(u1, . . . , um). According to this convention, when i < j ≤ i + m,
ui < ui+1 and uj < uj+1, the common value of fi and fj is denoted as

f{i,j}(ui+1, . . . , uj , tj−i+1, . . . , tm),

where tj−i+1, . . . , tm are arbitrary.

Although the notation fS is helpful, it is quite complex. We prefer using the notation
fI , where I is an open interval ]p, q[. We have to be a little careful to deal with knots
of multiplicity ≥ 2. Given a nonempty open interval I, for any multiset of arguments
{u1, . . . , um}, we define fI(u1, . . . , um) as the common value fS(u1, . . . , um), where

S = {i | ]ui, ui+1[ ∩ I 6= ∅},
provided that this common value makes sense. The interval I is called a validity interval .
Then,

f]ui,uj+1[(ui+1, . . . , uj, tj−i+1, . . . , tm)

is well defined iff ui < uj+1. In particular, the terms f]ui,ui+m+1[(ui+1, . . . , ui+m) (the de
Boor points) are always well defined. It is possible to introduce conventions for overloading
the notation, that is, omitting validity intervals in polar forms. Under some reasonable
conventions, validity intervals can be inferred automatically. Ramshaw introduced two such
conventions, tame overloading , and wild overloading . For details, the interested reader is
referred to Ramshaw [65].

Having considered the case of bi-infinite knot sequences, we will next consider what kinds
of adjustments are needed to handle finite knot sequences and infinite cyclic knot sequences.
These adjustments are minor.

6.3 Finite Knot Sequences, Finite B-Spline Curves

In the case of a finite knot sequence, we have to deal with the two end knots. A reasonable
method is to assume that the end knots have multiplicity m + 1. This way the first curve
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segment is unconstrained at its left end, and the last curve segment is unconstrained at its
right end. Actually, multiplicity m will give the same results, but multiplicity m+ 1 allows
us to view a finite spline curve as a fragment of an infinite spline curve delimited by two
discontinuity knots. Another reason for letting the end knots have multiplicity m+1 is that
it is needed for the inductive definition of B-spline basis functions (see section 6.7).

Definition 6.3.1. Given any natural numbers m ≥ 1 and N ≥ 0, a finite knot sequence of
degree of multiplicity at most m + 1 with N intervening knots is any finite nondecreasing
sequence 〈uk〉−m≤k≤N+m+1, such that u−m < uN+m+1, and every knot uk has multiplicty at
most m + 1. A knot uk of multiplicity m + 1 is called a discontinuity (knot). A knot of
multiplicity 1 is called a simple knot .

Given a finite knot sequence 〈uk〉−m≤k≤N+m+1, of degree of multiplicity at most m+1 and
with N intervening knots, we now define the number L of subintervals in the knot sequence.
If N = 0, the knot sequence 〈uk〉−m≤k≤m+1 consists of 2(m+ 1) knots, where u−m and um+1

are distinct and of multiplicity m+ 1, and we let L = 1. If N ≥ 1, then we let L− 1 ≥ 1 be
the number of distinct knots in the sequence 〈u1, . . . , uN〉. If the multiplicities of the L− 1
distinct knots in the sequence 〈u1, . . . , uN〉 are n1, . . . , nL−1 (where 1 ≤ ni ≤ m + 1, and
1 ≤ i ≤ L− 1), then

N = n1 + · · ·+ nL−1,

and the knot sequence 〈uk〉−m≤k≤N+m+1 consists of 2(m+1)+N = 2(m+1)+n1+ · · ·+nL−1

knots, with L+ 1 of them distinct.

� Given a finite sequence, when N ≥ 1 and L ≥ 2, if 〈v1, . . . , vL−1〉 is the subsequence of
leftmost occurrences of distinct knots in the sequence 〈u1, . . . , uN〉, in general, vi 6= ui.

Instead, if the multiplicity of each knot vi is ni (where 1 ≤ i ≤ L− 1, and 1 ≤ ni ≤ m+ 1),
then vi = un1+···+ni−1+1, with the convention that n1 + · · ·+ n0 = 0 when i− 1 = 0.

A finite knot sequence of length 2(m+ 1) +N containing L+ 1 distinct knots, looks as
follows:

u−m, . . . , u0︸ ︷︷ ︸
m+1

, u1, . . . , un1︸ ︷︷ ︸
n1

, un1+1, . . . , un1+n2︸ ︷︷ ︸
n2

, . . . , uN−nL−1+1, . . . , uN︸ ︷︷ ︸
nL−1

, uN+1, . . . , uN+m+1︸ ︷︷ ︸
m+1

,

where
N = n1 + · · ·+ nL−1.

The picture below gives a clearer idea of the knot multiplicities.

u−m, u1, un1+1, . . . , uN−nL−1+1, uN+1,
...

...
... . . .

...
...

u0 un1 un1+n2 . . . uN uN+m+1

m+ 1 n1 n2 . . . nL−1 m+ 1
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We can now define finite B-spline curves based on finite knot sequences. Note that
some authors use the terminology closed B-splines for such B-splines. We do not favor this
terminology, since it is inconsistent with the traditional meaning of a closed curve. Instead,
we propose to use the terminology finite B-splines .

Definition 6.3.2. Given any natural numbers m ≥ 1 and N ≥ 0, given any finite knot se-
quence 〈uk〉−m≤k≤N+m+1 of degree of multiplicity at mostm+1 and withN intervening knots,
a piecewise polynomial curve of degree m based on the finite knot sequence 〈uk〉−m≤k≤N+m+1

is a function F : [u0, uN+1] → E , where E is some affine space (of dimension at least 2), such
that the following condition holds:

1. If N = 0, then F : [u0, um+1] → E agrees with a polynomial curve F0 of polar degree
m, with associated polar form f0. When N ≥ 1, then for any two consecutive distinct
knots ui < ui+1, if 0 ≤ i ≤ N −nL−1, then the restriction of F to [ui, ui+1[ agrees with
a polynomial curve Fi of polar degree m with associated polar form fi, and if i = N ,
then the restriction of F to [uN , uN+1] agrees with a polynomial curve FN of polar
degree m, with associated polar form fN .

A spline curve F of degree m based on the finite knot sequence 〈uk〉−m≤k≤N+m+1 or for
short, a finite B-spline, is a piecewise polynomial curve F : [u0, uN+1] → E , such that, when
N ≥ 1 and L ≥ 2, for every two consecutive distinct knots ui < ui+1 (where 0 ≤ i ≤
N − nL−1), if ui+1 has multiplicity n ≤ m+ 1, the following condition holds:

2. The curve segments Fi and Fi+n join with continuity (at least) Cm−n at ui+1, in the
sense of definition 5.5.1.

The set F ([u0, uN+1]) is called the trace of the finite spline F .

Remark: The remarks about discontinuities made after definition 6.2.2 also apply. However,
we also want the last curve segment FN to be defined at uN+1. Note that if we assume that
u0 and uN+1 have multiplicity m, then we get the same curve. However, using multiplicity
m+1 allows us to view a finite spline as a fragment of an infinite spline. Another reason for
letting the end knots have multiplicity m+ 1 is that it is needed for the inductive definition
of B-spline basis functions (see section 6.7).

Note that a spline curve defined on the finite knot sequence

u−m, u1, un1+1, . . . , uN−nL−1+1, uN+1,
...

...
... . . .

...
...

u0 un1 un1+n2 . . . uN uN+m+1

m+ 1 n1 n2 . . . nL−1 m+ 1

where
N = n1 + · · ·+ nL−1,
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Figure 6.10: A cubic spline with knot sequence 1, 1,1, 1,2, 3,4, 5,6, 6, 6, 6

consists of L curve segments, F0, Fn1 , . . ., Fn1+···+nL−1
= FN .

Let us look at some examples of splines.

To simplify notation, in the following figures representing cubic splines, polar values are
denoted as triplets of consecutive knots uiui+1ui+2, when in fact, they should be denoted as
fk(ui, ui+1, ui+2), for some appropriate k.

Figure 6.11 shows the construction of the control points for the Bézier curve segments
constituting the previous spline.

Figure 6.12 shows another cubic spline with knot sequence

0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7.

Figure 6.13 shows the construction of the control points for the Bézier curve segments
constituting the previous spline.
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Figure 6.11: Construction of a cubic spline with knot sequence 1, 1,1, 1,2, 3,4, 5,6, 6,6, 6
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Figure 6.12: A cubic spline with knot sequence 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7
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Figure 6.13: Construction of a cubic spline with knot sequence 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7
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The next two figures show a cubic spline with knot sequence

0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 11, 11, 12, 13, 13, 13, 13,

and the construction of the control points of the Bézier curves that constitute the spline.

The example in figure 6.16 shows a cubic spline based on the non-uniform knot sequence

0, 0, 0, 0, 1, 2, 3, 5, 6, 7, 8, 8, 9, 10, 10, 10, 10

with intervening double knot 8.

Since the knot sequence is non-uniform, the interpolation ratios vary. For example, the
nodes labeled 112, 122, 223, 233, 335, 355, 556, 566, 667, 677, 222, 333, 555, and 666,
correspond to the ratios 1/3, 2/3, 1/4, 1/2, 1/4, 3/4, 1/2, 3/4, 1/3, 2/3, 1/2, 1/3, 2/3, 1/2.

The non-uniformity of the knot sequence causes the Bézier control points 333 and 555 to
be pulled towards the edges of the control polygon, and thus, the corresponding part of the
spline is also pulled towards the control polygon. We now consider closed B-spline curves
over cyclic knot sequences.

6.4 Cyclic Knot Sequences, Closed (Cyclic) B-Spline

Curves

First, we define cyclic knot sequences.

Definition 6.4.1. A cyclic knot sequence of period L, cycle length N , and period size T ,
is any bi-infinite nondecreasing sequence 〈uk〉k∈Z of points uk ∈ A (i.e. uk ≤ uk+1 for all
k ∈ Z), where L,N, T ∈ N, L ≥ 2, and N ≥ L, such that there is some subsequence

〈uj+1, . . . , uj+N〉

of N consecutive knots containing exactly L distinct knots, with multiplicities n1, . . . , nL,
uj+N < uj+N+1, and uk+N = uk + T , for every k ∈ Z. Note that we must have N =
n1 + · · · + nL (and ni ≥ 1). Given any natural number m ≥ 1, a cyclic knot sequence of
period L, cycle length N , and period size T , has degree of multiplicity at most m, iff every
knot has multiplicity at most m.

As before, a knot sequence (finite, or cyclic) is uniform iff uk+1 = uk + h, for some fixed
h ∈ R+.
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Figure 6.18: A cyclic knot sequence

A cyclic knot sequence of period L, cycle length N , and period size T is completely
determined by a sequence of N + 1 consecutive knots, which looks as follows (assuming for
simplicity that the index of the starting knot of the cycle that we are looking at is k = 1)

. . . , u1, . . . , un1︸ ︷︷ ︸
n1

, un1+1, . . . , un1+n2︸ ︷︷ ︸
n2

, . . . , un1+···+nL−1+1, . . . , uN︸ ︷︷ ︸
nL

, uN+1, . . . ,

or showing the knot multiplicities more clearly, as

. . . , u1, un1+1, . . . , uN−nL+1, uN+1, . . .
...

... . . .
...

...
un1 un1+n2 . . . uN uN+n1

n1 n2 . . . nL n1

where

N = n1 + · · ·+ nL, uN < uN+1,

and uk+N = uk + T , for every k ∈ Z. Observe that we can think of the knots as labeling N
points distributed on a circle, where any two knots uk+N and uk + T label the same point.
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We will see when we define closed spline curves that it does not make sense to allow
knots of multiplicity m+ 1 in a cyclic knot sequence. This is why the multiplicity of knots
is at most m.

The following is an example of a cyclic knot sequence of period 3, cycle length N = 3,
and period size 5:

. . . , 1, 3, 4, 6, 8, 9, 11, 13, . . . .

Another example of a cyclic knot sequence of period 4, cycle length N = 5, and period size
6 is:

. . . , 1, 2, 2, 5, 6, 7, 8, 8, 11, 12, 13, . . . .

We now define B-spline curves based on cyclic knot sequences. Some authors use the
terminology cyclic B-splines , and we will also call them closed B-splines .

Definition 6.4.2. Given any natural number m ≥ 1, given any cyclic knot sequence 〈uk〉k∈Z
of period L, cycle length N , period size T , and of degree of multiplicity at most m, a
piecewise polynomial curve of degree m based on the cyclic knot sequence 〈uk〉k∈Z is a function
F : A → E , where E is some affine space (of dimension at least 2), such that, for any two
consecutive distinct knots ui < ui+1, if ui+1 is a knot of multiplicity n, the next distinct knot
being ui+n+1, then the following condition holds:

1. The restriction of F to [ui, ui+1] agrees with a polynomial curve Fi of polar degree m,
with associated polar form fi, and Fi+N (t+ T ) = Fi(t), for all t ∈ [ui, ui+1].

A spline curve F of degree m based on the cyclic knot sequence 〈uk〉k∈Z or for short, a
closed (or cyclic) B-spline, is a closed piecewise polynomial curve F : A → E , such that, for
every two consecutive distinct knots ui < ui+1, the following condition holds:

2. The curve segments Fi and Fi+n join with continuity (at least) Cm−n at ui+1, in the
sense of definition 5.5.1, where n is the multiplicity of the knot ui+1 (1 ≤ n ≤ m).

The set F (A) is called the trace of the closed spline F .

Remarks:

(1) Recall that a cyclic knot sequence of period L, cycle length N , and period size T ,
satisfies the property that uk+N = uk + T , for every k ∈ Z. We must have ui+N =
ui + T , ui+1+N = ui+1 + T , and thus, the curve segment Fi+N is defined on the
interval [ui + T, ui+1 + T ], and it makes sense to require the periodicity condition
Fi+N(t+ T ) = Fi(t), for all t ∈ [ui, ui+1].

(2) In the case of a closed spline curve, it does not make sense to allow discontinuities,
because if we do, we obtain a spline curve with discontinuities, which is not a closed
curve in the usual mathematical sense. Thus, we allow knots of multiplicity at most
m (rather than m+ 1). When every knot is simple, we have L = N .
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Note that a closed spline curve based on the following cyclic knot sequence of period L,
cycle length N , and period size T ,

. . . , u1, un1+1, . . . , uN−nL+1, uN+1, . . .
...

... . . .
...

...
un1 un1+n2 . . . uN uN+n1

n1 n2 . . . nL n1

where
N = n1 + · · ·+ nL, uN < uN+1,

and uk+N = uk + T for every k ∈ Z, consists of L curve segments (the period of the knot
sequence). Some examples of closed splines are given next.

The example in figure 6.19 shows a closed cubic spline based on the uniform cyclic knot
sequence

. . . , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, . . .

of period L = 16, cycle length N = 16, and period size T = 16. As usual, for simplicity
of notation, the control points are denoted as triplets of consecutive knots uiui+1ui+2. The
cyclicity condition is

fk(ui, ui+1, ui+2) = fk+16(ui + 16, ui+1 + 16, ui+2 + 16),

which we write more simply as

uiui+1ui+2 = (ui + 16)(ui+1 + 16)(ui+2 + 16).

Since the knot sequence is uniform, all the interpolation ratios are equal to 1/3, 2/3, or
1/2.

The example in figure 6.21 shows a closed cubic spline based on the non-uniform cyclic
knot sequence

. . . ,−3,−2, 1, 3, 4, 5, 6, 9, 11, 12, . . .

of period L = 5, cycle length N = 5, and period size T = 8. As usual, for simplicity of
notation, the control points are denoted as triplets of consecutive knots uiui+1ui+2. The
cyclicity condition is

fk(ui, ui+1, ui+2) = fk+5(ui + 8, ui+1 + 8, ui+2 + 8),

which we write more simply as

uiui+1ui+2 = (ui + 8)(ui+1 + 8)(ui+2 + 8).
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Figure 6.19: A closed cubic spline with cyclic knot sequence
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Figure 6.20: Construction of a closed cubic spline with cyclic knot sequence
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Figure 6.21: Another cubic spline with cyclic knot sequence
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Figure 6.22: Construction of another closed cubic spline

Because the knot sequence is non-uniform, the interpolation ratios vary. The interpola-
tion ratios for the nodes labeled 113, 133, 334, 344, 445, 455, 556, 566, 669, −2 11 = 699,
111, 333, 444, 555, 666, are 1/3, 5/6, 1/2, 3/4, 1/3, 2/3, 1/5, 2/5, 1/6, 2/3, 3/5, 2/3, 1/2,
1/2, 1/4.

It is easy to show that lemma 6.2.3 can be simply modified to hold for finite spline curves,
and for closed spline curves. We can also modify theorem 6.2.4 as follows.

Theorem 6.4.3. (1) Given any m ≥ 1, and any finite knot sequence 〈uk〉−m≤k≤N+m+1 of
degree of multiplicity at most m+ 1, for any sequence 〈d−m, . . . , dN〉 of N +m+ 1 points in
some affine space E , there exists a unique spline curve F : [u0, uN+1] → E , such that

dk = fi(uk+1, . . . , uk+m),
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for all k, i, where −m ≤ k ≤ N , ui < ui+1, and k ≤ i ≤ k +m.

(2) Given any m ≥ 1, and any finite cyclic knot sequence 〈uk〉k∈Z of period L, cycle
length N , period size T , and of degree of multiplicity at most m, for any bi-infinite periodic
sequence 〈dk〉k∈Z of period N of points in some affine space E , i.e., a sequence such that
dk+N = dk for all k ∈ Z, there exists a unique closed spline curve F : A → E , such that

dk = fi(uk+1, . . . , uk+m),

for all k, i, where ui < ui+1 and k ≤ i ≤ k +m.

Proof. (1) The finite knot sequence is of the form

u−m, . . . , u0︸ ︷︷ ︸
m+1

, u1, . . . , un1︸ ︷︷ ︸
n1

, un1+1, . . . , un1+n2︸ ︷︷ ︸
n2

, . . . , un1+···+nL−2+1, . . . , uN︸ ︷︷ ︸
nL−1

, uN+1, . . . , uN+m+1︸ ︷︷ ︸
m+1

,

where N = n1 + · · · + nL−1, and it consists of 2(m + 1) + N knots. Note that there are
(2(m+1)+N)−m+1 = m+N +3 subsequences of m consecutive knots in the entire knot
sequence. Assume that a spline satisfying conditions (1) exists. Observe that

d−m = f0(u−m+1, . . . , u0),

and
dN = fN(uN+1, . . . , uN+m),

and since the first and the last knot have multiplicity m+ 1, this means that the sequences
〈u−m, . . . , u−1〉 and 〈uN+2, . . . , uN+m+1〉 do not correspond to any control points (but this
is fine!). Also observe that there are m+N + 1 subsequences of m consecutive knots in the
knot sequence 〈u−m+1, . . . , uN+m〉. Let ui < ui+1 be two consecutive distinct knots in the
sequence 〈u−m+1, . . . , uN+m〉, and consider the sequence of 2m knots

〈ui−m+1, . . . , ui+m〉,

centered at the interval [ui, ui+1]. The rest of the proof is similar to the proof of theorem
6.2.4. Since there are m+N + 1 subsequences of m consecutive knots in the knot sequence
〈u−m+1, . . . , uN+m〉, there are indeed m+N + 1 control points associated with the original
knot sequence.

(2) It will be enough to consider a cycle of the knot sequence, say

. . . , u1, . . . , un1︸ ︷︷ ︸
n1

, un1+1, . . . , un1+n2︸ ︷︷ ︸
n2

, . . . , un1+···+nL−1+1, . . . , uN︸ ︷︷ ︸
nL

, uN+1, . . . ,

where
N = n1 + · · ·+ nL uN < uN+1,

and uk+N = uk + T , for every k ∈ Z. If a closed spline curve exists, the proof of theorem
6.2.4 applied to the distinct knots in the above cycle shows that the curve segments Fi
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are uniquely determined, and that the periodicity condition on curve segments, namely,
the condition Fi+N(t+ T ) = Fi(t), for all t ∈ [ui, ui+1], implies that the sequence of control
points dk = fi(uk+1, . . . , uk+m) is periodic of period N . Conversely, given a periodic sequence
〈dk〉k∈Z of control points with period N , the proof of theorem 6.2.4 applied to the distinct
knots in the knot sequence shows that the curve segments Fi are uniquely defined and fit
well together for joining knots, and since the cycle length N of the knot sequence agrees
with the periodicity N of the sequence of control points, and ui+N = ui + T , we have
Fi+N(t + T ) = Fi(t), for all t ∈ [ui, ui+1].

Remark: Theorem 6.4.3 (1), shows that the first and the last knots u−m and uN+m+1 can be
safely ignored. Indeed, they do not contribute to any control points. Thus, from a practical
point of view, we can assume that u0 and uN+1 have multiplicity m.

We now reconsider the de Boor algorithm, and we present the very useful “knot insertion”
method, and look at some properties of spline curves.

6.5 The de Boor Algorithm

In section 5.3, we presented the progressive version of the de Casteljau algorithm. Its rela-
tionship to spline curves is that, given a knot sequence 〈uk〉 (infinite, finite, or cyclic), and
a sequence 〈dk〉 of control points (corresponding to the nature of the knot sequence), given
any parameter t ∈ A (where t ∈ [u0, uN+1], in case of a finite spline), in order to compute
the point F (t) on the spline curve F determined by 〈uk〉 and 〈dk〉, we just have to find the
interval [uI , uI+1] for which uI ≤ t < uI+1, and then to apply the progressive version of the
de Casteljau algorithm, starting from the m + 1 control points indexed by the sequences
〈uI−m+k, . . . , uI+k−1〉, where 1 ≤ k ≤ m+ 1.

As in section 5.3, let us assume for simplicity that I = m, since the indexing will be a bit
more convenient. Indeed, in this case [um, um+1] is the middle of the sequence 〈u1, . . . , u2m〉
of length 2m. For the general case, we translate all knots by I −m.

Recall that F (t) = f(t, . . . , t) is computed by iteration as the point b0,m determined by
the inductive computation

bk,j =

(
um+k+1 − t

um+k+1 − uk+j

)
bk,j−1 +

(
t− uk+j

um+k+1 − uk+j

)
bk+1,j−1,

where

bk,j = f(t
j
uk+j+1 . . . um+k),

for 1 ≤ j ≤ m, 0 ≤ k ≤ m− j, and with bk,0 = f(uk+1, . . . , um+k) = dk, for 0 ≤ k ≤ m.
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The computation proceeds by rounds, and during round j, the points b0,j , b1,j , . . . , bm−j,j

are computed. Such a computation can be conveniently represented in the following trian-
gular form:

1 . . . j − 1 j . . . m− r . . . m
b0,0

b0,1

b1,0
. . .

b0,j−1
... b0,j

bk,j−1
...

. . .

bk,j b0,m−r

bk+1,j−1
...

... bm−r−j,j
... b0,m

bm−r−j+1,j−1
... br,m−r

bm−r−1,1
...

bm−r,0 bm−j,j
... bm−j+1,j−1

...
bm−1,0

bm−1,1

bm,0

If t = um and the knot um has multiplicity r (1 ≤ r ≤ m), we notice that

b0,m−r = b0,m−r+1 = . . . = b0,m,

because b0,m−r = f(t
m−r

um−r+1 . . . um) = F (t), since um is of multiplicity r, and t =
um−r+1 = . . . = um. Thus, in this case, we only need to start with the m − r + 1 con-
trol points b0,0, . . . , bm−r,0, and we only need to construct the part of the triangle above the
ascending diagonal

bm−r,0, bm−r−1,1, . . . , b0,m−r.

In order to present the de Boor algorithm, it is convenient to index the points bk,j dif-
ferently. First, we will label the starting control points as d1, 0, . . . , dm+1, 0, and second, for
every round j, rather than indexing the points on the j-th column with an index k always
starting from 0, and running up to m−j, it will be convenient to index the points in the j-th
column with an index i starting at j+1, and always ending at m+1. Thus, at round j, the
points b0,j , b1,j , . . . , bk,j , . . . , bm−j,j , indexed using our original indexing, will correspond the
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to the points dj+1,j, dj+2,j, . . . , dk+j+1,j, . . . , dm+1,j, under our new indexing. Rewriting the
triangular array representing the computation with our new indexing, we get the following:

1 . . . j − 1 j . . . m− r . . . m
d1,0

d2,1

d2,0
. . .

dj,j−1
... dj+1,j

dk+j,j−1
...

. . .

dk+j+1,j dm+1−r,m−r

dk+j+1,j−1
...

... dm+1−r,j
... dm+1,m

dm+1−r,j−1
... dm+1,m−r

dm+1−r,1
...

dm+1−r,0 dm+1,j
... dm+1,j−1

...
dm,0

dm+1,1

dm+1,0

As we can easily see, the inductive relation giving dk+j+1,j in terms of dk+j+1,j−1 and
dk+j,j−1, is given by the equation:

dk+j+1,j =

(
um+k+1 − t

um+k+1 − uk+j

)
dk+j,j−1 +

(
t− uk+j

um+k+1 − uk+j

)
dk+j+1,j−1,

where 1 ≤ j ≤ m− r, 0 ≤ k ≤ m− r− j, and with dk+1,0 = dk, when 0 ≤ k ≤ m− r, where
r is the multiplicity of um when t = um, and r = 0 otherwise. Letting i = k + j + 1, the
above equation becomes

di,j =

(
um+i−j − t

um+i−j − ui−1

)
di−1,j−1 +

(
t− ui−1

um+i−j − ui−1

)
di,j−1,

where 1 ≤ j ≤ m− r, j + 1 ≤ i ≤ m+ 1− r, and with di,0 = di−1, when 1 ≤ i ≤ m+ 1− r.
The point F (t) on the spline curve is dm+1−r,m−r.

Finally, in order to deal with the general case where t ∈ [uI , uI+1[, we translate all the
knot indices by I −m, which does not change differences of indices, and we get the equation
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di,j =

(
um+i−j − t

um+i−j − ui−1

)
di−1,j−1 +

(
t− ui−1

um+i−j − ui−1

)
di,j−1,

where 1 ≤ j ≤ m − r, I − m + j + 1 ≤ i ≤ I + 1 − r, and with di,0 = di−1,
when I − m + 1 ≤ i ≤ I + 1 − r, where r is the multiplicity of the knot uI

when t = uI , and r = 0 when uI < t < uI+1 (1 ≤ r ≤ m).

The point F (t) on the spline curve is dI+1−r,m−r. This is the de Boor algorithm. Note
that other books often use a superscript for the “round index” j, and write our di,j as dji .
The de Boor algorithm can be described as follows in “pseudo-code”:

begin
I = max{k | uk ≤ t < uk+1};
if t = uI then r := multiplicity(uI) else r := 0 endif;
for i := I −m+ 1 to I + 1− r do
di,0 := di−1

endfor;
for j := 1 to m− r do
for i := I −m+ j + 1 to I + 1− r do

di,j :=

(
um+i−j−t

um+i−j−ui−1

)
di−1,j−1 +

(
t−ui−1

um+i−j−ui−1

)
di,j−1

endfor
endfor;
F (t) := dI+1−r,m−r

end

6.6 The de Boor Algorithm and Knot Insertion

The process of knot insertion consists of inserting a knot w into a given knot sequence without
altering the spline curve. The knot w may be new or may coincide with some existing knot
of multiplicity r < m, and in the latter case, the effect will be to increase the degree of
multiplicity of w by 1. Knot insertion can be used either to construct new control points,
Bézier control points associated with the curve segments forming a spline curve, and even
for computing a point on a spline curve.

If I is the largest knot index such that uI ≤ w < uI+1, inserting the knot w will
affect the m − 1 − r control points f(uI−m+k+1, . . . , uI+k) associated with the sequences
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〈uI−m+k+1, . . . , uI+k〉 containing the subinterval [uI , uI+1], where 1 ≤ k ≤ m − 1 − r, and
where r is the multiplicity of uI if w = uI (with 1 ≤ r < m), and r = 0 if uI < w:

. . . , uI−m+2, . . . , uI−r, uI−r+1, . . . , uI , uI+1, . . . , uI+m−1−r, . . . , uI+m−1, . . . .

For example, given the knot sequence

. . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . . ,

insertion of the knot 7 yields the knot sequence

. . . , 1, 2, 3, 5, 6, 7, 8, 9, 11, 14, 15, . . . ,

for which the two polar values f(568) and f(689) no longer exist.

After insertion of w, we get the new sequence (vk), where vk = uk, for all k ≤ I, vI+1 = w,
and vk+1 = uk, for all k ≥ I + 1:

. . . , vI−m+2, . . . , vI−r, vI−r+1, . . . , vI , vI+1, vI+2, . . . , vI+m−r, . . . , vI+m, . . . .

Thus, we need to compute the m− r new control points

f(vI−m+k+1, . . . , vI+1, . . . , vI+k),

which are just the polar values corresponding to the m−r subsequences of m−1 consecutive
subintervals 〈vI−m+k+1, . . . , vI+1, . . . , vI+k〉, where 1 ≤ k ≤ m− r (w = vI+1 belongs to one
of these subintervals). For example, after insertion of the knot 7 in the knot sequence

. . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . . ,

we have the knot sequence

. . . , 1, 2, 3, 5, 6, 7, 8, 9, 11, 14, 15, . . . ,

and the three polar values f(567), f(678), and f(789), need to be computed.

We can use the de Boor algorithm to compute the new m − r control points. In fact,
note that these points constitute the first column obtained during the first round of the de
Boor algorithm. Thus, we can describe knot insertion in “pseudo-code”, as follows:

begin
I = max{k | uk ≤ w < uk+1};
if w = uI then r := multiplicity(uI) else r := 0 endif;
for i := I −m+ 1 to I + 1− r do
di,0 := di−1

endfor;
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for i := I −m+ 2 to I + 1− r do

di,1 :=

(
um+i−1−w

um+i−1−ui−1

)
di−1,0 +

(
w−ui−1

um+i−1−ui−1

)
di,0

endfor
return 〈dI−m+2,1, . . . , dI+1−r,1〉

end

Note that evaluation of a point F (t) on the spline curve amounts to repeated knot
insertions: we perform m− r rounds of knot insertion, to raise the original multiplicity r of
the knot t to m (again, r = 0 if t is distinct from all existing knots).

Figure 6.23 illustrates the process of inserting the knot t = 7, in the knot sequence

. . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . . .

The interpolation ratios associated with the points d1,1, d2,1, and d3,1, are

7− 3

8− 3
=

4

5
,

7− 5

9− 5
=

2

4
=

1

2
,

7− 6

11− 6
=

1

5
.

Evaluation of the point F (7) on the spline curve above, consists in inserting the knot
t = 7 three times.

It is also possible to formulate a version of knot insertion where a whole sequence of knots,
as opposed to a single knot, is inserted. Such an algorithm often coined “Olso algorithm”,
is described in Cohen, Lyche, and Riesenfeld [20]. It is rather straightforward to give an
equivalent (and in fact, more illuminating) presentation of this algorithm in terms of polar
forms, in the spirit of our treatment of single knot insertion. We leave the formulation of such
an algorithm as an exercise to the reader (for help, one may consult Risler [68] or Barsky
[4]).

An amusing application of this algorithm is that it yields simple rules for inserting knots
at every interval midpoint of a uniform cyclic knot sequence. For instance, in the case of a
quadratic B-spline curve specified by a closed polygon of de Boor control points, for every
edge (bi, bi+1), create two new control points according to the formulae

b′2i+1 =
3

4
bi +

1

4
bi+1, and b′2i+2 =

1

4
bi +

3

4
bi+1.

This is Chaikin’s subdivision method [18]. For a cubic B-spline curve specified by a closed
polygon of de Boor control points, for any three consecutive control points bi, bi+1, and bi+2,
two new control points b′2i+1 and b′2i+2 are created according to the formulae

b′2i+1 =
1

2
bi +

1

2
bi+1, and b′2i+2 =

1

8
bi +

6

8
bi+1,+

1

8
bi+2.
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d2,2 : 677

d3,2 : 778

Figure 6.23: Part of a cubic spline with knot sequence . . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . .,
insertion of the knot t = 7
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Spline curves inherit a number of the properties of Bézier curves, which we now briefly
review.

Linear Precision. Given a finite knot sequence

u0, u1, u2, . . . , uN−1, uN , uN+1,

where u0 and uN+1 are of multiplicity m + 1, given the N + m + 1 knots (known as
Greville abscissas)

ξi =
1

m
(ui + ui+1 + · · ·+ ui+m−1),

where 0 ≤ i ≤ N + m, given a straight line of the form l(u) = au + b, if we read off
control points on this line at the Greville abscissas, the resulting spline curve reproduces
the straight line.

Strong convex hull property. Every point on the spline curve lies in the convex hull of
no more than m+ 1 nearby de Boor control points.

Variation diminishing property. The spline curve is not intersected by any straight line
more often than is the control polygon. An easy way to prove this property is to
use knot insertion. Insert every knot until it has multiplicity m. This is a variation
diminishing property, since it consists in affine interpolation steps. At that stage, the
control polygon consists of Bézier subpolygons, for which the variation diminishing
property has been established.

Local control. If one of de Boor control points is changed, this affectsm+1 curve segments.

Affine invariance. This property is inherited from the corresponding property of the Bézier
segments.

Endpoint interpolation. In case of a finite knot sequence

u0, u1, u2, . . . , uN−1, uN , uN+1,

where u0 and uN+1 are of multiplicity m + 1, a spline curve passes through the first
and the last de Boor control points.

6.7 Polar forms of B-Splines

Our multiaffine approach to spline curves led us to the de Boor algorithm, and we learned
that the current point F (t) on a spline curve F can be expressed as an affine combination
of its de Boor control points. The coefficients of the de Boor points can be viewed as real
functions of the real parameter t. In the traditional theory of Bézier curves, a Bézier curve
is viewed as the result of blending together its Bézier control points using the Bernstein
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basis polynomials as the weights. Similarly, a spline curve can be viewed as the result of
blending together its de Boor control points using certain piecewise polynomial functions
called B-splines as the weights. In the traditional theory, B-splines are usually not defined
in terms of the de Boor algorithm, but instead in terms of a recurrence relation, or by a
formula involving so-called divided differences. We will now show briefly how the multiaffine
approach to spline curves leads to the recurrence relation defining B-splines, thus showing
the equivalence with the traditional approach.

For simplicity, we will only consider an infinite knot sequence 〈uk〉k∈Z where every knot
has multiplicity at most m + 1, since the adaptations needed to handle a finite or a cyclic
knot sequence are quite trivial. B-splines are piecewise polynomial functions that can be
viewed as spline curves whose range is the affine line A. We define B-splines as follows.

Definition 6.7.1. Given an infinite knot sequence 〈uk〉k∈Z, where every knot has multiplicity
at most m+1, the j-th normalized (univariate) B-spline Bj,m+1 : A → A (or Nj,m+1 : A → A)
of order m+1, is the unique spline curve whose de Boor control points are the reals xi = δi,j,
where δi,j is the Kronecker delta symbol, such that δi,j = 1 iff i = j, and δi,j = 0 otherwise.

Remark: The normalized B-spline Bj,m+1 is actually of degree ≤ m, and it would perhaps
make more sense to denote it as Bj,m, but the notation Bj,m+1 is well established. Some
authors use the notation Nm

j .

Given any spline curve (really, any B-spline curve) F : A → E over the knot sequence
〈uk〉k∈Z (where E is an arbitrary affine space), and defined by the de Boor control points
〈dk〉k∈Z, where dk = f]uk,uk+m+1[(uk+1, . . . , uk+m), for every k such that uk < uk+1, for every
t ∈ [uk, uk+1[, we know that

Fk(t) =
∑

j

Bj,m+1,k(t) dj =
∑

j

Bj,m+1,k(t) f]uj ,uj+m+1[(uj+1, . . . , uj+m),

where Bj,m+1,k is the segment forming the spline curve Bj,m+1 over [uk, uk+1[. Thus, the
normalized B-splines Bj,m+1,k are indeed the weights used for blending the de Boor control
points of a spline curve.

Remark: The word “curve” is sometimes omitted when referring to B-spline curves, which
may cause a slight confusion with the (normalized) B-splines Bj,m+1 which are piecewise
polynomial functions, and not curves in the traditional sense. Thus, we tried to be careful
in keeping the word “curve” whenever necessary, to avoid ambiguities.

If we polarize both sides of the equation

Fk(t) =
∑

j

Bj,m+1,k(t) f]uj ,uj+m+1[(uj+1, . . . , uj+m),

we get

fk(t1, . . . , tm) =
∑

j

bj,m+1,k(t1, . . . , tm) f]uj ,uj+m+1[(uj+1, . . . , uj+m),
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where bj,m+1,k is the polar form of Bj,m+1,k. Recall that the above sum only contains at most
m + 1 nonzero factors, since Fk is influenced by the m + 1 de Boor control points dj only
when j ∈ [k − m, k]. Thus, for j outside [k − m, k], the polynomial Bj,m+1,k is null. Our
goal is to find a recurrence formula for bj,m+1,k.

The de Boor algorithm provides a method for computing the polar value fk(t1, . . . , tm)
from the de Boor control points f]uj ,uj+m+1[(uj+1, . . . , uj+m). Recall that the computation
can be arranged into a triangle. An interesting phenomenon occurs if we fix the mul-
tiset {t1, . . . , tm} and we compute fk(t1, . . . , tm), where we let k vary. We discover that
the triangles used in the computation of the polar values fk(t1, . . . , tm) overlap in large
parts, forming a kind of lattice with m + 1 rows, where each subsequent row is com-
puted from the row above by taking affine combinations controlled by one of the argu-
ments ti, as specified in the de Boor algorithm. The top row consists of the de Boor
control points dj = f]uj ,uj+m+1[(uj+1, . . . , uj+m), and the bottom row consists of the val-
ues yk = fk(t1, . . . , tm). If there are multiple knots, this lattice will have triangular notches
cut out of the bottom of it, whose heights correspond to knot multiplicity. More specifically,
if tk+1 = . . . = tk+n, then we have a computation triangle for fk and for fk+n, but there are
no triangles for fk+1 through fk+n−1, and this is what generates a triangular hole of height
n at the bottom of the lattice.

Figure 6.24 shows a portion of this lattice in the case of a cubic spline.

The nodes of the above lattice are labeled to reflect the computation of the polar value
fk(t1, . . . , tm). It is interesting to draw the same lattice in the case where the object space is
the affine line A, but this time, omitting the node labels, except that we label the top row
with the de Boor points xi (which are real numbers), and the bottom row with the polar
values yk.

We now show how this second lattice can be used to compute the polar value

bj,m+1,k(t1, . . . , tm)

associated with the normalized B-spline Bj,m+1.

The first method proceeds from the top-down, and it is just the de Boor algorithm.
Fixing an index j, if we let xi = δi,j for the top nodes, then the bottom row node yk gives the
value bj,m+1,k(t1, . . . , tm) (where uk < uk+1). Intuitively, we have computed the influence of
the chosen j-th de Boor control point on all segments fk of the spline, at the fixed multiset
{t1, . . . , tm}.

If we label the intermediate nodes as we do this top-down computation, we obtain another
interpretation for bj,m+1,k(t1, . . . , tm). It is easily seen that the label assigned to every node is
the sum of the products of the edge-weights along all descending paths from xj to that node,
and bj,m+1,k(t1, . . . , tm) is the sum of the products of the edge-weights along all descending

paths from xj to yk (there are

(
m

m− j

)
such paths).
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f]u0,u4[(u1, u2, u3) f]u1,u5[(u2, u3, u4) f]u2,u6[(u3, u4, u5) f]u3,u7[(u4, u5, u6)

u4 − t1
u4 − u1

t1 − u1

u4 − u1

u5 − t1
u5 − u2

t1 − u2

u5 − u2

u6 − t1
u6 − u3

t1 − u3

u6 − u3

f]u1,u4[(t1, u2, u3) f]u2,u5[(t1, u3, u4) f]u3,u6[(t1, u4, u5)

t2 − u1

u3 − u1

u4 − t2
u4 − u2

t2 − u2

u4 − u2
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f]u1,u3[(t1, t2, u2) f]u2,u4[(t1, t2, u3) f]u3,u5[(t1, t2, u4) f]u4,u6[(t1, t2, u5)

u3 − t3
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t3 − u2

u3 − u2

u4 − t3
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t3 − u3

u4 − u3

u5 − t3
u5 − u4

t3 − u4
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f]u2,u3[(t1, t2, t3) f]u3,u4[(t1, t2, t3) f]u4,u5[(t1, t2, t3)

Figure 6.24: Computation scheme of the de Boor algorithm when m = 3
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Figure 6.25: The computation lattice underlying the de Boor algorithm when m = 3
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The symmetry of this second approach suggests a bottom-up computation. This time,
we choose a fixed k with uk < uk+1, and we let yi = δi,k for the bottom nodes. We then
assign labels to the nodes in a bottom-up fashion, taking linear combinations as specified
by the edge-weights. Note that the combinations involved are no longer affine (as in the
top-down approach), but under the symmetric path interpretation, it is easy to see that the
label of the top row node xj is the polar value bj,m+1,k(t1, . . . , tm). Intuitively, the bottom-up
approach chooses a spline segment fk and computes how this segment is influenced by all de
Boor control points.

The bottom-up approach yields a recurrence relation for computing bj,m+1,k(t1, . . . , tm):
We have

bj,1,k() = δj,k,

bj,m+1,k(t1, . . . , tm) =
tm − uj

uj+m − uj

bj,m,k(t1, . . . , tm−1) +

uj+m+1 − tm
uj+m+1 − uj+1

bj+1,m,k(t1, . . . , tm−1).

If we set all ti to t, and drop the subscript k, we get the standard recurrence relation
defining B-splines, due to Mansfield, de Boor, and Cox:

Bj,1(t) =

{
1 if t ∈ [uj, uj+1[
0 otherwise,

Bj,m+1(t) =
t− uj

uj+m − uj
Bj,m(t) +

uj+m+1 − t

uj+m+1 − uj+1
Bj+1,m(t).

It is easily shown that Bj,m+1 is null outside [uj , uj+m+1[. A nice property about this
recurrence relation is that it is not necessary to know the degre m ahead of time if we want
to compute the B-spline Bj,m+1.

Remark: In the case of a finite spline based on a finite knot sequence 〈uk〉−m≤k≤N+m+1, the
above recurrence equations show the necessity for the knots u−m and uN+m+1. This justifies
the introduction of end knots u0 and uN+1 of multiplicity m+ 1.

One will observe that

bj,m+1,k(ti+1, . . . , ti+m) = δi,j.

If we consider the tensored version b̂⊙ j,m+1,k of the homogenized version b̂j,m+1,k of bj,m+1,k,

the above equations show that the sequence of symmetric tensors (̂b⊙ j,m+1,k)k−m≤j≤k is the
dual basis of the basis of symmetric tensors (uj+1 · · ·uj+m)k−m≤j≤k. Thus, the sequence of

tensors (̂b⊙ j,m+1,k)k−m≤j≤k forms a basis of the vector space
(⊙m

Â

)∗
, the dual space of

⊙m
Â. As a consequence, the polynomials (Bj,m+1,k)k−m≤j≤k are linearly independent.
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Figure 6.26: A cubic spline F with knot sequence 0, 0, 0, 0, 1, 2, 2, 2, 2

It is also possible to define B-splines using divided differences, or in various other ways.
For more on B-splines, the reader is referred to de Boor [22], Risler [68], Farin [32], Hoschek
and Lasser [45], or Piegl and Tiller [62].

We conclude this section by showing how the multiaffine approach to B-spline curves
yields a quick solution to the “degree-raising” problem. First, we consider an example.
Figure 6.26 shows a cubic spline curve F based on the knot sequence

0, 0, 0, 0, 1, 2, 2, 2, 2.

We would like to view this spline curve F as a spline curve G of degree 4. For this, we
need to find the polar form g of this spline curve G of degree 4, in terms of the polar form
f of the original cubic spline curve F . First, in order for the spline curve to retain the same
order of continuity, we must increase the degree of multiplicity of each knot by 1, so that
the quartic spline curve G is based on the knot sequence

0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2.

Then, it is immediate that the answer is

g(t1, t2, t3, t4) =
f(t1, t2, t3) + f(t1, t2, t4) + f(t1, t3, t4) + f(t2, t3, t4)

4
.

It is then an easy matter to compute the de Boor control points of the quartic spline curve
G. For example, we have

g(0, 0, 1, 1) =
2f(0, 0, 1) + 2f(0, 1, 1)

4
= f(0, 0.5, 1),
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Figure 6.27: Degree raising of a cubic spline as a quartic G

and

g(0, 1, 1, 2) =
2f(0, 1, 1) + 2f(0, 1, 2) + f(1, 1, 2)

4
.

The point g(0, 1, 1, 2) is easily seen to be the middle of the line segment between f(0, 1, 2)
and f(1, 1, 1). Figure 6.27 shows the de Boor control points of the quartic spline curve G
and its associated control polygon, in bold lines.

We note that the control polygon of G is “closer” to the curve. This is a general phe-
nomenon. It can be shown that as the degree is raised, the control polygon converges to the
spline curve.

In the general case, given a knot sequence sequence 〈uk〉k∈Z, where each knot is of mul-
tiplicity at most m + 1, given a spline curve F of degree m based on this knot sequence, it
is first necessary to form a new knot sequence 〈vk〉k∈Z, which consists of the knots in the se-
quence 〈uk〉k∈Z, with the multiplicity of each knot incremented by 1. Then, as in section 5.1,
the polar form gk of the spline curve segment G of degree m+ 1 over the interval [uv, vk+1],
where vk < vk+1, is related to the polar form fk of the original spline curve F of degree m
by the identity

gk(t1, . . . , tm+1) =
1

m+ 1

i=m+1∑

i=1

fk(t1, . . . , t̂i, . . . , tm+1),

where the hat over the argument ti indicates that this argument is omitted. We observe that
the above expression is indeed well defined, since if the left-hand side is well defined, then
the right-hand side is also well defined, since the multiplicity of every knot goes down by 1,
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as we move from F to G. Thus, the de Boor control points of the spline curve G of degree
m+ 1 are given by the formula

g]vl,vl+m+2[(vl+1, . . . , vl+m+1) =
1

m+ 1

i=m+1∑

i=1

f]uk,vk+m+1[(vl+1, . . . , v̂l+i, . . . , vl+m+1),

where [vl, vl+m+2] = [uk, uk+m+1], and where the hat over the argument vl+i indicates that
this argument is omitted. In general, it is not possible to obtain a more explicit formula, as
in the case of Bézier curves.

6.8 Cubic Spline Interpolation

We now consider the problem of interpolation by smooth curves. Unlike the problem of
approximating a shape by a smooth curve, interpolation problems require finding curves
passing through some given data points and possibly satisfying some extra constraints. There
are a number of interpolation problems, and we consider one of the most common problems
which can be stated as follows:

Problem 1: Given N+1 data points x0, . . . , xN , and a sequence ofN+1 knots u0, . . . , uN ,
with ui < ui+1 for all i, 0 ≤ i ≤ N − 1, find a C2 cubic spline curve F , such that F (ui) = xi,
for all i, 0 ≤ i ≤ N .

It is well known that Lagrange interpolation is not very satisfactory when N is greater
than 5, since Lagrange interpolants tend to oscillate in an undesirable manner. Thus, we turn
to spline curves. Cubic spline curves happen to do very well for a large class of interpolation
problems. In order to solve the above problem, we can try to find the de Boor control points
of a C2 cubic spline curve F based on the finite knot sequence

u0, u0, u0, u1, u2, . . . , uN−2, uN−1, uN , uN , uN .

We note that we are looking for a total of N + 3 de Boor control points d−1, . . . , dN+1.
Actually, since the first control point d−1 coincides with x0, and the last control point dN+1

coincides with xN , we are looking for N + 1 de Boor control points d0, . . . , dN . However,
using the de Boor evaluation algorithm, we only come up with N − 1 equations expressing
x1, . . . , xN−1 in terms of the N + 1 unknown variables d0, . . . , dN .

Figure 6.28 shows N + 1 = 7+ 1 = 8 data points, and a C2 cubic spline curve F passing
through these points, for a uniform knot sequence. The control points d0 and d7 = dN were
chosen arbitrarily.

Thus, the above problem has two degrees of freedom, and it is under-determined. To
remove these degrees of freedom, we can add various “end conditions”, which amounts to
the assumption that the de Boor control points d0 and dN are known. For example, we can
specify that the tangent vectors at x0 and xN be equal to some desired value. We now have
a system of N − 1 linear equations in the N − 1 variables d1, . . . , dN−1.
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Figure 6.28: A C2 cubic interpolation spline curve passing through the points x0, x1, x2, x3,
x4, x5, x6, x7

In order to derive this system of linear equations, we use the de Boor evaluation algorithm.
Note that for all i, with 1 ≤ i ≤ N − 1, the de Boor control point di corresponds to the
polar label ui−1 ui ui+1, xi corresponds to the polar label ui ui ui, and d−1, d0, dN and dN+1,
correspond respectively to u0 u0 u0, u0 u0 u1, uN−1 uN uN , and uN uN uN . For every i, with
1 ≤ i ≤ N−1, xi can be computed from di−1, di, di+1 using the following diagram representing
the de Boor algorithm:

Thus, for all i, 1 ≤ i ≤ N − 1, we have

di−1,2 =
ui+1 − ui

ui+1 − ui−2

di−1 +
ui − ui−2

ui+1 − ui−2

di,

di,1 =
ui+2 − ui

ui+2 − ui−1

di +
ui − ui−1

ui+2 − ui−1

di+1,

xi =
ui+1 − ui

ui+1 − ui−1

di−1,2 +
ui − ui−1

ui+1 − ui−1

di,1.

From the above formulae, we get

xi =
αi

ui+1 − ui−1
di−1 +

βi

ui+1 − ui−1
di +

γi
ui+1 − ui−1

di+1,
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bc

bc

bc

bc bcb

di−1 : ui−2 ui−1 ui

di : ui−1 ui ui+1

di+1 : ui ui+1 ui+2

di−1,2 : ui−1 ui ui di,1 : ui ui ui+1

xi : ui ui ui

Figure 6.29: Computation of xi from di−1, di, di+1

with

αi =
(ui+1 − ui)

2

ui+1 − ui−2
,

βi =
(ui+1 − ui)(ui − ui−2)

ui+1 − ui−2

+
(ui − ui−1)(ui+2 − ui)

ui+2 − ui−1

,

γi =
(ui − ui−1)

2

ui+2 − ui−1

.

At the end points, it is easily verified that we get

x1 =
α1

u2 − u0
d0 +

β1

u2 − u0
d1 +

γ1
u2 − u0

d2,

xN−1 =
αN−1

uN − uN−2
dN−2 +

βN−1

uN − uN−2
dN−1 +

γN−1

uN − uN−2
dN ,
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where

α1 =
(u2 − u1)

2

u2 − u0
,

β1 =
(u2 − u1)(u1 − u0)

u2 − u0

+
(u1 − u0)(u3 − u1)

u3 − u0

,

γ1 =
(u1 − u0)

2

u3 − u0

,

αN−1 =
(uN − uN−1)

2

uN − uN−3
,

βN−1 =
(uN − uN−1)(uN−1 − uN−3)

uN − uN−3
+

(uN−1 − uN−2)(uN − uN−1)

uN − uN−2
,

γN−1 =
(uN−1 − uN−2)

2

uN − uN−2

.

Letting
ri = (ui+1 − ui−1) xi,

for all i, 1 ≤ i ≤ N − 1, and r0 and rN be arbitrary points, we obtain the following
(N + 1)× (N + 1) system of linear equations in the unknowns d0, . . . , dN :




1
α1 β1 γ1

α2 β2 γ2 0
. . .

0 αN−2 βN−2 γN−2

αN−1 βN−1 γN−1

1







d0
d1
d2
...

dN−2

dN−1

dN




=




r0
r1
r2
...

rN−2

rN−1

rN




The matrix of the system of linear equations is tridiagonal, and it is clear that αi, βi, γi ≥
0. It is also easy to show that

αi + γi + βi = ui+1 − ui−1

for all i, 1 ≤ i ≤ N − 1. Such conditions should not come as a surprise, since the di and the
xi are points. If

αi + γi < βi,

for all i, 1 ≤ i ≤ N − 1, which means that the matrix is diagonally dominant, then it can
be shown that the matrix is invertible. In particular, this is the case for a uniform knot
sequence. There are methods for solving diagonally dominant systems of linear equations
very efficiently, for example, using an LU -decomposition.

In the case of a uniform knot sequence, it is an easy exercise to show that the linear
system can be written as
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


1
3
2

7
2

1
1 4 1 0

. . .

0 1 4 1
1 7

2
3
2

1







d0
d1
d2
...

dN−2

dN−1

dN




=




r0
6x1

6x2
...

6xN−2

6xN−1

rN




It can also be shown that the general system of linear equations has a unique solution
when the knot sequence is strictly increasing, that is, when ui < ui+1 for all i, 0 ≤ i ≤ N−1.
For example, this can be shown by expressing each spline segment in terms of the Hermite
polynomials. Writing the C2 conditions leads to a tridiagonal system which is diagonally
dominant when the knot sequence is strictly increasing. For details, see Farin [32].

We can also solve the problem of finding a closed interpolating spline curve, formulated
as follows.

Problem 2: Given N data points x0, . . . , xN−1, and a sequence of N+1 knots u0, . . . , uN ,
with ui < ui+1 for all i, 0 ≤ i ≤ N − 1, find a C2 closed cubic spline curve F , such that
F (ui) = xi, for all i, 0 ≤ i ≤ N , where we let xN = x0.

This time, we consider the cyclic knot sequence determined by the N+1 knots u0, . . . , uN ,
which means that we consider the infinite cyclic knot sequence 〈uk〉k∈Z which agrees with
u0, . . . , uN for i = 0, . . . , N , and such that

uk+N = uk + uN − u0,

for all k ∈ Z, and we observe that we are now looking for N de Boor control points
d0, . . . , dN−1, since the condition x0 = xN implies that d0 = dN , so that we can write a
system of N linear equations in the N unknowns d0, . . . , dN−1. The following system of
linear equations is easily obtained:




β0 γ0 α0

α1 β1 γ1
α2 β2 γ2 0

. . .

0 αN−3 βN−3 γN−3

αN−2 βN−2 γN−2

γN−1 αN−1 βN−1







d0
d1
d2
...

dN−3

dN−2

dN−1




=




r0
r1
r2
...

rN−3

rN−2

rN−1




where

ri = (ui+1 − ui−1) xi,
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for all i, 1 ≤ i ≤ N − 1, since the knot sequence is cyclic,

r0 = (uN − uN−1 + u1 − u0) x0,

and for all i, 2 ≤ i ≤ N − 2, we have

αi =
(ui+1 − ui)

2

ui+1 − ui−2
,

βi =
(ui+1 − ui)(ui − ui−2)

ui+1 − ui−2

+
(ui − ui−1)(ui+2 − ui)

ui+2 − ui−1

,

γi =
(ui − ui−1)

2

ui+2 − ui−1
.

Since the knot sequence is cyclic, we also get

α0 =
(u1 − u0)

2

uN − uN−2 + u1 − u0
,

β0 =
(u1 − u0)(uN − uN−2)

uN − uN−2 + u1 − u0
+

(uN − uN−1)(u2 − u0)

uN − uN−1 + u2 − u0
,

γ0 =
(uN − uN−1)

2

uN − uN−1 + u2 − u0

,

α1 =
(u2 − u1)

2

uN − uN−1 + u2 − u0
,

β1 =
(u2 − u1)(uN − uN−1 + u1 − u0)

uN − uN−1 + u2 − u0
+

(u1 − u0)(u3 − u1)

u3 − u0
,

γ1 =
(u1 − u0)

2

u3 − u0

,

αN−1 =
(uN − uN−1)

2

uN − uN−3

,

βN−1 =
(uN − uN−1)(uN−1 − uN−3)

uN − uN−3
+

(uN−1 − uN−2)(uN − uN−1 + u1 − u0)

uN − uN−2 + u1 − u0
,

γN−1 =
(uN−1 − uN−2)

2

uN − uN−2 + u1 − u0
.

The system is no longer tridiagonal, but it can still be solved efficiently.

The coefficients αi, βi, γi can be written in a uniform fashion for both the open and the
closed interpolating C2 cubic spline curves, if we let ∆i = ui+1−ui. It is immediately verified
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that we have

αi =
∆2

i

∆i−2 +∆i−1 +∆i

,

βi =
∆i(∆i−2 +∆i−1)

∆i−2 +∆i−1 +∆i
+

∆i−1(∆i +∆i+1)

∆i−1 +∆i +∆i+1
,

γi =
∆2

i−1

∆i−1 +∆i +∆i+1
,

where in the case of an open spline curve, ∆−1 = ∆N = 0, and in the case of a closed spline
curve, ∆−1 = ∆N−1, ∆−2 = ∆N−2.

In the case of an open C2 cubic spline interpolant, several end conditions have been
proposed to determine r0 = d0 and rN = dN , and we quickly review these conditions.

(a) The first method consists in specifying the tangent vectors m0 and mN at x0 and xN ,
usually called the clamped condition method. Since the tangent vector at x0 is given by

DF (u0) =
3

u1 − u0
(d0 − x0),

we get

r0 = d0 = x0 +
u1 − u0

3
m0,

and similarly

rN = dN = xN − uN − uN−1

3
mN .

One specific method is the Bessel end condition. If we consider the parabola interpolating
the first three data points x0, x1, x2, the method consists in picking the tangent vector to
this parabola at x0. A similar selection is made using the parabola interpolating the last
three points xN−2, xN−1, xN .

(b) Another method is the quadratic end condition. In this method, we require that

D2F (u0) = D2F (u1)

and
D2F (uN−1) = D2F (uN).

(c) Another method is the natural end condition. In this method, we require that

D2F (u0) = D2F (uN ) =
−→
0 .

(d) Finally, we have the not-a-knot condition, which forces the first two cubic segments
to merge into a single cubic segment and similarly for the last two cubic segments. This
amounts to requiring that D3F is continuous at u1 and at uN−1.
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We leave the precise formulation of these conditions as an exercise, and refer the interested
reader to Farin [32], or Hoschek and Lasser [45].

In practice, when attempting to solve an interpolation problem, the knot sequence
u0, . . . , uN is not given. Thus, it is necessary to find knot sequences that produce reasonable
results. We now briefly survey methods for producing knot sequences.

The simplest method consists in choosing a uniform knot sequence. Although simple,
this method may produce bad results when the data points are heavily clustered in some
areas.

Another popular method is to use a chord length knot sequence. In this method, after
choosing u0 and uN , we determine the other knots in such a way that

ui+1 − ui

ui+2 − ui+1

=
‖xi+1 − xi‖
‖xi+2 − xi+1‖

,

where ‖xi+1 − xi‖ is the length of the chord between xi and xi+1. This method usually works
quite well.

Another method is the so-called centripedal method, derived from physical heuristics,
where we set

ui+1 − ui

ui+2 − ui+1
=

(
‖xi+1 − xi‖
‖xi+2 − xi+1‖

)1/2

.

There are other methods, in particular due to Foley. For details, the reader is referred to
Farin [32].

6.9 Problems

Problem 1 (30 pts).
Consider the following cubic spline F with finite knot sequence 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6,

and with the de Boor control points:

d−3 = (2, 0), labeled 111,

d−2 = (0, 5), labeled 112,

d−1 = (4, 9), labeled 123,

d0 = (6, 0), labeled 234,

d1 = (9, 0), labeled 345,

d2 = (9, 9), labeled 456,

d3 = (11, 9), labeled 566,

d4 = (14, 2), labeled 666.
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(i) Compute the Bézier points corresponding to 222, 333, 444, and 555, and plot the
Bézier segments forming the spline as well as possible (you may use programs you have
written for previous assignments).

(ii) Insert the knot 3.5 three times. Give a geometric construction of the point F (3.5) on
the spline curve. Contruct (geometrically) the tangent at t = 3.5.

Problem 2 (10 pts).
Show that if a B-spline curve consisting of quadratic curve segments (m = 2) has an

inflexion point, then this point is associated with a knot.

Problem 3 (30 pts).
Consider the following quadratic spline F with finite knot sequence

0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5,

and with the de Boor control points:

d−2 = (−6,−1), labeled 00,

d−1 = (−5, 2), labeled 01,

d0 = (−3, 3), labeled 12,

d1 = (−1, 2), labeled 23,

d2 = (0, 0), labeled 34,

d3 = (3, 1), labeled 44,

d4 = (3, 3), labeled 45,

d5 = (1, 5), labeled 55.

(i) Compute the Bézier points corresponding to 11, 22, and 33, and plot the Bézier
segments forming the spline as well as possible (you may use programs you have written for
previous assignments).

(ii) Compute F (5/4) by repeated knot insertion. Determine the tangent at F (5/4).

(iii) Which knot should be inserted to that (−3/4, 3/2) becomes a control point?

Problem 4 (30 pts). Find the Bézier control points of a closed spline of degree 4 whose
control polygon consists of the edges of a square, and whose knot sequence is uniform and
consists of simple knots. Repeat the problem for a uniform knot sequence in which all knots
have multiplicity 2.

Problem 5 (50 pts). Implement the de Boor algorithm for finite and closed splines. Design
a subdivision version of the de Boor algorithm

Problem 6 (30 pts). Implement the knot insertion algorithm.
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Problem 7 (40 pts). It is shown in section 6.7 how a B-spline of degree m can be defined
in terms of the normalized B-splines Bj,m+1. (i) Given a finite knot sequence

u−m, u1, un1+1, . . . , uN−nL−1+1, uN+1,
...

...
... . . .

...
...

u0 un1 un1+n2 . . . uN uN+m+1

m+ 1 n1 n2 . . . nL−1 m+ 1

and a sequence of de Boor control points 〈dj〉−m≤j≤N , show that the finite B-spline F defined
by the above knot sequence and de Boor control points can be expressed as

F (t) =
N∑

j=−m

djBj,m+1(t),

where the B-splines Bj,m+1 are defined inductively as follows:

Bj,1(t) =

{
1 if t ∈ [uj, uj+1[
0 otherwise,

Bj,m+1(t) =
t− uj

uj+m − uj
Bj,m(t) +

uj+m+1 − t

uj+m+1 − uj+1
Bj+1,m(t).

(ii) Show that Bj,m+1 is null outside [uj, uj+m+1[.

(iii) Show that
N∑

j=−m

Bj,m+1(t) = 1

for all t.

(iv) Compute the functions Bj,4 associated with problem 1.

Problem 8 (20 pts). Under the assumptions of Problem 7, prove Marsden’s formula:

(x− t)m =
N∑

i=−m

(x− ti+1) · · · (x− ti+m)Bi,m+1(t).

Problem 9 (10 pts). The B-spline basis functions Bj,m+1(t) being defined as in problem
7, prove that

B′
j,m+1(t) =

m

uj+m − uj
Bj,m(t)−

m

uj+m+1 − uj+1
Bj+1,m(t).
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Problem 10 (20 pts). Given the knot sequence

0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4,

show that the spline basis function B0,4 is given by:

B0,4(t) =





1
6
t3 for 0 ≤ t < 1

1
6
(−3t3 + 12t2 − 12t+ 4) for 1 ≤ t < 2

1
6
(3t3 − 24t2 + 60t− 44) for 2 ≤ t < 3

1
6
(−t3 + 12t2 − 48t+ 64) for 3 ≤ t < 4.

Problem 11 (40 pts). Given any uniform sequence t0, . . . , tm of real numbers, where
ti+1 = ti + h for some h > 0 (0 ≤ i ≤ m− 1), given any sequence y0, . . . , ym of real numbers,
given any two real numbers α, β, prove that there exists a unique cubic B-spline function F
based on the knot sequence

t0, . . . , t0︸ ︷︷ ︸
m

, t1, . . . , tm−1, tm, . . . , tm︸ ︷︷ ︸
m

,

such that

F (ti) = yi,

F ′(t0) = α,

F ′(tm) = β.

Prove that the above B-spline function F is the only C2-function among all C2-functions
ϕ over [t0, tm] such that

F (ti) = yi,

F ′(t0) = α,

F ′(tm) = β,

that minimizes the integral ∫ tm

t0

[ϕ′′(t)]2dt.

Hint . Given any two spline functions F,G as above, and any piecewise linear function h,
show that ∫ tm

t0

[F ′′(t)−G′′(t)]h(t)dt = 0.

Problem 12 (20 pts). (i) Prove that

αi + γi + βi = ui+1 − ui−1
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for all i, 1 ≤ i ≤ N − 1, where αi, γi, βi are defined in section 6.8 (Problem 1 and Problem
2).

(ii) Let (x1, . . . , xn) and (y1, . . . , yn) be two sequences of n points (say in A3), and assume
that each point yi is an affine combination of the points xj , say

yi =

n∑

j=1

ai j xj .

Let A = (ai j) be the n× n matrix expressing the yi in terms of the xj . Show that

n∑

j=1

ai j = 1

for every i, 1 ≤ i ≤ n, i.e., the sum of the elements of every row is 1. Prove that if A is
invertible, then the sum of the elements of every row of A−1 is also 1.

Problem 13 (20 pts). Prove that the matrix below is invertible.



1
3
2

7
2

1
1 4 1 0

. . .

0 1 4 1
1 7

2
3
2

1




Problem 14 (40 pts). Compute the de Boor points d0 and dN arising in the interpolation
problem (Problem 1) in the following cases:

(a) Bessel end condition.

(b) Quadratic end condition

(c) Natural end condition

(d) Not-a-knot condition.

Problem 15 (20 pts). (i) Show that interpolating cubic B-splines reproduce straight lines,
provided that the end conditions are clamped, and that the tangents are read off the straight
line.

(ii) Prove a similar result for quadratic and cubic polynomial curves.

Problem 16 (30 pts). Study the interpolation problem when the end conditions are to
prescribe the first and the second derivative at x0.
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Problem 17 (40 pts). Implementent the interpolation method proposed for solving Prob-
lem 1. In solving this problem, find (or look up) a linear-time method for solving a tridiagonal
linear system.

Problem 18 (40 pts). Implementent the interpolation method proposed for solving Prob-
lem 2. In solving this problem, find (or look up) a linear-time method for solving a tridiagonal
linear system.

Problem 19 (20 pts). (1) For a quadratic B-spline curve specified by a closed polygon of
de Boor control points, prove that knot insertion at midpoints of intervals yields new control
points defined such that for every edge (bi, bi+1),

b′2i+1 =
3

4
bi +

1

4
bi+1, and b′2i+2 =

1

4
bi +

3

4
bi+1.

(2) For a cubic B-spline curve specified by a closed polygon of de Boor control points,
prove that knot insertion at midpoints of intervals yields new control points defined such
that, for any three consecutive control points bi, bi+1, and bi+2,

b′2i+1 =
1

2
bi +

1

2
bi+1, and b′2i+2 =

1

8
bi +

6

8
bi+1,+

1

8
bi+2.
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Part III
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Chapter 7

Polynomial Surfaces

7.1 Polarizing Polynomial Surfaces

In this chapter, we take up the study of polynomial surfaces. After a quick review of the
traditional parametric definition in terms of polynomials, we investigate the possibility of
defining polynomial surfaces in terms of polar forms. Because the polynomials involved
contain two variables, there are two natural ways to polarize a polynomial surface. The first
approach yields bipolynomial surfaces (also called tensor product surfaces), and the second
approach yields total degree surfaces. Bipolynomial surfaces are completely determined by
rectangular nets of control points, and total degree surfaces are completely determined by
triangular nets of control points. The de Casteljau algorithm splits into two versions, one for
rectangular nets, and the other one for triangular nets. We show how these versions of the
de Casteljau algorithm can be turned into subdivision methods. In the case of rectangular
nets, it is easy to use the algorithms developed for polynomial curves. However, in the case
of triangular nets, things are more tricky, and we give an efficient method for performing
subdivision. We also show how to compute a new control net with respect to a new rectangle
(or new triangle) from a given net.

We begin with the traditional definition of polynomial surfaces. As we shall see, there
are two natural ways to polarize a polynomial surface. Intuitively, this depends on whether
we decide to tile the parameter plane with rectangles or with triangles. This is one of the
many indications that dealing with surfaces is far more complex than dealing with curves.

Recall that the affine line is denoted as A, and that the affine plane is denoted as A2. To
reduce the amount of superscripts, we will also denote the affine plane as P. We assume that

some fixed affine frame (O, (
−→
i1 ,

−→
i2 )) for P is chosen, typically, the canonical affine frame

where O = (0, 0),
−→
i1 =

(
1
0

)
, and

−→
i2 =

(
0
1

)
. Let E be some affine space of finite dimension

n ≥ 3, and let (Ω1, (
−→e1 , . . . ,−→en )) be an affine frame for E .

261
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Definition 7.1.1. A polynomial surface is a function F : P → E , such that, for all u, v ∈ R,
we have

F (O + u
−→
i1 + v

−→
i2 ) = Ω1 + F1(u, v)

−→e1 + · · ·+ Fn(u, v)
−→en ,

where F1(U, V ), . . . , Fn(U, V ) are polynomials in R[U, V ]. Given natural numbers p, q, and
m, if each polynomial Fi(U, V ) has total degree ≤ m, we say that F is a polynomial surface
of total degree m. If the maximum degree of U in all the Fi(U, V ) is ≤ p, and the maximum
degree of V in all the Fi(U, V ) is ≤ q, we say that F is a bipolynomial surface of degree 〈p, q〉.
The trace of the surface F is the set F (P).

The affine frame (O, (
−→
i1 ,

−→
i2 )) for P being fixed, for simplicity of notation, we denote

F (O + u
−→
i1 + v

−→
i2 ) as F (u, v). Intuitively, a polynomial surface is obtained by bending

and twisting the real affine plane A2 using a polynomial map. For example, the following
polynomials define a polynomial surface of total degree 2 in A3:

F1(U, V ) = U2 + V 2 + UV + 2U + V − 1

F2(U, V ) = U − V + 1

F3(U, V ) = UV + U + V + 1.

The above is also a bipolynomial surface of degree 〈2, 2〉. Another example known as
Enneper’s surface is as follows:

F1(U, V ) = U − U3

3
+ UV 2

F2(U, V ) = V − V 3

3
+ U2V

F3(U, V ) = U2 − V 2.

As defined above, Enneper’s surface is a surface of total degree 3, and a bipolynomial
surface of degree 〈3, 3〉.

Given a polynomial surface F : P → E , there are two natural ways to polarize.

The first way to polarize, is to treat the variables u and v separately, and polarize
separately in u and v. This way, if p and q are such that F is a bipolynomial surface of
degree 〈p, q〉, we get a (p+ q)-multiaffine map

f : (A)p × (A)q → E ,

which is symmetric separately in its first p arguments and in its last q arguments, but not
symmetric in all its arguments.
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� Note that we are intentionally denoting

A× · · · × A︸ ︷︷ ︸
p

×A× · · · × A︸ ︷︷ ︸
q

as (A)p × (A)q, with parentheses around each factor A, instead of Ap × Aq, to avoid the
confusion between the affine space Ap and the cartesian product A× · · · × A︸ ︷︷ ︸

p

.

We get what are traditionally called tensor product surfaces . The advantage of this
method is that it allows the use of many algorithms applying in the case of curves. Note
that in this case, since

F (u, v) = f(u, . . . , u︸ ︷︷ ︸
p

, v, . . . , v︸ ︷︷ ︸
q

),

the surface F is really a map F : A×A → E . However, since A×A is isomorphic to P = A2,
we can view F as a polynomial surface F : P → E .

The second way to polarize, is to treat the variables u and v as a whole, namely as
the coordinates of a point (u, v) in P, and to polarize the polynomials in both variables
simultaneously. This way, if m is such that F is a polynomial surface of total degree m, we
get an m-multiaffine map

f : Pm → E ,
which is symmetric in all of its m arguments. In some sense, this method is the immediate
generalization of Bézier curves. Indeed, since

F (u, v) = f((u, v), . . . , (u, v)︸ ︷︷ ︸
m

),

the surface F is indeed a map F : P → E .
We will present both methods, and investigate appropriate generalizations of the de

Casteljau algorithm. First, we consider several examples to illustrate the two ways of po-
larizing. We begin with the first method for polarizing, in which we polarize separately in
u and v. Using linearity, it is enough to explain how to polarize a monomial F (u, v) of the
form uhvk with respect to the bidegree 〈p, q〉, where h ≤ p and k ≤ q. It is easily seen that

f(u1, . . . , up, v1, . . . , vq) =
1(

p
h

)(
q
k

)
∑

I⊆{1,...,p}, |I|=h
J⊆{1,...,q}, |J |=k

(∏

i∈I
ui

)(∏

j∈J
vj

)
.

Example 1.

Consider the following surface viewed as a bipolynomial surface of degree 〈2, 2〉:
F1(U, V ) = U2 + V 2 + UV + 2U + V − 1

F2(U, V ) = U − V + 1

F3(U, V ) = UV + U + V + 1,
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In order to find the polar form f(U1, U2, V1, V2) of F , viewed as a bipolynomial surface of
degree 〈2, 2〉, we polarize each of the Fi(U, V ) separately in U and V . It is quite obvious
that the same result is obtained if we first polarize with respect to U , and then with respect
to V , or conversely. After polarizing with respect to U , we have

fU
1 (U1, U2, V ) = U1U2 + V 2 +

U1 + U2

2
V + U1 + U2 + V − 1

fU
2 (U1, U2, V ) =

U1 + U2

2
− V + 1

fU
3 (U1, U2, V ) =

U1 + U2

2
V +

U1 + U2

2
+ V + 1,

and after polarizing with respect to V , we have

f1(U1, U2, V1, V2) = U1U2 + V1V2 +
(U1 + U2)(V1 + V2)

4
+ U1 + U2 +

V1 + V2

2
− 1

f2(U1, U2, V1, V2) =
U1 + U2

2
− V1 + V2

2
+ 1

f3(U1, U2, V1, V2) =
(U1 + U2)(V1 + V2)

4
+

U1 + U2

2
+

V1 + V2

2
+ 1.

Now, we can express every point u ∈ A over the affine basis (0, 1), as a barycentric combi-
nation u = u = (1− u)0 + u1 = (1− u)0 + u1, and expanding

fi(u1, u2, v1, v2) = fi((1− u1)0 + u11, (1− u2)0 + u21, (1− v1)0 + v11, (1− v2)0 + v21),

using multiaffineness and symmetry in u1, u2, and v1, v2, we see, similarly to the case of
curves, that fi(u1, u2, v1, v2) can be expressed as a barycentric combination involving 9 con-
trol points bi,j, 0 ≤ i, j ≤ 2, corresponding to the 27 polar values fi(u1, u2, v1, v2), where the
multiset of polar arguments {u1, u2} can take as values any of the 3 multisets {0, 0}, {0, 1},
{1, 1}, and similarly for the multiset of polar arguments {v1, v2}.

Denoting fi(u1, u2, v1, v2) as b
i
u1+u2, v1+v2

, the coordinates of the control point bu1+u2,v1+v2 ,
are

(b1u1+u2, v1+v2
, b2u1+u2, v1+v2

, b3u1+u2, v1+v2
).

Letting i = u1 + u2, and j = v1 + v2, we get

b1i,j v1, v2 0, 0 0, 1 1, 1
u1, u2

0, 0 −1 −1
2

1
0, 1 0 3

4
5
2

1, 1 2 3 5

b2i,j v1, v2 0, 0 0, 1 1, 1
u1, u2

0, 0 1 1
2

0
0, 1 3

2
1 1

2

1, 1 2 3
2

1
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b3i,j v1, v2 0, 0 0, 1 1, 1
u1, u2

0, 0 1 3
2

2
0, 1 3

2
9
4

3
1, 1 2 3 4

and the nine control points bi,j have coordinates:

bi,j j 0 1 2
i
0 (−1, 1, 1) (−1

2
, 1
2
, 3
2
) (1, 0, 2)

1 (0, 3
2
, 3
2
) (3

4
, 1, 9

4
) (5

2
, 1
2
, 3)

2 (2, 2, 2) (3, 3
2
, 3) (5, 1, 4)

Note that the surface contains the 4 control points b0,0, b2,0, b0,2, and b2,2, corresponding
to the polar values f(0, 0, 0, 0), f(1, 1, 0, 0), f(0, 0, 1, 1), and f(1, 1, 1, 1), but the other 5
control points are not on the surface. There are also some pleasant properties regarding
tangent planes. One should note that a bipolynomial surface can be viewed as a polynomial
curve of polynomial curves. Indeed, if we fix the parameter u, we get a polynomial curve
in v, and the surface is obtained by letting this curve vary as a function of u. A similar
interpretation applies if we exchange the roles of u and v.

Let us now review how to polarize a polynomial in two variables as a polynomial of total
degree m, in preparation for example 2. Using linearity, it is enough to deal with a single
monomial. According to lemma 4.5.1, given the monomial UhV k, with h + k = d ≤ m, we
get the following polar form of degree m:

f((u1, v1), . . . , (um, vm)) =
h!k!(m− (h+ k))!

m!

∑

I∪J⊆{1,...,m}
I∩J=∅

|I|=h, |J |=k

(∏

i∈I
ui

)(∏

j∈J
vj

)
.

Example 2.

Let us now polarize the surface of Example 1 as a surface of total degree 2. Starting from

F1(U, V ) = U2 + V 2 + UV + 2U + V − 1

F2(U, V ) = U − V + 1

F3(U, V ) = UV + U + V + 1,

we get

f1((U1, V1), (U2, V2)) = U1U2 + V1V2 +
U1V2 + U2V1

2
+ U1 + U2 +

V1 + V2

2
− 1

f2((U1, V1), (U2, V2)) =
U1 + U2

2
− V1 + V2

2
+ 1

f3((U1, V1), (U2, V2)) =
U1V2 + U2V1

2
+

U1 + U2

2
+

V1 + V2

2
+ 1.
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This time, if we want to find control points, it appears that we have a problem. Indeed,
the symmetric multiaffine map f : P2 → E is defined in terms of the coordinates (u, v) of

points in the plane P, with respect to the affine frame (O, (
−→
i1 ,

−→
i2 )), and not the barycentric

affine frame (O +
−→
i1 , O+

−→
i2 , O). In order to expand f(u1, v1, u2, v2) by multiaffineness, the

polar form f needs to be expressed in terms of barycentric coordinates. It is possible to

convert polar forms expressed in terms of coordinates w.r.t. the affine frame (O, (
−→
i1 ,

−→
i2 ))

to barycentric coordinates, but there is a simple way around this apparent problem, and
we leave such a conversion as an exercise. The way around the problem is to observe that

every point in P of coordinates (u, v) with respect to the affine frame (O, (
−→
i1 ,

−→
i2 )), is also

represented by its barycentric coordinates (u, v, 1− u − v), with respect to the barycentric

affine frame (r, s, t) = (O+
−→
i1 , O+

−→
i2 , O). Now, with respect to the barycentric affine frame

(r, s, t) = (O +
−→
i1 , O +

−→
i2 , O), every point bi ∈ P, where i = 1, 2, can be expressed as

λir + µis+ νit, where λi + µi + νi = 1, and we can expand

f(b1, b2) = f(λ1r + µ1s+ ν1t, λ2r + µ2s+ ν2t)

by multiaffineness and symmetry, and we see that f(b1, b2) can be expressed as a barycentric
combination of the six control points f(r, r), f(r, s), f(r, t), f(s, s), f(s, t), f(t, t). Thus, if
we just want the coordinates of the six control points, we just have to evaluate the original
polar forms f1, f2, f3, expressed in terms of the (u, v)-coordinates, on the (u, v) coordinates
of (r, s, t), namely (1, 0), (0, 1), and (0, 0).

So, in fact, there is no problem in computing the coordinates of control points using the
original (nonbarycentric) polar forms, and we now go back to example 2.

Example 2. (continued)

Evaluating the polar forms

f1((U1, V1), (U2, V2)) = U1U2 + V1V2 +
U1V2 + U2V1

2
+ U1 + U2 +

V1 + V2

2
− 1

f2((U1, V1), (U2, V2)) =
U1 + U2

2
− V1 + V2

2
+ 1

f3((U1, V1), (U2, V2)) =
U1V2 + U2V1

2
+

U1 + U2

2
+

V1 + V2

2
+ 1.

for argument pairs (U1, V1) and (U2, V2) ranging over (1, 0), (0, 1), and (0, 0), we get the
following coordinates:

f(r, r)
(2, 2, 2)

f(r, t)

(0,
3

2
,
3

2
)

f(r, s)

(1, 1,
5

2
)

f(t, t)
(−1, 1, 1)

f(s, t)

(−1

2
,
1

2
,
3

2
)

f(s, s)
(1, 0, 2)
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Example 3.

Let us also find the polar forms of the Enneper’s surface, considered as a total degree
surface (of degree 3):

F1(U, V ) = U − U3

3
+ UV 2

F2(U, V ) = V − V 3

3
+ U2V

F3(U, V ) = U2 − V 2.

We get

f1((U1, V1), (U2, V2), (U3, V3)) =
U1 + U2 + U3

3
− U1U2U3

3

+
U1V2V3 + U2V1V3 + U3V1V2

3

f2((U1, V1), (U2, V2), (U3, V3)) =
V1 + V2 + V3

3
− V1V2V3

3

+
U1U2V3 + U1U3V2 + U2U3V1

3

f3((U1, V1), (U2, V2), (U3, V3)) =
U1U2 + U1U3 + U2U3

3
− V1V2 + V1V3 + V2V3

3
,

and evaluating these polar forms for argument pairs (U1, V1), (U2, V2), and (U3, V3), ranging
over (1, 0), (0, 1) and (0, 0), we find the following 10 control points:

f(r, r, r)

(
2

3
, 0, 1)

f(r, r, t)

(
2

3
, 0,

1

3
)

f(r, r, s)

(
2

3
,
2

3
,
1

3
)

f(r, t, t)

(
1

3
, 0, 0)

f(r, s, t)

(
1

3
,
1

3
, 0)

f(r, s, s)

(
2

3
,
2

3
,−1

3
)

f(t, t, t)
(0, 0, 0)

f(s, t, t)

(0,
1

3
, 0)

f(s, s, t)

(0,
2

3
,−1

3
)

f(s, s, s)

(0,
2

3
,−1)

Let us consider two more examples.

Example 4.

Let F be the surface considered as a total degree surface, and defined such that

F1(U, V ) = U,

F2(U, V ) = V,

F3(U, V ) = U2 − V 2.
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The polar forms are:

f1((U1, V1), (U2, V2)) =
U1 + U2

2
,

f2((U1, V1), (U2, V2)) =
V1 + V2

2
,

f3((U1, V1), (U2, V2)) = U1U2 − V1V2.

With respect to the barycentric affine frame (r, s, t) = (O +
−→
i1 , O +

−→
i2 , O), the control

net consists of the following six points, obtained by evaluating the polar forms f1, f2, f3 on
the (u, v) coordinates of (r, s, t), namely (1, 0), (0, 1), and (0, 0):

f(r, r)
(1, 0, 1)

f(r, t)

(
1

2
, 0, 0)

f(r, s)

(
1

2
,
1

2
, 0)

f(t, t)
(0, 0, 0)

f(s, t)

(0,
1

2
, 0)

f(s, s)
(0, 1,−1)

The resulting surface is an hyperbolic paraboloid , of implicit equation

z = x2 − y2.

Its general shape is that of a saddle. Its intersection with planes parallel to the plane yOz
is a parabola, and similarly with its intersection with planes parallel to the plane xOz. Its
intersection with planes parallel to the plane xOy is a hyperbola. If we rotate the x, y axes
to the X, Y axes such that

X =
x− y

2
,

Y =
x+ y

2
,

we get the parametric representation

F ′
1(U, V ) =

U − V

2
,

F ′
2(U, V ) =

U + V

2
,

F ′
3(U, V ) = U2 − V 2.

After the change of parameters

u =
U − V

2
,

v =
U + V

2
,
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since U2 − V 2 = (U + V )(U − V ) = 4uv, we see that the same hyperbolic paraboloid is also
defined by

F ′′
1 (u, v) = u,

F ′′
2 (u, v) = v,

F ′′
3 (u, v) = 4uv.

Thus, when u is constant, the curve traced on the surface is a straight line, and similarly
when v is constant. We say that the hyperbolic paraboloid is a ruled surface.

Example 5.

Let F be the surface considered as a total degree surface, and defined such that

F1(U, V ) = U,

F2(U, V ) = V,

F3(U, V ) = 2U2 + V 2.

The polar forms are:

f1((U1, V1), (U2, V2)) =
U1 + U2

2
,

f2((U1, V1), (U2, V2)) =
V1 + V2

2
,

f3((U1, V1), (U2, V2)) = 2U1U2 + V1V2.

With respect to the barycentric affine frame (r, s, t) = (O +
−→
i1 , O +

−→
i2 , O), the control

net consists of the following six points, obtained by evaluating the polar forms f1, f2, f3 on
the (u, v) coordinates of (r, s, t), namely (1, 0), (0, 1), and (0, 0):

f(r, r)
(1, 0, 2)

f(r, t)

(
1

2
, 0, 0)

f(r, s)

(
1

2
,
1

2
, 0)

f(t, t)
(0, 0, 0)

f(s, t)

(0,
1

2
, 0)

f(s, s)
(0, 1, 1)

The resulting surface is an elliptic paraboloid . of implicit equation

z = 2x2 + y2.

Its general shape is that of a “boulder hat”. Its intersection with planes parallel to the plane
yOz is a parabola, and similarly with its intersection with planes parallel to the plane xOz.
Its intersection with planes parallel to the plane xOy is an ellipse.
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Generally, we leave as an exercise to show that, except for some degenerate cases, the
algebraic surfaces defined by implicit equations of degree 2 that are also defined as polynomial
surfaces of degree 2 are, either an hyperbolic paraboloid , defined by an implicit equation of
the form

z =
x2

a2
− y2

b2
,

or an elliptic paraboloid , defined by an implicit equation of the form

z =
x2

a2
+

y2

b2
,

or a parabolic cylinder , defined by an implicit equation of the form

y2 = 4ax.

� It should be noted that parametric polynomial surfaces of degree 2 may correspond to
implicit algebraic surfaces of degree > 2, as shown by the following example:

x = u,

y = u2 + v,

z = v2.

An implicit equation for this surface is

z = (y − x2)2,

which is of degree 4, and it is easy to see that this is the smallest degree.

We will now consider bipolynomial surfaces, and total degree surfaces, in more details.
First, we go back to bipolynomial surfaces.

7.2 Bipolynomial Surfaces in Polar Form

Given a bipolynomial surface F : P → E of degree 〈p, q〉, where E is of dimension n, applying
lemma 4.5.1 to each polynomial Fi(U, V ) defining F , first with respect to U , and then with
respect to V , we get polar forms

fi : (A)
p × (A)q → A,

which together, define a (p+ q)-multiaffine map

f : (A)p × (A)q → E ,
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such that f(U1, . . . , Up;V1, . . . , Vq) is symmetric in its first p-arguments, and symmetric in
its last q-arguments, and with

F (u, v) = f(u, . . . , u︸ ︷︷ ︸
p

; v, . . . , v︸ ︷︷ ︸
q

),

for all u, v ∈ R.

Remark: It is immediately verified that the same polar form is obtained if we first polarize
with respect to V and then with respect to U .

By analogy with polynomial curves, it is natural to propose the following definition.

Definition 7.2.1. Given any affine space E of dimension ≥ 3, a bipolynomial surface of
degree 〈p, q〉 in polar form, is a map F : A×A → E , such that there is some multiaffine map

f : (A)p × (A)q → E ,

which is symmetric in its first p-arguments, and symmetric in its last q-arguments, and with

F (u, v) = f(u, . . . , u︸ ︷︷ ︸
p

; v, . . . , v︸ ︷︷ ︸
q

),

for all u, v ∈ A. We also say that f is 〈p, q〉-symmetric. The trace of the surface F is the set
F (A,A).

The advantage of definition 7.2.1 is that it does not depend on the dimension of E .

Remark: This note is intended for those who are fond of tensors, and can be safely omitted
by other readers. Let F : A× A → E be a bipolynomial surface of degree 〈p, q〉, and let

f : (A)p × (A)q → E

be its polar form. Let

f̂ : (Â)p × (Â)q → Ê
be its homogenized 〈p, q〉-symmetric multilinear map. It is easily verified that the set of

all symmetric q-linear maps h : (Â)q → Ê forms a vector space SML((Â)q, Ê), and thus, the
〈p, q〉-symmetric multilinear map

f̂ : (Â)p × (Â)q → Ê

is in bijection with the symmetric p-linear map

g : (Â)p → SML((Â)q, Ê).
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From the universal property of the symmetric tensor power
⊙p

Â, the symmetric p-linear
map g is in bijection with a linear map

g⊙ :

p⊙
Â → SML((Â)q, Ê).

We can now view the linear map g⊙ as a symmetric q-linear map

h : (Â)q → SML(

p⊙
Âp, Ê),

which in turn, is in bijection with a linear map

h⊙ :

q⊙
Â → SML(

p⊙
Â, Ê).

But then, the linear map h⊙ is in bijection with a bilinear map

f⊙;⊙ : (
p⊙

Â)× (

q⊙
Â) → Ê .

Note that f⊙;⊙ is bilinear, but not necessarily symmetric. However, using the universal

property of the tensor product (
⊙p

Â)
⊗

(
⊙q

Â), we note that the bilinear map

f⊙;⊙ : (

p⊙
Â)× (

q⊙
Â) → Ê

is in bijection with a linear map

f⊗ : (
p⊙

Â)
⊗

(

q⊙
Â) → Ê ,

and it is immediately verified that

f(u1, . . . , up; v1, . . . , vq) = f⊗((u1 ⊙ · · · ⊙ up)⊗ (v1 ⊙ · · · ⊙ vq)).

This explains the terminology “tensor product surface”, but this also explains why this
terminology is slightly unfortunate. Indeed, the tensor product involved

(

p⊙
Â)
⊗

(

q⊙
Â)

is “mixed”, in the sense that it uses both the symmetric tensor product ⊙, and the ordinary
tensor product ⊗.

Now, let (r1, s1) and (r2, s2) be two affine frames for the affine line A. Every point u ∈ A

can be written as

u =

(
s1 − u

s1 − r1

)
r1 +

(
u− r1
s1 − r1

)
s1,
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and similarly any point v ∈ A can be written as

v =

(
s2 − v

s2 − r2

)
r2 +

(
v − r2
s2 − r2

)
s2.

We can expand
f(u1, . . . , up; v1, . . . , vq),

using multiaffineness. For example, the first two steps yield:

f(u1, . . . , up; v1, . . . , vq) =

(
s1 − u1

s1 − r1

)(
s2 − v1
s2 − r2

)
f(r1, u2, . . . , up; r2, v2, . . . , vq)

+

(
s1 − u1

s1 − r1

)(
v1 − r2
s2 − r2

)
f(r1, u2, . . . , up; s2, v2, . . . , vq)

+

(
u1 − r1
s1 − r1

)(
s2 − v1
s2 − r2

)
f(s1, u2, . . . , up; r2, v2, . . . , vq)

+

(
u1 − r1
s1 − r1

)(
v1 − r2
s2 − r2

)
f(s1, u2, . . . , up; s2, v2, . . . , vq).

By induction, the following can easily be shown:

f(u1, . . . , up; v1, . . . , vq)

=
∑

I∩J=∅
I∪J={1,...,p}

K∩L=∅
K∪L={1,...,q}

∏

i∈I

(
s1 − ui

s1 − r1

)∏

j∈J

(
uj − r1
s1 − r1

)∏

k∈K

(
s2 − vk
s2 − r2

)∏

l∈L

(
vl − r2
s2 − r2

)
b|J |, |L|.

where
b|J |, |L| = f(r1, . . . , r1︸ ︷︷ ︸

|I|

, s1, . . . , s1︸ ︷︷ ︸
|J |

; r2, . . . , r2︸ ︷︷ ︸
|K|

, s2, . . . , s2︸ ︷︷ ︸
|L|

).

The polar values

b|J |, |L| = f(r1, . . . , r1︸ ︷︷ ︸
|I|

, s1, . . . , s1︸ ︷︷ ︸
|J |

; r2, . . . , r2︸ ︷︷ ︸
|K|

, s2, . . . , s2︸ ︷︷ ︸
|L|

)

can obviously be treated as control points.

Indeed, conversely, given any family (bi, j)0≤i≤p, 0≤j≤q of (p + 1)(q + 1) points in E , it is
easily seen that the map defined such that

f(u1, . . . , up; v1, . . . , vq)

=
∑

I∩J=∅
I∪J={1,...,p}

K∩L=∅
K∪L={1,...,q}

∏

i∈I

(
s1 − ui

s1 − r1

)∏

j∈J

(
uj − r1
s1 − r1

)∏

k∈K

(
s2 − vk
s2 − r2

)∏

l∈L

(
vl − r2
s2 − r2

)
b|J |, |L|,



274 CHAPTER 7. POLYNOMIAL SURFACES

defines a multiaffine map which is 〈p, q〉-symmetric, and such that

f(r1, . . . , r1︸ ︷︷ ︸
p−|J |

, s1, . . . , s1︸ ︷︷ ︸
|J |

; r2, . . . , r2︸ ︷︷ ︸
q−|L|

, s2, . . . , s2︸ ︷︷ ︸
|L|

) = b|J |, |L|.

We summarize the above in the following lemma.

Lemma 7.2.2. Let (r1, s1) and (r2, s2) be any two affine frames for the affine line A, and
let E be an affine space (of finite dimension n ≥ 3). For any natural numbers p, q, for any
family (bi, j)0≤i≤p, 0≤j≤q of (p + 1)(q + 1) points in E , there is a unique bipolynomial surface
F : A×A → E of degree 〈p, q〉, with polar form the (p+ q)-multiaffine 〈p, q〉-symmetric map

f : (A)p × (A)q → E ,

such that
f(r1, . . . , r1︸ ︷︷ ︸

p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

) = bi, j ,

for all i, 1 ≤ i ≤ p and all j, 1 ≤ j ≤ q. Furthermore, f is given by the expression

f(u1, . . . , up; v1, . . . , vq)

=
∑

I∩J=∅
I∪J={1,...,p}

K∩L=∅
K∪L={1,...,q}

∏

i∈I

(
s1 − ui

s1 − r1

)∏

j∈J

(
uj − r1
s1 − r1

)∏

k∈K

(
s2 − vk
s2 − r2

)∏

l∈L

(
vl − r2
s2 − r2

)
b|J |, |L|.

A point F (u, v) on the surface F can be expressed in terms of the Bernstein polynomials
Bp

i [r1, s1](u) and Bq
j [r2, s2](v), as

F (u, v) =
∑

0≤i≤p
0≤j≤q

Bp
i [r1, s1](u)B

q
j [r2, s2](v) f(r1, . . . , r1︸ ︷︷ ︸

p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

).

Thus, we see that the Bernstein polynomials show up again, and indeed, in traditional
presentations of bipolynomial surfaces, they are used in the definition itself. We can also
show that when E is of finite dimension, the class of bipolynomial surfaces in polar form as in
definition 7.2.1 is identical to the class of polynomial surfaces as in definition 7.1.1. Indeed,
we have already shown using polarization that a polynomial surface according to definition
7.1.1 is a bipolynomial surface in polar form, as in definition 7.2.1. For the converse, simply
apply lemma 4.2.3. Note that in both cases, we use the isomorphism between A×A and P.

A family N = (bi, j)0≤i≤p, 0≤j≤q of (p+1)(q+1) points in E , is often called a (rectangular)
control net, or Bézier net . Note that we can view the set of pairs

p,q = {(i, j) ∈ N2 | 0 ≤ i ≤ p, 0 ≤ j ≤ q},
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as a rectangular grid of (p + 1)(q + 1) points in A× A. The control net N = (bi, j)(i,j)∈ p,q
,

can be viewed as an image of the rectangular grid p,q in the affine space E . By lemma
7.2.2, such a control net N determines a unique bipolynomial surface F of degree 〈p, q〉. The
portion of the surface F corresponding to the points F (u, v) for which the parameters u, v
satisfy the inequalities r1 ≤ u ≤ s1 and r2 ≤ v ≤ s2, is called a rectangular (surface) patch,
or rectangular Bézier patch, and F ([r1, s1], [r2, s2]) is the trace of the rectangular patch. The
surface F (or rectangular patch) determined by a control net N , contains the four control
points b0, 0, b0, q, bp, 0, and bp, q, the corners of the surface patch. Note that there is a natural
way of connecting the points in a control net N : every point bi, j , where 0 ≤ i ≤ p − 1,
and 0 ≤ j ≤ q − 1, is connected to the three points bi+1, j , bi, j+1, and bi+1, j+1. Generally, pq
quadrangles are obtained in this manner, and together, they form a polyhedron which gives
a rough approximation of the surface patch.

When we fix the parameter u, the map Fu : A → E , defined such that Fu(v) = F (u, v) for
all u ∈ A, is a curve on the bipolynomial surface F . Similarly, when we fix the parameter
v, the map Fv : A → E , defined such that Fv(u) = F (u, v) for all v ∈ A, is a curve on the
bipolynomial surface F . Such curves are called isoparametric curves . When we fix u, we
obtain a Bézier curve of degree q, and when we fix v, we obtain a Bézier curve of degree p.
In particular, the images of the line segments [r1, r2], [r1, s1], [s1, s2], and [r2, s2], are Bézier
curve segments, called the boundary curves of the rectangular surface patch.

Remark: We can also consider curves on a bipoynomial surface, defined by the constraint
u+ v = λ, for some λ ∈ R. They are Bézier curves, but of degree p+ q.

The de Casteljau algorithm can be generalized very easily to bipolynomial surfaces.

7.3 The de Casteljau Algorithm for Rectangular Sur-

face Patches

Given a rectangular control net N = (bi, j)(i,j)∈ p,q
, we can first compute the points

b0∗, . . . , bp∗,

where bi∗ is obtained by applying the de Casteljau algorithm to the Bézier control points

bi, 0, . . . , bi, q,

with 0 ≤ i ≤ p, and then compute bp0∗, by applying the de Casteljau algorithm to the control
points

b0∗, . . . , bp∗.

For every i, with 0 ≤ i ≤ p, we first compute the points bji∗, k, where b0i∗, j = bi, j , and

bji∗, k =

(
s2 − v

s2 − r2

)
bj−1
i∗, k +

(
v − r2
s2 − r2

)
bj−1
i∗, k+1,
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with 1 ≤ j ≤ q and 0 ≤ k ≤ q − j, and we let bi∗ = bqi∗, 0.

It is easily shown by induction that

bji∗, k = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; v, . . . , v︸ ︷︷ ︸
j

, r2, . . . , r2︸ ︷︷ ︸
q−j−k

, s2, . . . , s2︸ ︷︷ ︸
k

),

and since bi∗ = bqi∗, 0, we have

bi∗ = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; v, . . . , v︸ ︷︷ ︸
q

).

Next, we compute the points bji∗, where b0i∗ = bi∗, and

bji∗ =

(
s1 − u

s1 − r1

)
bj−1
i∗ +

(
u− r1
s1 − r1

)
bj−1
i+1∗,

with 1 ≤ j ≤ p and 0 ≤ i ≤ p− j, and we let F (u, v) = bp0∗.

It is easily shown by induction that

bji∗ = f(u, . . . , u︸ ︷︷ ︸
j

, r1, . . . , r1︸ ︷︷ ︸
p−i−j

, s1, . . . , s1︸ ︷︷ ︸
i

; v, . . . , v︸ ︷︷ ︸
q

),

and thus,
F (u, v) = bp0∗ = f(u, . . . , u︸ ︷︷ ︸

p

; v, . . . , v︸ ︷︷ ︸
q

).

Alternatively, we can first compute the points

b∗0, . . . , b∗q,

where b∗j is obtained by applying the de Casteljau algorithm to the Bézier control points

b0, j, . . . , bp, j,

with 0 ≤ j ≤ q, and then compute bq∗0, by applying the de Casteljau algorithm to the control
points

b∗0, . . . , b∗q.

The same result bp0∗ = bq∗0, is obtained.

We give in pseudo code, the version of the algorithm in which we compute first the control
points

b0∗, . . . , bp∗,

and then bp0∗. The reader will easily write the other version where the control points

b∗0, . . . , b∗q

are computed first, and then bq∗0. Although logically equivalent, one of these two programs
may be more efficient than the other, depending on p and q. We assume that the input is a
control net N = (bi, j)(i,j)∈ p,q

.
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begin
for i := 0 to p do
for j := 0 to q do
b0i∗, j := bi, j

endfor;
for j := 1 to q do
for k := 0 to q − j do

bji∗, k :=
(

s2−v
s2−r2

)
bj−1
i∗, k +

(
v−r2
s2−r2

)
bj−1
i∗, k+1

endfor
endfor;
bi∗ = bqi∗,0;

endfor;
for i := 0 to p do
b0i∗ = bi∗

endfor;
for j := 1 to p do
for i := 0 to p− j do

bji∗ :=
(

s1−u
s1−r1

)
bj−1
i∗ +

(
u−r1
s1−r1

)
bj−1
i+1∗

endfor
endfor;
F (u, v) := bp0∗

end

From the above algorithm, it is clear that the rectangular surface patch defined by a
control net N is contained inside the convex hull of the control net. It is also clear that
bipolynomial surfaces are closed under affine maps, and that the image by an affine map h
of a bipolynomial surface defined by a control net N is the bipolynomial surface defined by
the image of the control net N under the affine map h.

The following diagram illustrates the de Casteljau algorithm in the case of a bipolynomial
surface of degree 〈3, 3〉. It is assumed that (r, s) and (x, y) have been chosen as affine bases
of A, and for simplicity of notation, the polar value f(u1, u2, u3; v1, v2, v3) is denoted as
u1u2u3; v1v2v3, for instance, f(r, r, s; x, x, x) is denoted as rrs; xxx. The diagram shows the
computation of the point F (u; v). The computation shows that the points f(u, u, u; x, x, x),
f(u, u, u; x, x, y), f(u, u, u; x, y, y), and f(u, u, u; y, y, y), are computed first, and then, using
these points (shown as square dark dots) as control point, the point f(u, u, u; v, v, v) (shown
as a round dark dot) is computed. Since the figure is quite crowded, not all points have been
labeled.

There are other interesting properties of tangent planes, that will be proved at the end of
this chapter. For example, if the control points b0, 0, b1, 0, and b0, 1, are not collinear, then the
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Figure 7.1: The de Casteljau algorithm for a bipolynomial surface of degree 〈3, 3〉
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plane that they define is the tangent plane to the surface at the corner point b0, 0. A similar
property holds for the other corner control points b0, q, bp, 0, and bp, q. Thus, in general, the
four tangent planes at the corner points are known. Also, the tangent plane to the surface
at F (u, v) is determined by the points bp−1

0∗ , bp−1
1∗ , which determine one tangent line, and the

points bq−1
∗0 , bq−1

∗1 , which determine another tangent line (unless these points are all collinear).

We now go back to total degree surface.

7.4 Total Degree Surfaces in Polar Form

Given a surface F : P → E of total degree m, where E is of dimension n, applying lemma
4.5.1 to each polynomial Fi(U, V ) defining F , with respect to both U and V , we get polar
forms

fi : Pm → A,

which together, define an m-multiaffine and symmetric map

f : Pm → E ,

such that

F (u, v) = f((u, v), . . . , (u, v)︸ ︷︷ ︸
m

).

Note that each f((U1, V1), . . . , (Um, Vm)) is multiaffine and symmetric in the pairs (Ui, Vi).

By analogy with polynomial curves, it is also natural to propose the following definition.

Definition 7.4.1. Given any affine space E of dimension ≥ 3, a surface of total degree m in
polar form, is a map F : P → E , such that there is some symmetric multiaffine map

f : Pm → E ,

and with

F (a) = f(a, . . . , a︸ ︷︷ ︸
m

),

for all a ∈ P. The trace of the surface F is the set F (P).

The advantage of definition 7.4.1 is that it does not depend on the dimension of E .
Given any barycentric affine frame (r, s, t) ∈ P, for any ai = λir + µis + νit, where

λi + µi + νi = 1, and 1 ≤ i ≤ m, we can expand

f(a1, . . . , am) = f(λ1r + µ1s+ ν1t, . . . , λmr + µms+ νmt)
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by multiaffineness and symmetry. As a first step, we have

f(λ1r + µ1s + ν1t, . . . , λmr + µms + νmt) = λ1f(r, λ2r + µ2s + ν2t, . . . , λmr + µms + νmt)

+ µ1f(s, λ2r + µ2s+ ν2t, . . . , λmr + µms+ νmt)

+ ν1f(t, λ2r + µ2s+ ν2t, . . . , λmr + µms+ νmt).

By induction, it is easily shown that

f(a1, . . . , am) =
∑

I∪J∪K={1,...,m}
I,J,K pairwise disjoint

(∏

i∈I
λi

)(∏

j∈J
µj

)(∏

k∈K
νk

)
f(r, . . . , r︸ ︷︷ ︸

|I|

, s, . . . , s︸ ︷︷ ︸
|J |

, t, . . . , t︸ ︷︷ ︸
|K|

).

There are 3m terms in this sum, but one can verify that there are only

(
m+ 2

2

)
= (m+1)(m+2)

2

terms corresponding to the points

f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where i+ j + k = m. Also, when a1 = a2 = . . . = am = a, we get

F (a) = f(a, . . . , a︸ ︷︷ ︸
m

) =
∑

i+j+k=m

m!

i!j!k!
λiµjνk f(r, . . . , r︸ ︷︷ ︸

i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

).

where a = λr + µs+ νt, with λ+ µ+ ν = 1.

The polynomials in three variables U, V, T , defined such that

Bm
i,j,k(U, V, T ) =

m!

i!j!k!
U iV jT k,

where i+ j + k = m, are also called Bernstein polynomials .

Clearly, the points
f(r, . . . , r︸ ︷︷ ︸

i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where i+ j + k = m, can be viewed as control points. Let

∆m = {(i, j, k) ∈ N3 | i+ j + k = m}.
Then, given any family (bi, j, k)(i,j,k)∈∆m

of (m+1)(m+2)
2

points in E , the map defined such that

f(a1, . . . , am) =
∑

I∪J∪K={1,...,m}
I,J,K disjoint

(∏

i∈I
λi

)(∏

j∈J
µj

)(∏

k∈K
νk

)
b|I|, |J |, |K|,

is symmetric and multiaffine.

We summarize all this in the following lemma. From now on, we will usually denote a
barycentric affine frame (r, s, t) in the affine plane P, as ∆rst, and call it a reference triangle.
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Lemma 7.4.2. Given a reference triangle ∆rst in the affine plane P, given any family
(bi, j, k)(i,j,k)∈∆m

of (m+1)(m+2)
2

points in E , there is a unique surface F : P → E of total degree
m, defined by a symmetric m-affine polar form f : Pm → E , such that

f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

) = bi, j, k,

for all (i, j, k) ∈ ∆m. Furthermore, f is given by the expression

f(a1, . . . , am) =
∑

I∪J∪K={1,...,m}
I,J,K pairwise disjoint

(∏

i∈I
λi

)(∏

j∈J
µj

)(∏

k∈K
νk

)
f(r, . . . , r︸ ︷︷ ︸

|I|

, s, . . . , s︸ ︷︷ ︸
|J |

, t, . . . , t︸ ︷︷ ︸
|K|

),

where ai = λir+µis+νit, with λi+µi+νi = 1, and 1 ≤ i ≤ m. A point F (a) on the surface
F can be expressed in terms of the Bernstein polynomials Bm

i,j,k(U, V, T ) =
m!

i!j!k!
U iV jT k, as

F (a) = f(a, . . . , a︸ ︷︷ ︸
m

) =
∑

(i, j, k)∈∆m

Bm
i,j,k(λ, µ, ν) f(r, . . . , r︸ ︷︷ ︸

i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where a = λr + µs+ νt, with λ+ µ+ ν = 1.

We can show that when E is of finite dimension, the class of polynomial surfaces of total
degree m in polar form as in definition 7.4.1 is identical to the class of polynomial surfaces,
as in definition 7.1.1. Indeed, we have already shown using polarization, that a polynomial
surface according to definition 7.1.1 is a polynomial surface of total degree m in polar form
as in definition 7.4.1. For the converse, simply apply lemma 4.2.3.

A family N = (bi, j, k)(i,j,k)∈∆m
of (m+1)(m+2)

2
points in E , is called a (triangular) control

net, or Bézier net . Note that the points in

∆m = {(i, j, k) ∈ N3 | i+ j + k = m},

can be thought of as a triangular grid of points in P. For example, when m = 5, we have
the following grid of 21 points:

500
401 410

302 311 320
203 212 221 230

104 113 122 131 140
005 014 023 032 041 050

We intentionally let i be the row index, starting from the left lower corner, and j be the
column index, also starting from the left lower corner. The control net N = (bi, j, k)(i,j,k)∈∆m
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can be viewed as an image of the triangular grid ∆m in the affine space E . By lemma
7.4.2, such a control net N determines a unique polynomial surface F of total degree m.
The portion of the surface F corresponding to the points F (a) for which the barycentric
coordinates (λ, µ, ν) of a (with respect to the reference triangle ∆rst) satisfy the inequalities
0 ≤ λ, 0 ≤ µ, 0 ≤ ν, with λ+ µ+ ν = 1, is called a triangular (surface) patch, or triangular
Bézier patch, and F (∆rst) is called the trace of the triangular surface patch. The surface
F (or triangular patch) determined by a control net N , contains the three control points
bm, 0, 0, b0, m, 0, and b0, 0,m, the corners of the surface patch.

Contrary to rectangular patches, given a triangular control net N = (bi, j, k)(i,j,k)∈∆m
,

there isn’t a unique natural way to connect the nodes in N , to form triangular faces that
form a polyhedron. In order to understand the difficulty, we can associate with each triple
(i, j, k) ∈ ∆m, the points

i

m
r +

j

m
s+

k

m
t,

where ∆rst is the reference triangle. Then, various triangulations of the triangle ∆rst using
the points just defined, yield various ways of forming triangular faces using the control net.
To be definite, we can assume that we pick a Delaunay triangulation (see O’Rourke [58],
Preparata and Shamos [64], Boissonnat and Yvinec [13], or Risler [68]).

The de Casteljau algorithm generalizes quite easily.

7.5 The de Casteljau Algorithm for Triangular Surface

Patches

Given a reference triangle ∆rst, given a triangular control net N = (bi, j, k)(i,j,k)∈∆m
, recall

that in terms of the polar form f : Pm → E of the polynomial surface F : P → E defined by
N , for every (i, j, k) ∈ ∆m, we have

bi, j, k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

).

Given a = λr+µs+νt in P, where λ+µ+ν = 1, in order to compute F (a) = f(a, . . . , a), the
computation builds a sort of tetrahedron consisting of m+ 1 layers. The base layer consists
of the original control points in N , which are also denoted as (b0i, j, k)(i,j,k)∈∆m

. The other

layers are computed in m stages, where at stage l, 1 ≤ l ≤ m, the points (bli, j, k)(i,j,k)∈∆m−l

are computed such that

bli, j, k = λbl−1
i+1, j, k + µbl−1

i, j+1, k + νbl−1
i, j, k+1.

During the last stage, the single point bm0, 0, 0 is computed. An easy induction shows that

bli, j, k = f(a, . . . , a︸ ︷︷ ︸
l

, r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),
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where (i, j, k) ∈ ∆m−l, and thus, F (a) = bm0, 0, 0.

Similarly, givenm points a1, . . . , am in P, where al = λlr+µls+νlt, with λl+µl+νl = 1, we
can compute the polar value f(a1, . . . , am) as follows. Again, the base layer of the tetrahedron
consists of the original control points in N , which are also denoted as (b0i, j, k)(i,j,k)∈∆m

. At

stage l, where 1 ≤ l ≤ m, the points (bli, j, k)(i,j,k)∈∆m−l
are computed such that

bli, j, k = λlb
l−1
i+1, j, k + µlb

l−1
i, j+1, k + νlb

l−1
i, j, k+1.

An easy induction shows that

bli, j, k = f(a1, . . . , al, r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where (i, j, k) ∈ ∆m−l, and thus, f(a1, . . . , am) = bm0, 0, 0.

In order to present the algorithm, it may be helpful to introduce some abbreviations.
For example, a triple (i, j, k) ∈ ∆m is denoted as i, and we let e1 = (1, 0, 0), e2 = (0, 1, 0),
e3 = (0, 0, 1), and 0 = (0, 0, 0). Let a = λr+µs+ νt, where λ+µ+ ν = 1. We are assuming
that we have initialized the family (b0

i
)i∈∆m

, such that b0
i
= bi, for all i ∈ ∆m. Then, we can

describe the de Casteljau algorithm as follows.

begin
for l := 1 to m do
for i := 0 to m− l do
for j := 0 to m− i− l do
k := m− i− j − l;
i := (i, j, k);
bl
i
:= λbl−1

i+e1
+ µbl−1

i+e2
+ νbl−1

i+e3

endfor
endfor

endfor;
F (a) := bm

0

end

In order to compute the polar value f(a1, . . . , am), for m points a1, . . . , am in P, where
al = λlr + µls+ νlt, with λl + µl + νl = 1, we simply replace λ, µ, ν by λl, µl, νl.

It is clear from the above algorithm, that the triangular patch defined by the control net
N , is contained in the convex hull of the control net N .

The following diagram illustrates the de Casteljau algorithm in the case of a polynomial
surface of total degree 3. It is assumed that the triangle ∆rst has been chosen as an affine
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base of P, and for simplicity of notation, the polar value f(u1, u2, u3) is denoted as u1u2u3,
for example, f(r, r, s) is denoted as rrs. The diagram shows the computation of the point
F (u), and it consists of three shells, each one obtained via two-dimensional interpolation
steps.
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bc
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bc

bc
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bcbc
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tuu

suuruu
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Figure 7.2: The de Casteljau algorithm for polynomial surfaces of total degree 3

There are other interesting properties of tangent planes, that will be proved at the end
of this Chapter. For example, if the control points bm, 0, 0, bm−1, 1, 0, and bm−1, 0, 1, are not
collinear, then the plane that they define is the tangent plane to the surface at the corner
point bm, 0, 0. A similar property holds for the other corner control points b0, m, 0 and b0, 0,m.
Thus, in general, the three tangent planes at the corner points are known. Also, the tangent
plane to the surface at F (a) is determined by the points bm−1

1, 0, 0, b
m−1
0, 1, 0, and bm−1

0, 0, 1 (unless these
points are all collinear).

Given a polynomial surface F : P → E , by considering points a ∈ P of barycentric
coordinates (0, µ, 1 − µ), we get a curve on the surface F passing through F (s) and F (t),
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and similarly, considering points of barycentric coordinates (λ, 0, 1 − λ), we get a curve on
the surface F passing through F (r) and F (t). Finally, considering points of barycentric
coordinates (λ, 1 − λ, 0), we get a curve on the surface F passing through F (r) and F (s).
These curves are Bézier curves of degree m, and they are called the boundary curves of the
triangular patch. If we consider the points F (λr + µs + νt) on the surface F , obtained
by holding λ constant, they form a polynomial curve called an isoparametric curve. Other
isoparametric curves are obtained by holding µ constant, or ν constant. More generally, we
can consider curves on a surface F of total degree m, determined by the constraint that the
parameter point a = λr + µs + νt ∈ P, lies on a line. This way, we also get a Bézier curve
of degree m.

It is interesting to note that the same polynomial surface F , when represented as a
bipolynomial surface of degree 〈p, q〉, requires a control net of (p + 1)(q + 1) control points,

and when represented as a surface of total degree m, requires a control net of (m+1)(m+2)
2

points.

We conclude this chapter by considering directional derivatives of polynomial surfaces.

7.6 Directional Derivatives of Polynomial Surfaces

In section 10.5, it is shown that if F : E → E is an affine polynomial function of polar degree

m, where E and E are normed affine spaces, and if −→u is any nonnull vector in
−→
E , for any

a ∈ E, the directional derivative DuF (a) is given by

DuF (a) = mf̂(a, . . . , a︸ ︷︷ ︸
m−1

,−→u ).

Now, let F : A× A → E be a bipolynomial surface of degree 〈p, q〉, and let

f : (A)p × (A)q → E

be its polar form. Let
f̂ : (Â)p × (Â)q → Ê

be its homogenized 〈p, q〉-symmetric multilinear map. Using some very similar calculations,

it is easily shown that for any two nonnull vectors −→u ,−→v ∈ R, for any two points a, b ∈ A,
the directional derivative DuDvF (a, b) is given by

DuDvF (a, b) = p qf̂(a, . . . , a︸ ︷︷ ︸
p−1

,−→u , b, . . . , b︸ ︷︷ ︸
q−1

,−→v ).

This directional derivative is also denoted as

∂2F

∂−→u ∂−→v
(a, b).
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When −→u = 1 and −→v = 1, by definition, the directional derivative
∂2F

∂−→u ∂−→v
(a, b) is the partial

derivative
∂2F

∂u∂v
(a, b), and the vector

∂2F

∂u∂v
(a, b) is often called the twist at (a, b).

The following lemma, analogous to lemma 10.5.3, can be shown easily.

Lemma 7.6.1. Given a bipolynomial surface F : A × A → E of degree 〈p, q〉, with polar
form f : (A)p × (A)q → E , where E is any normed affine space, for any nonzero vectors
−→u ,−→v ∈ R, for any two points a, b ∈ A, for any i, j, where 0 ≤ i, j ≤ m, the directional
derivative Du . . .Du︸ ︷︷ ︸

i

Dv . . .Dv︸ ︷︷ ︸
j

F (a, b) can be computed from the homogenized polar form f̂ of

F as follows:

Du . . .Du︸ ︷︷ ︸
i

Dv . . .Dv︸ ︷︷ ︸
j

F (a, b) = pi qj f̂(a, . . . , a︸ ︷︷ ︸
p−i

,−→u , . . . ,−→u︸ ︷︷ ︸
i

, b, . . . , b︸ ︷︷ ︸
q−j

,−→v , . . . ,−→v︸ ︷︷ ︸
j

).

The directional derivative Du . . .Du︸ ︷︷ ︸
i

Dv . . .Dv︸ ︷︷ ︸
j

F (a, b) is also denoted as

∂i+jF

∂−→u i
∂−→v j (a, b),

and when i = 0 or j = 0, it is denoted as
∂iF

∂−→u i (a, b) or
∂jF

∂−→v j (a, b), respectively.

If (r1, s1) and (r2, s2) are any two affine frames for the affine line A, every vector −→u ∈ R

can be expressed as
−→u = λ1s1 − λ1r1,

and similarly, every vector −→v ∈ R can be expressed as

−→v = λ2s2 − λ2r2,

and thus, for any a, b ∈ A, since

∂F

∂−→u
(a, b) = p f̂(a, . . . , a︸ ︷︷ ︸

p−1

,−→u , b, . . . , b︸ ︷︷ ︸
q

),

and
∂F

∂−→v
(a, b) = q f̂(a, . . . , a︸ ︷︷ ︸

p

, b, . . . , b︸ ︷︷ ︸
q−1

,−→v ),
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we get
∂F

∂−→u
(a, b) = p λ1 (f(a, . . . , a︸ ︷︷ ︸

p−1

, s1, b, . . . , b︸ ︷︷ ︸
q

)− f(a, . . . , a︸ ︷︷ ︸
p−1

, r1, b, . . . , b︸ ︷︷ ︸
q

)),

and
∂F

∂−→v
(a, b) = q λ2 (f(a, . . . , a︸ ︷︷ ︸

p

, b, . . . , b︸ ︷︷ ︸
q−1

, s2)− f(a, . . . , a︸ ︷︷ ︸
p

, b, . . . , b︸ ︷︷ ︸
q−1

, r2)).

Since these vectors, provided that they are not linearly dependent, span the tangent plane
at (a, b) to F , the four points

f(a, . . . , a︸ ︷︷ ︸
p−1

, r1, b, . . . , b︸ ︷︷ ︸
q

), f(a, . . . , a︸ ︷︷ ︸
p−1

, s1, b, . . . , b︸ ︷︷ ︸
q

),

f(a, . . . , a︸ ︷︷ ︸
p

, b, . . . , b︸ ︷︷ ︸
q−1

, r2), f(a, . . . , a︸ ︷︷ ︸
p

, b, . . . , b︸ ︷︷ ︸
q−1

, s2),

are coplanar, and provided that they are not collinear, they determine the tangent plane at
(a, b) to the bipolynomial surface F . However, these points are just the points bp−1

0∗ , bp−1
1∗ ,

and bq−1
∗0 , bq−1

∗1 , computed by the two versions of the de Casteljau algorithm. Thus, we have
proved the claim that the tangent plane at (a, b) to the bipolynomial surface F is determined
by the points bp−1

0∗ , bp−1
1∗ , and bq−1

∗0 , bq−1
∗1 , computed by the two versions of the de Casteljau

algorithm (provided that they are not collinear). In particular, letting a = r1 and b = r2,
we find that the control points b0, 0, b1, 0, and b0, 1, define the tangent plane to the surface at
the corner point b0, 0.

Assuming −→u = 1 and −→v = 1, by a similar reasoning, since

∂2F

∂u∂v
(a, b) = p qf̂(a, . . . , a︸ ︷︷ ︸

p−1

,−→u , b, . . . , b︸ ︷︷ ︸
q−1

,−→v ),

we get

∂2F

∂u∂v
(a, b) = p q

(
f(a, . . . , a︸ ︷︷ ︸

p−1

, s1, b, . . . , b︸ ︷︷ ︸
q−1

, s2)− f(a, . . . , a︸ ︷︷ ︸
p−1

, s1, b, . . . , b︸ ︷︷ ︸
q−1

, r2)

− (f(a, . . . , a︸ ︷︷ ︸
p−1

, r1, b, . . . , b︸ ︷︷ ︸
q−1

, s2)− f(a, . . . , a︸ ︷︷ ︸
p−1

, r1, b, . . . , b︸ ︷︷ ︸
q−1

, r2))

)
.

Letting d1,1, d1,2, d2,1, d2,2, be the points

d1,1 = f(a, . . . , a︸ ︷︷ ︸
p−1

, r1, b, . . . , b︸ ︷︷ ︸
q−1

, r2), d1,2 = f(a, . . . , a︸ ︷︷ ︸
p−1

, r1, b, . . . , b︸ ︷︷ ︸
q−1

, s2),

d2,1 = f(a, . . . , a︸ ︷︷ ︸
p−1

, s1, b, . . . , b︸ ︷︷ ︸
q−1

, r2), d2,2 = f(a, . . . , a︸ ︷︷ ︸
p−1

, s1, b, . . . , b︸ ︷︷ ︸
q−1

, s2),
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we can express
∂2F

∂u∂v
(a, b) as

∂2F

∂u∂v
(a, b) = p q (d2,2 − d2,1 − d1,2 + d1,1),

which, in terms of vectors, can be written either as

∂2F

∂u∂v
(a, b) = p q ((d2,2 − d2,1)− (d1,2 − d1,1)) ,

or as
∂2F

∂u∂v
(a, b) = p q ((d2,2 − d1,2)− (d2,1 − d1,1)) .

The twist vector
∂2F

∂u∂v
(a, b) can be given an interesting interpretation in terms of the

points d1,1, d1,2, d2,1, d2,2. Let c be the point determined such that d1,1, d1,2, d2,1, and c, form
a parallelogram, that is, let

c = d2,1 + (d1,2 − d1,1).

Then, it is immediately verified that

(d2,2 − d2,1)− (d1,2 − d1,1) = d2,2 − c,

and thus (since −→u = 1 and −→v = 1), we get

∂2F

∂u∂v
(a, b) = p q (d2,2 − c).

Thus, up to the factor p q, the twist vector is a measure for how much the quadrangle
d1,1, d1,2, d2,1, d2,2, deviates from the parallelogram d1,1, d1,2, d2,1, c, and roughly, it is a mea-
sure of the deviation of d2,2 from the plane determined by d1,1, d1,2, and d2,1 (when these
points are not collinear). In particular, when a = r1 and b = r2, this plane in just the
tangent plane at d1,1 = b0,0.

Remark: If we assume that−→u = 1 and−→v = 1, then by definition, the directional derivative
∂2F

∂−→u ∂−→v
(a, b) is the partial derivative

∂2F

∂u∂v
(a, b), and since

∂2F

∂−→u ∂−→v
(a, b) = p q (d2,2 − d2,1 − d1,2 + d1,1),
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and

d1,1 = f(a, . . . , a︸ ︷︷ ︸
p−1

, r1, b, . . . , b︸ ︷︷ ︸
q−1

, r2), d1,2 = f(a, . . . , a︸ ︷︷ ︸
p−1

, r1, b, . . . , b︸ ︷︷ ︸
q−1

, s2),

d2,1 = f(a, . . . , a︸ ︷︷ ︸
p−1

, s1, b, . . . , b︸ ︷︷ ︸
q−1

, r2), d2,2 = f(a, . . . , a︸ ︷︷ ︸
p−1

, s1, b, . . . , b︸ ︷︷ ︸
q−1

, s2),

letting
a = (1− λ1)r1 + λ1s1,

and
b = (1− λ2)r2 + λ2s2,

after expansion using multiaffineness, we get

∂2F

∂u∂v
(a, b) = p q

i=p−1∑

i=0

j=q−1∑

j=0

(bi+1,j+1 − bi+1,j − bi,j+1 + bi,j)B
p−1
i (λ1)B

q−1
j (λ2),

where Bp−1
i and Bq−1

j are the Bernstein polynomials, and the bi,j are the Bézier control points
of F .

If we now consider a polynomial Bézier surface F : P → E of total degree m, defined by
a symmetric m-affine polar form f : Pm → E , the results of section 10.5 apply immediately.
Thus, by lemma 10.5.3, for any k nonzero vectors −→u1 , . . . ,

−→uk ∈ R2, where 1 ≤ k ≤ m, for
any a ∈ P, the k-th directional derivative Du1 . . .Duk

F (a) can be computed as follows:

Du1 . . .Duk
F (a) = mk f̂(a, . . . , a︸ ︷︷ ︸

m−k

,−→u1 , . . . ,
−→uk ).

When u1 = . . . = uk, we also denote Du1 . . .Duk
F (a) as

∂kF

∂−→u k
(a).

Given any reference triangle ∆rst, since every vector −→u ∈ R2 can be written as

−→u = λr + µs+ νt,

where λ+ µ+ ν = 0, for k = 1, we get

∂F

∂−→u
(a) = m(λf(a, . . . , a︸ ︷︷ ︸

m−1

, r) + µf(a, . . . , a︸ ︷︷ ︸
m−1

, s) + νf(a, . . . , a︸ ︷︷ ︸
m−1

, t)).

When λ, µ, ν vary, subject to λ+ µ+ ν = 0, provided that the points

f(a, . . . , a︸ ︷︷ ︸
m−1

, r), f(a, . . . , a︸ ︷︷ ︸
m−1

, s), f(a, . . . , a︸ ︷︷ ︸
m−1

, t)
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are not collinear, the vectors
∂F

∂−→u
(a) span the tangent plane to F at a. However, we recognize

that the above points are just the points bm−1
(1, 0, 0), b

m−1
(0, 1, 0), and bm−1

(0, 0, 1), computed by the de
Casteljau algorithm. Thus, we have proved the claim that the tangent plane to the surface
at F (a) is determined by the points bm−1

(1, 0, 0), b
m−1
(0, 1, 0), and bm−1

(0, 0, 1) (unless these points are all

collinear). In particular, letting a = r, if the control points bm, 0, 0, bm−1, 1, 0, and bm−1, 0, 1,
are not collinear, then the plane that they define is the tangent plane to the surface at the
corner point bm, 0, 0.

Remark: From

Du1 . . .Duk
F (a) = mk f̂(a, . . . , a︸ ︷︷ ︸

m−k

,−→u1 , . . . ,
−→uk ),

we deduce that

∂i+jF

∂−→u i
∂−→v j (a) = mi+j f̂(a, . . . , a︸ ︷︷ ︸

m−i−j

,−→u , . . . ,−→u︸ ︷︷ ︸
i

,−→v , . . . ,−→v︸ ︷︷ ︸
j

).

7.7 Problems

Problem 1 (10 pts). Compute the rectangular control net for the surface defined by the
equation z = xy, with respect to the affine frames (0, 1) and (0, 1). Plot the surface patch
over [0, 1]× [0, 1].

Problem 2 (20 pts). Recall that the polar form of the monomial uhvk with respect to the
bidegree 〈p, q〉 (where h ≤ p and k ≤ q) is

f p,q
h,k =

1(
p
h

)(
q
k

)
∑

I⊆{1,...,p},|I|=h

J⊆{1,...,q},|J|=k

(∏

i∈I
ui

)(∏

j∈J
vj

)
.

Letting σp,q
h,k =

(
p
h

)(
q
k

)
f p,q
h,k, prove that we have the following recurrence equations:

σp,q
h,k =





σp−1,q−1
h,k + upσ

p−1,q−1
h−1,k + vqσ

p−1,q−1
h,k−1 + upvqσ

p−1,q−1
h−1,k−1 if 1 ≤ h ≤ p and 1 ≤ k ≤ q,

σp,q−1
0,k + vqσ

p,q−1
0,k−1 if h = 0 ≤ p and 1 ≤ k ≤ q,

σp−1,q
h,0 + upσ

p−1,q
h−1,0 if 1 ≤ h ≤ p and k = 0 ≤ q,

1 if h = k = 0, p ≥ 0, and q ≥ 0;
0 otherwise.
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Alternatively, prove that f p,q
h,k can be computed directly using the recurrence formula

f p,q
h,k =

(p− h)(q − k)

pq
f p−1,q−1
h,k +

h(q − k)

pq
up f

p−1,q−1
h−1,k +

(p− h)k

pq
vq f

p−1,q−1
h,k−1 +

hk

pq
upvq f

p−1,q−1
h−1,k−1,

where 1 ≤ h ≤ p and 1 ≤ k ≤ q,

f p,q
0,k =

(q − k)

q
f p,q−1
0,k +

k

q
vq f

p,q−1
0,k−1 ,

where h = 0 ≤ p and 1 ≤ k ≤ q, and

f p,q
h,0 =

(p− h)

p
f p−1,q
h,0 +

h

p
up f

p−1,q
h−1,0,

where 1 ≤ h ≤ p and k = 0 ≤ q.

Show that for any (u1, . . . , up, v1, . . . , vq), computing all the polar values

f i,j
h,k(u1, . . . , up, v1, . . . , vq),

where 1 ≤ h ≤ i, 1 ≤ k ≤ j, 1 ≤ i ≤ p, and 1 ≤ j ≤ q, can be done in time O(p2q2).

Problem 3 (30). Using the result of problem 2, write a computer program for computing
the control points of a rectangular surface patch defined parametrically.

Problem 4 (20 pts). Prove that the polar form of the monomial uhvk with respect to the
total degree m (where h+ k ≤ m) can be expressed as

fm
h,k =

1(
m
h

)(
m− h

k

)
∑

I∪J⊆{1,...,m}
|I|=h,|J|=k,I∩J=∅

(∏

i∈I
ui

)(∏

j∈J
vj

)
.

Letting σm
h,k =

(
m
h

)(
m− h

k

)
fm
h,k, prove that we have the following recurrence equa-

tions:

σm
h,k =

{
σm−1
h,k + umσ

m−1
h−1,k + vmσ

m−1
h,k−1 if h, k ≥ 0 and 1 ≤ h+ k ≤ m,

1 if h = k = 0 and m ≥ 0;
0 otherwise.

Alternatively, prove that fm
h,k can be computed directly using the recurrence formula

fm
h,k =

(m− h− k)

m
fm−1
h,k +

h

m
um fm−1

h−1,k +
k

m
vm fm−1

h,k−1,

where h, k ≥ 0 and 1 ≤ h+ k ≤ m.
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Show that for any ((u1, v1), . . . , (um, vm)), computing all the polar values

f i
h,k((u1, v1), . . . , (um, vm)),

where h, k ≥ 0, 1 ≤ h+ k ≤ i, and 1 ≤ i ≤ m, can be done in time O(m3).

Problem 5 (30). Using the result of problem 4, write a computer program for computing
the control points of a triangular surface patch defined parametrically.

Problem 6 (20 pts). Compute a rectangular net for the surface defined by the equation

z = x3 − 3xy2

with respect to the affine frames (−1, 1) and (−1, 1). Compute a triangular net for the same
surface with respect to the affine frame ((1, 0), (0, 1), (0, 0)).

Note that z is the real part of the complex number (u + iv)3. This surface is called a
monkey saddle.

Problem 7 (20 pts). Compute a rectangular net for the surface defined by the equation

z = x4 − 6x2y2 + y4

with respect to the affine frames (−1, 1) and (−1, 1). Compute a triangular net for the same
surface with respect to the affine frame ((1, 0), (0, 1), (0, 0)).

Note that z is the real part of the complex number (u + iv)4. This surface is a more
complex kind of monkey saddle.

Problem 8 (20 pts). Compute a rectangular net for the surface defined by the equation

z = 1/6(x3 + y3)

with respect to the affine frames (−1, 1) and (−1, 1). Compute a triangular net for the same
surface with respect to the affine frame ((1, 0), (0, 1), (0, 0)).

Problem 9 (20 pts). Compute a rectangular net for the surface defined by

x = u(u2 + v2),

y = v(u2 + v2),

z = u2v − v3/3,

with respect to the affine frames (0, 1) and (0, 1). Compute a triangular net for the same
surface with respect to the affine frame ((1, 0), (0, 1), (0, 0)).

Explain what happens for (u, v) = (0, 0).
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Problem 10 (20 pts). Give the details of the proof of lemma 7.2.2 and lemma 7.4.2, that
is, give the details of the induction steps.

Problem 11 (10 pts). Prove that when E is of finite dimension, the class of bipolynomial
surfaces in polar form as in definition 7.2.1 is identical to the class of polynomial surfaces as
in definition 7.1.1.

Problem 12 (10 pts). Prove that when E is of finite dimension, the class of polynomial
surfaces of total degree m in polar form as in definition 7.4.1 is identical to the class of
polynomial surfaces as in definition 7.1.1.

Problem 13 (20 pts). Let F be a bipolynomial surface of bidegree 〈n, n〉 given by some
control net N = (bi, j)(i,j)∈ n,n

with respect to the affine frames (r1, s1) and (r2, s2). Define

a sequence of nets (bri, j)(i,j)∈ n−r,n−r
inductively as follows: For r = 0, we have bri, j = bi, j for

all i, j with 0 ≤ i, j ≤ n, and for r = 1, . . . , n,

bri, j = (1− u)(1− v) br−1
i, j + u(1− v) br−1

i+1, j + (1− u)v br−1
i, j+1 + uv br−1

i+1, j+1,

where 0 ≤ i, j ≤ n− r. This method is known as the direct de Casteljau algorithm.

(i) Prove that F (u, v) = bn0, 0.

(ii) Let F be a bipolynomial surface of bidegree 〈p, q〉 given by some control net N =
(bi, j)(i,j)∈ p,q

with respect to the affine frames (r1, s1) and (r2, s2). What happens to the
direct de Casteljau algorithm when p 6= q? Modify the direct de Casteljau algorithm to
compute F (u, v) when p 6= q.

Problem 14 (20 pts). Given a bipolynomial surface F of bidegree 〈p, q〉 given by some
control net N = (bi, j)(i,j)∈ p,q

with respect to the affine frames (r1, s1) and (r2, s2), there

are three versions of de Casteljau algorithm to compute a point F (u, v) on the surface F .
The first version is the direct de Casteljau algorithm described in problem 13. In the second
version, we first compute the points

b0∗, . . . , bp∗,

where bi∗ is obtained by applying the de Casteljau algorithm to the Bézier control points

bi, 0, . . . , bi, q,

with 0 ≤ i ≤ p, and then compute bp0∗, by applying the de Casteljau algorithm to the control
points

b0∗, . . . , bp∗.

In the third version, we first compute the points

b∗0, . . . , b∗q,
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where b∗j is obtained by applying the de Casteljau algorithm to the Bézier control points

b0, j, . . . , bp, j,

with 0 ≤ j ≤ q, and then compute bq∗0, by applying the de Casteljau algorithm to the control
points

b∗0, . . . , b∗q.

Compare the complexity of the three algorithms depending on relative values of p and q.

Problem 15 (40 pts). Write a computer program implementing the de Casteljau algo-
rithm(s) for rectangular surface patches.

Problem 16 (30 pts). Write a computer program implementing the de Casteljau algorithm
for triangular surface patches.



Chapter 8

Subdivision Algorithms for
Polynomial Surfaces

8.1 Subdivision Algorithms for Triangular Patches

In this section, we explain in detail how the de Casteljau algorithm can be used to subdivide
a triangular patch into subpatches, in order to obtain a triangulation of a surface patch using
recursive subdivision. A similar method is described in Farin [30]. Given a reference triangle
∆rst, given a triangular control net N = (bi, j, k)(i,j,k)∈∆m

, recall that in terms of the polar
form f : Pm → E of the polynomial surface F : P → E defined by N , for every (i, j, k) ∈ ∆m,
we have

bi, j, k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

).

Given a = λr+µs+νt in P, where λ+µ+ν = 1, in order to compute F (a) = f(a, . . . , a), the
computation builds a sort of tetrahedron consisting of m+ 1 layers. The base layer consists
of the original control points in N , which are also denoted as (b0i, j, k)(i,j,k)∈∆m

. The other

layers are computed in m stages, where at stage l, 1 ≤ l ≤ m, the points (bli, j, k)(i,j,k)∈∆m−l

are computed such that

bli, j, k = λbl−1
i+1, j, k + µbl−1

i, j+1, k + νbl−1
i, j, k+1.

During the last stage, the single point bm0, 0, 0 is computed. An easy induction shows that

bli, j, k = f(a, . . . , a︸ ︷︷ ︸
l

, r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where (i, j, k) ∈ ∆m−l, and thus, F (a) = bm0, 0, 0.

Assuming that a is not on one of the edges of ∆rst, the crux of the subdivision method
is that the three other faces of the tetrahedron of polar values bli, j, k besides the face corre-
sponding to the original control net, yield three control nets

295
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Nast = (bl0, j, k)(l,j,k)∈∆m
,

corresponding to the base triangle ∆ast,

N rat = (bli, 0, k)(i,l,k)∈∆m
,

corresponding to the base triangle ∆rat, and

N rsa = (bli, j, 0)(i,j,l)∈∆m
,

corresponding to the base triangle ∆rsa.

From an implementation point of view, we found it convenient to assume that a triangular
net N = (bi, j, k)(i,j,k)∈∆m

is represented as the list consisting of the concatenation of the m+1
rows

bi, 0, m−i, bi, 1, m−i−1, . . . , bi,m−i, 0,

i.e.,

f(r, . . . , r︸ ︷︷ ︸
i

, t, . . . , t︸ ︷︷ ︸
m−i

), f(r, . . . , r︸ ︷︷ ︸
i

, s, t, . . . , t︸ ︷︷ ︸
m−i−1

), . . . , f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
m−i−1

, t), f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
m−i

),

where 0 ≤ i ≤ m. As a triangle, the net N is listed (from top-down) as

f(t, . . . , t︸ ︷︷ ︸
m

) f(t, . . . , t︸ ︷︷ ︸
m−1

, s) . . . f(t, s, . . . , s︸ ︷︷ ︸
m−1

) f(s, . . . , s︸ ︷︷ ︸
m

)

. . . . . .

. . .

f(r, . . . , r︸ ︷︷ ︸
m−1

, t) f(r, . . . , r︸ ︷︷ ︸
m−1

, s)

f(r, . . . , r︸ ︷︷ ︸
m

)

The main advantage of this representation is that we can view the net N as a two-
dimensional array net , such that net [i, j] = bi, j, k (with i + j + k = m). In fact, only a
triangular portion of this array is filled. This way of representing control nets fits well with
the convention that the reference triangle ∆rst is represented as follows:

Instead of simply computing F (a) = bm0, 0, 0, the de Casteljau algorithm can be easily
adapted to output the three nets Nast, N rat, and N rsa. We call this version of the de
Casteljau algorithm the subdivision algorithm. In implementing such a program, we found
that it was convenient to compute the nets Nast, Nart, and Nars. In order to compute
N rat from Nart, we wrote a very simple function transnetj, and in order to compute
N rsa from Nars, we wrote a very simple function transnetk. We also have a function
convtomat which converts a control net given as a list of rows, into a two-dimensional array.
The corresponding Mathematica functions are given below:
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t s

r

a

Figure 8.1: Reference triangle

(* Converts a triangular net into a triangular matrix *)

convtomat[{cnet__},m_] :=

Block[

{cc = {cnet}, i, j, n, mat = {}, row},

(

Do[n = m + 2 - i;

row = {};

Do[

pt = cc[[j]];

row = Append[row, pt], {j, 1, n}

];

cc = Drop[cc, n]; mat = Append[mat, row], {i, 1, m + 1}

];

mat

)

];

(* To transpose a triangular net wrt to left edge *)

(* Converts (r, s, t) to (s, r, t) *)

transnetj[{cnet__},m_] :=

Block[

{cc = {cnet}, i, j, n, aux1, aux2, row, pt, res},

(

aux1 = {}; res = {};

Do[

pt = cc[[j]];

aux1 = Append[aux1, {pt}], {j, 1, m + 1}

];

cc = Drop[cc, m + 1];
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Do[n = m + 1 - i;

Do[

pt = cc[[j]];

aux2 = Append[aux1[[j]], pt];

aux1 = ReplacePart[aux1, aux2, j], {j, 1, n}

];

cc = Drop[cc, n], {i, 1, m}

];

Do[

row = aux1[[j]];

res = Join[res, row], {j, 1, m + 1}

];

res

)

];

(* To rotate a triangular net *)

(* Converts (r, s, t) to (s, t, r) *)

transnetk[{cnet__},m_] :=

Block[

{cc = {cnet}, i, j, n, aux1, aux2, row, pt, res},

(

aux1 = {}; res = {};

Do[

pt = cc[[j]];

aux1 = Append[aux1, {pt}], {j, 1, m + 1}

];

cc = Drop[cc, m + 1];

Do[n = m + 1 - i;

Do[

pt = cc[[j]];

aux2 = Prepend[aux1[[j]], pt];

aux1 = ReplacePart[aux1, aux2, j], {j, 1, n}

];

cc = Drop[cc, n], {i, 1, m}

];

Do[

row = aux1[[j]];

res = Join[res, row], {j, 1, m + 1}

];

res

)
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];

We found it convenient to write three distinct functions subdecas3ra, subdecas3sa, and
subdecas3ta, computing the control nets with respect to the reference triangles ∆ast, ∆art,
and ∆ars. The variables net, mm, and a correspond to the input control net represented as
a list of points, as explained above, the degree of the net, and the barycentric coordinates of
a point in the parameter plane. The output is a control net.

(* de Casteljau for triangular patches, with subdivision *)

(* this version returns the control net for the ref triangle (a, s, t) *)

subdecas3ra[{net__}, mm_, {a__}] :=

Block[

{cc = {net}, dd, row, row0, row1, row2, barcor = {a}, net0,

cctr = {}, ccts = {}, ccsr = {},

m, i, j, k, l, pt},

(m = mm;

net0 = convtomat[cc,m];

row0 = {}; row1 = {}; row2 = {};

Do[

row1 = Append[row1, net0[[1, j + 1]]], {j, 0, m}

];

ccts = row1;

Do[

dd = {};

Do[

row = {};

Do[

pt = barcor[[1]] * net0[[i + 2, j + 1]] +

barcor[[2]] * net0[[i + 1, j + 2]] +

barcor[[3]] * net0[[i + 1, j + 1]];

row = Append[row, pt], {j, 0, m - i - l}

];

dd = Join[dd, row], {i, 0, m - l}

];

If[m - l =!= 0, net0 = convtomat[dd,m - l];

row0 = {}; row1 = {}; row2 = {};

Do[

row1 = Append[row1, net0[[1, j + 1]]], {j, 0, m - l}

];

ccts = Join[ccts, row1],

ccts = Join[ccts, dd]

], {l, 1, m}
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];

ccts

)

];

(* de Casteljau for triangular patches, with subdivision *)

(* this version returns the control net for the ref triangle (a, r, t) *)

subdecas3sa[{net__}, mm_, {a__}] :=

Block[

{cc = {net}, dd, row, row0, row1, row2, barcor = {a}, net0,

cctr = {}, ccts = {}, ccsr = {},

m, i, j, k, l, pt},

(m = mm;

net0 = convtomat[cc,m];

row0 = {}; row1 = {}; row2 = {};

Do[

row0 = Append[row0, net0[[i + 1, 1]]], {i, 0, m}

];

cctr = row0;

Do[

dd = {};

Do[

row = {};

Do[

pt = barcor[[1]] * net0[[i + 2, j + 1]] +

barcor[[2]] * net0[[i + 1, j + 2]] +

barcor[[3]] * net0[[i + 1, j + 1]];

row = Append[row, pt], {j, 0, m - i - l}

];

dd = Join[dd, row], {i, 0, m - l}

];

If[m - l =!= 0, net0 = convtomat[dd,m - l];

row0 = {}; row1 = {}; row2 = {};

Do[

row0 = Append[row0, net0[[i + 1, 1]]], {i, 0, m - l}

];

cctr = Join[cctr, row0],

cctr = Join[cctr, dd]

], {l, 1, m}

];

cctr
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)

];

(* de Casteljau for triangular patches, with subdivision *)

(* this version returns the control net for the ref triangle (a, r, s) *)

subdecas3ta[{net__}, mm_, {a__}] :=

Block[

{cc = {net}, dd, row, row0, row1, row2, barcor = {a}, net0,

cctr = {}, ccts = {}, ccsr = {},

m, i, j, k, l, pt},

(m = mm;

net0 = convtomat[cc,m];

row0 = {}; row1 = {}; row2 = {};

Do[

row2 = Append[row2, net0[[i + 1, m - i + 1]]], {i, 0, m}

];

ccsr = row2;

Do[

dd = {};

Do[

row = {};

Do[

pt = barcor[[1]] * net0[[i + 2, j + 1]] +

barcor[[2]] * net0[[i + 1, j + 2]] +

barcor[[3]] * net0[[i + 1, j + 1]];

row = Append[row, pt], {j, 0, m - i - l}

];

dd = Join[dd, row], {i, 0, m - l}

];

If[m - l =!= 0, net0 = convtomat[dd,m - l];

row0 = {}; row1 = {}; row2 = {};

Do[

row2 = Append[row2, net0[[i + 1, m - l - i + 1]]], {i, 0, m - l}

];

ccsr = Join[ccsr, row2],

ccsr = Join[ccsr, dd]

], {l, 1, m}

];

ccsr

)

];
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The following function computes a polar value, given a control net net, and a list a of
mm points given by their barycentric coordinates.

(* polar value by de Casteljau for triangular patches *)

poldecas3[{net__}, mm_, {a__}] :=

Block[

{cc = {net}, dd, barcor = {a}, net0,

row, m, i, j, k, l, pt, res},

(m = mm;

net0 = convtomat[cc,m];

Do[

dd = {};

Do[

row = {};

Do[

pt = barcor[[l,1]] * net0[[i + 2, j + 1]] +

barcor[[l,2]] * net0[[i + 1, j + 2]] +

barcor[[l,3]] * net0[[i + 1, j + 1]];

row = Append[row, pt], {j, 0, m - i - l}

];

dd = Join[dd, row], {i, 0, m - l}

];

If[m - l =!= 0, net0 = convtomat[dd,m - l],

res = dd

], {l, 1, m}

];

res

)

];

If we want to render a triangular surface patch F defined over the reference triangle
∆rst, it seems natural to subdivide ∆rst into the three subtriangles ∆ars, ∆ast, and ∆art,
where a = (1/3, 1/3, 1/3) is the center of gravity of the triangle ∆rst, getting new control
nets Nars, Nast and Nart using the functions described earlier, and repeat this process
recursively. However, this process does not yield a good triangulation of the surface patch,
because no progress is made on the edges rs, st, and tr, and thus such a triangulation does not
converge to the surface patch. Therefore, in order to compute triangulations that converge
to the surface patch, we need to subdivide the triangle ∆rst in such a way that the edges of
the reference triangle are subdivided. There are many ways of performing such subdivisions,
and we will propose a rather efficient method which yields a very regular triangulation. In
fact, we give a method for subdividing a reference triangle using four calls to the de Casteljau
algorithm in its subdivision version. A naive method would require twelve calls.
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Figure 8.2: Subdividing a reference triangle ∆rst

Subdivision methods based on a version of the de Casteljau algorithm which splits a
control net into three control subnets were investigated by Goldman [38], Boehm and Farin
[9], Böhm [12], and Seidel [75] (see also Boehm, Farin, and Kahman [10], and Filip [34]).
However, some of these authors were not particularly concerned with minimizing the number
of calls to the de Casteljau algorithm, and they use a version of the de Casteljau algorithm
computing a 5-dimensional simplex of polar values, which is more expensive than the stan-
dard 3-dimensional version. It was brought to our attention by Gerald Farin (and it is
mentioned at the end of Seidel’s paper [75]) that Helmut Prautzsch showed in his disserta-
tion (in German) [63] that regular subdivision into four subtriangles can be achieved in four
calls to the de Casteljau algorithm. This algorithm is also sketched in Böhm [12] (see pages
348-349). We rediscovered this algorithm, and present a variant of it below.

The subdivision strategy that we will follow is to divide the reference triangle ∆rst into
four subtriangles ∆abt, ∆bac, ∆crb, and ∆sca, where a = (0, 1/2, 1/2), b = (1/2, 0, 1/2),
and c = (1/2, 1/2, 0), are the middle points of the sides st, rt and rs respectively, as shown
in the diagram below:

The first step is to compute the control net for the reference triangle ∆bat. This can be
done using two steps. In the first step, split the triangle ∆rst into the two triangles ∆art
and ∆ars, where a = (0, 1/2, 1/2) is the middle of st. Using the function sdecas3 (with
a = (0, 1/2, 1/2)), the nets Nart, Nast, and Nars are obtained, and we throw away Nast
(which is degenerate anyway). Then, we split ∆art into the two triangles ∆bat and ∆bar.
For this, we need the barycentric coordinates of b with respect to the triangle ∆art, which
turns out (0, 1/2, 1/2). Using the function sdecas3, the nets N bat, N brt, and N bar are
obtained, and we throw away N brt.

We will now compute the net N cas from the net Nars. For this, we need the barycentric
coordinates of c with respect to the triangle ∆ars, which turns out to be (0, 1/2, 1/2). Using
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bat
bar

ars

Figure 8.3: Computing the nets N bat, N bar and Nars from N rst

the function subdecas3sa, the net N cas is obtained.
We can now compute the nets N cbr and N cba from the net N bar. For this, we need

the barycentric coordinates of c with respect to the reference triangle ∆bar which turns out
to be (−1, 1, 1). Using the function sdecas3, the snet N cbr, N car, and N cba are obtained,
and we throw away N car.

t r
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b

c

bat
cba

cbr

cas

Figure 8.5: Computing the nets N cbr and N cba from N bar

Finally, we apply transposej to the net N bat to get the net Nabt, transposek to N cba
to get the net N bac, transposej followed by transposek to the net N cbr to get the net
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Figure 8.4: Computing the net N cas from Nars

N crb, and transposek twice to N cas to get the net N sca,
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Figure 8.6: Subdividing ∆rst into ∆abt, ∆bac, ∆crb, and ∆sca

Thus, using four calls to the de Casteljau algorithm, we obtained the nets Nabt, N bac,
N crb, and N sca.

Remark: For debugging purposes, we assigned different colors to the patches corresponding
to Nabt, N bac, N crb, and N sca, and we found that they formed a particularly nice pattern
under this ordering of the vertices of the triangles. In fact, Nabt is blue, N bac is red, N crb
is green, and N sca is yellow.



306 CHAPTER 8. SUBDIVISION ALGORITHMS FOR POLYNOMIAL SURFACES

The subdivision algorithm just presented is implemented in Mathematica as follows.

(* Computes the polar degree m associated with a

net cnet of sixe (m + 1)*(m + 2)/2 *)

netsize[cnet__] := Block[

{cc = cnet, ll, s, i, stop, res},

(ll = Length[cc]; s = N[Sqrt[2 * ll]]; i = 1; stop = 1; res = 1;

While[i <= s && stop === 1,

If[(res === ll), stop = 0, i = i + 1; res = res + i]

];

res = i - 1;

res

)

];

(* Subdivides into four subpatches, by dividing the base triangle *)

(* into four subtriangles using the middles of the original sides *)

(* uses a tricky scheme involving 4 de Casteljau steps *)

(* basic version that does not try to resolve singularities *)

(* The triangles are abt, sca, bac, and crb *)

mainsubdecas4[{net__}, oldm_, debug_] :=

Block[

{cc = {net}, newnet, m, art, ars, barcor2},

(m = netsize[cc];

(* Print[" calling mainsubdecas4 with netsize = ", m]; *)

barcor1 = {-1, 1, 1};

barcor2 = {0, 1/2, 1/2};

newnet = sdecas3[cc, m, barcor2];

art = newnet[[1]]; ars = newnet[[3]];

newnet = nsubdecas4[art, ars, m, debug];

newnet

)

];

(* Subdivides into four subpatches, by dividing the base triangle *)

(* into four subtriangles using the middles of the original sides *)
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(* uses a tricky scheme involving 4 de Casteljau steps *)

(* basic version that does not try to resolve singularities *)

(* The triangles are abt, sca, bac, and crb *)

nsubdecas4[{net1__}, {net2__}, oldm_, debug_] :=

Block[

{newnet, m, art = {net1}, ars = {net2},

bat, bar, cas, sca, cbr, cba, bac, crb,

barcor1, barcor2},

(m = netsize[art];

(* Print[" calling mainsubdecas4 with netsize = ", m]; *)

barcor1 = {-1, 1, 1};

barcor2 = {0, 1/2, 1/2};

If[debug === -20, Print["*** art: ",art]];

If[debug === -20, Print["*** ars: ",ars]];

newnet = sdecas3[art, m, barcor2];

bat = newnet[[1]]; bar = newnet[[3]];

abt = transnetj[bat, m];

If[debug === -20, Print["*** abt: ",abt]];

If[debug === -20, Print["*** bar: ",bar]];

cas = subdecas3sa[ars, m, barcor2];

sca = transnetk[cas, m];

sca = transnetk[sca, m];

newnet = sdecas3[bar, m, barcor1];

cbr = newnet[[1]]; cba = newnet[[3]];

bac = transnetk[cba, m];

crb = transnetj[cbr, m];

crb = transnetk[crb, m];

newnet = Join[{abt}, {sca}];

newnet = Join[newnet, {bac}];

newnet = Join[newnet, {crb}];

newnet

)

];

Using mainsubdecas4, starting from a list consisting of a single control net net, we
can repeatedly subdivide the nets in a list of nets, in order to obtain a triangulation of
the surface patch specified by the control net net. The function rsubdiv4 shown below
performs n recursive steps of subdivision, starting with an input control net net. The
function itersub4 takes a list of nets and subdivides each net in this list into four subnets.
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(* performs a subdivision step on each net in a list *)

(* using subdecas4, i.e., splitting into four patches *)

itersub4[{net__}, m_, debug_] :=

Block[

{cnet = {net}, lnet = {}, l, i},

(l = Length[cnet];

Do[

lnet = Join[lnet, mainsubdecas4[cnet[[i]], m, debug]] , {i, 1, l}

];

lnet

)

];

(* performs n subdivision steps using itersub4,

i.e., recursively splits into 4 patches *)

rsubdiv4[{net__}, m_, n_, debug_] :=

Block[

{newnet = {net}, i},

(

newnet = {newnet};

Do[

newnet = itersub4[newnet, m, debug], {i, 1, n}

];

newnet

)

];

The function rsubdiv4 creates a list of nets, where each net is a list of points. In order
to render the surface patch, it is necessary to triangulate each net, that is, to join the control
points in a net by line segments. This can be done in a number of ways, and is left as
an exercise. The best thing to do is to use the Polygon construct of Mathematica. Indeed,
polygons are considered nontransparent. and the rendering algorithm automatically removes
hidden parts. It is also very easy to use the shading options of Mathematica, or color the
polygons as desired. This is very crucial to understand complicated surfaces.

The subdivision method is illustrated by the following example of a cubic patch specified
by the control net
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Figure 8.7: Subdivision, 1 iteration

net = {{0, 0, 0}, {2, 0, 2}, {4, 0, 2}, {6, 0, 0},

{1, 2, 2}, {3, 2, 5}, {5, 2, 2},

{2, 4, 2}, {4, 4, 2}, {3, 6, 0}};

We show the output of the subdivision algorithm for n = 1, 2, 3.

After only three subdivision steps, the triangulation approximates the surface patch very
well.

Another example of a cubic patch specified by the control net sink is shown below.
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Figure 8.8: Subdivision, 2 iterations
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Figure 8.9: Subdivision, 3 iterations
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sink = {{0, 0, 0}, {2, 0, 2}, {4, 0, 2}, {6, 0, 0},

{1, 2, 2}, {3, 2, -8}, {5, 2, 2},

{2, 4, 2}, {4, 4, 2}, {3, 6, 0}};

This surface patch looks like a sink!

Another pleasant application of the subdivision method is that it yields an efficient
method for computing a control net Nabc over a new reference triangle ∆abc, from a control
net N over an original reference triangle ∆rst. Such an algorithm is useful if we wish to ren-
der a surface patch over a bigger or different reference triangle than the originally given one.
Before discussing such an algorithm, we need to review how a change of reference triangle
is performed. Let ∆rst and ∆abc be two reference triangles, and let (λ1, µ1, ν1), (λ2, µ2, ν2),
and (λ3, µ3, ν3), be the barycentric coordinates of a, b, c, with respect to ∆rts. Given any ar-
bitrary point d, if d has coordinates (λ, µ, ν) with respect to ∆rst, and coordinates (λ′, µ′, ν ′)
with respect to ∆abc, since

d = λr + µs+ νt = λ′a + µ′b+ ν ′c

and

a =λ1r + µ1s+ ν1t,

b =λ2r + µ2s+ ν2t,

c =λ3r + µ3s+ ν3t,

we easily get 

λ
µ
ν


 =



λ1 λ2 λ3

µ1 µ2 µ3

ν1 ν2 ν3





λ′

µ′

ν ′




and thus, 

λ′

µ′

ν ′


 =



λ1 λ2 λ3

µ1 µ2 µ3

ν1 ν2 ν3




−1

λ
µ
ν




Thus, the coordinates (λ′, µ′, ν ′) of d with respect to ∆abc can be computed from the
coordinates (λ, µ, ν) of d with respect to ∆rst, by inverting a matrix. In this case, this is
easily done using determinants by Cramer’s formulae (see Lang [47] or Strang [81]).

Now, given a reference triangle ∆rst and a control net N over ∆rst, we can compute the
new control net Nabc over the new reference triangle ∆abc, using three subdivision steps
as explained below. In the first step, we compute the control net Nast over the reference
triangle ∆ast, using subdecas3ra. In the second step, we compute the control net N bat
using subdecas3sa, and then the control net Nabt over the reference triangle ∆abt, using
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Figure 8.10: Subdivision, 3 iterations
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Figure 8.11: Case 1a: a /∈ st, b /∈ at

transnetj. In the third step, we compute the control net N cab using subdecas3ta, and
then the control net Nabc over the reference triangle ∆abc, using transnetk.

Note that in the second step, we need the coordinates of b with respect to the reference
triangle ∆ast, and in the third step, we need the coordinates of c with respect to the reference
triangle ∆abt. This can be easily done by inverting a matrix of order 3, as explained earlier.
One should also observe that the above method is only correct if a does not belong to st,
and b does not belong to at. In general, some adaptations are needed. We used the strategy
explained below, and implemented in Mathematica.

Case 1: a /∈ st.

Compute Nast using subdecas3ra.

Case 1a: b /∈ at.

First, compute N bat using subdecas3sa, and then Nabt using transnetj. Next, com-
pute N cab using subdecas3ta, and then Nabc using transnetk.

Case 1b: b ∈ at.

First, compute N tas from Nast using transnetk twice, then compute N bas using
subdecas3ra, and then Nabs using transnetj. Finally, compute Nabc using subdecas3ta.

Case 2a: s = a (and thus, a ∈ st).

In this case, ∆rst = ∆rat. First compute Nart using transnetj, and then go back to
case 1.



8.1. SUBDIVISION ALGORITHMS FOR TRIANGULAR PATCHES 315

t r

s

a

b bc

Figure 8.12: Case 1b: a /∈ st, b ∈ at

Case 2b: a ∈ st and s 6= a.

Compute Nars using subdecas3ta, and then go back to case 1.

t r

s

a bc

Figure 8.13: Case 2b: a ∈ st, s 6= a

The implementation in Mathematica requires some auxiliary functions. The function
collin checks whether three points in the plane are collinear.

(* checks for collinearity of three points in the plane *)

collin[a__, b__, c__] := Block[

{a1, a2, b1, b2, c1, c2, d1, d2, res},

a1 = a[[1]]; a2 = a[[2]]; b1 = b[[1]]; b2 = b[[2]];

c1 = c[[1]]; c2 = c[[2]];

d1 = (c1 - a1)*(b2 - a2); d2 = (c2 - a2)*(b1 - a1);

If[d1 === d2, res = 1, res = 0];

res

];
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The function solve3 solves a linear system of 3 equations in 3 variables. It uses the
function det3 computing a 3× 3 determinant.

(* Computes a 3 X 3 determinant *)

det3[a_, b_, c_] :=

Block[

{a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, res},

(

a1 = a[[1]]; a2 = a[[2]]; a3 = a[[3]];

b1 = b[[1]]; b2 = b[[2]]; b3 = b[[3]];

c1 = c[[1]]; c2 = c[[2]]; c3 = c[[3]];

d1 = b1*c2 - b2*c1; d2 = a1*c2 - a2*c1;

d3 = a1*b2 - a2*b1;

res = a3*d1 - b3*d2 + c3*d3;

res

)

];

(* Solves a 3 X 3 linear system *)

(* Assuming a, b, c, d are column vectors *)

solve3[a_, b_, c_, d_] :=

Block[

{a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3,

x1, x2, x3, dd, res},

(dd = det3[a, b, c];

If[dd === 0. || dd === 0, Print["*** Null Determinant ***"];

dd = 10^(-10)];

x1 = det3[d, b, c]/dd;

x2 = det3[a, d, c]/dd;

x3 = det3[a, b, d]/dd;

res = {x1, x2, x3};

res

)

];

Finally, the function newcnet3 computes a new net Nabc over the triangle ∆rts, from a
net N over the triangle ∆rts. The function newcnet3 uses the auxiliary function fnewaux.



8.1. SUBDIVISION ALGORITHMS FOR TRIANGULAR PATCHES 317

(* computes new control net, given barycentric coords for *)

(* new reference triangle (a, b, c) w.r.t (r, s, t) *)

(* In the simplest case where a, s, t are not collinear and *)

(* b is not on (a, t), *)

(* the algorithm first computes the control net w.r.t *)

(* (a, s, t) using subdecas3ra, then the control net w.r.t *)

(* (a, b, t) using subdecas3sa and transnetj, and *)

(* the control net w.r.t (a, b, c) using subdecas3ta and *)

(* transnetk *)

(* The other cases are also treated *)

(* The function returns the net (a, b, c) *)

newcnet3[{net__}, m_, {reftrig__}] :=

Block[

{cc = {net}, newtrig = {reftrig}, neta, netb, newnet, a, b, c,

nb, nc, rr, ss, tt},

(newnet = {}; a = newtrig[[1]]; b = newtrig[[2]]; c = newtrig[[3]];

rr = {1, 0, 0}; ss = {0, 1, 0}; tt = {0, 0, 1};

If[collin[a, ss, tt] === 0,

(* In this case, a is not on (s, t).

Want (a, s, t) *)

(* Print[" a NOT on (s, t) "]; *)

neta = subdecas3ra[cc, m, a];

(* Now, the net is (a, s, t) *)

newnet = fnewaux[neta, m, a, b, c, ss, tt],

(* In this case, a is on (s, t) *)

(* Print[" a IS on (s, t) "]; *)

If[a === ss,

(* In this case, a is on (s, t) and a = s.

Want (a, r, t) *)

(* Print[" a on (s, t) and a = ss"]; *)

neta = transnetj[cc, m];

(* Now, the net is (a, r, t) *)

newnet = fnewaux[neta, m, a, b, c, rr, tt],

(* In this case, a is on (s, t) and a <> s.

Want (a, r, s) *)

(* Print[" a on (s, t) and a <> ss"]; *)

neta = subdecas3ta[cc, m, a];

(* Now, the net is (a, r, s) *)

newnet = fnewaux[neta, m, a, b, c, rr, ss],

]
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];

newnet

)

];

(* This routine is used by newcnet3 *)

(* Initially, neta = (a,s,t) *)

fnewaux[{net__}, m_, a_, b_, c_, ss_, tt_] :=

Block[

{neta = {net}, netb, newnet, nb, nc},

( If[collin[b, a, tt] === 0,

(* In this case, b is not on (a, t). Want (a, b, t) *)

(* Print[" b NOT on (a, t) "]; *)

nb = solve3[a, ss, tt, b];

netb = subdecas3sa[neta, m, nb];

netb = transnetj[netb, m];

(* Now, the net is (a, b, t) *)

nc = solve3[a, b, tt, c];

newnet = subdecas3ta[netb, m, nc];

newnet = transnetk[newnet, m],

(* In this case, b is on (a, t). Want (a, b, s) *)

(* Print[" b IS on (a, t) "]; *)

neta = transnetk[neta, m];

neta = transnetk[neta, m];

(* Now, the net (a, s, t) is (t, a, s) *)

nb = solve3[tt, a, ss, b];

netb = subdecas3ra[neta, m, nb];

netb = transnetj[netb, m];

(* Now, the net is (a, b, s) *)

nc = solve3[a, b, ss, c];

newnet = subdecas3ta[netb, m, nc];

newnet = transnetk[newnet, m]

];

newnet

)

];

As an example of the use of the above functions, we can display a portion of a well known
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surface known as the “monkey saddle”, defined by the equations

x = u,

y = v,

z = u3 − 3uv2.

Note that z is the real part of the complex number (u+ iv)3. It is easily shown that the
monkey saddle is specified by the following triangular control net monknet over the standard
reference triangle ∆rst, where r = (1, 0, 0), s = (0, 1, 0), and t = (0, 0, 1).

monknet = {{0, 0, 0}, {0, 1/3, 0}, {0, 2/3, 0}, {0, 1, 0},

{1/3, 0, 0}, {1/3, 1/3, 0}, {1/3, 2/3, -1},

{2/3, 0, 0}, {2/3, 1/3, 0}, {1, 0, 1}};

Using newcnet3 twice to get some new nets net1 and net2, and then subdividing both
nets 3 times, we get the picture shown below.

We used the triangles

reftrig1 = ((−1, 1, 1), (−1,−1, 3), (1, 1,−1))

and

reftrig2 = ((1,−1, 1), (1, 1,−1), (−1,−1, 3))

with newcnet3.

Another nice application of the subdivision algorithms is an efficient method for com-
puting the control points of a curve on a triangular surface patch, where the curve is the
image of a line in the parameter plane, specified by two points a and b. What we need is to
compute the control points

di = f(a, . . . , a︸ ︷︷ ︸
m−i

, b, . . . , b︸ ︷︷ ︸
i

),

where m is the degree of the surface. We could compute these polar values directly, but
there is a much faster method. Indeed, assuming that the surface is defined by some net N
over the reference triangle ∆rts, if r does not belong to the line (a, b), we simply have to
compute N rba using newcnet3, and the control points (d0, . . . , dm) are simply the bottom
row of the net N rba, assuming the usual representation of a triangular net as the list of rows

bi, 0, m−i, bi, 1, m−i−1, . . . , bi,m−i, 0.
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Figure 8.14: A monkey saddle, triangular subdivision

More precisely, we have the following cases.

Case 1: r /∈ ab.

We compute N rba using newcnet3.

Case 2a: r ∈ ab and a ∈ rt.

We compute N sba using newcnet3.

Case 2b: r ∈ ab and a /∈ rt.

In this case, we must have t /∈ ab, since r ∈ ab, and we compute N tba using newcnet3.
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Figure 8.15: Case 1: r /∈ ab

t r

s

a b
bc bc

Figure 8.16: Case 2a: r ∈ ab and a ∈ rt

The corresponding Mathematica program is given below.

(* computes a control net for a curve on the surface, *)

(* given two points a = (a1, a2, a3) and b = (b1, b2, b3) *)

(* in the parameter plane, wrt the reference triangle (r, s, t) *)

(* We use newcnet3 to get the control points of the *)

(* curve segment defined over [0, 1], with end points a, b. *)

curvcpoly[{net__}, m_, a_, b_] :=

Block[

{cc = {net}, res, net1, trigr, trigs, trigt, i, r, s, t, aa, bb},
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Figure 8.17: Case 2b: r ∈ ab and a /∈ rt

(r = {1, 0, 0}; s = {0, 1, 0}; t = {0, 0, 1};

aa = a; bb = b;

trigr = {r, bb, aa}; trigs = {s, bb, aa}; trigt = {t, bb, aa};

If[collin[aa,bb,r] === 0, net1 = newcnet3[cc, m, trigr],

If[collin[aa,t,r] === 1, net1 = newcnet3[cc, m, trigs],

net1 = newcnet3[cc, m, trigt]

]

];

res = {};

Do[

res = Append[res, net1[[i]]], {i, 1, m + 1}

];

res

)

];

Using the function curvcpoly , it is easy to render a triangular patch by rendering a number
of u-curves and v-curves.

8.2 Subdivision Algorithms for Rectangular Patches

We now consider algorithms for approximating rectangular patches using recursive subdivi-
sion. Given two affine frames (r1, s1) and (r2, s2) for the affine line A, given a rectangular
control net N = (bi, j)(i,j)∈ p,q

, recall that in terms of the polar form f : (A)p × (A)q → E of
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the bipolynomial surface F : A×A → E of degree 〈p, q〉 defined by N , for every (i, j) ∈ p,q,
we have

bi, j = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

).

Unlike subdividing triangular patches, subdividing rectangular patches is quite simple.
Indeed, it is possible to subdivide a rectangular control net N in two ways. The first way is
to compute the two nets N [r1, u; ∗] and N [u, s1; ∗], where

N [r1, u; ∗]i, j = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, u, . . . , u︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

with 0 ≤ i ≤ p, and 0 ≤ j ≤ q, and

N [u, s1; ∗]i, j = f(u, . . . , u︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

with 0 ≤ i ≤ p, and 0 ≤ j ≤ q. This can be achieved in q + 1 calls to the version of the de
Casteljau algorithm performing subdivision (in the case of curves). This algorithm has been
implemented in Mathematica as the function urecdecas. The second way is to compute the
two nets N [∗; r2, v] and N [∗; v, s2], where

N [∗; r2, v]i, j = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, v, . . . , v︸ ︷︷ ︸
j

),

with 0 ≤ i ≤ p, and 0 ≤ j ≤ q, and

N [∗; v, s2]i, j = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; v, . . . , v︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

with 0 ≤ i ≤ p, and 0 ≤ j ≤ q. This can be achieved in p + 1 calls to the version of the de
Casteljau algorithm performing subdivision (in the case of curves). This algorithm has been
implemented in Mathematica as the function vrecdecas.

Then, given an input net N over [r1, s1]× [r2, s2], for any u, v ∈ A, we can subdivide the
net N into four subnets N [r1, u; r2, v], N [u, s1; r2, v], N [r1, u; v, s2], N [u, s1; v, s2], by first
subdviding N into N [∗; r2, v] and N [∗; v, s2], using the function vrecdecas, and then by
splitting each of these two nets using urecdecas. The four nets have the common corner
F (u, v).

In order to implement these algorithms, we represent a rectangular control net N =
(bi, j)(i,j)∈ p,q

, as the list of p+ 1 rows

bi, 0, bi, 1, . . . , bi, q,

where 0 ≤ i ≤ p. This has the advantage that we can view N as a rectangular array net, with
net[i, j] = bi, j. The function makerecnet converts an input net into such a two dimensional
array.
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Figure 8.18: Subdividing a rectangular patch

(* To make a rectangular net of degree (p, q) from a list

of length (p + 1)x(q + 1) *)

makerecnet[{net__}, p_, q_] :=

Block[

{oldnet = {net}, newnet = {}, row, pt, i, j, n},

n = Length[oldnet];

Do[row = {};

Do[

pt = oldnet[[i*(q + 1) + j + 1]];

row = Append[row,pt], {j, 0, q}

];

newnet = Append[newnet, row], {i, 0, p}

];

newnet

];

The subdivision algorithm is implemented in Mathematica by the function recdecas,
which uses the functions vrecdecas and urecdecas. In turn, these functions use the function
subdecas, which performs the subdivision of a control polygon. It turns out that an auxiliary
function rectrans converting a matrix given as a list of columns into a linear list of rows,
is needed.

(* De Casteljau algorithm with subdivision into four rectangular nets *)

(* for a rectangular net of degree (p, q) *)

recdecas[{oldnet__}, p_, q_, r1_, s1_, r2_, s2_, u_, v_, debug_] :=

Block[

{net = {oldnet}, temp, newneta, newnetb,

newnet1, newnet2, newnet},
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newneta = {}; newnetb = {};

Print[" p = ", p, ", q = ", q, ", in recdecas"];

temp = vrecdecas[net, p, q, r2, s2, v, debug];

newneta = temp[[1]]; newnetb = temp[[2]];

newnet1 = urecdecas[newneta, p, q, r1, s1, u, debug];

newnet2 = urecdecas[newnetb, p, q, r1, s1, u, debug];

newnet = Join[newnet1, newnet2];

If[debug === 2, Print[" Subdivided nets: ", newnet]];

newnet

];

(* De Casteljau algorithm with subdivision into two rectangular nets *)

(* for a rectangular net of degree (p, q).

Subdivision along the u-curves *)

urecdecas[{oldnet__}, p_, q_, r1_, s1_, u_, debug_] :=

Block[

{net = {oldnet}, i, j, temp, bistar, row1, row2, pt,

newnet1, newnet2, newnet},

bistar = {}; row1 = {}; row2 = {};

newnet1 = {}; newnet2 = {};

Do[

bistar = {}; row1 = {}; row2 = {};

Do[

pt = net[[(q + 1)*i + j + 1]];

bistar = Append[bistar, pt], {i, 0, p}

];

If[debug === 2, Print[" bistar: ", bistar]];

temp = subdecas[bistar, r1, s1, u];

row1 = temp[[1]]; row2 = temp[[2]];

newnet1 = Join[newnet1, {row1}];

newnet2 = Join[newnet2, {row2}], {j, 0, q}

];

newnet1 = rectrans[newnet1]; newnet2 = rectrans[newnet2];

newnet = Join[{newnet1}, {newnet2}];

If[debug === 2, Print[" Subdivided nets: ", newnet]];

newnet

];

(* Converts a matrix given as a list of columns

into a linear list of rows *)
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rectrans[{oldnet__}] :=

Block[

{net = {oldnet}, i, j, pp, qq, row, pt, newnet},

row = {}; newnet = {}; qq = Length[net]; pp = Length[net[[1]]];

Do[

Do[

row = net[[j]]; pt = row[[i]];

newnet = Append[newnet, pt], {j, 1, qq}

], {i, 1, pp}

];

newnet

];

(* De Casteljau algorithm with subdivision into two rectangular nets *)

(* for a rectangular net of degree (p, q).

Subdivision along the v-curves *)

vrecdecas[{oldnet__}, p_, q_, r2_, s2_, v_, debug_] :=

Block[

{net = {oldnet}, i, j, temp, bstarj, row1, row2, pt,

newneta, newnetb, newnet},

bistar = {}; row1 = {}; row2 = {}; newneta = {}; newnetb = {};

Do[

bstarj = {}; row1 = {}; row2 = {};

Do[

pt = net[[(q + 1)*i + j + 1]];

bstarj = Append[bstarj, pt], {j, 0, q}

];

If[debug === 2, Print[" bstarj: ", bstarj]];

temp = subdecas[bstarj, r2, s2, v];

row1 = temp[[1]]; row2 = temp[[2]];

newneta = Join[newneta, row1];

newnetb = Join[newnetb, row2], {i, 0, p}

];

newnet = Join[{newneta}, {newnetb}];

If[debug === 2, Print[" Subdivided nets: ", newnet]];

newnet

];

Given a rectangular net oldnet of degree (p, q), the function recpoldecas computes
the polar value for argument lists u and v. This function calls the function bdecas that
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computes a point on a curve from a control polygon.

(* Computation of a polar value for a rectangular net of

degree (p, q) *)

recpoldecas[{oldnet__}, p_, q_, r1_, s1_, r2_, s2_, u_, v_, debug_] :=

Block[

{net = {oldnet}, i, j, bistar, bstarj, pt, res},

bistar = {};

Do[

bstarj = {};

Do[

pt = net[[(q + 1)*i + j + 1]];

bstarj = Append[bstarj, pt], {j, 0, q}

];

If[debug === 2, Print[" bstarj: ", bstarj]];

pt = bdecas[bstarj, v, r2, s2];

bistar = Append[bistar, pt], {i, 0, p}

];

If[debug === 2, Print[" bistar: ", bistar]];

res = bdecas[bistar, u, r1, s1];

If[debug === 2, Print[" polar value: ", res]];

res

];

As in the case of triangular patches, using the function recdecas, starting from a list
consisting of a single control net net, we can repeatedly subdivide the nets in a list of nets,
in order to obtain an approximation of the surface patch specified by the control net net.
The function recsubdiv4 shown below performs n recursive steps of subdivision, starting
with an input control net net. The function recitersub4 takes a list of nets and subdivides
each net in this list into four subnets.

(* performs a subdivision step on each rectangular net in a list *)

(* using recdecas4, i.e., splitting into four subpatches *)

recitersub4[{net__}, p_, q_, r1_, s1_, r2_, s2_, debug_] :=

Block[

{cnet = {net}, lnet = {}, l, i, u, v},

(l = Length[cnet]; u = 1/2; v = 1/2;

Do[

lnet = Join[lnet, recdecas[cnet[[i]], p, q, r1, s1,

r2, s2, u, v, debug]] , {i, 1, l}
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];

lnet

)

];

(* performs n subdivision steps using recitersub4, i.e., splits *)

(* a rectangular patch into 4 subpatches *)

recsubdiv4[{net__}, p_, q_, n_, debug_] :=

Block[

{newnet = {net}, i, r1, s1, r2, s2},

(r1 = 0; s1 = 1; r2 = 0; s2 = 1;

newnet = {newnet};

Do[

newnet = recitersub4[newnet, p, q, r1, s1, r2, s2, debug], {i, 1, n}

];

newnet

)

];

The function recsubdiv4 returns a list of rectangular nets. In order to render the surface
patch, it is necessary to link the nodes in each net. This is easily done, and is left as an
exercise.

The functions urecdecas and vrecdecas can also be used to compute the control net
N [a, b; c, d] over new affine bases [a, b] and [c, d], from a control net N over some affine bases
[r1, s1] and [r2, s2]. If d 6= r2 and b 6= r1, we first compute N [r1, s1; r2, d] using vrecdecas,
then N [r1, b; r2, d] using urecdecas, and then N [r1, b; c, d] using vrecdecas, and finally
N [a, b; c, d] using urecdecas. It is easy to care of the cases where d = r2 or b = r1, and such
a program is implemented as follows.

(* Computes a new rectangular net of degree (p, q) *)

(* wrt to frames (a, b) and (c, d) on the affine line *)

(* In the hat space *)

recnewnet[{oldnet__}, p_, q_, a_, b_, c_, d_, debug_] :=

Block[

{net = {oldnet}, temp, newnet1, newnet2, newnet3, newnet4, rnet,

r1, s1, r2, s2, ll, i},

r1 = 0; s1 = 1; r2 = 0; s2 = 1;

newnet1 = {}; newnet2 = {}; newnet3 = {}; newnet4 = {};

If[d =!= r2, temp = vrecdecas[net, p, q, r2, s2, d, debug];
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newnet1 = temp[[1]],

newnet1 = net

];

If[debug === 2, Print[" newnet1: ", newnet1]];

If[b =!= r1, temp = urecdecas[newnet1, p, q, r1, s1, b, debug];

newnet2 = temp[[1]],

newnet2 = newnet1

];

If[debug === 2, Print[" newnet2: ", newnet2]];

If[d =!= r2, temp = vrecdecas[newnet2, p, q, r2, d, c, debug];

newnet3 = temp[[2]],

temp = vrecdecas[newnet2, p, q, r2, s2, c, debug];

newnet3 = temp[[1]]

];

If[debug === 2, Print[" newnet3: ", newnet3]];

If[b =!= r1, temp = urecdecas[newnet3, p, q, r1, b, a, debug];

newnet4 = temp[[2]],

temp = urecdecas[newnet3, p, q, r1, s1, a, debug];

(* needs to reverse the net in this case *)

rnet = temp[[1]]; newnet4 = {}; ll = Length[rnet];

Do[

newnet4 = Prepend[newnet4, rnet[[i]]], {i, 1, ll}

]

];

If[debug === 2, Print[" newnet4: ", newnet4]];

newnet4

];

Let us go back to the example of the monkey saddle, to illustrate the use of the functions
recsubdiv4 and recnewnet. It is easily shown that the monkey saddle is specified by the
following rectangular control net of degree (3, 2) sqmonknet1, over [0, 1]× [0, 1]:

sqmonknet1 = {{0, 0, 0}, {0, 1/2, 0}, {0, 1, 0}, {1/3, 0, 0},

{1/3, 1/2, 0}, {1/3, 1, -1}, {2/3, 0, 0}, {2/3, 1/2, 0},

{2/3, 1, -2}, {1, 0, 1}, {1, 1/2, 1}, {1, 1, -2}}

Using recnewnet, we can compute a rectangular net sqmonknet over [−1, 1]× [−1, 1]:

sqmonknet = {{-1, -1, 2}, {-1, 0, -4}, {-1, 1, 2}, {-1/3, -1, 2},

{-1/3, 0, 0}, {-1/3, 1, 2}, {1/3, -1, -2}, {1/3, 0, 0},

{1/3, 1, -2}, {1, -1, -2}, {1, 0, 4}, {1, 1, -2}}
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Finally, we show the output of the subdivision algorithm recsubdiv4, for n = 1, 2, 3.
The advantage of rectangular nets is that we get the patch over [−1, 1]× [−1, 1] directly, as
opposed to the union of two triangular patches.
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Figure 8.19: A monkey saddle, rectangular subdivision, 1 iteration
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Figure 8.20: A monkey saddle, rectangular subdivision, 2 iterations

The final picture (corresponding to 3 iterations) is basically as good as the triangulation
shown earlier, and is obtained faster.
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Figure 8.21: A monkey saddle, rectangular subdivision, 3 iterations

Actually, it is possible to convert a triangular net of degree m into a rectangular net of
degree (m,m), and conversely to convert a rectangular net of degree (p, q) into a triangular
net of degree p+ q, but we will postpone this until we deal with rational surfaces.
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8.3 Problems

Problem 1 (10 pts). Let F : A2 → A3 be a bilinear map. Consider the rectangular net
N = (bi, j) of bidegree 〈p, q〉 defined such that

bi, j = F

(
i

p
,
j

q

)

for all i, j, where 0 ≤ i ≤ p and 0 ≤ j ≤ q. Prove that the rectangular surface defined by N
is equal to F (we say that rectangular patches have bilinear precision).

Problem 2 (20 pts). Give a method for recursively subdividing a triangular patch into
four subpatches, using only three calls to the de Casteljau algorithm. Show the result of
performing three levels of subdivision on the orginal reference triangle (r, s, t).

Problem 3 (20 pts). Investigate the method for recursively subdividing a triangular patch
into six subpatches, using four calls to the de Casteljau algorithm as follows: first apply the
subdivision version of the de Casteljau algorithm to the center of gravity of the reference
triangle, and then to the middle of every side of the triangle. Show the result of performing
three levels of subdivision on the orginal reference triangle (r, s, t).

Problem 4 (40 pts). Implement your own version of the de Casteljau algorithm splitting a
triangular patch into four triangles, as in section 8.1. Use your algorithm to draw the surface
patch over [−1, 1]× [−1, 1] defined by the following control net

domenet3 = {{0, 0, 0}, {3/4, 3/2, 3/10}, {-1/4, -1/2, 3/10}, {1/2, 1, 0},

{3/2, 0, 3/10}, {1/2, 1/2, 1/2}, {5/4, -1/2, 3/10},

{-1/2, 0, 3/10}, {1/4, 3/2, 3/10}, {1, 0, 0}};

Problem 5 (40 pts). Implement your own version of the de Casteljau algorithm splitting
a rectangular patch into four rectangles, as in section 8.2.

Problem 6 (40 pts). Given a surface specified by a triangular net, implement a program
drawing the u-curves and the v-curves of the patch over [a, b] × [c, d], using the function
curvcpoly .

Problem 7 (20 pts). Prove that any method for obtaining a regular subdivision into four
subpatches using the standard de Casteljau algorithm requires at least 4 calls.

Problem 8 (20 pts). Let F be a surface of total degree m defined by a triangular control
net N = (bi, j, k)(i,j,k)∈∆m

, w.r.t. the affine frame ∆rst. For any n points pi = uir + vis+ wit
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(where ui + vi + wi = 1), define the following (n+ 2)-simplex of points bl1,...,lni,j,k where i+ j +
k + l1 + . . .+ ln = m, inductively as follows:

b0,...,0i,j,k = bi,j,k,

b
l1,...,lh+1,...,ln
i,j,k = uh b

l1,...,lh,...,ln
i+1,j,k + vh b

l1,...,lh,...,ln
i,j+1,k + wh b

l1,...,lh,...,ln
i,j,k+1 ,

where 1 ≤ h ≤ n.

(i) If f is the polar form of F , prove that

bl1,...,lni,j,k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

, p1, . . . , p1︸ ︷︷ ︸
l1

, . . . , pn, . . . , pn︸ ︷︷ ︸
ln

).

(ii) For n = 0, show that F (p) = bn0,0,0, as in the standard de Casteljau algorithm.

For n = 1, prove that (bl1i, j, 0)(i,j,l1)∈∆m
is a control net of F w.r.t. ∆rsp1, (b

l1
0, j, k)(j,k,l1)∈∆m

is a control net of F w.r.t. ∆stp1, and (bl1i, 0, k)(i,k,l1)∈∆m
is a control net of F w.r.t. ∆trp1.

For n = 2, prove that (bl1,l2i, 0, 0)(i,l1,l2)∈∆m
is a control net of F w.r.t. ∆rp1p2, (b

l1,l2
0, j, 0)(j,l1,l2)∈∆m

is a control net of F w.r.t. ∆sp1p2, and (bl1,l20, 0, k)(k,l1,l2)∈∆m
is a control net of F w.r.t. ∆tp1p2.

For n = 3, prove that (bl1,l2,l30, 0, 0 )(l1,l2,l2)∈∆m
is a control net of F w.r.t. ∆p1p2p3.

Problem 9 (20 pts). Given any two integers p, q ≥ 1, we define the rectangular grid p,q

as the grid consisting of all points of coordinates

gi,j =

(
i

p
,
j

q

)
,

where 0 ≤ i ≤ p and 0 ≤ j ≤ q. Prove that the rectangular patch G defined by p,q satisfies
the property that

(x, y) =

p∑

i=0

q∑

j=0

Bp
i (x)B

q
j (y) gi,j

for all (x, y) ∈ A2, where Bp
i and Bq

j are Bernstein polynomials. Given any rectangular net

N = (bi,j)0≤i≤p, 0≤j≤q

in A2, we define the map from A2 to A2 as

(x, y) 7→
p∑

i=0

q∑

j=0

Bp
i (x)B

q
k(j) bi,j.

Show that this map behaves like a global deformation of the original rectangular grid p,q.
Show how to use such maps to globally deform a Bézier curve specified by its control points
(c0, . . . , cm) (where each ci is inside the grid defined by p,q).



Chapter 9

Polynomial Spline Surfaces and
Subdivision Surfaces

9.1 Joining Polynomial Surfaces

We now attempt to generalize the idea of splines to polynomial surfaces. As we shall see,
this is far more subtle than it is for curves. In the case of a curve, the parameter space is the
affine line A, and the only reasonable choice is to divide the affine line into intervals, and to
view the curve as the result of joining curve segments defined over these intervals. However,
in the case of a surface, the parameter space is the affine plane P, and even if we just want
to subdivide the plane into convex regions, there is a tremendous variety of ways of doing
so. Thus, we will restrict our attention to subdivisions of the plane into convex polygons,
where the edges are line segments. In fact, we will basically only consider subdivisions made
of rectangles or of (equilateral) triangles. We also need to decide what kind of continuity we
want to enforce. As in the case of curves, we will first consider parametric continuity.

First, we will find necessary and sufficient conditions on polar forms for two surface
patches to meet with Cn continuity. Next, we will take a closer look at spline surfaces of
degree m based on a triangular subdivision of the plane. We will discover that Cn continuity
is only possible if 2m ≥ 3n+2. We will find necessary conditions on spline surfaces of degree
m = 3n + 1 to meet with C2n continuity, but unfortunately, we will not be able to propose
a nice scheme involving control points, in the line of de Boor control points. To the best of
our knowledge, finding such a scheme is still an open problem. We will then consider spline
surfaces of degree m based on a rectangular subdivision of the plane. This time, we will
find that Cn continuity is only possible if m ≥ 2n + 2. This is not quite as good as in the
triangular case, but on the positive side, we will see that there is a nice scheme involving de
Boor control points, for bipolynomial splines of bidegree 〈n, n〉 meeting with Cn−1 continuity.

We conlude this chapter with a section on subdivision surfaces (Section 9.4). Subdivision
surfaces provide an attractive alternative to spline surfaces in modeling applications where
the topology of surfaces is rather complex, and where the initial control polyhedron consists

335
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of various kinds of faces, not just triangles or rectangles. The idea is to start with a rough
polyhedron specified by a mesh (a collection of points and edges connected so that it defines
the boundary of a polyhedron), and to apply recursively a subdivision scheme, which, in the
limit, yields a smooth surface (or solid). Subdivision schemes typically produce surfaces with
at least C1-continuity, except for a finite number of so-called extraordinary points, where it is
tangent plane continuous. A number of spectacular applications of subdivision surfaces can
be found in the 1998 SIGGRAPH Conference Proceedings, notably, Geri, a computer model
of a character from the short movie Geri’s game. We present three subdivision schemes due
to Doo and Sabin [27, 29, 28], Catmull and Clark [17], and Charles Loop [50]. We discuss
Loop’s convergence proof in some detail, and for this, we give a crash course on discrete
Fourier transforms and (circular) discrete convolutions.

In this section, we restrict our attention to total degree polynomial surfaces. This is
not a real restriction, since it is always possible to convert a rectangular net to a triangular
net. It is also easier to deal with bipolynomial surfaces than total degree surfaces, and we
concentrate on the more difficult case.

Given two polynomial surface F and G of degree m, for any point a ∈ P, recall from
section 11.1 that we say that F and G agree to kth order at a, iff

Du1 . . .Dui
F (a) = Du1 . . .Dui

G(a),

for all −→u1 , . . . ,
−→ui ∈ R2, where 0 ≤ i ≤ k.

Definition 9.1.1. Let A and B be two adjacent convex polygons in the plane, and let (r, s)
be the line segment along which they are adjacent (where r, s ∈ P are distinct vertices of A
and B). Given two polynomial surfaces FA and FB of degree m, FA and FB join with Ck

continuity along (r, s), iff FA and FB agree to kth order for all a ∈ (r, s).

Recall that lemma B.4.5 tells us that for any a ∈ (r, s), FA and FB agree to kth order at
a iff their polar forms fA : Pm → E and fB : Pm → E agree on all multisets of points that
contain at least m− k copies of a, that is, iff

fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

) = fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ P. Using this fact, we can prove the following crucial lemma.

Lemma 9.1.2. Let A and B be two adjacent convex polygons in the plane, and let (r, s)
be the line segment along which they are adjacent (where r, s ∈ P are distinct vertices of
A and B). Given two polynomial surface FA and FB of degree m, FA and FB join with
Ck continuity along (r, s) iff their polar forms fA : Pm → E and fB : Pm → E agree on all
multisets of points that contain at least m− k points on the line (r, s), that is, iff

fA(u1, . . . , uk, ak+1, . . . , am) = fB(u1, . . . , uk, ak+1, . . . , am),

for all u1, . . . , uk ∈ P, and all ak+1, . . . , am ∈ (r, s).
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Figure 9.1: Two adjacent reference triangles

Proof. As we just said, for every a ∈ (r, s), FA and FB agree to kth order at a iff

fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

) = fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ P. However, if we consider

a 7→ fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

)

and
a 7→ fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸

m−k

)

as affine polynomial functions FA(u1, . . . , uk) and FB(u1, . . . , uk), lemma 4.4.1 shows that if
these functions agree on all points in (r, s), then the corresponding polar forms fA(u1, . . . , uk)
and fB(u1, . . . , uk) agree for all points ak+1, . . . , am ∈ (r, s). Because this holds for all
u1, . . . , uk ∈ P, we have shown that

fA(u1, . . . , uk, ak+1, . . . , am) = fB(u1, . . . , uk, ak+1, . . . , am),

for all u1, . . . , uk ∈ P, and all ak+1, . . . , am ∈ (r, s), as desired.

As a consequence of lemma 9.1.2, we obtain the necessary and sufficient conditions on
control nets for FA and FB for having Cn continuity along (r, s). Let A = ∆prs and
B = ∆qrs be two reference triangles in the plane, sharing the edge (r, s).

Then, lemma 9.1.2 tells us that FA and FB join with Cn continuity along (r, s) iff

fA(p
iqjrksl) = fB(p

iqjrksl),

for all i, j, k, l such that i+ j + k + l = m, and k + l ≥ m− n (0 ≤ n ≤ m).

For n = 0, we just have
fA(r

ksm−k) = fB(r
ksm−k),
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with 0 ≤ k ≤ m, which means that the control points of the boundary curves along (r, s)
must agree. This is natural, the two surfaces join along this curve! Let us now see what the
continuity conditions mean for m = 3 and n = 1, 2, 3.

For C1 continuity, the following 10 polar values must agree:

fA(r, r, r) = fB(r, r, r),

fA(r, r, s) = fB(r, r, s),

fA(r, s, s) = fB(r, s, s),

fA(s, s, s) = fB(s, s, s),

fA(p, r, r) = fB(p, r, r),

fA(p, r, s) = fB(p, r, s),

fA(p, s, s) = fB(p, s, s),

fA(q, s, s) = fB(q, s, s),

fA(q, r, s) = fB(q, r, s),

fA(q, r, r) = fB(q, r, r).

Denoting these common polar values as fA,B(·, ·, ·), note that these polar values naturally
form the vertices of three diamonds,

(fA,B(p, r, r), fA,B(r, r, r), fA,B(q, r, r), fA,B(s, r, r)),

(fA,B(p, r, s), fA,B(r, r, s), fA,B(q, r, s), fA,B(s, r, s)),

(fA,B(p, s, s), fA,B(r, s, s), fA,B(q, s, s), fA,B(s, s, s)),

images of the diamond (p, r, q, s). In particular, the vertices of each of these diamonds must
be coplanar, but this is not enough to ensure C1 continuity. The above conditions are
depicted in the following diagram:

We can view this diagram as three pairs of overlaping de Casteljau diagrams each with
one shell.

Let us now consider C2 continuity, i.e., n = 2. In addition to the 10 constraints necessary
for C1 continuity, we have 6 additional equations among polar values:

fA(p, p, r) = fB(p, p, r),

fA(p, p, s) = fB(p, p, s),

fA(p, q, r) = fB(p, q, r),

fA(p, q, s) = fB(p, q, s),

fA(q, q, r) = fB(q, q, r),

fA(q, q, s) = fB(q, q, s).

Again, denoting these common polar values as fA,B(·, ·, ·), note that these polar values
naturally form the vertices of four diamonds, images of the diamond (p, r, q, s). For example,
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Figure 9.2: Control nets of cubic surfaces joining with C1 continuity
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Figure 9.3: Control nets of cubic surfaces joining with C2 continuity

the left two diamonds are

(fA,B(p, p, r), fA,B(r, p, r), fA,B(q, p, r), fA,B(s, p, r)),

(fA,B(p, p, s), fA,B(r, p, s), fA,B(q, p, s), fA,B(s, p, s)).

In particular, the vertices of each of these diamonds must be coplanar, but this is not
enough to ensure C2 continuity. Note that the polar values fA(p, q, r) = fB(p, q, r) and
fA(p, q, s) = fB(p, q, s) are not control points of the original nets. The above conditions are
depicted in the following diagram:

We can view this diagram as two pairs of overlaping de Casteljau diagrams each with
two shells.

Finally, in the case of C3 continuity, i.e., n = 3, all the control points agree, which
means that fA = fB. In general, Cn continuity is ensured by the overlaping of m − n + 1
pairs of de Casteljau diagrams, each with n shells. We now investigate the realizability
of the continuity conditions in the two cases where the parameter plane is subdivided into
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Figure 9.4: Constraints on triangular patches

rectangles, or triangles. We assume that the parameter plane has its natural euclidean
structure.

9.2 Spline Surfaces with Triangular Patches

In this section, we study what happens with the continuity conditions between surface
patches, if the parameter plane is divided into equilateral triangles. In the case of spline
curves, recall that it was possible to achieve Cm−1 continuity with curve segments of degree
m. Also, spline curves have local flexibility , which means that changing some control points
in a small area does not affect the entire spline curve. In the case of surfaces, the situation is
not as pleasant. For simplicity, we will consider surface patches of degree m joining with the
same degree of continuity n for all common edges. First, we will prove that if 2m ≤ 3n+ 1,
then it is generally impossible to construct a spline surface. More precisely, given any 4
adjacent patches as shown in the figure below, if fC and fD are known, then fA and fB are
completely determined.

The proof is more complicated than it might appear. The difficulty is that even though
A and D join with Cn continuity along (s, q), A and B join with Cn continuity along (s, t),
and B and C join with Cn continuity along (s, p), there is no reference triangle containing
all of these three edges!

Lemma 9.2.1. Surface splines consisting of triangular patches of degree m ≥ 1 joining with
Cn continuity cannot be locally flexible if 2m ≤ 3n + 1. This means that given any four
adjacent patches D,A,B, C as in the previous figure, if fD and fC are known, then fA and
fB are completely determined. Furthermore, when 2m = 3n + 2, there is at most one free
control point for every two internal adjacent patches.

Proof. The idea is to show that the two control nets of polar values fA(s
itjql) and fB(s

itjpk)
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are completely determined, where i + j + l = m in the first case, and i + j + k = m in the
second case. Since D and A meet with Cn continuity along (s, q), by lemma 9.1.2,

fA(s
itjpkql) = fD(s

itjpkql),

for all j+ k ≤ n (where i+ j+ k+ l = m). Similarly, since A and B join with Cn continuity
along (s, t), and B and C join with Cn continuity along (s, p), we get

fA(s
itjpkql) = fB(s

itjpkql),

for all k + l ≤ n, and
fB(s

itjpkql) = fC(s
itjpkql),

for all j + l ≤ n (where i+ j + k + l = m).

In summary, fA(s
itjpkql) is determined for all j + k ≤ n, fB(s

itjpkql) is determined for
all j + l ≤ n, and fA(s

itjpkql) = fB(s
itjpkql), for all k + l ≤ n. These conditions do not

seem to be sufficient to show that fA and fB are completely determined, but we haven’t yet
taken advantage of the symmetries of the situation. Indeed, note that (p, q) and (s, t) have
the same middle point, i.e.

p+ q = s+ t.

If n = 2h, the condition 2m ≤ 3n+ 1 becomes 2m ≤ 6h+ 1, which implies that m ≤ 3h. If
n = 2h+ 1, the condition 2m ≤ 3n+ 1 becomes 2m ≤ 6h+ 4, which implies m ≤ 3h+ 2. If
we can show that the polar values for FA and FB are completely determined when n = 2h
and m = 3h, or when n = 2h + 1 and m = 3h + 2, which are the worse cases, we will be
done. We will first reformulate the Cn-continuity conditions between A and B, using the
identity p+ q = s+ t. Recall that these conditions are

fA(s
itjpkql) = fB(s

itjpkql)

for all k + l ≤ n. Replacing p by s + t − q on the left-hand side and q by s + t − p on the
right-hand side, we get

∑

i1+i2+i3=k

(−1)i3
k!

i1!i2!i3!
fA(s

i+i1tj+i2ql+i3) =
∑

j1+j2+j3=l

(−1)j3
l!

j1!j2!j3!
fB(s

i+j1tj+j2pk+j3),

where k+ l ≤ n, and i+ j+ k+ l = m. This is an equation relating some affine combination
of polar values from a triangular net of (k+1)(k+2)

2
polar values associated with A and some

affine combination of polar values from a triangular net of (l+1)(l+2)
2

polar values associated
with B. A similar rewriting of the Cn-continuity equations between A and D and between C
and B shows that the polar values fA(s

m−j−ltjql) are known for 0 ≤ l ≤ m−j and 0 ≤ j ≤ n,
and that the polar values fB(s

m−j−ktjpk) are known for 0 ≤ k ≤ m − j and 0 ≤ j ≤ n. On
figure 9.5, the polar values of the form fA(s

m−j−ltjql) are located in the trapezoid (s, q, x, y)
and the polar values of the form fB(s

m−j−ktjpk) are located in the trapezoid (s, p, z, y).
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Figure 9.5: Determining polar values in A and B

If n = 2h and m = 3h, the polar values associated with A and B that are not already
determined are contained in the diamond (t, u, v, w), and there are (m−n)2 = h2 such polar
values, since fA(s

itj) = fB(s
itj) along (s, t) (where i+j = m). If n = 2h+1 and m = 3h+2,

the polar values associated with A and B that are not already determined are also contained
in the diamond (t, u, v, w), and there are (m− n)2 = (h+ 1)2 such polar values.

In either case, the polar values in the diamond (t, u, v, w) can be determined inductively
from right to left and from bottom up (referring to figure 9.5). First, we consider the case
where n = 2h + 1 and m = 3h + 2, so that the diamond (t, u, v, w) contains (h + 1)2 polar
values. The proof proceeds by induction on h. Assume inductively that the h2 polar values
inside the diamond (t, u, v, w) and not on (u, v), and (v, w) can be computed from the other
polar values inside (s, p1, p2, w, v, s) and (s, q1, q2, u, v, s). We explain how the h + 1 polar
values on the edge (u, v) can be computed, the computation of the h polar values on the
edge (v, w) being analogous. When k = h + 1, l = h, i = 0, and j = h + 1, observe that in
the equation

∑

i1+i2+i3=h+1

(−1)i3
(h+ 1)!

i1!i2!i3!
fA(s

i1th+1+i2qh+i3) =

∑

j1+j2+j3=h

(−1)j3
h!

j1!j2!j3!
fB(s

j1th+1+j2ph+1+j3),

the only undetermined polar value is the one associated with u, namely

fA(t
2h+2qh),

since all the other polar values involved in this equation are inside (s, p1, p2, z, y, s) and
(s, q1, q2, x, y, s). Thus, fA(t

2h+2qh) can be computed. Generally, if 0 ≤ l1 ≤ h, the polar
value

fA(s
h−l1t2h+2ql1)
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along (u, v) can be computed from the equation obtained by letting k = l1 + 1, l = l1,
i = h− l1, and j = 2h+ 1− l1,

∑

i1+i2+i3=l1+1

(−1)i3
(l1 + 1)!

i1!i2!i3!
fA(s

h−l1+i1t2h+1−l1+i2ql1+i3) =

∑

j1+j2+j3=l1

(−1)j3
l1!

j1!j2!j3!
fB(s

h−l1+j1t2h+1−l1+j2pl1+1+j3),

since all the other polar values involved are inside (s, p1, p2, z, y, s) and (s, q1, q2, x, y, s). After
a similar computation to determine the polar values

fB(s
h−l1t2h+2pl1),

where 1 ≤ l1 ≤ h, we get a strictly smaller diamond of h2 polar values contained in (t, u, v, w),
and we use the induction hypothesis to compute these polar values.

We now consider the case n = 2h and m = 3h, so that the diamond (t, u, v, w) contains
h2 polar values. Again, the proof proceeds by induction on h. This time, the polar value
associated with u is fA(t

2h+1qh−1) and the polar value associated with w is fB(t
2h+1ph−1).

Thus, the argument for the previous case can be used, and in fact, this argument uses C2h-
continuity between A and D and between B and C, but only C2h−1-continuity between A
and B.

In both cases, note that Cn-continuity was only needed to compute the polar values
associated with u and w, and that once they are determined, all the other polar values
in the diamond (t, u, v, w) can be computed using only Cn−1-continuity constraints. When
2m = 3n+ 2, which implies that n = 2h and m = 3h+ 1, both polar values fA(t

2h+1qh) and
fB(t

2h+1ph) are undetermined, but there is an equation relating them, and thus there is at
most one degree of freedom for both patches FA and FB.

Knowing that we must have 2m ≥ 3n + 2 to have local flexibility, and thus, to find any
reasonable scheme to constuct triangular spline surfaces, the problem remains to actually
find a method for contructing spline surfaces when 2m = 3n + 2. Such a method using
convolutions is described by Ramshaw [65], but it is not practical. Instead of presenting this
method, we attempt to understand better what are the constraints on triangular patches
when n = 2N and m = 3N + 1. The key is to look at “derived surfaces”.

Given a polynomial surface F : P → E of degree m, for any vector −→u ∈ R2, the map

DuF : P → −→E defined by the directional derivative of F in the fixed direction −→u , is a
polynomial surface of degree m − 1, called a derived surface of F . Given two triangular
surfaces F : P → E and G : P → E , the following lemmas show that if F and G join with
Cn continuity along a line L and if −→u is parallel to L, then DuF and DuG also join with Cn

continuity along L.
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Figure 9.6: A stripe in the parameter plane for triangular patches

Lemma 9.2.2. Given two triangular surfaces F : P → E and G : P → E , if F and G meet
with C0 continuity along a line L, and if −→u ∈ R2 is parallel to L, then DuF and DuG also
meet with C0 continuity along L.

Proof. If a ∈ L, we can compute DuF (a) by evaluating F at a and at points near a on L,
and since F and G agree on L, we will get the same value for DuF (a) and DuG(a).

Lemma 9.2.3. Given two triangular surfaces F : P → E and G : P → E , if F and G meet
with Cn continuity along a line L, and if −→u is parallel to L, then DuF and DuG also meet
with Cn continuity along L.

Proof. Let −→u1 , . . . ,
−→un be any vectors in R2. If F and G meet with Cn continuity along L,

then it is clear that the derived surfaces Du1 . . .Dun
F and Du1 . . .Dun

G meet with C0 conti-

nuity along L. Taking the derivative in the direction −→u , by lemma 9.2.3, the derived surfaces
DuDu1 . . .Dun

F and DuDu1 . . .Dun
G also meet with C0 continuity. Since the various direc-

tional derivatives commute, Du1 . . .Dun
DuF and Du1 . . .Dun

DuG meet with C0 continuity,
which means that DuF and DuG also meet with Cn continuity along L.

We can now derive necessary conditions on surfaces F and G of degree 3n + 1 to join

with C2n continuity. Consider three vectors −→α ,
−→
β , −→γ , parallel to the three directions of

the edges of triangles in the triangular grid, and such that

−→α +
−→
β +−→γ =

−→
0 .

We have the following lemma.

Lemma 9.2.4. Given a spline surface F : P → E of degree 3n+1 having C2n continuity, for

any three vectors −→α ,
−→
β , −→γ , parallel to the three directions of the edges of triangles in the

triangular grid, and such that −→α +
−→
β +−→γ =

−→
0 , for every triangle A, the derived surface

Dn+1
α Dn+1

β FA is the same in any stripe in the direction −→γ , the derived surface Dn+1
β Dn+1

γ FA

is the same in any stripe in the direction −→α , and the derived surface Dn+1
α Dn+1

γ FA is the

same in any stripe in the direction
−→
β .
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Proof. If FA : P → E and FB : P → E are any two adjacent triangular patches, since FA

and FB meet with C2n continuity and have degree 3n+ 1, the derived surfaces Dn+1
γ FA and

Dn+1
γ FB have degree 2n and meet with continuity Cn−1. The derived surfaces Dn+1

β Dn+1
γ FA

and Dn+1
β Dn+1

γ FB have degree n − 1, and by applying lemma 9.2.3 n + 1 times, they join

with Cn−1-continuity along their common boundary in the direction
−→
β . But then, they

must be identical. The same argument applies to FB and FC , with the roles of −→γ and
−→
β

reversed, and thus, Dn+1
β Dn+1

γ FB and Dn+1
β Dn+1

γ FC are identical. Thus, the derived surface

Dn+1
β Dn+1

γ FA has a constant value in any horizontal stripe. A similar argument applies to
the stripes in the other two directions, which proves the lemma.

From lemma 9.2.4, in order to find spline surfaces of degree 3n + 1 with C2n continuity,
it is natural to attempt to satisfy the conditions

Dn+1
α Dn+1

β FA = Dn+1
β Dn+1

γ FA = Dn+1
α Dn+1

γ FA =
−→
0 ,

for all triangles A. Each derived surface patch has degree n− 1, and thus, setting it to zero

corresponds to (n+1)n
2

conditions. If we can show that for −→α ,
−→
β , −→γ , these conditions are

independent, we have a total of 3(n+1)n
2

conditions. A surface of degree 3n+ 1 is determined

by (3n+3)(3n+2)
2

control points. Subtracting the 3(n+1)n
2

conditions, we see that each patch FA

is specified by 3(n+ 1)2 control points.

We can show that these conditions are indeed independent using tensors. Indeed, if
fA : Pm → E is the polar form of FA : P → E , and f̂A : (P̂)m → Ê is the homogenized version
of fA, recall from lemma 10.5.3 that,

Du1 . . .Duk
FA(a) = mk f̂A(a, . . . , a︸ ︷︷ ︸

m−k

,−→u1 , . . . ,
−→uk ).

If f̂A⊙ : (P̂)⊙m → Ê is the linear map from the tensor power (P̂)⊙m to Ê associated with the

symmetric multilinear map f̂A, since (P̂)⊙(n−1) is spanned by the simple (n − 1)-tensors of

the form an−1, where a ∈ P (see section 11.1), saying that Dn+1
α Dn+1

β FA =
−→
0 is equivalent

to saying that

f̂A⊙(
−→α n+1 ⊙−→

β
n+1

⊙ η) =
−→
0 ,

where η ∈ (P̂)⊙(n−1). Thus, the conditions

Dn+1
α Dn+1

β FA = Dn+1
β Dn+1

γ FA = Dn+1
α Dn+1

γ FA =
−→
0

correspond to three subspaces of (P̂)⊙(3n+1),

{−→α n+1 ⊙−→
β

n+1

⊙ η | η ∈ (P̂)⊙(n−1)},
{−→α n+1 ⊙−→γ n+1 ⊙ η | η ∈ (P̂)⊙(n−1)},

{−→β
n+1

⊙−→γ n+1 ⊙ η | η ∈ (P̂)⊙(n−1)}.
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However, reasoning on dimensions, it is easy to see that these subspaces are pairwise disjoint,
and the conditions are indeed independent. For example, if the three subspaces above had a

nontrivial intersection, they would contain a tensor of the form −→α n+1 ⊙−→
β

n+1

⊙−→γ n+1 ⊙ δ,
which is impossible since such a tensor has order at least 3n+ 3.

It can be shown that if we consider surface splines of degree 3n+3 with C2n+1 continuity,
then for every triangle A, the derived surface Dn+2

α Dn
βFA is the same in any stripe in the

direction −→γ , the derived surface Dn+2
β Dn

γFA is the same in any stripe in the direction −→α ,

and the derived surface Dn+2
α Dn

γFA is the same in any stripe in the direction
−→
β . As a

consequence, it is easy to show that each patch is defined by 3(n+ 1)2 − 2 control points.

In summary, we were led to consider surface splines of degree 3n+1 with C2n continuity,
satisfying the independent conditions

Dn+1
α Dn+1

β FA = Dn+1
β Dn+1

γ FA = Dn+1
α Dn+1

γ FA =
−→
0 .

Each patch is then defined by 3(n+ 1)2 control points. We can also consider surface splines
of degree 3n+ 3 with C2n+1 continuity, satisfying the independent conditions

Dn+2
α Dn

βFA = Dn+2
β Dn

γFA = Dn+2
α Dn

γFA =
−→
0 .

Each patch is then defined by 3(n+ 1)2 − 2 control points.

Such spline surfaces do exist, and their existence can be shown using convolutions. Un-
fortunately, to the best of our knowledge, no nice scheme involving de Boor control points is
known for such triangular spline surfaces. This is one of the outstanding open problems for
spline surfaces, as discussed very lucidly by Ramshaw [65]. Some interesting related work on
joining triangular patches with geometric continuity (G1-continuity) can be found in Loop
[51].

Next we will see that we have better luck with rectangular spline surfaces.

9.3 Spline Surfaces with Rectangular Patches

We now study what happens with the continuity conditions between surface patches, if the
parameter plane is divided into rectangles. For simplicity, we will consider surface patches
of degree m joining with the same degree of continuity n for all common edges. First, we
will prove that if m ≤ 2n + 1, then it is generally impossible to construct a spline surface.
More precisely, given any 4 adjacent patches as shown in the figure below, if fB and fD are
known, then fA is completely determined.

As opposed to the triangular case, the proof is fairly simple.
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Figure 9.7: Constraints on rectangular patches

Lemma 9.3.1. Surface splines consisting of rectangular patches of degree m ≥ 1 joining
with Cn continuity cannot be locally flexible if m ≤ 2n + 1. This means that given any
three adjacent patches A,B,D as in the previous figure, if fB and fD are known, then fA
is completely determined. Furthermore, when m = 2n + 2, there is at most one free control
point for every two internal adjacent patches.

Proof. Take ∆xyz as reference triangle. Since A and B meet with Cn continuity along (x, y),
by lemma 9.1.2,

fA(x
iym−i−jzj) = fB(x

iym−i−jzj),

for all j ≤ n. Similarly, since A and D join with Cn continuity along (y, z), we have

fA(x
iym−i−jzj) = fD(x

iym−i−jzj),

for all i ≤ n. However, i+ j ≤ m ≤ 2n+ 1, and so either i ≤ n or j ≤ n, which shows that
fA(x

iym−i−jzj) is completely determined. When m = 2n + 2, the only control point which
is not determined is fA(x

n+1zn+1).

Thus, in order to have rectangular spline surfaces with Cn continuity, we must have
m ≥ 2n + 2. We shall consider the case of rectangular spline surfaces of degree 2n meeting
with Cn−1 continuity. One can prove using convolutions (see Ramshaw [65]) that such spline
surfaces exist, but the construction is not practical. Instead, as in the case of triangular
spline surfaces, we will look for necessary conditions in terms of derived surfaces. This time,
we will be successful in finding a nice class of spline surfaces specifiable in terms of de Boor
control points. The following lemma is the key result.

Lemma 9.3.2. Given two triangular surfaces F : P → E and G : P → E of degree 2n,
if F and G meet with Cn−1 continuity along a line L, and if −→u is parallel to L, then
Dn+1

u F = Dn+1
u G.
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Proof. Applying lemma 9.2.3 n + 1 times, we deduce that Dn+1
u F and Dn+1

u G meet with
Cn−1 continuity along L. But these surfaces have degree at most n − 1, so they must be
identical.

We can now derive necessary conditions on surfaces F and G of degree 2n to join with
Cn−1 continuity.

Lemma 9.3.3. Given a spline surface F : P → E of degree 2n having Cn−1 continuity,

for any horizontal vector −→α , and any vertical vector
−→
β , for every rectangle A, the derived

surface Dn+1
α FA is the same in any stripe in the direction −→α , and the derived surface Dn+1

β FA

is the same in any stripe in the direction
−→
β .

Proof. An immediate consequence of lemma 9.3.2.

In view of lemma 9.3.3, it makes sense to look for rectangular spline surfaces of degree
2n with continuity Cn−1 satisfying the constraints

Dn+1
α FA = Dn+1

β FA =
−→
0

for all rectangles A. Since Dn+1
α FA has degree n− 1, setting it to zero corresponds to (n+1)n

2

constraints, and thus, we have a total of (n + 1)n constraints. A surface of degree 2n is

specified by (2n+2)(2n+1)
2

control points, and subtracting the (n + 1)n constraints, we find
that each rectangular patch is determined by (n + 1)2 control points. However, note that a
surface of degree 2n such that

Dn+1
α FA = Dn+1

β FA =
−→
0

is equivalent to a bipolynomial surface of bidegree 〈n, n〉.
Thus, in the present case of rectangular spline surfaces, we discover that bipolynomial

spline surfaces of bidegree 〈n, n〉 are an answer to our quest. Furthermore, since each rectan-
gle is the product of two intervals, we can easily adapt what we have done for spline curves
to bipolynomial spline surfaces. In fact, we can do this for bipolynomial spline surfaces of
bidegree 〈p, q〉. Given a knot sequences (si) along the u-direction, and a knot sequences (tj)
along the v-direction, we have de Boor control points of the form

xi,j = f(si+1, . . . , si+p; tj+1, . . . , tj+q).

The patches of the spline surface have domain rectangles of the form

Rk,l = [sk, sk+1]× [tl, tl+1],

where sk < sk+1 and tl < tl+1. The patch defined on the rectangle Rk,l has the (p+1)(q+1)
de Boor control points xi,j , where k − p ≤ i ≤ k and l − q ≤ i ≤ l. Two patches adjacent
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in the u-direction meet with Cp−r continuity, where r is the multiplicity of the knot si that
divides them, and two patches adjacent in the v-direction meet with Cq−r continuity, where
r is the multiplicity of the knot tj that divides them. The progressive version of the de
Casteljau algorithm can be generalized quite easily. Since the study of bipolynomial spline
surfaces of bidegree 〈p, q〉 basically reduces to the study of spline curves, we will not elaborate
any further, and leave this topic as an interesting project.

In summary, contrary to the case of triangular spline surfaces, in the case of rectangular
spline surfaces, we were able to generalize the treatment of spline curves in terms of knot
sequences and de Boor control points to bipolynomial spline surfaces. The reader should
have no trouble filling in the details. The challenge of finding such a scheme for triangular
spline surfaces remains open.

9.4 Subdivision Surfaces

An alternative to spline surfaces is provided by subdivision surfaces. The idea is to start
with a rough polyhedron specified by a mesh (a collection of points and edges connected so
that it defines the boundary of a polyhedron), and to apply recursively a subdivision scheme,
which, in the limit, yields a smooth surface (or solid). One of the major advantages of such
a scheme is that it applies to surfaces of arbitrary topology, and that it is not restricted to
a rectangular mesh (i.e., a mesh based on a rectangular grid). Furthermore, except for a
finite number of so-called extraordinary points, a “good” subdivision scheme produces large
portions of spline surfaces.

The idea of defining a curve or a surface via a limit process involving subdivision goes back
to Chaikin, who (in 1974) defined a simple subdivision scheme applying to curves defined
by a closed control polygon [18]. Soon after that, Riesenfeld [67] realized that Chaikin’s
scheme was simply the de Boor subdivision method for quadratic uniform B-splines, i.e.,
the process of recursively inserting a knot at the midpoint of every interval in a cyclic knot
sequence. In 1978, two subdivision schemes for surfaces were proposed by Doo and Sabin
[27, 29, 28], and by Catmull and Clark [17]. The main difference between the two schemes
is the following. After one round of subdivision the Doo-Sabin scheme produces a mesh
whose vertices all have the same degree 4, and most faces are rectangular, except for faces
arising from original vertices of degree not equal to four and from nonrectangular faces.
After one round of subdivision, the number of nonrectangular faces remains constant, and
it turns out that these faces shrink and tend to a limit which is their common centroid. The
centroid of each nonrectangular face is referred to as an extraordinary point . Furthermore,
large regions of the mesh define biquadratic B-splines. The limit surface is C1-continuous
except at extraordinary points. On the other hand, after one round of subdivision, the
Catmull-Clark scheme produces rectangular faces, and most vertices have degree 4, except
for vertices arising from original nonrectangular faces and from vertices of degree not equal
to four, also referred to as extraordinary points. The limit surface is C2-continuous except
at extraordinary points. Large regions of the mesh define bicubic B-splines. Although both
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schemes can be viewed as cutting-off corners, not unlike a sculptor at work, the Catmull-
Clark scheme is closer to a process of face shrinking.

Several years later, Charles Loop in his Master’s thesis (1987) introduced a subdivision
scheme based on a mesh consisting strictly of triangular faces [50]. In Loop’s scheme, every
triangular face is refined into four subtriangles. Most vertices have degree six, except for
original vertices whose degree is not equal to six, referred to as extraordinary points. Large
regions of the mesh define triangular splines based on hexagons consisting of 24 small triangles
each of degree four (each edge of such an hexagon consists of two edges of a small triangle).
The limit surface is C2-continuous except at extraordinary points.

Although such subdivision schemes had been around for some time, it is not until roughly
1994 that subdivision surfaces became widely used in computer graphics and geometric
modeling applications. However, in 1998, subdivision hit the big screen with Pixar’s “Geri’s
game”.

Since 1994, refinements of previous subdivision schemes and new subdivision schemes
have been proposed. Due to the lack of space, we will restrict ourselves to a brief description
of the Doo-Sabin method, Catmull-Clark method, and Loop method, referring the reader to
the SIGGRAPH’98 Proceedings and Course Notes on Subdivision for Modeling and Anima-
tion.

The Doo-Sabin scheme is described very clearly in Nasri [56], who also proposed a method
for improving the design of boundary curves, a nontrivial problem. During every round of
the subdivision process, new vertices and new faces are created as follows. Every vertex v of
the current mesh yields a new vertex vF called image of v in F , for every face F having v
as a vertex. Then, image vertices are connected to form three kinds of new faces: F -faces,
E-faces, and V -faces.

An F -face is a smaller version of a face F , and it is obtained by connecting the image
vertices of the boundary vertices of F in F . Note that if F is an n-sided face, so is the new
F -face. This process is illustrated in figure 9.8.

A new E-face is created as follows. For every edge E common to two faces F1 and F2,
the four image vertices vF1 , vF2 of the end vertex v of E, and wF1, wF2 of the other end vertex
w of E are connected to form a rectangular face, as illustrated in figure 9.9.

A new V -face is obtained by connecting the image vertices vF of a given vertex v in all
the faces adjacent to v, provided that v has degree n ≥ 3. If v has degree n, the new V -face
is also n-sided. This process is illustrated in figure 9.10.
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Figure 9.9: Vertices of a new E-face

The scheme just described applies to surfaces without boundaries. Special rules are
needed to handle boundary edges, i.e., vertices of degree n ≤ 2. One way to handle bound-
aries is to treat them as quadratic B-splines. For every boundary vertex v, if vF is the image
of v in the face F containing v, create the new vertex

v′ =
1

4
vF +

3

4
v.

Another method was proposed by Nasri [56].

Various rules are used to determine the image vertex vF of a vertex v in some face F . A
simple scheme used by Doo is to compute the centroid c of the face F , and the image vF of
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Figure 9.10: Vertices of a new V -face

v in F as the midpoint of c and v (if F has n sides, the centroid of F is the barycenter of
the weighted points (v, 1/n), where the v’s are the vertices of F ). Another rule is

vi =

n∑

j=1

αijwj,

where the wj are the vertices of the face F , and vi is the image of wi in F , with

αij =

{ n+5
4n

if i = j,
3+2 cos(2π(i−j)/n)

4n
if i 6= j,

where 1 ≤ i, j ≤ n and n ≥ 3 is the number of boundary edges of F .

Note that the above weights add up to 1, since

n∑

k=1

cos(2πk/n) = 0,

because it is the real part of the sum of the n-th roots of unity, and thus, for every i,
1 ≤ i ≤ n, ∑

j 6=i

cos(2π(i− j)/n) = −1.

Observe that after one round of subdivision, all vertices have degree four, and the number
of nonrectangular faces remains constant. It is also easy to check that these faces shrink
and tend to a limit which is their common centroid. However, it is not obvious that such
subdivision schemes converge, and what kind of smoothness is obtained at extraordinary
points. These matters were investigated by Doo and Sabin [28] and by Peters and Reif [60].
Roughly, the idea is to analyze the iteration of subdivision around extraordinary points.
This can be achieved by eigenvalue analysis, or better, using discrete Fourier transforms.
The Doo-Sabin method has been generalized to accomodate features such as creases, darts,
or cusps, by Sederberg, Zheng, Sewell, and Sabin [74]. Such features are desirable in human
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modeling, for example, to model clothes or human skin. The subdivision rules are modified
to allow for nonuniform knot spacing, called “NURSS” by the authors.

We now turn to a description of the Catmull-Clark scheme. Unlike the previous one,
this method consists in subdividing every face into smaller rectangular faces obtained by
connecting new face points, edge points, and vertex points.

Given a face F with vertices v1, . . . , vn, the new face point vF is computed as the centroid
of the vi, i.e.

vF =

n∑

i=1

1

n
vi.

Given an edge E with endpoints v and w, if F1 and F2 are the two faces sharing E as a
common edge, the new edge point vE is the average of the four points v, w, vF1, vF2, where
vF1 and vF2 are the centroids of F1 and F2, i.e.

vE =
v + w + vF1 + vF2

4
.

The computation of new vertex points is slightly more involved. In fact, there are several
different versions. The version presented in Catmull and Clark [17] is as follows. Given
a vertex v (an old one), if F denotes the average of the new face points of all (old) faces
adjacent to v and E denotes the average of the midpoints of all (old) n edges incident with
v, the new vertex point v′ associated with v is

v′ =
1

n
F +

2

n
E +

n− 3

n
v.

New faces are then determined by connecting the new points as follows: each new face
point vF is connected by an edge to the new edge points vE associated with the boundary
edges E of the face F ; each new vertex point v′ is connected by an edge to the new edge
points vE associated with all the edges E incident with v.

Note that only rectangular faces are created. Figure 9.11 shows this process. New face
points are denoted as solid square points, new edges points are denoted as hollow round
points, and new vertex points are denoted as hollow square points.

An older version of the rule for vertex points is

v′ =
1

4
F +

1

2
E +

1

4
v,

but it was observed that the resulting surfaces could be too “pointy” (for example, starting
from a tetrahedron). Another version studied by Doo and Sabin is

v′ =
1

n
F +

1

n
E +

n− 2

n
v.
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Figure 9.11: New face point, edge points, and vertex points

Doo and Sabin analyzed the tangent-plane continuity of this scheme using discrete Fourier
transforms [28]. Observe that after one round of subdivision, all faces are rectangular, and the
number of extraordinary points (vertices of degree different from four) remains constant. The
tangent-plane continuity of various versions of Catmull-Clark schemes are also investigated
in Ball and Storry [3] (using discrete Fourier transforms), and C1-continuity is investigated
by Peters and Reif [60]. A more general study of the convergence of subdivision methods
can be found in Zorin [89] (see also Zorin [88]).

We have only presented the Catmull-Clark scheme for surfaces without boundaries. It is
also possible to accomodate boundary vertices and edges. Boundaries can be easily handled
by treating the boundary curves a cubic B-splines, and using rules for knot insertion at
midpoints of intervals in a closed knot sequence. Then for any three consecutive control
points pli, p

l
i+1, and pli+2 of a boundary curve, two new control points pl+1

2i+1 and pl+1
2i+2 are

created according to the formulae

pl+1
2i+1 =

1

2
pli +

1

2
pli+1, and pl+1

2i+2 =
1

8
pli +

6

8
pli+1,+

1

8
pli+2.

DeRose, Kass, and Truong [24], have generalized the Catmull-Clark subdivision rules to
accomodate sharp edges and creases. Their work is inspired by previous work of Hoppe et
al [44], in which the Loop scheme was extended to allow (infinitely) sharp creases, except
that DeRose et al’s method applies to Catmull-Clark surfaces. The method of DeRose Kass,
and Truong [24], also allows semi-sharp creases in addition to (infinitely) sharp creases.
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Figure 9.12: Loop’s scheme for computing edge points

This new scheme was used in modeling the character Geri in the short film Geri’s game. A
common criticism of subdivision surfaces is that they do not provide immediate access to the
points on the limit surface, as opposed to parametric models which obviously do. However,
it was shown by Stam [78] that it is in fact possible to evaluate points on Catmull-Clark
subdivision surfaces. One of the techniques involved is called eigenbasis functions , which
were also studied by Zorin [89].

Before presenting Loop’s scheme, let us mention that a particularly simple subdivision
method termed “midedge subdivision” was discovered by Peters and Reif [61].

Unlike the previous methods, Loop’s method only applies to meshes whose faces are all
triangles. Loop’s method consists in splitting each (triangular) face into four triangular faces,
using rules to determine new edge points and new vertex points. For every edge (rs), since
exactly two triangles ∆prs and ∆qrs share the edge (rs), we compute the new edge point
ηrs as the following convex combination:

ηrs =
1

8
p+

3

8
r +

3

8
s+

1

8
q,

as illustrated in figure 9.12. This corresponds to computing the affine combination of three
points assigned respectively the weights 3/8, 3/8, and 2/8: the centroids of the two triangles
∆prs and ∆qrs, and the midpoint of the edge (rs).

For any vertex v of degree n, if p0, . . . , pn−1 are the other endpoints of all (old) edges
incident with v, the new vertex point v′ associated with v is

v′ = (1− αn)

(
n−1∑

i=0

1

n
pi

)
+ αnv,

where αn is a coefficient dependent on n. Loop’s method is illustrated in figure 9.13, where
hollow round points denote new edge points, and hollow square points denote new vertex
points.

Observe that after one round of subdivision, all vertices have degree six, except for vertices
coming from orginal vertices of degree different from six, but such vertices are surrounded by
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Figure 9.13: Loop’s scheme for subdividing faces

ordinary vertices of degree six. Vertices of degree different from six are called extraordinary
points. Loop determined that the value αn = 5/8 produces good results [50], but in some
cases, tangent plane continuity is lost at extraordinary points. Large regions of the mesh
define triangular splines based on hexagons consisting of small triangles each of degree four
(each edge of such an hexagon consists of two edges of a small triangle). Thus, ordinary
points have a well defined limit that can be computed by subdividing the quartic triangular
patches. The limit surface is C2-continuous except at extraordinary points.

Loop’s method was first formulated for surfaces without boundaries. Boundaries can be
easily handled by treating the boundary curves a cubic B-splines, as in the Catmull-Clark
scheme.

In his Master’s thesis [50], Loop rigorously investigates the convergence and smoothness
properties of his scheme. He proves convergence of extraordinary points to a limit. He also
figures out in which interval αn should belong, in order to insure convergence and better
smoothness at extraordinary points. Since the principles of Loop’s analysis are seminal and
yet quite simple, we will present its main lines.

As we already remarked, after one round of subdivision, extraordinary points are sur-
rounded by ordinary points, which makes the analysis of convergence possible. Since points
are created during every iteration of the subdivision process, it is convenient to label points
with the index of the subdivision round during which they are created. Then, the rule for
creating a new vertex point vl associated with a vertex vl−1 can be written as

vl = (1− αn)q
l−1 + αnv

l−1,
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where

ql−1 =

n−1∑

i=0

1

n
pl−1
i

is the centroid of the points pl−1
0 , . . . , pl−1

n−1, the other endpoints of all edges incident with
vl−1. Loop proves that as l tends to ∞,

(1) Every extraordinary vertex vl tends to the same limit as ql;

(2) The ordinary vertices pl0, . . . , p
l
n−1 surrounding vl also tend to the same limit as ql.

Since ql is the centroid of ordinary points, this proves the convergence for extraordinary
points. Keep in mind that the lower indices of the pli are taken modulo n.

Proving that liml→∞ vl = liml→∞ ql is fairly easy. Using the fact that

pli =
1

8
pl−1
i−1 +

3

8
pl−1
i +

3

8
vl−1 +

1

8
pl−1
i+1

and some calculations, it is easy to show that

ql =

n−1∑

i=0

1

n
pli =

3

8
vl−1 +

5

8
ql−1.

From this, we have

vl − ql = (1− αn)q
l−1 + αnv

l−1 − 3

8
vl−1 − 5

8
ql−1 =

(
αn −

3

8

)
(vl−1 − ql−1).

By a trivial induction, we get

vl − ql =

(
αn −

3

8

)l

(v0 − q0).

Thus, if −1 < αn − 3
8
< 1, i,e,

−5

8
< αn <

11

8
,

we get convergence of vl to ql. The value αn = 5/8 is certainly acceptable.

Proving (2) is a little more involved. Loop makes a clever use of discrete Fourier trans-
forms. Let us quickly quickly review some basic facts about discrete Fourier series, referring
the reader to Strang [80, 82] for a more comprehensive treatment.

Discrete Fourier series deal with finite sequences c ∈ Cn of complex numbers. It is
convenient to view a finite sequence c ∈ Cn as a periodic sequence over Z, by letting ck = ch
iff k − h = 0 mod n. It is also more convenient to index n-tuples starting from 0 instead
of 1, thus writing c = (c0, . . . , cn−1). Every sequence c = (c0, . . . , cn−1) ∈ Cn of “Fourier
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coefficients” determines a periodic function fc : R → C (of period 2π) known as discrete
Fourier series, or phase polynomial , defined such that

fc(θ) = c0 + c1e
iθ + · · ·+ cn−1e

i(n−1)θ =
n−1∑

k=0

cke
ikθ.

Then, given any sequence f = (f0, . . . , fn−1) of data points, it is desirable to find the “Fourier
coefficients” c = (c0, . . . , cn−1) of the discrete Fourier series fc such that

fc(2πk/n) = fk,

for every k, 0 ≤ k ≤ n− 1.

The problem amounts to solving the linear system

Fnc = f,

where Fn is the symmetric n× n-matrix (with complex coefficients)

Fn =
(
ei2πkl/n

)
0≤k≤n−1
0≤l≤n−1

,

assuming that we index the entries in Fn over [0, 1, . . . , n−1]× [0, 1, . . . , n−1], the standard
k-th row now being indexed by k − 1 and the standard l-th column now being indexed by
l − 1. The matrix Fn is called a Fourier matrix . Letting Fn =

(
e−i2πkl/n

)
0≤k≤n−1
0≤l≤n−1

be the

conjugate of Fn, it is easily checked that

FnFn = FnFn = n In.

Thus, the Fourier matrix is invertible, and its inverse F−1
n = (1/n)Fn is computed very

cheaply.

The purpose of the discrete Fourier transform is to find the Fourier coefficients c =
(c0, . . . , cn−1) from the data points f = (f0, . . . , fn−1). The discrete Fourier transform is a
linear map ̂: Cn → Cn. Now, the other major player in Fourier analysis is the convolution.
In the discrete case, it is natural to define the discrete convolution as a circular type of
convolution rule. The discrete convolution is a map ⋆ : Cn×Cn → Cn, taking two sequences
c, d ∈ Cn, and forming the new sequence c ⋆ d. The Fourier transform and the convolution
rule (discrete or not!) must be defined in such a way that they form a harmonious pair,
which means that the transform of a convolution should be the product of the transforms,
i.e.

ĉ ⋆ d = ĉ d̂,

where the multiplication on the right-hand side is just the vector (ĉ0d̂0, . . . , ĉn−1d̂n−1), where

ĉ = (ĉ0, . . . , ĉn−1) and d̂ = (d̂0, . . . , d̂n−1).
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Inspired by the continuous case, and following Strang [82], it is natural to define the

discrete Fourier transform f̂ of a sequence f = (f0, . . . , fn−1) ∈ Cn as

f̂ = Fnf,

or equivalently, as

f̂(k) =

n−1∑

j=0

fje
−i2πjk/n

for every k, 0 ≤ k ≤ n− 1. We also define the inverse discrete Fourier transform (taking c
back to f) as

ĉ = Fn c.

In view of the formula FnFn = FnFn = n In, the Fourier coefficients c = (c0, . . . , cn−1)
are then given by the formulae

ck =
1

n
f̂(k) =

1

n

n−1∑

j=0

fje
−i2πjk/n.

Note the analogy with the continuous case, where the Fourier transform f̂ of the function f
is given by

f̂(x) =

∫ ∞

−∞
f(t)e−ixtdt,

and the Fourier coefficients of the Fourier series

f(x) =
∞∑

k=−∞
cke

ikx

are given by the formulae

ck =
1

2π

∫ π

−π

f(x)e−ikxdx.

Remark: Others authors (including Strang in his older book [80]) define the discrete Fourier

transform as f̂ = 1
n
Fnf . The drawback of this choice is that the convolution rule has an

extra factor of n. Loop defines the discrete Fourier transform as Fnf , which causes problem
with the convolution rule. We will come back to this point shortly.

The simplest definition of discrete convolution is, in our opinion, the definition in terms of
circulant matrices . Again, for details, see Strang [80, 82]. The fascinating book on circulants,
Fourier matrices, and more, by Davis [21], is highly recommended. We define the circular
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shift matrix Sn (of order n) as the matrix

Sn =




0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 0




consisting of cyclic permutations of its first column. For any sequence f = (f0, . . . , fn−1) ∈
Cn, we define the circulant matrix H(f) as

H(f) =

n−1∑

j=0

fjS
j
n,

where S0
n = In, as usual. For example, the circulant matrix associated with the sequence

f = (a, b, c, d) is 


a d c b
b a d c
c b a d
d c b a




We can now define the convolution f ⋆ g of two sequences f = (f0, . . . , fn−1) and g =
(g0, . . . , gn−1) as

f ⋆ g = H(f) g,

viewing f and g as column vectors. Then, the miracle (which is not too hard to prove!) is
that we have

H(f)Fn = Fn diag(f̂),

where diag(f̂) is the diagonal matrix whose diagonal entries are the elements of the vector

f̂ , which means that the columns of the Fourier matrix Fn are the eigenvectors of the
circulant matrix H(f), and that the eigenvalue associated with the lth eigenvector is (f̂)l,

the lth component of the Fourier transform f̂ of f (counting from 0). If we recall that

FnFn = FnFn = n In, multiplying the equation H(f)Fn = Fn diag(f̂) both on the left and
on the right by Fn, we get

FnH(f)(n In) = (n In) diag(f̂)Fn,

that is,
FnH(f) = diag(f̂)Fn.

If we apply both sides to any sequence g ∈ Cn, we get

FnH(f)g = diag(f̂)Fng,
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which, since ĝ = Fng, f ⋆g = H(f)g, and f̂ ⋆ g = Fn(f ⋆g), can be rewritten as the (circular)
convolution rule

f̂ ⋆ g = diag(f̂) ĝ,

where the multiplication on the right-hand side is just f̂ ĝ.

If the sequence f = (f0, . . . , fn−1) is even, which means that f−j = fj for all j ∈ Z

(viewed as a periodic sequence), or equivalently, that fn−j = fj for all j, 0 ≤ j ≤ n− 1, it is

easily seen that the Fourier transform f̂ can be expressed as

f̂(k) =

n−1∑

j=0

fj cos (2πjk/n) ,

for every k, 0 ≤ k ≤ n − 1. Similarly, the inverse Fourier transform (taking c back to f) is
expressed as

ĉ(k) =
n−1∑

j=0

cj cos (2πjk/n) ,

for every k, 0 ≤ k ≤ n − 1. Observe that it is the same as the (forward) discrete Fourier
transform. This is what saves Loop’s proof (see below)!

After this digression, we get back to Loop’s Master’s thesis [50]. However, we warn our
readers that Loop defines the discrete Fourier transform as

F(f) = Fnf,

(which is our inverse Fourier transform f̂ ) and not as Fnf , which is our Fourier transform

f̂ (following Strang [82]). Loop defines convolution using the formula

(f ⋆ g)k =

n−1∑

j=0

fjgk−j,

for every j, 0 ≤ j ≤ n− 1, which requires interpreting indexes modulo n, but is equivalent
to the circulant definition. However, Loop states the convolution rule as

F(f ⋆ g) = F(f)F(g),

which is incorrect, since F uses the Fourier matrix Fn, when it should be using its conjugate
Fn.

Neverthless, even though Loop appears to be using an incorrect definition of the Fourier
transform, what saves his argument is that for even sequences, his F(f) and our f̂ are
identical, as observed earlier. With these remarks in mind, we go back to Loop’s proof that
the ordinary vertices pl0, . . . , p

l
n−1 surrounding vl also tend to the same limit as ql.
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The trick is rewrite the equations

ql =

n−1∑

i=0

1

n
pli

and

pli =
1

8
pl−1
i−1 +

3

8
pl−1
i +

3

8
vl−1 +

1

8
pl−1
i+1

in terms of discrete convolutions. To do so, define the sequences

M =


3

8
,
1

8
, 0, . . . , 0︸ ︷︷ ︸

n−3

,
1

8


 ,

and

A =

(
1

n
, . . . ,

1

n

)
,

both of length n. Note that these sequences are even! We also define the sequence P l as

P l = (pl0, . . . , p
l
n−1),

and treat ql and vl as constant sequences Ql and V l of length n. Then, equation

pli =
1

8
pl−1
i−1 +

3

8
pl−1
i +

3

8
vl−1 +

1

8
pl−1
i+1

is rewritten as

P l = M ⋆ P l−1 +
3

8
V l−1,

and equation

ql =
n−1∑

i=0

1

n
pli

is rewritten as
Ql = A ⋆ P l.

From these equations, we get

P l =

(
M − 5

8
A

)
⋆ P l−1 +Ql.

Taking advantage of certain special properties of M and A, namely,

n−1∑

j=0

(
M − 5

8
A

)

j

= 0,
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we get

P l =

(
M − 5

8
A

)l⋆

⋆ P 0 +Ql,

where cn⋆ stands for the n-fold convolution c ⋆ · · · ⋆ c︸ ︷︷ ︸
n

.

At this stage, letting

R =

(
M − 5

8
A

)
,

all we have to prove is that Rl⋆ tends to the null sequence as l goes to infinity. Since both
M and A are even sequences, applying the Fourier transform in its cosine form and the
convolution rule, we have

R̂l⋆ = (R̂)l,

and so, we just have to compute the discrete Fourier transform of R. However, this is easy
to do, and we get

(R̂)j =

{
0 if j = 0,
3
8
+ 1

4
cos (2πj/n) if j 6= 0.

Since the absolute value of the cosine is bounded by 1,

1

8
≤ (R̂)j ≤

5

8

for all j, 0 ≤ j ≤ n− 1, and thus

lim
l→∞

(R̂)l = 0n,

which proves that

lim
l→∞

R̂l⋆ = lim
l→∞

Rl⋆ = 0n,

and consequently that

lim
l→∞

pli = lim
l→∞

ql.

Therefore, the faces surrounding extraordinary points converge to the same limit as the
centroid of these faces. Loop gives explicit formulae for the limit of extraordinary points.
He proves that ql (and thus vl) has the limit

(1− βn)q
0 + βnv

0, where βn =
3

11− 8αn
.

The bounds to insure convergence are the same as the bounds to insure convergence of vl to
ql, namely

−5

8
< αn <

11

8
.
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In particular, αn = 5/8 yields βn = 1/2. Loop also investigates the tangent plane continuity
at these limit points. He proves that tangent plane continuity is insured if αn is chosen so
that

−1

4
cos (2π/n) < αn <

3

4
+

1

4
cos (2π/n) .

For instance, for a vertex of degree three (n = 3), the values α3 = 5/8 is outside the correct
range, as Loop first observed experimentally. If αn is chosen in the correct range, it is
possible to find a formula for the tangent vector function at each extraordinary point. Loop
also discusses curvature continuity at extraordinary points, but his study is more tentative.
He proposes the following “optimal” value for αn;

αn =
3

8
+

(
3

8
+

1

4
cos (2π/n)

)2

.

Note that α6 = 5/8 is indeed this value for regular vertices (of degree n = 6).

In summary, Loop proves that his subdivision scheme is C2-continuous, except at a finite
number of extraordinary points. At extraordinary points, there is convergence, and there
is a range of values from which αn can be chosen to insure tangent plane continuity. The
implementation of the method is discussed, and it is nontrivial. Stam [78] also implemented
a method for computing points on Catmull-Clark surfaces. Loop’s scheme was extended to
accomodate sharp edges and creases on boundaries, see Hoppe et [44].

We conclude this section on subdivision surfaces by a few comments. First, general ap-
proaches to study the properties (convergence, smoothness) of subdivision surfaces have been
investigated in Reif [66] and by Zorin [89]. The related issue of adaptive parameterization of
surfaces is investigated in Lee et al [49]. Their method makes use of Loop’s scheme. There
are many other papers on the subject of subdivision surfaces, and we apologize for not being
more thorough, but we hope that we have at least given pointers to the most important
research directions. Again, we advise our readers to consult the SIGGRAPH Proceedings
and Course Notes, especially after 1996.

Although subdivision surfaces have many attractive features, such as, arbitrary topology
of the mesh, uniformity of representation, numerical stability, and code simplicity, they
have their problems too. For example, there are problems with curvature continuity at
extraordinary points (the curvature can be zero). Extraordinary points of large degree
may exhibit poor smoothness. The phenomenon of “eigenvalue clustering” can also cause
ripples on the surface. Another phenomenon related to the eigenvalue distribution of the
local subdivision matrix is the fact that the mesh may be uneven, certain triangles being
significantly larger than others near extraordinary points.

9.5 Problems

Problem 1 (30 pts). Show that the number of conditions required for two triangular
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patches of degree m to meet with C1-continuity is 3m + 1. Show that the number of inde-
pendent conditions is generally 2m+1. Show that the number of conditions required for two
triangular patches of degree m to meet with C2-continuity is 6m−2. Show that the number
of independent conditions is generally 3m.

Problem 2 (20 pts). Formulate a de Boor algorithm for rectangular B-spline surfaces.

Problem 3 (30 pts). Formulate a knot insertion algorithm for rectangular B-spline sur-
faces. Use it to convert a B-spline surface into rectangular Bézier patches.

Problem 4 (30 pts). Let u0, . . . , uM and v0, . . . , uN be two knot sequences consisting of
simple knots, and let (xi, j)0≤i≤M, 0≤j≤N be a net of data points. We would like to find a
rectangular bicubic C1-continuous B-spline surface F interpolating the points xi, j , i.e., such
that

F (ui, vj) = xi, j .

(i) Using the method of section 6.8, show that the control points on the boundary curves
of each rectangular patch can be computed, accounting for 12 control points per patch.

(ii) However, each patch requires 16 control points. Show that the other 4 interior control
points can be found by computing the corner twists of each patch (twist vectors are defined
in section 7.6).

(iii) Various methods exist to determine twist vectors. One method (Bessel twist) consists
in estimating the twist at (ui, vj) to be the bilinear interpolant of the four bilinear patches
determined by the nine points xi+r, j+s, where r = −1, 0, 1 and s = −1, 0, 1. Compute the
Bessel twists.

Problem 5 (40 pts). Implement the interpolation method proposed in problem 4. Exper-
iment with various methods for determining corner twists.

Problem 6 (20 pts). (1) If we consider surface splines of degree 3n + 3 with C2n+1

continuity, prove that for every triangle A, the derived surface Dn+2
α Dn

βFA is the same in any

stripe in the direction −→γ , the derived surface Dn+2
β Dn

γFA is the same in any stripe in the

direction −→α , and the derived surface Dn+2
α Dn

γFA is the same in any stripe in the direction
−→
β .

(2) Prove that the conditions

Dn+2
α Dn

βFA = Dn+2
β Dn

γFA = Dn+2
α Dn

γFA =
−→
0 .

are independent, and that in this case, each patch is defined by 3(n+1)2− 2 control points.
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Problem 7 (30 pts). Let Fn be the symmetric n× n-matrix (with complex coefficients)

Fn =
(
ei2πkl/n

)
0≤k≤n−1
0≤l≤n−1

,

assuming that we index the entries in Fn over [0, 1, . . . , n−1]× [0, 1, . . . , n−1], the standard
k-th row now being indexed by k − 1 and the standard l-th column now being indexed by
l − 1. The matrix Fn is called a Fourier matrix .

(1) Letting Fn =
(
e−i2πkl/n

)
0≤k≤n−1
0≤l≤n−1

be the conjugate of Fn, prove that

FnFn = FnFn = n In.

(2) Prove that

H(f)Fn = Fnf̂ .

Hint . Prove that
SnFn = Fn diag(v

1)

where diag(v1) is the diagonal matrix with the following entries on the diagonal:

v1 =
(
1, e−i2π/n, . . . , e−ik2π/n, . . . , e−i(n−1)2π/n

)
.

(3) If the sequence f = (f0, . . . , fn−1) is even, which means that f−j = fj for all j ∈ Z

(viewed as a periodic sequence), or equivalently, that fn−j = fj for all j, 0 ≤ j ≤ n − 1,

prove that the Fourier transform f̂ is expressed as

f̂(k) =
n−1∑

j=0

fj cos (2πjk/n) ,

and that the inverse Fourier transform (taking c back to f) is expressed as

ĉ(k) =

n−1∑

j=0

cj cos (2πjk/n) ,

for every k, 0 ≤ k ≤ n− 1.

Problem 8 (10 pts). Prove that the Fourier transform of Loop’s matrix

R =

(
M − 5

8
A

)

is given by

(R̂)j =

{
0 if j = 0,
3
8
+ 1

4
cos (2πj/n) if j 6= 0.
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Problem 9 (50 pts). Implement the Doo-Sabin subdivision method for closed meshes.
Generalize your program to handle boundaries.

Problem 10 (50 pts). Implement the Catmull-Clark subdivision method for closed meshes.
Generalize your program to handle boundaries.

Problem 11 (60 pts). Implement the Loop subdivision method for closed meshes. Gener-
alize your program to handle boundaries. Experiment with various values of αn.



Chapter 10

Embedding an Affine Space in a
Vector Space

10.1 The “Hat Construction”, or Homogenizing

For all practical purposes, curves and surfaces live in affine spaces. A disadvantage of the
affine world is that points and vectors live in disjoint universes. It is often more convenient, at
least mathematically, to deal with linear objects, (vector spaces, linear combinations, linear
maps), rather than affine objects (affine spaces, affine combinations, affine maps). Actually,
it would also be advantageous if we could manipulate points and vectors as if they lived in
a common universe, using perhaps an extra bit of information to distinguish between them
if necessary.

Such an “homogenization” (or “hat construction”) can be achieved. Such an homogeniza-
tion of an affine space and its associated vector space is very useful to define and manipulate
rational curves and surfaces. However, such a treatment will be given elsewhere. It also
leads to a very elegant method for obtaining the various formulae giving the derivatives of a
polynomial curve, or the directional derivatives of polynomial surfaces.

This chapter proceeds as follows. First, the construction of a vector space Ê in which

both E and
−→
E are embedded as (affine) hyperplanes is described. It is shown how affine

frames in E become bases in Ê. It turns out that Ê is characterized by a universality
property: affine maps to vector spaces extend uniquely to linear maps. As a consequence,
affine maps between affine spaces E and F extend to linear maps between Ê and F̂ . Similarly,
multiaffine maps extend to multilinear maps. Next, the linearization of multiaffine maps is
used to obtain formulae for the directional derivatives of polynomial maps. In turn, these
formulae lead to a very convenient way of formulating the continuity conditions for joining
polynomial curves or surfaces.

Let us first explain how to distinguish between points and vectors practically, using what
amounts to a “hacking trick”. Then, we will show that such a procedure can be put on firm
mathematical grounds.

369
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Assume that we consider the real affine space E of dimension 3, and that we have some
affine frame (a0, (

−→v1 ,−→v2 ,−→v2 )). With respect to this affine frame, every point x ∈ E is
represented by its coordinates (x1, x2, x3), where

a = a0 + x1
−→v1 + x2

−→v2 + x3
−→v3 .

A vector −→u ∈ −→
E is also represented by its coordinates (u1, u2, u3) over the basis (

−→v1 ,−→v2 ,−→v2 ).
One way to distinguish between points and vectors is to add a fourth coordinate, and to agree
that points are represented by (row) vectors (x1, x2, x3, 1) whose fourth coordinate is 1, and
that vectors are represented by (row) vectors (v1, v2, v3, 0) whose fourth coordinate is 0. This
“programming trick” works actually very well. Of course, we are opening the door for strange
elements such as (x1, x2, x3, 5), where the fourth coordinate is neither 1 nor 0.

The question is, can we make sense of such elements, and of such a construction? The

answer is yes. We will present a construction in which an affine space (E,
−→
E ) is embedded in

a vector space Ê, in which
−→
E is embedded as a hyperplane passing through the origin, and E

itself is embedded as an affine hyperplane, defined as ω−1(1), for some linear form ω : Ê → R.

In the case of an affine space E of dimension 2, we can think of Ê as the vector space R3 of

dimension 3, in which
−→
E corresponds to the (x, y)-plane, and E corresponds to the plane

of equation z = 1, parallel to the (x, y)-plane, and passing through the point on the z-axis

of coordinates (0, 0, 1). The construction of the vector space Ê is presented in some details
in Berger [5]. Berger explains the construction in terms of vector fields. Ramshaw explains
the construction using the symmetric tensor power of an affine space [65]. We prefer a more
geometric and simpler description in terms of simple geometric transformations, translations
and dilatations.

Remark: Readers with a good knowledge of geometry will recognize the first step in embed-
ding an affine space into a projective space. We will also show that the homogenization Ê of

an affine space (E,
−→
E ), satisfies a universal property with respect to the extension of affine

maps to linear maps. As a consequence, the vector space Ê is unique up to isomorphism,
and its actual construction is not so important. However, it is quite useful to visualize the
space Ê.

As usual, for simplicity, it is assumed that all vector spaces are defined over the field R of
real numbers, and that all families of scalars (points, and vectors) are finite. The extension
to arbitrary fields and to families of finite support is immediate. We begin by defining

two very simple kinds of geometric (affine) transformations. Given an affine space (E,
−→
E ),

every −→u ∈ −→
E induces a mapping tu : E → E, called a translation, and defined such that

tu(a) = a+−→u , for every a ∈ E. Clearly, the set of translations is a vector space isomorphic

to
−→
E . Thus, we will use the same notation −→u for both the vector −→u and the translation

tu. Given any point a and any scalar λ ∈ R, we define the mapping Ha,λ : E → E, called
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dilatation (or central dilatation, or homothety) of center a and ratio λ, and defined such that

Ha,λ(x) = a+ λ−→ax,

for every x ∈ E. We have Ha,λ(a) = a, and when λ 6= 0 and x 6= a, Ha,λ(x) is on the line
defined by a and x, and is obtained by “scaling” −→ax by λ. The effect is a uniform dilatation
(or contraction, if λ < 1). When λ = 0, Ha,0(x) = a for all x ∈ E, and Ha,0 is the constant
affine map sending every point to a. If we assume λ 6= 1, note that Ha,λ is never the identity,
and since a is a fixed-point, Ha,λ is never a translation.

We now consider the set Ê of geometric transformations from E to E, consisting of the
union of the (disjoint) sets of translations and dilatations of ratio λ 6= 1. We would like

to give this set the structure of a vector space, in such a way that both E and
−→
E can be

naturally embedded into Ê. In fact, it will turn out that barycenters show up quite naturally
too!

In order to “add” two dilatations Ha1,λ1 and Ha2,λ2 , it turns out that it is more convenient
to consider dilatations of the form Ha,1−λ, where λ 6= 0. To see this, let us see the effect of
such a dilatation on a point x ∈ E: we have

Ha,1−λ(x) = a + (1− λ)−→ax = a+−→ax− λ−→ax = x+ λ−→xa.

For simplicity of notation, let us denote Ha,1−λ as 〈a, λ〉. Then, we have

〈a, λ〉(x) = x+ λ−→xa.

Remarks:

(1) Note that Ha,1−λ(x) = Hx,λ(a).

(2) Berger defines a map h : E → −→
E as a vector field . Thus, each 〈a, λ〉 can be viewed as

the vector field x 7→ λ−→xa. Similarly, a translation −→u can be viewed as the constant
vector field x 7→ −→u . Thus, we could define Ê as the (disjoint) union of these two
vector fields. We prefer our view in terms of geometric transformations.

Then, since

〈a1, λ1〉(x) = x+ λ1
−→xa1 and 〈a2, λ2〉(x) = x+ λ2

−→xa2,

if we want to define 〈a1, λ1〉 +̂ 〈a2, λ2〉, we see that we have to distinguish between two cases:

(1) λ1 + λ2 = 0. In this case, since

λ1
−→xa1 + λ2

−→xa2 = λ1
−→xa1 − λ1

−→xa2 = λ1
−−→a2a1,
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we let
〈a1, λ1〉 +̂ 〈a2, λ2〉 = λ1

−−→a2a1,

where λ1
−−→a2a1 denotes the translation associated with the vector λ1

−−→a2a1.

(2) λ1 + λ2 6= 0. In this case, the points a1 and a2 assigned the weights λ1

λ1+λ2
and λ2

λ1+λ2

have a barycenter

b =
λ1

λ1 + λ2
a1 +

λ2

λ1 + λ2
a2,

such that −→
xb =

λ1

λ1 + λ2

−→xa1 +
λ2

λ1 + λ2

−→xa2.

Since
λ1
−→xa1 + λ2

−→xa2 = (λ1 + λ2)
−→
xb,

we let

〈a1, λ1〉 +̂ 〈a2, λ2〉 =
〈

λ1

λ1 + λ2

a1 +
λ2

λ1 + λ2

a2, λ1 + λ2

〉
,

the dilatation associated with the point b and the scalar λ1 + λ2.

Given a translation defined by −→u and a dilatation 〈a, λ〉, since λ 6= 0, we have

λ−→xa +−→u = λ(−→xa+ λ−1−→u ),

and so, letting b = a+ λ−1−→u , since
−→
ab = λ−1−→u , we have

λ−→xa +−→u = λ(−→xa + λ−1−→u ) = λ(−→xa +−→
ab) = λ

−→
xb,

and we let
〈a, λ〉 +̂−→u = 〈a + λ−1−→u , λ〉,

the dilatation of center a + λ−1−→u and ratio λ.

The sum of two translations −→u and −→v is of course defined as the translation −→u +−→v .

It is also natural to define multiplication by a scalar as follows:

µ · 〈a, λ〉 = 〈a, λµ〉,

and
λ · −→u = λ−→u ,

where λ−→u is the product by a scalar in
−→
E .

We can now use the definition of the above operations to state the following lemma,
showing that the “hat construction” described above has allowed us to achieve our goal of

embedding both E and
−→
E in the vector space Ê.
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Lemma 10.1.1. The set Ê consisting of the disjoint union of the translations and the
dilatations Ha,1−λ = 〈a, λ〉, λ ∈ R, λ 6= 0, is a vector space under the following operations of
addition and multiplication by a scalar:

if λ1 + λ2 = 0 then
〈a1, λ1〉 +̂ 〈a2, λ2〉 = λ1

−−→a2a1,

if λ1 + λ2 6= 0 then

〈a1, λ1〉 +̂ 〈a2, λ2〉 =
〈

λ1

λ1 + λ2
a1 +

λ2

λ1 + λ2
a2, λ1 + λ2

〉
,

〈a, λ〉 +̂−→u = −→u +̂ 〈a, λ〉 = 〈a+ λ−1−→u , λ〉,
−→u +̂−→v = −→u +−→v ,

if µ 6= 0 then
µ · 〈a, λ〉 = 〈a, λµ〉,

0 · 〈a, λ〉 = −→
0 ,

and
λ · −→u = λ−→u .

Furthermore, the map ω : Ê → R defined such that

ω(〈a, λ〉) = λ,

ω(−→u ) = 0,

is a linear form, ω−1(0) is a hyperplane isomorphic to
−→
E under the injective linear map

i :
−→
E → Ê such that i(−→u ) = tu (the translation associated with −→u ), and ω−1(1) is an affine

hyperplane isomorphic to E with direction i(
−→
E ), under the injective affine map j : E → Ê,

where j(a) = 〈a, 1〉, for every a ∈ E. Finally, for every a ∈ E, we have

Ê = i(
−→
E )⊕ Rj(a).

Proof. The verification that Ê is a vector space is straightforward. The linear map mapping

a vector −→u to the translation defined by −→u is clearly an injection i :
−→
E → Ê embedding

−→
E

as an hyperplane in Ê. It is also clear that ω is a linear form. Note that

j(a +−→u ) = 〈a+−→u , 1〉 = 〈a, 1〉 +̂−→u ,

where −→u stands for the translation associated with the vector −→u , and thus, j is an affine
injection with associated linear map i. Thus, ω−1(1) is indeed an affine hyperplane isomor-

phic to E with direction i(
−→
E ), under the map j : E → Ê. Finally, from the definition of +̂ ,

for every a ∈ E, for every −→u ∈ −→
E , since

i(−→u ) +̂ λ · j(a) = −→u +̂ 〈a, λ〉 = 〈a+ λ−1−→u , λ〉,
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bc

b

b

Ω

〈a, 1〉 = a

〈a, λ〉

i(
−→
E ) = ω−1(0)

j(E) = ω−1(1)

−→u

Figure 10.1: Embedding an affine space (E,
−→
E ) into a vector space Ê

when λ 6= 0, we get any arbitrary −→v ∈ Ê by picking λ = 0 and −→u = −→v , and we get any

arbitrary element 〈b, µ〉, µ 6= 0, by picking λ = µ and −→u = µ
−→
ab. Thus,

Ê = i(
−→
E ) + Rj(a),

and since i(
−→
E ) ∩ Rj(a) = {−→0 }, we have

Ê = i(
−→
E )⊕ Rj(a),

for every a ∈ E.

The following diagram illustrates the embedding of the affine space E into the vector
space Ê, when E is an affine plane.

Note that Ê is isomorphic to
−→
E ∪ (E × R∗) (where R∗ = R − {0}). Other authors use

the notation E∗ for Ê. Ramshaw calls the linear form ω : Ê → R a weight (or flavor), and

he says that an element z ∈ Ê such that ω(z) = λ is λ-heavy (or has flavor λ) ([65]). The

elements of j(E) are 1-heavy and are called points , and the elements of i(
−→
E ) are 0-heavy

and are called vectors . In general, the λ-heavy elements all belong to the hyperplane ω−1(λ)

parallel to i(
−→
E ). Thus, intuitively, we can thing of Ê as a stack of parallel hyperplanes, one
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for each λ, a little bit like an infinite stack of very thin pancakes! There are two privileged

pancakes: one corresponding to E, for λ = 1, and one corresponding to
−→
E , for λ = 0.

From now on, we will identify j(E) and E, and i(
−→
E ) and

−→
E . We will also write λa

instead of 〈a, λ〉, which we will call a weighted point , and write 1a just as a. When we
want to be more precise, we may also write 〈a, 1〉 as a. In particular, when we consider the

homogenized version Â of the affine space A associated with the field R considered as an
affine space, we write λ for 〈λ, 1〉, when viewing λ as a point in both A and Â, and simply

λ, when viewing λ as a vector in R and in Â. The elements of Â are called Bézier sites , by
Ramshaw. As an example, the expression 2+3 denotes the real number 5, in A, 2+3

2
denotes

the middle point of the segment [2, 3], which can be denoted as 2.5, and 2+3 does not make

sense in A, since it is not a barycentric combination. However, in Â, the expression 2 + 3
makes sense: it is the weighted point 〈2.5, 2〉.

Then, in view of the fact that

〈a+−→u , 1〉 = 〈a, 1〉 +̂−→u ,

and since we are identifying a+−→u with 〈a+−→u , 1〉 (under the injection j), in the simplified

notation, the above reads as a + −→u = a +̂ −→u . Thus, we go one step further, and denote
a +̂−→u as a +−→u . However, since

〈a, λ〉 +̂−→u = 〈a + λ−1−→u , λ〉,

we will refrain from writing λa +̂ −→u as λa + −→u , because we find it too confusing. From
lemma 10.1.1, for every a ∈ E, every element of Ê can be written uniquely as −→u +̂ λa. We
also denote

λa +̂ (−µ)b

as
λa −̂ µb.

We can now justify rigorously the programming trick of the introduction of an extra
coordinate to distinguish between points and vectors. First, we make a few observations.
Given any family (ai)i∈I of points in E, and any family (λi)i∈I of scalars in R, it is easily
shown by induction on the size of I that the following holds:

(1) If
∑

i∈I λi = 0, then
∑

i∈I
〈ai, λi〉 =

−−−−→∑

i∈I
λiai,

where −−−−→∑

i∈I
λiai =

∑

i∈I
λi

−→
bai
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for any b ∈ E, which, by lemma 2.4.1, is a vector independent of b, or

(2) If
∑

i∈I λi 6= 0, then

∑

i∈I
〈ai, λi〉 =

〈∑

i∈I

λi∑
i∈I λi

ai,
∑

i∈I
λi

〉
.

Thus, we see how barycenters reenter the scene quite naturally, and that in Ê, we can
make sense of

∑
i∈I〈ai, λi〉, regardless of the value of

∑
i∈I λi. When

∑
i∈I λi = 1, the element∑

i∈I〈ai, λi〉 belongs to the hyperplane ω−1(1), and thus, it is a point. When
∑

i∈I λi = 0,
the linear combination of points

∑
i∈I λiai is a vector, and when I = {1, . . . , n}, we allow

ourselves to write
λ1a1 +̂ · · · +̂ λnan,

where some of the occurrences of +̂ can be replaced by −̂ , as

λ1a1 + · · ·+ λnan,

where the occurrences of −̂ (if any) are replaced by −. This will be convenient when dealing
with derivatives in section 10.5.

In fact, we have the following slightly more general property, which is left as an exercise.

Lemma 10.1.2. Given any affine space (E,
−→
E ), for any family (ai)i∈I of points in E, for

any family (λi)i∈I of scalars in R, and any family (−→vj )j∈J of vectors in
−→
E , with I ∩ J = ∅,

the following properties hold:

(1) If
∑

i∈I λi = 0, then

∑

i∈I
〈ai, λi〉 +̂

∑

j∈J

−→vj =
−−−−→∑

i∈I
λiai +

∑

j∈J

−→vj ,

where −−−−→∑

i∈I
λiai =

∑

i∈I
λi

−→
bai

for any b ∈ E, which, by lemma 2.4.1, is a vector independent of b, or

(2) If
∑

i∈I λi 6= 0, then

∑

i∈I
〈ai, λi〉 +̂

∑

j∈J

−→vj =

〈∑

i∈I

λi∑
i∈I λi

ai +
∑

j∈J

−→vj∑
i∈I λi

,
∑

i∈I
λi

〉
.

Proof. By induction on the size of I and the size of J .

The above formulae show that we have some kind of extended barycentric calculus.
Operations on weighted points and vectors were introduced by H. Grassmann, in his book
published in 1844!
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10.2 Affine Frames of E and Bases of Ê

There is also a nice relationship between affine frames in (E,
−→
E ) and bases of Ê, stated in

the following lemma.

Lemma 10.2.1. Given any affine space (E,
−→
E ), for any affine frame (a0, (

−−→a0a1, . . . ,
−−→a0am))

for E, the family (−−→a0a1, . . . ,
−−→a0am, a0) is a basis for Ê, and for any affine frame (a0, . . . , am)

for E, the family (a0, . . . , am) is a basis for Ê. Furthermore, given any element 〈x, λ〉 ∈ Ê,
if

x = a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am

over the affine frame (a0, (
−−→a0a1, . . . ,

−−→a0am)) in E, then the coordinates of 〈x, λ〉 over the basis

(−−→a0a1, . . . ,
−−→a0am, a0) in Ê, are

(λx1, . . . , λxm, λ).

For any vector −→v ∈ −→
E , if

−→v = v1
−−→a0a1 + · · ·+ vm

−−→a0am

over the basis (−−→a0a1, . . . ,
−−→a0am) in

−→
E , then over the basis (−−→a0a1, . . . ,

−−→a0am, a0) in Ê, the

coordinates of −→v are
(v1, . . . , vm, 0).

For any element 〈a, λ〉, where λ 6= 0, if the barycentric coordinates of a w.r.t. the affine
basis (a0, . . . , am) in E are (λ0, . . . , λm) with λ0+ · · ·+λm = 1, then the coordinates of 〈a, λ〉
w.r.t. the basis (a0, . . . , am) in Ê are

(λλ0, . . . , λλm).

If a vector −→v ∈ −→
E is expressed as

−→v = v1
−−→a0a1 + · · ·+ vm

−−→a0am =
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−(v1 + · · ·+ vm)a0 + v1a1 + · · ·+ vmam,

with respect to the affine basis (a0, . . . , am) in E, then its coordinates w.r.t. the basis

(a0, . . . , am) in Ê are
(−(v1 + · · ·+ vm), v1, . . . , vm).

Proof. We sketch parts of the proof, leaving the details as an exercise. If we assume that we
have a nontrivial linear combination

λ1
−−→a0a1 +̂ · · · +̂ λm

−−→a0am +̂ µa0 =
−→
0 ,

if µ 6= 0, then we have

λ1
−−→a0a1 +̂ · · · +̂ λm

−−→a0am +̂ µa0 = 〈a0 + µ−1λ1
−−→a0a1 + · · ·+ µ−1λm

−−→a0am, µ〉,
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bc

bc

b

b

bc

bc

Ω

〈a, 1〉 = a

〈a, λ〉

−−→a0a1

−−→a0a2

a0

a1

a2

−→u

E

Figure 10.2: The basis (−−→a0a1,
−−→a0a2, a0) in Ê

which is never null, and thus, we must have µ = 0, but since (−−→a0a1, . . . ,
−−→a0am) is a basis of

−→
E , we must also have λi = 0 for all i, 1 ≤ i ≤ m.

Given any element 〈x, λ〉 ∈ Ê, if

x = a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am

over the affine frame (a0, (
−−→a0a1, . . . ,

−−→a0am)) in E, in view of the definition of +̂ , we have

〈x, λ〉 = 〈a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am, λ〉 = 〈a0, λ〉 +̂ λx1
−−→a0a1 +̂ · · · +̂ λxm

−−→a0am,

which shows that the coordinates of 〈x, λ〉 over the basis (−−→a0a1, . . . ,
−−→a0am, a0) in Ê are

(λx1, . . . , λxm, λ).

The following diagram shows the basis (−−→a0a1,
−−→a0a2, a0) corresponding to the affine frame

(a0, a1, a2) in E.

If (x1, . . . , xm) are the coordinates of x w.r.t. to the affine frame (a0, (
−−→a0a1, . . . ,

−−→a0am))

in E, then, (x1, . . . , xm, 1) are the coordinates of x in Ê, i.e., the last coordinate is 1, and
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bc

b

b

bc bc

bc

Ω

〈a, 1〉 = a

〈a, λ〉

a1 a2

a0

−→u

E

Figure 10.3: The basis (a0, a1, a2) in Ê

if −→u has coordinates (u1, . . . , um) with respect to the basis (−−→a0a1, . . . ,
−−→a0am) in

−→
E , then −→u

has coordinates (u1, . . . , um, 0) in Ê, i.e., the last coordinate is 0.

The following diagram shows the affine frame (a0, a1, a2) in E viewed as a basis in Ê.

We now consider the universal property of Ê mentioned at the beginning of this section.

10.3 Extending Affine Maps to Linear Maps

Roughly, the vector space Ê has the property that for any vector space
−→
F and any affine

map f : E → −→
F , there is a unique linear map f̂ : Ê → −→

F extending f : E → −→
F . As a

consequence, given two affine spaces E and F , every affine map f : E → F extends uniquely
to a linear map f̂ : Ê → F̂ . Other authors use the notation f∗ for f̂ . First, we define
rigorously the notion of homogenization of an affine space.

Definition 10.3.1. Given any affine space (E,
−→
E ), an homogenization (or linearization)

of (E,
−→
E ) is a triple 〈E , j, ω〉, where E is a vector space, j : E → E is an injective affine

map with associated injective linear map i :
−→
E → E , ω : E → R is a linear form such

that ω−1(0) = i(
−→
E ), ω−1(1) = j(E), and for every vector space

−→
F and every affine map
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f : E → −→
F , there is a unique linear map f̂ : E → −→

F extending f , i.e. f = f̂ ◦ j, as in the
following diagram:

E
j //

f ��❅
❅
❅
❅
❅
❅
❅
❅

E
f̂
��
−→
F

Thus, j(E) = ω−1(1) is an affine hyperplane with direction i(
−→
E ) = ω−1(0). Note that we

could have defined an homogenization of an affine space (E,
−→
E ), as a triple 〈E , j, H〉, where

E is a vector space, H is an affine hyperplane in E , and j : E → E is an injective affine map
such that j(E) = H , and such that the universal property stated above holds. However,
definition 10.3.1 is more convenient for our purposes, since it makes the notion of weight
more evident.

The obvious candidate for E is the vector space Ê that we just constructed. The next
lemma will indeed show that Ê has the required extension property. As usual, objects defined
by a universal property are unique up to isomorphism. This property is left as an exercise.

Lemma 10.3.2. Given any affine space (E,
−→
E ) and any vector space

−→
F , for any affine map

f : E → −→
F , there is a unique linear map f̂ : Ê → −→

F extending f such that

f̂(−→u +̂ λa) = λf(a) +
−→
f (−→u )

for all a ∈ E, all −→u ∈ −→
E , and all λ ∈ R, where

−→
f is the linear map associated with f . In

particular, when λ 6= 0, we have

f̂(−→u +̂ λa) = λf(a+ λ−1−→u ).

Proof. Assuming that f̂ exists, recall that from lemma 10.1.1, for every a ∈ E, every element
of Ê can be written uniquely as −→u +̂ λa. By linearity of f̂ and since f̂ extends f , we have

f̂(−→u +̂ λa) = f̂(−→u ) + λf̂(a) = f̂(−→u ) + λf(a) = λf(a) + f̂(−→u ).

If λ = 1, since a +̂−→u and a+−→u are identified, and since f̂ extends f , we must have

f(a) + f̂(−→u ) = f̂(a) + f̂(−→u ) = f̂(a +̂−→u ) = f(a+−→u ) = f(a) +
−→
f (−→u ),

and thus, f̂(−→u ) =
−→
f (−→u ) for all −→u ∈ −→

E . Then, we have

f̂(−→u +̂ λa) = λf(a) +
−→
f (−→u ),

which proves the uniqueness of f̂ . On the other hand, the map f̂ defined as above is clearly
a linear map extending f .



10.3. EXTENDING AFFINE MAPS TO LINEAR MAPS 381

When λ 6= 0, we have

f̂(−→u +̂ λa) = f̂(λ(a+ λ−1−→u )) = λf̂(a+ λ−1−→u ) = λf(a+ λ−1−→u ).

Lemma 10.3.2 shows that 〈Ê, j, ω〉, is an homogenization of (E,
−→
E ). As a corollary, we

obtain the following lemma.

Lemma 10.3.3. Given two affine spaces E and F and an affine map f : E → F , there is a
unique linear map f̂ : Ê → F̂ extending f , as in the diagram below,

E
f //

j
��

F

j
��

Ê
f̂

// F̂

such that

f̂(−→u +̂ λa) =
−→
f (−→u ) +̂ λf(a),

for all a ∈ E, all −→u ∈ −→
E , and all λ ∈ R, where

−→
f is the linear map associated with f . In

particular, when λ 6= 0, we have

f̂(−→u +̂ λa) = λf(a+ λ−1−→u ).

Proof. Consider the vector space F̂ , and the affine map j ◦ f : E → F̂ . By lemma 10.3.2,
there is a unique linear map f̂ : Ê → F̂ , extending j ◦ f , and thus extending f .

Note that f̂ : Ê → F̂ has the property that f̂(
−→
E ) ⊆ −→

F . More generally, since

f̂(−→u +̂ λa) =
−→
f (−→u ) +̂ λf(a),

the linear map f̂ is weight-preserving. Also observe that we recover f from f̂ , by letting
λ = 1 in

f̂(−→u +̂ λa) = λf(a+ λ−1−→u ),

that is, we have
f(a+−→u ) = f̂(−→u +̂ a).

From a practical point of view, lemma 10.3.3 shows us how to homogenize an affine map
to turn it into a linear map between the two homogenized spaces. Assume that E and F
are of finite dimension, and that (a0, (

−→u1 , . . . ,
−→un)) is an affine frame of E, with origin a0,

and (b0, (
−→v1 , . . . ,−→vm)) is an affine frame of F , with origin b0. Then, with respect to the two

bases (−→u1 , . . . ,
−→un , a0) in Ê and (−→v1 , . . . ,−→vm, b0) in F̂ , a linear map h : Ê → F̂ is given by an
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(m+1)× (n+1) matrix A. If this linear map h is equal to the homogenized version f̂ of an
affine map f , since

f̂(−→u +̂ λa) =
−→
f (−→u ) +̂ λf(a),

since over the basis (−→u1 , . . . ,
−→un, a0) in Ê, points are represented by vectors whose last coor-

dinate is 1, and vectors are represented by vectors whose last coordinate is 0, the last row
of the matrix A = M(f̂ ) with respect to the given bases is

(0, 0, . . . , 0, 1),

with m occurrences of 0, the last column contains the coordinates

(µ1, . . . , µm, 1)

of f(a0) with respect to the basis (−→v1 , . . . ,−→vm, b0), the submatrix of A obtained by deleting

the last row and the last column is the matrix of the linear map
−→
f with respect to the bases

(−→u1 , . . . ,
−→un) and (−→v1 , . . . ,−→vm), and since

f(a0 +
−→u ) = f̂(−→u +̂ a0),

given any x ∈ E and y ∈ F , with coordinates (x1, . . . , xn, 1) and (y1, . . . , ym, 1), for X =
(x1, . . . , xn, 1)

⊤ and Y = (y1, . . . , ym, 1)
⊤, we have y = f(x) iff

Y = AX.

For example, consider the following affine map f : A2 → A2 defined as follows:

y1 = ax1 + bx2 + µ1,

y2 = cx1 + dx2 + µ2.

The matrix of f̂ is 

a b µ1

c d µ2

0 0 1




and we have 

y1
y2
1


 =



a b µ1

c d µ2

0 0 1





x1

x2

1




In Ê, we have 

y1
y2
y3


 =



a b µ1

c d µ2

0 0 1





x1

x2

x3



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which means that the homogeneous map f̂ is is obtained from f by “adding the variable of
homogeneity x3”:

y1 = ax1 + bx2 + µ1x3,

y2 = cx1 + dx2 + µ2x3,

y3 = x3.

10.4 From Multiaffine Maps to Multilinear Maps

We now show how to homogenize multiaffine maps.

Lemma 10.4.1. Given any affine space E and any vector space
−→
F , for any m-affine map

f : Em → −→
F , there is a unique m-linear map f̂ : (Ê)m → −→

F extending f , such that, if

f(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +

∑

S⊆{1,...,m}
S={i1,...ik}, k≥1

i1<···<ik

fS(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E , where the fS are uniquely determined

multilinear maps (by lemma 4.1.3), then

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam)

= λ1 · · ·λmf(a1, . . . , am) +
∑

S⊆{1,...,m}
S={i1,...ik}, k≥1

i1<···<ik

( ∏

j∈{1,...,m}
j /∈S

λj

)
fS(

−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, all −→v1 , . . . ,−→vm ∈ −→
E , and all λ1, . . . , λm ∈ R. Furthermore, for λi 6= 0,

1 ≤ i ≤ m, we have

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam) = λ1 · · ·λmf(a1 + λ−1

1
−→v1 , . . . , am + λ−1

m
−→vm).

Proof. The proof is very technical and can be found in Chapter B, Section B.2.

As a corollary, we obtain the following useful lemma.

Lemma 10.4.2. Given any two affine spaces E and F and an m-affine map f : Em → F ,
there is a unique m-linear map f̂ : (Ê)m → F̂ extending f as in the diagram below,

Em f //

j×···×j
��

F

j
��

(Ê)m
f̂

// F̂
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such that, if

f(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +

∑

S⊆{1,...,m}
S={i1,...ik}, k≥1

i1<···<ik

fS(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E , where the fS are uniquely determined

multilinear maps (by lemma 4.1.3), then

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam)

= λ1 · · ·λmf(a1, . . . , am) +̂
∑

S⊆{1,...,m}
S={i1,...ik}, k≥1

i1<···<ik

( ∏

j∈{1,...,m}
j /∈S

λj

)
fS(

−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, all −→v1 , . . . ,−→vm ∈ −→
E , and all λ1, . . . , λm ∈ R. Furthermore, for λi 6= 0,

1 ≤ i ≤ m, we have

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam) = λ1 · · ·λmf(a1 + λ−1

1
−→v1 , . . . , am + λ−1

m
−→vm).

Proof. Immediate from lemma 10.4.1 (see the proof of lemma 10.3.3 from lemma 10.3.2).

The homogenized version f̂ of an m-affine map f is weight-multiplicative, in the sense
that

ω(f̂(z1, . . . , zm)) = ω(z1) · · ·ω(zm),
for all z1, . . . , zm ∈ Ê.

From a practical point of view,

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam) = λ1 · · ·λmf(a1 + λ−1

1
−→v1 , . . . , am + λ−1

m
−→vm),

shows us that f is recovered from f̂ by setting λi = 1, for 1 ≤ i ≤ m. We can use this
formula to find the homogenized version f̂ of the map f . For example, if we consider the
affine space A with its canonical affine frame (the origin is 0, and the basis consists of the
single vector 1), if f : A× A → A is the biaffine map defined such that

f(x1, x2) = ax1x2 + bx1 + cx2 + d,

the bilinear map f̂ : Â× Â → Â, is given by

f̂((x1, λ1), (x2, λ2)) = (λ1λ2

[
a(x1λ

−1
1 )(x2λ

−1
2 ) + bx1λ

−1
1 + cx2λ

−1
2 + d

]
, λ1λ2)

= (ax1x2 + bx1λ2 + cx2λ1 + dλ1λ2, λ1λ2),

where we choose the basis (1, 0), in Â.
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Note that f(x1, x2) is indeed recovered from f̂ by setting λ1 = λ2 = 1. Since multiaffine
maps can be homogenized, polynomial maps can also be homogenized. This is very useful in
practice. In fact, using the characterization of multiaffine maps f : Em → F given by lemma
4.2.3, when E is of finite dimension, we can get an explicit formula for the homogenized
version f̂ of f , generalizing our previous example. If (a, (−→e1 , . . . ,−→en )) is an affine frame for
E, we know that for any m vectors

−→vj = v1, j
−→e1 + · · ·+ vn, j

−→en ∈ −→
E ,

we have

f(a+−→v1 , . . . , a+−→vm) = b+
∑

1≤p≤m

∑

I1∪...∪In={1,...,p}
Ii∩Ij=∅, i 6=j

1≤i,j≤n

(∏

i1∈I1
v1, i1

)
· · ·
(∏

in∈In
vn, in

)
−→w |I1|,...,|In|,

for some b ∈ F , and some −→w |I1|,...,|In| ∈
−→
F , and since Ê =

−→
E ⊕Ra, with respect to the basis

(−→e1 , . . . ,−→en , 〈a, 1〉) of Ê, we have

f̂(−→v1 +̂ λ1a, . . . ,
−→vm +̂ λma) = λ1 · · ·λmb +̂
∑

1≤p≤m

∑

I1∪...∪In={1,...,p}
Ii∩Ij=∅, i 6=j

1≤i,j≤n

(∏

i1∈I1
v1, i1

)
· · ·
(∏

in∈In
vn, in

)( ∏

j∈{1,...,m}
j /∈(I1∪...∪In)

λj

)
−→w |I1|,...,|In|.

In other words, we obtain the expression for f̂ by homogenizing the polynomials which
are the coefficients of the −→w |I1|,...,|In|. For the homogenized version ĥ of the affine polynomial
h associated with f , we get:

ĥ(−→v +̂ λa) = λmb +̂
∑

1≤p≤m

∑

k1+···+kn=p
0≤ki, 1≤i≤n

vk11 · · · vknn λm−p −→w k1,...,kn.

Remark: Recall that homogenizing a polynomial P (X1, . . . , Xn) ∈ R[X1, . . . , Xn] is done as
follows. If P (X1, . . . , Xn) is of total degree p, and we want to find a homogeneous polynomial
Q(X1, . . . , Xn, Z) of total degree m ≥ p, such that

P (X1, . . . , Xn) = Q(X1, . . . , Xn, 1),

we let

Q(X1, . . . , Xn, Z) = ZmP

(
X1

Z
, . . . ,

Xn

Z

)
.
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10.5 Differentiating Affine Polynomial Functions Us-

ing Their Homogenized Polar Forms, Osculating

Flats

In this section, we assume that E is a normed affine space. One of the major benefits of
homogenization is that the derivatives of an affine polynomial function F : A → E can be
obtained in a very simple way from the homogenized version f̂ : (Â)m → Ê , of its m-polar
form f : Am → E . In this section, following Ramshaw, it will be convenient to denote a
point in A (and in Â, since we view A as embedded as a line in Â) as a, to distinguish it

from the vector a ∈ R (and a ∈ Â, since we view R as embedded in Â). When dealing with

derivatives, it is also more convenient to denote the vector
−→
ab as b− a.

The vector 1 of Â will be denoted as
−→
1 , or as δ. Note that

δ =
−→
1 = a+ 1− a,

for any a ∈ R.

Remark: when we write a + 1−a, we mean a + 1−̂a in Â, but we prefer to be less pedantic,
and we write simply a+ 1 − a. In this section, given a1, . . . , an ∈ E , and λ1, . . . , λn ∈ R,
such that λ1 + · · ·+ λn = 0, as suggested in section 10.1, we will write

λ1a1 +̂ · · · +̂ λnan,

as
λ1a1 + · · ·+ λnan.

� However, remember that such combinations are vectors in
−→E (and in Ê).

For any a ∈ A, the derivative DF (a) is the limit,

lim
t→0, t6=0

F (a+ tδ)− F (a)

t
,

if it exists. However, since F̂ agrees with F on A, we have

F (a+ tδ)− F (a) = F̂ (a+ tδ)− F̂ (a),

and thus, we need to see what is the limit of

F̂ (a + tδ)− F̂ (a)

t
,

when t → 0, t 6= 0, with t ∈ R.
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� Recall that since F : A → E , where E is an affine space, the derivative DF (a) of F at a is

a vector in
−→E , and not a point in E . However, the structure of Ê takes care of this, since

F̂ (a+ tδ)− F̂ (a) is indeed a vector (remember our convention that − is an abbreviation for
−̂ ).

Since

F̂ (a+ tδ) = f̂(a + tδ, . . . , a+ tδ︸ ︷︷ ︸
m

),

where f̂ is the homogenized version of the polar form f of F , and F̂ is the homogenized
version of F , since

F̂ (a+ tδ)− F̂ (a) = f̂(a+ tδ, . . . , a+ tδ︸ ︷︷ ︸
m

)− f̂(a, . . . , a︸ ︷︷ ︸
m

),

by multilinearity and symmetry, we have

F̂ (a+ tδ)− F̂ (a) = mt f̂(a, . . . , a︸ ︷︷ ︸
m−1

, δ) +

k=m∑

k=2

(
m
k

)
tk f̂(a, . . . , a︸ ︷︷ ︸

m−k

, δ, . . . , δ︸ ︷︷ ︸
k

),

and thus,

lim
t→0, t6=0

F̂ (a + tδ)− F̂ (a)

t
= mf̂(a, . . . , a︸ ︷︷ ︸

m−1

, δ).

However, since F̂ extends F on A, we have DF (a) = DF̂ (a), and thus, we showed that

DF (a) = mf̂ (a, . . . , a︸ ︷︷ ︸
m−1

, δ).

This shows that the derivative of F at a ∈ A can be computed by evaluating the homog-
enized version f̂ of the polar form f of F , by replacing just one occurrence of a in f̂(a, . . . , a)
by δ.

More generally, we have the following useful lemma.

Lemma 10.5.1. Given an affine polynomial function F : A → E of polar degree m, where E
is a normed affine space, the k-th derivative DkF (a) can be computed from the homogenized

polar form f̂ of F as follows, where 1 ≤ k ≤ m:

DkF (a) = m(m− 1) · · · (m− k + 1) f̂(a, . . . , a︸ ︷︷ ︸
m−k

, δ, . . . , δ︸ ︷︷ ︸
k

).

Proof. A simple induction on k.
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When k > m, we have DkF (a) =
−→
0 .

Since coefficients of the form m(m−1) · · · (m−k+1) occur a lot when taking derivatives,
following Knuth, it is useful to introduce the falling power notation. We define the falling
power mk, as

mk = m(m− 1) · · · (m− k + 1),

for 0 ≤ k ≤ m, with m0 = 1, and with the convention that mk = 0 when k > m. The falling
powers mk have some interesting combinatorial properties of their own. Using the falling
power notation, the previous lemma reads as

DkF (a) = mk f̂(a, . . . , a︸ ︷︷ ︸
m−k

, δ, . . . , δ︸ ︷︷ ︸
k

).

We also get the following explicit formula in terms of control points.

Lemma 10.5.2. Given an affine polynomial function F : A → E of polar degree m, where
E is a normed affine space, for any r, s ∈ A, with r 6= s, the k-th derivative DkF (r) can be
computed from the polar form f of F as follows, where 1 ≤ k ≤ m:

DkF (r) =
mk

(s− r)k

i=k∑

i=0

(
k
i

)
(−1)k−i f(r, . . . , r︸ ︷︷ ︸

m−i

, s, . . . , s︸ ︷︷ ︸
i

).

Proof. Since

δ =
s− r

s− r
,

we can expand

DkF (r) = mk f̂

(
r, . . . , r︸ ︷︷ ︸

m−k

,
s− r

s− r
, . . . ,

s− r

s− r︸ ︷︷ ︸
k

)

by multilinearity and symmetry, and by induction on k, we get

DkF (r) =
mk

(s− r)k

i=k∑

i=0

(
k
i

)
(−1)k−i f̂(r, . . . , r︸ ︷︷ ︸

m−i

, s, . . . , s︸ ︷︷ ︸
i

),

and we conclude using the fact that f̂ agrees with f on E .

Lemma 10.5.2 is usually derived via more traditional methods involving finite differences.
We believe that the approach via polar forms is more conceptual, and gives more insight
into what’s really going on. It also extends fairly easily to the case when the domain A is
replaced by a more general normed affine space (to define surfaces).

If F is specified by the sequence of m+ 1 control points bi = f(rm−i s i), 0 ≤ i ≤ m, the
above lemma shows that the k-th derivative DkF (r) of F at r, depends only on the k + 1



10.5. DIFFERENTIATING AFFINE POLYNOMIAL FUNCTIONS 389

control points b0, . . . , bk In terms of the control points b0, . . . , bk, the formula of lemma 10.5.2
reads as follows:

DkF (r) =
mk

(s− r)k

i=k∑

i=0

(
k
i

)
(−1)k−i bi.

In particular, if b0 6= b1, then DF (r) is the velocity vector of F at b0, and it is given by

DF (r) =
m

s− r

−−→
b0b1 =

m

s− r
(b1 − b0),

the last expression making sense in Ê . This shows that when b0 and b1 are distinct, the
tangent to the Bézier curve at the point b0 is the line determined by b0 and b1. Similarly,
the tangent at the point bm is the line determined by bm−1 and bm (provided that these
points are distinct). In order to see that the tangent at the current point F (t) defined by
the parameter t, is determined by the two points

b0, m−1 = f(t, . . . , t︸ ︷︷ ︸
m−1

, r) and b1, m−1 = f(t, . . . , t︸ ︷︷ ︸
m−1

, s),

given by the de Casteljau algorithm, note that since

δ =
s− r

s− r

and
DF (t) = mf̂(t, . . . , t︸ ︷︷ ︸

m−1

, δ) =
m

s− r
(f̂(t, . . . , t︸ ︷︷ ︸

m−1

, r)− f̂(t, . . . , t︸ ︷︷ ︸
m−1

, s)),

and since f̂ agrees with f on Am, we have

DF (t) =
m

s− r
(b1,m−1 − b0,m−1).

Thus, we have justified the claims about tangents to Bézier curves made in section 5.1.

Similarly, the acceleration vector D2F (r) is given by

D2F (r) =
m(m− 1)

(s− r)2
(
−−→
b0b2 − 2

−−→
b0b1) =

m(m− 1)

(s− r)2
(b2 − 2b1 + b0),

the last expression making sense in Ê . More generally, if b0 = b1 = . . . = bk, and bk 6= bk+1,
the above reasoning can be used to show that the tangent at the point b0 is determined by
the points b0 and bk+1.

Later on when we deal with surfaces, it will be necessary to generalize the above results
to directional derivatives. However, we have basically done all the work already. Let us
assume that E and E are normed affine spaces, and consider a map F : E → E . Recall from
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definition D.1.2, that if A is any open subset of E, for any a ∈ A, for any −→u 6= −→
0 in

−→
E ,

the directional derivative of F at a w.r.t. the vector −→u , denoted as DuF (a), is the limit, if
it exists,

lim
t→0,t∈U,t6=0

F (a+ t−→u )− F (a)

t
,

where U = {t ∈ R | a+ t−→u ∈ A}.
If F : E → E is a polynomial function of degree m, with polar form the symmetric

multiaffine map f : Em → E , then

F (a+ t−→u )− F (a) = F̂ (a+ t−→u )− F̂ (a),

where F̂ is the homogenized version of F , that is, the polynomial map F̂ : Ê → Ê associated
with the homogenized version f : (Ê)m → Ê of the polar form f : Em → E of F : E → E .
Thus, DuF (a) exists iff the limit

lim
t→0, t6=0

F̂ (a + t−→u )− F̂ (a)

t

exists, and in this case, this limit is DuF (a) = DuF̂ (a).
Furthermore,

F̂ (a+ t−→u ) = f̂(a+ t−→u , . . . , a+ t−→u︸ ︷︷ ︸
m

),

and since
F̂ (a + t−→u )− F̂ (a) = f̂(a+ t−→u , . . . , a+ t−→u︸ ︷︷ ︸

m

)− f̂(a, . . . , a︸ ︷︷ ︸
m

),

by multilinearity and symmetry, we have

F̂ (a + t−→u )− F̂ (a) = mt f̂(a, . . . , a︸ ︷︷ ︸
m−1

,−→u ) +

k=m∑

k=2

(
m
k

)
tk f̂(a, . . . , a︸ ︷︷ ︸

m−k

,−→u , . . . ,−→u︸ ︷︷ ︸
k

),

and thus,

DuF̂ (a) = lim
t→0, t6=0

F̂ (a+ t−→u )− F̂ (a)

t
= mf̂(a, . . . , a︸ ︷︷ ︸

m−1

,−→u ).

However, we showed previously that DuF (a) = DuF̂ (a), and thus, we showed that

DuF (a) = mf̂(a, . . . , a︸ ︷︷ ︸
m−1

,−→u ).

By a simple, induction, we can prove the following lemma.
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Lemma 10.5.3. Given an affine polynomial function F : E → E of polar degree m, where E

and E are normed affine spaces, for any k nonzero vectors −→u1 , . . . ,
−→uk ∈ −→

E , where 1 ≤ k ≤ m,
the k-th directional derivative Du1 . . .Duk

F (a) can be computed from the homogenized polar

form f̂ of F as follows:

Du1 . . .Duk
F (a) = mk f̂(a, . . . , a︸ ︷︷ ︸

m−k

,−→u1 , . . . ,
−→uk ).

Lemma 10.5.3 is a generalization of lemma 10.5.1 to any domain E which is a normed
affine space. We are going to make use of this lemma to study local approximations of a
polynomial map F : E → E , in the neighborhood of a point F (a), where a is any point in E.
In order to be sure that the polar form f : Em → E is continuous, let us now assume that E
is of finite dimension,

Since by lemma 10.5.3, the directional derivatives Du1 . . .Duk
F (a) exist for all −→u1 , . . . ,

−→uk

and all k ≥ 1, and since E is of finite dimension, all multiaffine maps are continuous and the
derivatives DkF exist for all k ≥ 1 and are of class C∞ (recall that DkF (a) is a symmetric
k-linear map, see Lang [48]). Furthermore, we know that

DkF (a)(−→u1 , . . . ,
−→uk ) = Du1 . . .Duk

F (a).

Thus, lemma 10.5.3 actually shows that

DkF (a)(−→u1 , . . . ,
−→uk) = mk f̂(a, . . . , a︸ ︷︷ ︸

m−k

,−→u1 , . . . ,
−→uk).

This shows that DkF (a) is the symmetric k-linear map

(−→u1 , . . . ,
−→uk) 7→ mk f̂(a, . . . , a︸ ︷︷ ︸

m−k

,−→u1 , . . . ,
−→uk ).

Of course, for k > m, the derivative DkF (a) is the null k-linear map.

Remark: As usual, for k = 0, we agree that D0F (a) = F (a). We could also relax the
condition that E is of finite dimension, and assume that the polar form f is a continuous
map.

Now, let a be any point in E. For any k, with 0 ≤ k ≤ m, we can truncate the Taylor
expansion of F : E → E at a at the (k+1)-th order, getting the polynomial map Gk

a : E → E
defined such that, for all b ∈ E,

Gk
a(b) = F (a) +

1

1!
D1F (a)(

−→
ab) + · · ·+ 1

k!
DkF (a)(

−→
abk).

The polynomial function Gk
a agrees with F to kth order at a, which means that

DiGk
a(a) = DiF (a),
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for all i, 0 ≤ i ≤ k. We say that Gk
a osculates F to kth order at a. For example, in the case

of a curve F : A → E , for k = 1, the map G1
a is simply the affine map determined by the

tangent line at a, and for k = 2, G2
a is a parabola tangent to the curve F at a.

As pointed out by Ramshaw, it is tempting to believe that the polar form gka of Gk
a is

simply obtained from the polar form f of F , by fixing m− k arguments of f at the point a,
more precisely, if

gka(b1, . . . , bk) = f(b1, . . . , bk, a, . . . , a︸ ︷︷ ︸
m−k

),

for all b1, . . . , bk ∈ E.

Unfortunately, this is false, even for curves. The problem is a silly one, it has to do with
the falling power mk. For example, if we consider a parabola F : A → A2, it is easy to see
from Taylor’s formula, that

G1
b
(a) = 2f(a, b)− f(b, b), and G1

a(b) = 2f(a, b)− f(a, a),

which means that f(a, b) is both the middle of the two line segments (f(a, a), G1
a(b)) and

(f(b, b), G1
b
(a)), which happen to be tangent to F at F (a) and F (b). Unfortunately, it is not

true that G1
a(b) = G1

b
(a) = f(a, b).

It is possible to fix this problem and to find the relationship between the polar forms f
and gka , but this is done most conveniently using symmetric tensors, and will be postponed
until section 11.1 (see lemma B.4.3).

The ennoying coefficients mk can also be washed out, if we consider the affine subspaces
spanned by the range of Gk

a, instead of osculating curves or surfaces.

Definition 10.5.4. Given any two normed affine spaces E and E , where E is of finite
dimension, for any polynomial map F : E → E of degree m, for any a ∈ E, for any k, with
0 ≤ k ≤ m, the polynomial map Gk

a : E → E is defined such that, for all b ∈ E,

Gk
a(b) = F (a) +

1

1!
D1F (a)(

−→
ab) + · · ·+ 1

k!
DkF (a)(

−→
abk).

We say that Gk
a osculates F to kth order at a. The osculating flat OsckF (a) is the affine

subspace of E generated by the range of Gk
a.

If F : A → E is a curve, then we say that F is nondegenerate iff OsckF (a) has dimension
k for all a ∈ A. In such a case, the flat Osc1F (a) is the tangent line to F at a, and Osc2F (a)
is the osculating plane to F at a, i.e., the plane determined by the point F (a), the velocity
vector D1F (a), and the acceleration vector D2F (a). The osculating plane is the usual notion
used in differential geometry. The osculating plane to the curve F at the point F (a) is the
limit of any plane containing the tangent line at F (a) and any other point F (b) on the curve
F , when b approaches a.
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If F : P → E is a surface, assuming that (Ω, (−→e1 ,−→e2 )) is an affine frame of P, recall that
we denote Dejk

. . .Dej1
F (a) as

∂kF

∂xj1 . . . ∂xjk

(a).

These are the partial derivatives at a. Also, letting b = a+ h1
−→e1 + h2

−→e2 , in terms of partial
derivatives, the truncated Taylor expansion is written as

Gk
a(b) = F (a) +

∑

1≤i1+i2≤k

hi1
1 h

i2
2

i1!i2!

(
∂

∂x1

)i1( ∂

∂x2

)i2

F (a).

It is not too difficult to show that there are

(k + 1)(k + 2)

2
− 1 =

k(k + 3)

2

partial derivatives in the above expression, and we say that the surface F is nondegenerate
iff OsckF (a) has dimension k(k+3)

2
for all a ∈ P. For a nondegenerate surface, Osc1F (a) is

the tangent plane to F at a, and Osc2F (a) is a flat of dimension 5, spanned by the vectors
∂F
∂x1

(a), ∂F
∂x2

(a), ∂2F
∂x2

1
(a), ∂2F

∂x2
2
(a), and ∂2F

∂x1∂x2
(a). The flat Osc3F (a) is a flat of dimension 9, and

we leave as an exercise to list the vectors spanning it. Thus, plane curves are degenerate in
the above sense, except lines, and surfaces in A3 are degenerate in the above sense, except
planes.

There is a simple relationship between osculating flats and polar forms, but it is much
more convenient to use tensors to prove it, and we postpone the proof until section 11.1 (see
lemma B.4.4). Let us simply mention a useful corollary. Given a polynomial map F : E → E
of degree m with polar form f : Em → E , the affine subspace spanned by the range of the
multiaffine map

(b1, . . . , bm−k) 7→ f(a, . . . , a︸ ︷︷ ︸
k

, b1, . . . , bm−k),

is the osculating flat Oscm−kF (a). This leads to a geometric interpretation of polar values.
We note in passing that the geometric interpretation of polar forms in terms of osculating
flats, was investigated by S. Jolles, as early as 1886.

Let F : A → E be a nondegenerate curve of degree 3 (and thus, a space curve). By the
previous corollary, the polar value f(r, s, t) is the unique intersection of the three osculating
planes Osc2F (r), Osc2F (s), and Osc2F (t). The polar value f(s, s, t) is the intersection
of the tangent line Osc1F (s) with the osculating plane Osc2F (t). More generally, given
a nondegenerate curve or surface F : E → E , the polar value f(b1, . . . , bm) is the unique
intersection of the osculating flats corresponding to all of the distinct points a that occur in
the multiset {b1, . . . , bm}.

This interpretation is so nice that one wonders why it was not chosen as a definition of
polar forms. Unfortunately, this idea does not work as soon as F : A → E is degenerate,
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which happens a lot. Indeed, Bézier points are usually not affinely independent. Thus, we
had to use a more algebraic definition.

In the case of surfaces, osculating flats intersect more often that we would expect. For
example, given a nondegenerate cubic surface, we know that it lies in an affine space of
dimension 9. But for each a ∈ P, the osculating flat Osc2F (a) has dimension 5. In general,
three 5-flats in a 9-space do not intersect, but any three 5-flats Osc2F (a), Osc2F (b), and
Osc2F (c), intersect at the polar value f(a, b, c).

Readers who would like to have an in-depth understanding of the foundations of geometric
design and a more conceptual view of the material on curves and surfaces are urged to read
the next chapter on tensors. However, skipping this chapter will only have very minor
consequences (basically, ignoring the proofs of a few results).

10.6 Problems

Problem 1 (10 pts). Prove that Ê as defined in lemma 10.1.1 is indeed a vector space.

Problem 2 (10 pts). Prove lemma 10.1.2.

Problem 3 (10 pts). Fill in the missing details in the proof of lemma 10.2.1.

Problem 4 (10 pts). Fill in the missing details in the proof of lemma 10.5.2.

Problem 5 (10 pts). Give some vectors spanning the flat Osc3F (a) of dimension 9.



Chapter 11

Tensor Products and Symmetric
Tensor Products

11.1 Tensor Products

This chapter is not absolutely essential and can be omitted by readers who are willing
to accept some of the deeper results without proofs (or are willing to go through rather
nasty computations!). On the other hand, readers who would like to have an in-depth
understanding of the foundations of computer-aided geometric design and a more conceptual
view of the material on curves and surfaces, should make an effort to read this chapter. We
hope that they will find it rewarding!

First, tensor products are defined, and some of their basic properties are shown. Next,
symmetric tensor products are defined, and some of their basic properties are shown. Sym-
metric tensor products of affine spaces are also briefly discussed. The machinery of symmetric
tensor products is then used to prove some important results of CAGD. For example, an
elegant proof of theorem 5.3.2 is given.

We have seen that multilinear maps play an important role. Given a linear map f : E →
F , we know that if we have a basis (−→ui )i∈I for E, then f is completely determined by its

values f(−→ui ) on the basis vectors. For a multilinear map f : En → F , we don’t know if there
is such a nice property, but it would certainly be very useful.

In many respects, tensor products allow us to define multilinear maps in terms of their
action on a suitable basis. Once again, as in section 10.1, we linearize, that is, we create a
new vector space E ⊗ · · · ⊗ E, such that the multilinear map f : En → F is turned into a
linear map f⊗ : E ⊗ · · · ⊗E → F , which is equivalent to f in a strong sense. If in addition,
f is symmetric, then we can define a symmetric tensor product E ⊙ · · · ⊙ E, and every
symmetric multilinear map f : En → F is turned into a linear map f⊙ : E ⊙ · · · ⊙ E → F ,
which is equivalent to f in a strong sense.

Tensor products can be defined in various ways, some more abstract than others. We
tried to stay down to earth, without excess!

395
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Let K be a given field, and let E1, . . . , En be n ≥ 2 given vector spaces. First, we define
tensor products, and then we prove their existence and uniqueness up to isomorphism.

Definition 11.1.1. A tensor product of n ≥ 2 vector spaces E1, . . . , En, is a vector space T ,
together with a multilinear map ϕ : E1 × · · · ×En → T , such that, for every vector space F
and for every multilinear map f : E1×· · ·×En → F , there is a unique linear map f⊗ : T → F ,
with

f(−→u1 , . . . ,
−→un) = f⊗(ϕ(

−→u1 , . . . ,
−→un)),

for all −→u1 ∈ E1, . . . ,
−→un ∈ En, or for short

f = f⊗ ◦ ϕ.

Equivalently, there is a unique linear map f⊗ such that the following diagram commutes:

E1 × · · · ×En
ϕ //

f &&◆◆
◆
◆
◆
◆
◆
◆
◆◆

◆
T

f⊗
��
F

First, we show that any two tensor products (T1, ϕ1) and (T2, ϕ2) for E1, . . . , En, are
isomorphic.

Lemma 11.1.2. Given any two tensor products (T1, ϕ1) and (T2, ϕ2) for E1, . . . , En, there
is an isomorphism h : T1 → T2 such that

ϕ2 = h ◦ ϕ1.

Proof. Focusing on (T1, ϕ1), we have a multilinear map ϕ2 : E1 × · · · × En → T2, and thus,
there is a unique linear map (ϕ2)⊗ : T1 → T2, with

ϕ2 = (ϕ2)⊗ ◦ ϕ1.

Similarly, focusing now on on (T2, ϕ2), we have a multilinear map ϕ1 : E1 × · · · × En → T1,
and thus, there is a unique linear map (ϕ1)⊗ : T2 → T1, with

ϕ1 = (ϕ1)⊗ ◦ ϕ2.

But then, we get
ϕ1 = (ϕ1)⊗ ◦ (ϕ2)⊗ ◦ ϕ1,

and
ϕ2 = (ϕ2)⊗ ◦ (ϕ1)⊗ ◦ ϕ2.

On the other hand, focusing on (T1, ϕ1), we have a multilinear map ϕ1 : E1×· · ·×En → T1,
but the unique linear map h : T1 → T1, with

ϕ1 = h ◦ ϕ1
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is h = id, and since (ϕ1)⊗ ◦ (ϕ2)⊗ is linear, as a composition of linear maps, we must have

(ϕ1)⊗ ◦ (ϕ2)⊗ = id.

Similarly, we must have
(ϕ2)⊗ ◦ (ϕ1)⊗ = id.

This shows that (ϕ1)⊗ and (ϕ2)⊗ are inverse linear maps, and thus, (ϕ2)⊗ : T1 → T2 is an
isomorphism between T1 and T2.

Now that we have shown that tensor products are unique up to isomorphism, we give a
construction that produces one.

Lemma 11.1.3. Given n ≥ 2 vector spaces E1, . . . , En, a tensor product (E1 ⊗ · · · ⊗En, ϕ)

for E1, . . . , En can be constructed. Furthermore, denoting ϕ(−→u1 , . . . ,
−→un) as −→u1 ⊗ · · · ⊗ −→un,

the tensor product E1 ⊗ · · · ⊗ En is generated by the vectors −→u1 ⊗ · · · ⊗ −→un, where −→u1 ∈
E1, . . . ,

−→un ∈ En, and for every multilinear map f : E1 × · · · × En → F , the unique linear
map f⊗ : E1 ⊗ · · · ⊗ En → F such that f = f⊗ ◦ ϕ, is defined by

f⊗(
−→u1 ⊗ · · · ⊗ −→un) = f(−→u1 , . . . ,

−→un),

on the generators −→u1 ⊗ · · · ⊗ −→un of E1 ⊗ · · · ⊗ En.

Proof. First, we apply the construction of definition A.1.11 to the cartesian product I =
E1 × · · ·×En, and we get the free vector space M = K(I) on I = E1 × · · ·×En. Recall that

the family (−→ei )i∈I is defined such that
−−→
(ei)j = 0 if j 6= i and

−−→
(ei)i = 1. It is a basis of the vector

space K(I), so that every −→w ∈ K(I) can be uniquely written as a finite linear combination
of the −→ei . There is also an injection ι : I → K(I) such that ι(i) = −→ei for every i ∈ I. Since

every −→ei is uniquely associated with some n-tuple i = (−→u1 , . . . ,
−→un) ∈ E1 × · · · × En, we

will denote −→ei as (−→u1 , . . . ,
−→un). Also, by lemma A.2.4, for any vector space F , and for any

function f : I → F , there is a unique linear map f : K(I) → F , such that

f = f ◦ ι,

as in the following diagram:

E1 × · · · ×En
ι //

f
((❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘
K(E1×···×En)

f

��
F

Next, let N be the subspace of M generated by the vectors of the following type:

(−→u1 , . . . ,
−→ui +

−→vi , . . . ,−→un)− (−→u1 , . . . ,
−→ui , . . . ,

−→un)− (−→u1 , . . . ,
−→vi , . . . ,−→un),

(−→u1 , . . . , λ
−→ui , . . . ,

−→un)− λ(−→u1 , . . . ,
−→ui , . . . ,

−→un).
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We let E1 ⊗ · · · ⊗ En be the quotient M/N of the free vector space M by N , which is
well defined, by lemma A.3.1. Let π : M → M/N be the quotient map, and let

ϕ = π ◦ ι.

By construction, ϕ is multilinear, and since π is surjective and the ι(i) = −→ei generate M ,

since i is of the form i = (−→u1 , . . . ,
−→un) ∈ E1 × · · · × En, the ϕ(−→u1 , . . . ,

−→un) generate M/N .

Thus, if we denote ϕ(−→u1 , . . . ,
−→un) as −→u1 ⊗ · · · ⊗ −→un, the tensor product E1 ⊗ · · · ⊗ En is

generated by the vectors −→u1 ⊗ · · · ⊗ −→un, where
−→u1 ∈ E1, . . . ,

−→un ∈ En.

For every multilinear map f : E1 × · · ·×En → F , if a linear map f⊗ : E1 ⊗ · · ·⊗En → F

exists such that f = f⊗ ◦ϕ, since the vectors −→u1 ⊗ · · · ⊗−→un generate E1 ⊗ · · · ⊗En, the map
f⊗ is uniquely defined by

f⊗(
−→u1 ⊗ · · · ⊗ −→un) = f(−→u1 , . . . ,

−→un).

On the other hand, because M = K(E1×···×En) is free on I = E1 × · · ·×En, there is a unique
linear map f : K(E1×···×En) → F , such that

f = f ◦ ι,

as in the diagram below:

E1 × · · · ×En
ι //

f
((❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘
K(E1×···×En)

f

��
F

Because f is multilinear, note that we must have f(−→w ) =
−→
0 , for every −→w ∈ N . But then,

f : M → F induces a linear map h : M/N → F , such that

f = h ◦ π ◦ ι,

by defining h([−→z ]) = f(−→z ), for every −→z ∈ M , where [−→z ] denotes the equivalence class in

M/N of −→z ∈ M :

E1 × · · · ×En
π◦ι //

f
))❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

K(E1×···×En)/N

h
��
F

Indeed, the fact that f vanishes on N insures that h is well defined on M/N , and it is
clearly linear by definition. However, we showed that such a linear map h is unique, and
thus it agrees with the linear map f⊗ defined by

f⊗(
−→u1 ⊗ · · · ⊗ −→un) = f(−→u1 , . . . ,

−→un)

on the generators of E1 ⊗ · · · ⊗ En.
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What is important about lemma 11.1.3 is not so much the construction itself, but the fact
that a tensor product with the universal property with respect to multilinear maps stated in
that lemma holds. Indeed, lemma 11.1.3 yields an isomorphism between the vector space of
linear maps L(E1⊗· · ·⊗En;F ), and the vector space of multilinear maps L(E1, . . . , En;F ),
via the linear map − ◦ ϕ defined by

h 7→ h ◦ ϕ,
where h ∈ L(E1 ⊗ · · · ⊗ En;F ). Indeed, h ◦ ϕ is clearly multilinear, and since by lemma
11.1.3, for every multilinear map f ∈ L(E1, . . . , En;F ), there is a unique linear map f⊗ ∈
L(E1 ⊗ · · · ⊗ En;F ) such that f = f⊗ ◦ ϕ, the map − ◦ ϕ is bijective. As a matter of fact,
its inverse is the map

f 7→ f⊗.

Remark: For F = K, the base field, we obtain a natural isomorphism between the vector
space L(E1 ⊗ · · · ⊗ En;K), and the vector space of multilinear forms L(E1, . . . , En;K).
However, L(E1 ⊗ · · ·⊗En;K) is the dual space (E1 ⊗ · · · ⊗En)

∗, and thus, the vector space
of multilinear forms L(E1, . . . , En;K) is naturally isomorphic to (E1 ⊗ · · · ⊗ En)

∗. When
all the spaces have finite dimension, this yields a (noncanonical) isomorphism between the
vector space of multilinear forms L(E∗

1 , . . . , E
∗
n;K) and E1 ⊗ · · · ⊗En.

The fact that the map ϕ : E1 × · · · × En → E1 ⊗ · · · ⊗ En is multilinear, can also be
expressed as follows:

−→u1 ⊗ · · · ⊗ (−→vi +−→wi)⊗ · · · ⊗ −→un = (−→u1 ⊗ · · · ⊗ −→vi ⊗ · · · ⊗ −→un) + (−→u1 ⊗ · · · ⊗ −→wi ⊗ · · · ⊗ −→un),

−→u1 ⊗ · · · ⊗ (λ−→ui )⊗ · · · ⊗ −→un = λ(−→u1 ⊗ · · · ⊗ −→ui ⊗ · · · ⊗ −→un).

Of course, this is just what we wanted! Tensors in E1⊗· · ·⊗En are also called n-tensors ,
and tensors of the form −→u1 ⊗ · · · ⊗ −→un , where

−→ui ∈ Ei, are called simple (or decomposable)
n-tensors . Those n-tensors that are not simple are often called compound n-tensors .

We showed that E1 ⊗ · · · ⊗ En is generated by the vectors of the form −→u1 ⊗ · · · ⊗ −→un .
However, there vectors are not linearly independent. This situation can be fixed when
considering bases, which is the object of the next lemma.

Lemma 11.1.4. Given n ≥ 2 vector spaces E1, . . . , En, if (
−→
uk
i )i∈Ik is a basis for Ek, 1 ≤

k ≤ n, then the family of vectors

(
−→
u1
i1 ⊗ · · · ⊗ −→

un
in)(i1,...,in)∈I1×...×In

is a basis of the tensor product E1 ⊗ · · · ⊗ En.

Proof. For each k, 1 ≤ k ≤ n, every
−→
vk ∈ Ek can be written uniquely as

−→
vk =

∑

j∈Ik
vkj
−→
uk
j ,
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for some family of scalars (vkj )j∈Ik . Let F be any nontrivial vector space. We will show that
for every family

(−−−−→wi1,...,in)(i1,...,in)∈I1×...×In,

of vectors in F , there is some linear map h : E1 ⊗ · · · ⊗ En → F , such that

h(
−→
u1
i1
⊗ · · · ⊗ −→

un
in) =

−−−−→wi1,...,in .

Then, by lemma A.2.5 (2), it will follow that

(
−→
u1
i1
⊗ · · · ⊗ −→

un
in)(i1,...,in)∈I1×...×In

is linearly independent. However, since (
−→
uk
i )i∈Ik is a basis for Ek, the

−→
u1
i1 ⊗ · · · ⊗ −→

un
in also

generate E1 ⊗ · · · ⊗ En, and thus, they form a basis of E1 ⊗ · · · ⊗ En.

We define the function f : E1 × · · · × En → F as follows:

f(
∑

j1∈I1
v1j1

−→
u1
j1, . . . ,

∑

jn∈In
vnjn

−→
un
jn) =

∑

j1∈I1,...,jn∈In
v1j1 · · · vnjn −−−−→wj1,...,jn.

It is immediately verified that f is multilinear. By the universal property of the tensor
product, the linear map f⊗ : E1 ⊗ · · · ⊗ En → F such that f = f⊗ ◦ ϕ, is the desired map
h.

In particular, when each Ik is finite and of size mk, we see that the dimension of the

tensor product E1 ⊗ · · · ⊗ En is m1 · · ·mn. As a corollary of lemma 11.1.4, if (
−→
uk
i )i∈Ik is a

basis for Ek, 1 ≤ k ≤ n, then every tensor −→z ∈ E1 ⊗ · · · ⊗ En can be written in a unique
way as

−→z =
∑

(i1,...,in) ∈ I1×...×In

λi1,...,in

−→
u1
i1
⊗ · · · ⊗ −→

un
in ,

for some unique family of scalars λi1,...,in ∈ K, all zero except for a finite number.

We also mention the following useful isomorphisms.

Lemma 11.1.5. Given 3 vector spaces E, F,G, there exists unique isomorphisms

(1) E ⊗ F ≃ F ⊗ E

(2) (E ⊗ F )⊗G ≃ E ⊗ (F ⊗G) ≃ E ⊗ F ⊗G

(3) (E ⊕ F )⊗G ≃ (E ⊗G)⊕ (F ⊗G)

(4) K ⊗ E ≃ E

such that respectively
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1. −→u ⊗−→v 7→ −→v ⊗−→u

2. (−→u ⊗−→v )⊗−→w 7→ −→u ⊗ (−→v ⊗−→w ) 7→ −→u ⊗−→v ⊗−→w

3. (−→u , −→v )⊗−→w 7→ (−→u ⊗−→w , −→v ⊗−→w )

4. λ⊗−→u 7→ λ−→u .

Proof. These isomorphisms are proved using the universal property of tensor products. We
illustrate the proof method on (2). Fix some −→w ∈ G. The map

(−→u , −→v ) 7→ −→u ⊗−→v ⊗−→w

from E×F to E⊗F ⊗G is bilinear, and thus, there is a linear map fw : E⊗F → E⊗F ⊗G,
such that fw(

−→u ⊗−→v ) = −→u ⊗−→v ⊗−→w .

Next, consider the map
(−→z , −→w ) 7→ fw(

−→z ),

from (E ⊗ F ) × G into E ⊗ F ⊗ G. It is easily seen to be bilinear, and thus, it induces a
linear map

f : (E ⊗ F )⊗G → E ⊗ F ⊗G,

such that f((−→u ⊗−→v )⊗−→w ) = −→u ⊗−→v ⊗−→w .

Also consider the map

(−→u , −→v ,−→w ) 7→ (−→u ⊗−→v )⊗−→w

from E × F ×G to (E ⊗ F )⊗G. It is trilinear, and thus, there is a linear map

g : E ⊗ F ⊗G → (E ⊗ F )⊗G,

such that g(−→u ⊗−→v ⊗−→w ) = (−→u ⊗−→v )⊗−→w . Clearly, f ◦ g and g ◦ f are identity maps, and
thus, f and g are isomorphisms. The other cases are similar.

Not only do tensor products act on spaces, but they also act on linear maps (they are
functors). Given two linear maps f : E → E ′ and g : F → F ′, we can define h : E × F →
E ′ ⊗ F ′ by

h(−→u , −→v ) = f(−→u )⊗ g(−→v ).

It is immediately verified that h is bilinear, and thus, it induces a unique linear map

f ⊗ g : E ⊗ F → E ′ ⊗ F ′,

such that
(f ⊗ g)(−→u ⊗−→v ) = f(−→u )⊗ g(−→u ).
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If we also have linear maps f ′ : E ′ → E ′′ and g′ : F ′ → F ′′, we can easily verify that
the linear maps (f ′ ◦ f) ⊗ (g′ ◦ g) and (f ′ ⊗ g′) ◦ (f ⊗ g) agree on all vectors of the form
−→u ⊗−→v ∈ E ⊗ F . Since these vectors generate E ⊗ F , we conclude that

(f ′ ◦ f)⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g).

The generalization to the tensor product f1 ⊗ · · · ⊗ fn of n ≥ 3 linear maps fi : Ei → Fi

is immediate, and left to the reader.

Remark: The tensor product
E ⊗ · · · ⊗ E︸ ︷︷ ︸

m

is also denoted as
m⊗

E,

and is called the m-th tensor power of E (with
⊗1E = E, and

⊗0E = K). The vector
space

T(E) =
⊕

m≥0

m⊗
E,

called the tensor algebra of E, is an interesting object. When E is of finite dimension
n, it corresponds to the algebra of polynomials with coefficients in K in n noncommuting
variables. However, we would have to define a multiplication operation on T(E), which is
easily done.

We now turn to symmetric tensors.

11.2 Symmetric Tensor Products

Our goal is to come up with a notion of tensor product that will allow us to treat symmetric
multilinear maps as linear maps. First, note that we have to restrict ourselves to a single
vector space E, rather then n vector spaces E1, . . . , En, so that symmetry makes sense.

We could proceed directly as in lemma 11.1.3, and construct symmetric tensor products
from scratch. However, since we already have the notion of a tensor product, there is a more
economical method. First, we define symmetric tensor products (powers).

Definition 11.2.1. A symmetric n-th tensor power (or tensor product) of a vector space E,
where n ≥ 2, is a vector space S, together with a symmetric multilinear map ϕ : En → S,
such that, for every vector space F and for every symmetric multilinear map f : En → F ,
there is a unique linear map f⊙ : S → F , with

f(−→u1 , . . . ,
−→un) = f⊙(ϕ(

−→u1 , . . . ,
−→un)),
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for all −→u1 , . . . ,
−→un ∈ E, or for short

f = f⊙ ◦ ϕ.
Equivalently, there is a unique linear map f⊙ such that the following diagram commutes:

En ϕ //

f !!❈
❈
❈
❈
❈
❈
❈
❈

S

f⊙
��
F

First, we show that any two symmetric n-th tensor powers (S1, ϕ1) and (S2, ϕ2) for E,
are isomorphic.

Lemma 11.2.2. Given any two symmetric n-th tensor powers (S1, ϕ1) and (S2, ϕ2) for E,
there is an isomorphism h : S1 → S2 such that

ϕ2 = h ◦ ϕ1.

Proof. Replace tensor product by symmetric n-th tensor power in the proof of lemma 11.1.2.

We now give a construction that produces a symmetric n-th tensor power of a vector
space E.

Lemma 11.2.3. Given a vector space E, a symmetric n-th tensor power (
⊙n E,ϕ) for E can

be constructed (n ≥ 2). Furthermore, denoting ϕ(−→u1 , . . . ,
−→un) as

−→u1⊙· · ·⊙−→un, the symmetric

tensor power
⊙n E is generated by the vectors −→u1 ⊙· · ·⊙−→un, where

−→u1 , . . . ,
−→un ∈ E, and for

every symmetric multilinear map f : En → F , the unique linear map f⊙ :
⊙n E → F such

that f = f⊙ ◦ ϕ, is defined by

f⊙(
−→u1 ⊙ · · · ⊙ −→un) = f(−→u1 , . . . ,

−→un),

on the generators −→u1 ⊙ · · · ⊙ −→un of
⊙nE.

Proof. The tensor power
⊗n E is too big, and thus, we define an appropriate quotient. Let

C be the subspace of
⊗nE generated by the vectors of the form

−→u1 ⊗ · · · ⊗ −→un −−−→uπ(1) ⊗ · · · ⊗ −−→uπ(n),

for all −→ui ∈ E, and all permutations π : {1, . . . , n} → {1, . . . , n}. We claim that the quotient
space (

⊗n E)/C does the job.

Let p :
⊗nE → (

⊗n E)/C be the quotient map. Let ϕ : En → (
⊗nE)/C be the map

(−→u1 , . . . ,
−→un) 7→ p(−→u1 ⊗ · · · ⊗ −→un),
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or equivalently, ϕ = p ◦ ϕ0, where ϕ0(
−→u1 , . . . ,

−→un) =
−→u1 ⊗ · · · ⊗ −→un .

Let us denote ϕ(−→u1 , . . . ,
−→un) as

−→u1 ⊙ · · · ⊙ −→un . It is clear that ϕ is symmetric. Since the

vectors −→u1 ⊗ · · · ⊗−→un generate
⊗nE, and p is surjective, the vectors −→u1 ⊙ · · ·⊙−→un generate

(
⊗nE)/C.

Given any symmetric multilinear map f : En → F , there is a linear map f⊗ :
⊗nE → F

such that f = f⊗ ◦ ϕ0, as in the diagram below:

En ϕ0 //

f
##●

●
●
●
●
●
●
●
●
●

⊗nE

f⊗
��
F

However, since f is symmetric, we have f⊗(
−→z ) =

−→
0 for every −→z ∈ C. Thus, we get

an induced linear map h : (
⊗n E)/C → F , such that h([−→z ]) = f⊗(

−→z ), where [−→z ] is the

equivalence class in (
⊗n E)/C of −→z ∈⊗n E:

En p◦ϕ0 //

f
%%▲▲

▲
▲
▲▲

▲
▲
▲
▲▲

▲
(
⊗nE)/C

h
��
F

However, if a linear map f⊙ : (
⊗nE)/C → F exists, since the vectors −→u1 ⊙· · ·⊙−→un generate

(
⊗nE)/C, we must have

f⊙(
−→u1 ⊙ · · · ⊙ −→un) = f(−→u1 , . . . ,

−→un),

which shows that h and f⊙ agree. Thus,
⊙n E = (

⊗n E)/C and ϕ constitute a symmetric
n-th tensor power of E.

Again, the actual construction is not important. What is important is that the symmetric
n-th power has the universal property with respect to symmetric multilinear maps.

Remark: The notation
⊙n E for the symmetric n-th tensor power of E, is borrowed from

Ramshaw. It may not be standard. Other authors use the notation Symn(E), or Sn(E). We
will adopt Ramshaw’s notation.

The fact that the map ϕ : En →⊙nE is symmetric and multinear, can also be expressed
as follows:

−→u1 ⊙ · · · ⊙ (−→vi +−→wi)⊙ · · · ⊙ −→un = (−→u1 ⊙ · · · ⊙ −→vi ⊙ · · · ⊙ −→un) + (−→u1 ⊙ · · · ⊙ −→wi ⊙ · · · ⊙ −→un),

−→u1 ⊙ · · · ⊙ (λ−→ui )⊙ · · · ⊙ −→un = λ(−→u1 ⊙ · · · ⊙ −→ui ⊙ · · · ⊙ −→un),

−→u1 ⊙ · · · ⊙ −→un = −−→uπ(1) ⊙ · · · ⊙ −−→uπ(n),
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for all permutations π on n elements.

The last identity shows that the “operation” ⊙ is commutative. Thus, we can view the
symmetric tensor −→u1 ⊙ · · · ⊙ −→un as a multiset.

Lemma 11.2.3 yields an isomorphism between the vector space of linear maps L(⊙n E;F )
and the vector space of symmetric multilinear maps S(En;F ), via the linear map−◦ϕ defined
by

h 7→ h ◦ ϕ,
where h ∈ L(⊙n E;F ). Indeed, h ◦ ϕ is clearly symmetric multilinear, and since by lemma
11.2.3, for every symmetric multilinear map f ∈ S(En;F ), there is a unique linear map
f⊙ ∈ L(⊙nE;F ) such that f = f⊙ ◦ ϕ, the map − ◦ ϕ is bijective. As a matter of fact, its
inverse is the map

f 7→ f⊙.

Remark: As in the case of general tensors, the vector space of symmetric multilinear forms
S(En;K) is naturally isomorphic to (

⊙nE)∗. When the space E has finite dimension,
this yields a (noncanonical) isomorphism between the vector space of symmetric multilinear
forms S((E∗)n;K) and

⊙nE.

Symmetric tensors in
⊙n E are also called symmetric n-tensors , and tensors of the form

−→u1⊙· · ·⊙−→un , where
−→ui ∈ E, are called simple (or decomposable) symmetric n-tensors . Those

symmetric n-tensors that are not simple are often called compound symmetric n-tensors .

It is also possible to define tensor products of affine spaces , and symmetric tensor powers
of affine spaces .

11.3 Affine Symmetric Tensor Products

Ramshaw gives a construction for the symmetric tensor powers of an affine space, using
polynomials. The motivation is to be able to deal with symmetric multiaffine maps f : Em →
F , as affine maps f⊙ :

⊙mE → F . Actually, it turns out that we can easily construct
symmetric tensors powers of affine spaces from what we have done so far. Thus, we now
briefly discuss symmetric tensor powers of affine spaces, since this might also be helpful to
those readers who wish to study Ramshaw’s paper [65] carefully.

Definition 11.3.1. A symmetric n-th tensor power (or tensor product) of an affine space E,
where n ≥ 2, is an affine space S, together with a symmetric multiaffine map ϕ : En → S,
such that, for every affine space F and for every symmetric multiaffine map f : En → F ,
there is a unique affine map f⊙ : S → F , with

f(a1, . . . , an) = f⊙(ϕ(a1, . . . , an)),

for all a1, . . . , an ∈ E, or for short
f = f⊙ ◦ ϕ.
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Equivalently, there is a unique affine map f⊙ such that the following diagram commutes:

En ϕ //

f !!❈
❈
❈
❈
❈
❈
❈
❈

S

f⊙
��
F

As usual, it is easy to show that symmetric tensor powers are unique up to isomorphism.
In order to prove the existence of such tensor products, we can proceed in at least two ways.

The first method is to mimick the constructions of this section, but with affine spaces
and affine and multiaffine maps. Indeed, the reasons why tensor products of affine spaces
can be constructed, are as follows:

(1) The notion of affine space freely generated by a set I makes sense. In fact, it is
identical to the construction of the free vector space K(I).

(2) Quotients of affine spaces can be defined, and behave well. Given an affine space

E and a subspace
−→
F of

−→
E , an affine congruence on E is defined as a relation ≡F on E,

determined such that

a ≡F b iff
−→
ab ∈ −→

F .

Then, it can be shown that E/ ≡F is an affine space with associated vector space
−→
E /

−→
F .

However, there is a more direct approach. It turns out that if we first homogenize the
affine space E, getting the vector space Ê, and then construct the symmetric tensor power⊙n Ê, then the symmetric tensor power

⊙n E of the affine space E already sits inside⊙n Ê as an affine space! As a matter of fact, the affine space
⊙nE consists of all affine

combinations of simple n-tensors of the form a1 ⊙ · · ·⊙ an, where a1, . . . , an are points in E.
The following lemma, whose proof is left as an exercise, makes what we just claimed more
precise.

Lemma 11.3.2. Given an affine space E, the subset
⊙n E of the vector space

⊙n Ê consist-
ing of all affine combinations of simple n-tensors of the form a1 ⊙ · · · ⊙ an, where a1, . . . , an
are points in E, is an affine space, and together with the multiaffine map ϕ : En → ⊙n E,
defined as the restriction to En of the multilinear map

−→u1 , . . . ,
−→un 7→ −→u1 ⊙ · · · ⊙ −→un

from (Ê)n to
⊙n Ê, is a symmetric n-th tensor power for E. If ϕ(a1, . . . , an) is denoted as

a1⊙· · ·⊙an, the symmetric tensor power
⊙n E is spanned by the tensors a1⊙· · ·⊙an, where

a1, . . . , an ∈ E, and for every symmetric multiaffine map f : En → F , the unique affine map
f⊙ :

⊙nE → F such that f = f⊙ ◦ ϕ, is defined by

f⊙(a1 ⊙ · · · ⊙ an) = f(a1, . . . , an),

on the generators a1 ⊙ · · · ⊙ an of
⊙n E.
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Proof. Left as an exercise.

Let E and E be two affine spaces. From lemma 11.3.2, given any polynomial affine map
F : E → E of degree m with polar form f : Em → E , we can associate a unique affine map
f⊙ :

⊙
Em → E , such that

f(a1, . . . , am) = f⊙(a1 ⊙ · · · ⊙ am),

for all a1, . . . , am ∈ E. Following Ramshaw, we call the affine map f⊙, the affine blossom
of F . The existence of the symmetric tensor power

⊙
Em justifies the multiplicative no-

tation f(a1 · · · am) for the polar value f(a1, . . . , am): view the notation f(a1 · · · am) as an
abbreviation for f⊙(a1 ⊙ · · · ⊙ am), that is, drop the subscript ⊙ from f⊙, and write tensors
a1 ⊙ · · · ⊙ am simply as a1 · · · am, omitting the symbol ⊙.

It is worth noting that the affine tensor power
⊙nE is spanned not only by the simple

n-tensors a1 · · · an, where a1, . . . , an ∈ E, but also by the simple n-tensors of the form
an, where a ∈ E. Indeed, by lemma A.2.5, it is sufficent to show that every linear map
h :
⊙nE → F is uniquely determined by the tensors of the form an. By lemma 11.3.2, if we

let f = h◦ϕ, since f is symmetric multiaffine and h = f⊙ is the unique affine map such that
f(a1, . . . , an) = h(a1 · · · an), for all a1, . . . , an ∈ E, we just have to show that a symmetric
multiaffine map is uniquely determined by its behavior on the diagonal. However, this is a
consequence of lemma 4.4.1.

Given an affine space E, one may wonder what is the relationship between
⊙̂nE and⊙n Ê. The answer is that that they are isomorphic, and this is quite easy to show. We

personally favor the reading
⊙n Ê, but Ramshaw favors the reading

⊙̂n E. This is because
Ramshaw defines the hat construction as a special case of his construction of the affine
symmetric tensor power. In the end, the two approaches are equivalent, and we simply
followed an approach closer to traditional linear algebra, whereas Ramshaw followed an
approach in which affine spaces played a more predominant role.

11.4 Properties of Symmetric Tensor Products

Going back to vector spaces, again, the vectors −→u1 ⊙ · · · ⊙ −→un, where −→u1 , . . . ,
−→un ∈ E,

generate
⊙n E, but they are not linearly independent. We will prove a version of lemma

11.1.4 for symmetric tensor powers. For this, recall that a (finite) multiset over a set I is
a function M : I → N, such that M(i) 6= 0 for finitely many i ∈ I, and that the set of
all multisets over I is denoted as N(I). We let dom(M) = {i ∈ I | M(i) 6= 0}, which is a
finite set. Then, for any multiset M ∈ N(I), note that the sum

∑
i∈I M(i) makes sense, since∑

i∈I M(i) =
∑

i∈dom(M)M(i), and dom(M) is finite. For every multiset M ∈ N(I), for any

n ≥ 2, we define the set JM of functions η : {1, . . . , n} → dom(M), as follows:

JM = {η | η : {1, . . . , n} → dom(M), |η−1(i)| = M(i), i ∈ dom(M),
∑

i∈I
M(i) = n}.
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In other words, if
∑

i∈I M(i) = n and dom(M) = {i1, . . . , ik},1 any function η ∈ JM specifies
a sequence of length n, consisting of M(i1) occurrences of i1, M(i2) occurrences of i2, . . .,
M(ik) occurrences of ik. Intuitively, any η defines a “permutation” of the sequence (of length
n)

〈i1, . . . , i1︸ ︷︷ ︸
M(i1)

, i2, . . . , i2︸ ︷︷ ︸
M(i2)

, . . . , ik, . . . , ik︸ ︷︷ ︸
M(ik)

〉.

Given any k ≥ 1, and any −→u ∈ E, we denote

−→u ⊙ · · · ⊙ −→u︸ ︷︷ ︸
k

as −→u ⊙k
.

We can now prove the following lemma.

Lemma 11.4.1. Given a vector space E, if (−→ui )i∈I is a basis for E, then the family of
vectors (

−→ui1

⊙M(i1) ⊙ · · · ⊙ −→uik

⊙M(ik)
)

M∈N(I),
∑

i∈I M(i)=n, {i1,...,ik}=dom(M)

is a basis of the symmetric n-th tensor power
⊙n E.

Proof. The proof is very similar to that of lemma 11.1.4. For any nontrivial vector space F ,
for any family of vectors

(−→w M)M∈N(I),
∑

i∈I M(i)=n,

we show the existence of a symmetric multilinear map h :
⊙n E → F , such that for every

M ∈ N(I) with
∑

i∈I M(i) = n, we have

h(−→ui1

⊙M(i1) ⊙ · · · ⊙ −→uik

⊙M(ik)
) = −→w M ,

where {i1, . . . , ik} = dom(M). We define the map f : En → F as follows:

f(
∑

j1∈I
v1j1

−→
u1
j1
, . . . ,

∑

jn∈I
vnjn

−→
un
jn) =

∑

M∈N(I)∑
i∈I M(i)=n

(∑

η∈JM
v1η(1) · · · vnη(n)

)
−→wM .

It is not difficult to verify that f is symmetric and multilinear. By the universal property of
the symmetric tensor product, the linear map f⊙ :

⊙n E → F such that f = f⊙ ◦ ϕ, is the
desired map h. Then, by lemma A.2.5 (2), it follow that the family

(
−→ui1

⊙M(i1) ⊙ · · · ⊙ −→uik

⊙M(ik)
)

M∈N(I),
∑

i∈I M(i)=n, {i1,...,ik}=dom(M)

is linearly independent. Using the commutativity of ⊙, we can also show that these vectors
generate

⊙n E, and thus, they form a basis for
⊙n E. The details are left as an exercise.

1Note that must have k ≤ n.
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As a consequence, when I is finite, say of size p, the dimension of
⊙n E is the number of

finite multisets (j1, . . . , jp), such that j1+· · ·+jp = n, jk ≥ 0. We leave as an exercise to show

that this number is

(
p+ n− 1

n

)
. Thus the dimension of

⊙n E is

(
p+ n− 1

n

)
. Compare

with the dimension of
⊗nE, which is pn. In particular, when p = 2, the dimension of

⊙n E
is n+ 1. This can also be seen directly.

Remark: The number

(
p+ n− 1

n

)
is also the number of homogeneous monomials

Xj1
1 · · ·Xjp

p

of total degree n in p variables (we have j1 + · · · + jp = n). This is not a coincidence!
Symmetric tensor products are closely related to polynomials (for more on this, see the next
remark).

Given a vector space E and a basis (−→ui )i∈I for E, lemma 11.4.1 shows that every sym-

metric tensor −→z ∈⊙nE can be written in a unique way as

−→z =
∑

M∈N(I)∑
i∈I M(i)=n

{i1,...,ik}=dom(M)

λM
−→ui1

⊙M(i1) ⊙ · · · ⊙ −→uik

⊙M(ik)
,

for some unique family of scalars λM ∈ K, all zero except for a finite number.

This looks like a homogeneous polynomial of total degree n, where the monomials of total
degree n are the symmetric tensors

−→ui1

⊙M(i1) ⊙ · · · ⊙ −→uik

⊙M(ik)
,

in the “indeterminates” −→ui , where i ∈ I (recall that M(i1) + · · ·+M(ik) = n). Again, this
is not a coincidence. Polynomials can be defined in terms of symmetric tensors.

Given two linear maps f : E → E ′ and g : E → E ′, we can define h : E ×E →⊙2E ′ by

h(−→u , −→v ) = f(−→u )⊙ g(−→v ).

It is immediately verified that h is bilinear, and thus, it induces a unique linear map

f ⊙ g :
2⊙

E →
2⊙

E ′,

such that

(f ⊙ g)(−→u ⊙−→v ) = f(−→u )⊙ g(−→u ).
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If we also have linear maps f ′ : E ′ → E ′′ and g′ : E ′ → E ′′, we can easily verify that

(f ′ ◦ f)⊙ (g′ ◦ g) = (f ′ ⊙ g′) ◦ (f ⊙ g).

The generalization to the symmetric tensor product f1 ⊙ · · · ⊙ fn of n ≥ 3 linear maps
fi : E → F is immediate, and left to the reader.

Remark: The vector space

S(E) =
⊕

m≥0

m⊙
E,

(with
⊙1E = E, and

⊙0E = K), called the symmetric tensor algebra of E, is an interesting
object. When E is of finite dimension n, it can be shown to correspond to the ring of
polynomials with coefficients in K in n variables (this can be seen from lemma 11.4.1).

When E is of infinite dimension and (−→ui )i∈I is a basis of E, the vector space S(E) (also
denoted as Sym(E)), corresponds to the ring of polynomials in infinitely many variables in
I. However, we would have to define a multiplication operation on T(E), which is easily
done. Actually, we have avoided talking about algebras (even though polynomial rings are a
prime example of algebra), and we will continue to do so.2 What’s nice about the symmetric
tensor algebra, is that S(E) provides an intrinsic definition of a polynomial ring (algebra!)
in any set I of variables. We could also have defined S(E) from T(E), but this would
also require defining a multiplication operation (⊗) on T(E). If this is done, then S(E) is
obtained as the quotient of T(E), by the subspace of T(E) generated by all vectors in T(E),

of the form −→u ⊗−→v −−→v ⊗−→u . Very elegant, isn’t it?

We can finally apply this powerful machinery to CAGD.

11.5 Polar Forms Revisited

When E = Â, multisets of size n + 1 consisting of points u1, . . . , un+1 in Â can be viewed
as symmetric tensors u1 ⊙ · · · ⊙ un+1. Then, given any progressive sequence 〈u1, . . . , u2n〉,
we have n + 1 tensors uk+1 ⊙ · · · ⊙ un+k, where 0 ≤ k ≤ n, and if these tensors are linearly
independent in

⊙n
Â, then they form a basis of

⊙n
Â.

As a reward to the brave readers who read through this chapter, we give a short proof
of the hard part of theorem 5.3.2. This elegant proof is due to Ramshaw. First, we recall
theorem 5.3.2.

2Let me tease the reader anyway, by saying that an algebra over a field K (or a ring A) consists basically
of a vector space (or module) structure, together with a multiplication operation which is bilinear. When
this operation is associative and has an identity, an algebra essentially has both a vector space (or module)
structure, and a ring structure.
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Theorem 5.3.2 Let 〈u1, . . . , u2m〉 be a progressive sequence of numbers ui ∈ R. Given any
sequence of m+1 points b0, . . . , bm in some affine space E , there is a unique polynomial curve
F : A → E of degree m, whose polar form f : Am → E satisfies the conditions

f(uk+1, . . . , um+k) = bk,

for every k, 0 ≤ k ≤ m.

Proof. Uniqueness has already be shown, and so, we want to prove that there exists a poly-
nomial curve F : A → E of degree m, whose polar form f : Am → E satisfies the conditions

f(uk+1, . . . , um+k) = bk,

for every k, 0 ≤ k ≤ m.

If we can show that there exists a symmetric multilinear map g : (Â)m → Ê satisfying
the conditions

g(uk+1, . . . , um+k) = bk,

for every k, 0 ≤ k ≤ m, we will have succeeded, since we can define f as the restriction of g
to Am. Now, using symmetric tensors, we just have to prove the existence of a linear map

h :
m⊙

Â → Ê ,

satisfying the conditions

h(uk+1 ⊙ · · · ⊙ um+k) = bk,

for every k, 0 ≤ k ≤ m, since then, we let g = h ◦ ϕ. But this is easy! Indeed, given the
progressive sequence 〈u1, . . . , u2m〉, we have m+1 symmetric tensors uk+1⊙· · ·⊙um+k, where

0 ≤ k ≤ m. We just have to show that they form a basis of
⊙m

Â, since then, by lemma
A.2.3, there will be a unique linear map

h :
m⊙

Â → Ê ,

satisfying the conditions

h(uk+1 ⊙ · · · ⊙ um+k) = bk,

for every k, 0 ≤ k ≤ m.

However, as a corollary of lemma 11.4.1, the dimension of
⊙m

Â is m + 1 (which can
also be seen directly). By the first half of theorem 5.3.2, we know that for any sequence of
m+ 1 points b0, . . . , bm in E (which is assumed nontrivial!), there is at most one polynomial
curve of degree m, whose polar form f : Am → E satisfies the conditions

f(uk+1, . . . , um+k) = bk,
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for every k, 0 ≤ k ≤ m, which implies that there is at most one linear map

h :

m⊙
Â → Ê ,

satisfying the conditions

h(uk+1 ⊙ · · · ⊙ um+k) = bk,

for every k, 0 ≤ k ≤ m.

By lemma A.2.5 (1), this implies that the vectors uk+1 ⊙ · · · ⊙ um+k, generate
⊙m

Â,
where 0 ≤ k ≤ m. Since there are m + 1 vectors uk+1 ⊙ · · · ⊙ um+k, and the dimension of⊙m

Â is m+1, the symmetric tensors uk+1⊙· · ·⊙um+k form a basis of
⊙m

Â, which proves
the existence (and also uniqueness!) of a linear map

h :

m⊙
Â → Ê ,

satisfying the conditions

h(uk+1 ⊙ · · · ⊙ um+k) = bk,

for every k, 0 ≤ k ≤ m. As we already explained, the multiaffine map f which is the
restriction of g = h ◦ ϕ to Am, is the polar form of the desired curve.

Thus, judicious use of linear and multilinear algebra allowed us to prove the existence of
a polynomial curve satisfying the conditions of theorem 5.3.2, without having to go through
painful calculations.

As suggested earlier, for notational simplicity, symmetric tensors θ1 ⊙ · · · ⊙ θm will be
denoted simply as θ1 · · · θm, omitting the symbol ⊙.

The crucial point of the previous proof, is that the symmetric tensors uk+1 · · · um+k,
where 0 ≤ k ≤ m, form a basis of

⊙m
Â. This leads us to investigate bases of

⊙m
Â, and

thus, bases of Â. For example, we know that (1, 0) is a basis for Â. To avoid clashes, let

us denote 1 as δ (this is a vector in R). Then, since θ = uδ +̂ r0, for every θ ∈ Â, every
symmetric tensor θ1 · · · θm can be written as

(u1δ +̂ r10) · · · (umδ +̂ rm0) =
∑

0≤i≤m

r1 · · · rmσi

(
u1

r1
, . . . ,

um

rm

)
0
m−i

δi,

where σi(x1, . . . , xm) is the i-th elementary symmetric function in x1, . . . , xm. For example,
we have

θ1θ2θ3 =

u1u2u3δ
3 + (u1u2r3 + u1u3r2 + u2u3r1)0δ

2 + (u1r2r3 + u2r1r3 + u3r1r2)0
2
δ + r1r2r30

3
.
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In particular, for points u1, . . . um ∈ A, the symmetric tensor u1 · · · um can be written as

(u1δ +̂ 0) · · · (umδ +̂ 0) =
∑

0≤i≤m

σi(u1, . . . , um)0
m−i

δi.

For example, we have

u1u2u3 = u1u2u3δ
3 + (u1u2 + u1u3 + u2u3)0δ

2 + (u1 + u2 + u3)0
2
δ + 0

3
.

The above makes it clear that the m+1 symmetric tensors 0
m−i

δi generate
⊙m

Â, and since⊙m
Â is of dimension m+1, they form a basis of

⊙m
Â. This is also a direct consequence of

lemma 11.4.1. For reasons of convenience to be revealed in a moment, we prefer the family

of tensors

(
m
i

)
0
m−i

δi, where 0 ≤ i ≤ m, and call it the power basis .

We could also have used the barycentric basis (r, s), where r, s are distinct points in A.

Then, we can write θ = ur +̂ vs, for every θ ∈ Â (the condition u+ v = 1 holding only iff θ
is a point), and every symmetric tensor θ1 · · · θm can be written as

(u1r +̂ v1s) · · · (umr +̂ vms) =
∑

I∩J=∅, |J |=k
I∪J={1,...,m}

(∏

i∈I
ui

)(∏

j∈J
vj

)
rm−k s k.

Thus, the family of tensors r m−k s k, where 0 ≤ k ≤ m, also forms a basis of
⊙m

Â, which
we call the Bézier basis .

It is easy to generalize these bases to affine spaces of larger dimensions. For example,

considering the affine plane A2, if we use the basis (δ1, δ2,Ω) for Â2, where δ1 and δ2 denotes

the unit vectors (1, 0) and (0, 1), and Ω the origin of Â2, we have the power basis consisting of

the tensors

(
m

i, j, k

)
δi1 δ

j
2 Ω

k, where i+ j+ k = m. If we consider a barycentric basis (r, s, t)

in A2, then we have a Bézier basis consisting of the tensors ri sj tk, where i+ j + k = m. In
general, if E is an affine space of dimension n, and (Ω, (δ1, . . . , δn)) is an affine frame for E,
the family of symmetric tensors

δi11 · · · δinn Ωm−i,

where i = i1 + · · ·+ in, is a basis of
⊙m Ê. If (a0, . . . , an) is a barycentric affine frame for

E, then the family of symmetric tensors

ai00 ai11 · · · ainn ,

where i0 + i1 + · · ·+ in = m, is a Bézier basis of
⊙m Ê. It will also be useful to extend the

notion of weight function defined for the homogenized version Ê of an affine space E, to the
symmetric tensor power

⊙m Ê. Considering any barycentric affine frame (a0, . . . , an) for E,
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define the weight function (or flavor function) ω :
⊙m Ê → K, as the unique linear map

such that,
ω(ai00 ai11 · · · ainn ) = 1,

where i0 + i1 + · · · + in = m. It is immediately seen that ω is independent of the chosen
affine frame. Then, it is easily seen that a tensor θ ∈ ⊙m Ê has weight 1 (flavor 1) iff it
can be expressed as an affine combination of simple m-tensors of the form b1 · · · bm, where
b1 · · · bm ∈ E, i.e., in view of lemma 11.3.2, iff θ ∈ ⊙mE, the affine tensor power of E. It

is also worth noting that
⊙m Ê is generated by the simple m-tensors of the form a1 · · · am,

where a1, . . . , am ∈ E, which is obvious, since for any barycentric affine basis (a0, . . . , an) for
E, the family of tensors

ai00 ai11 · · · ainn ,
where i0 + i1 + · · · + in = m, is a Bézier basis of

⊙m Ê. Actually, in view of the remark

just after lemma 11.3.2, the tensor power
⊙m Ê is even generated by the simple m-tensors

of the form am, where a ∈ E. This is certainly not obvious at first glance.

What lemma A.2.5 showed, is that the symmetric tensors dk = uk+1 · · · um+k form a basis
of
⊙m

Â. We call such a family of tensors a de Casteljau basis, or de Casteljau pole system.
We now give another proof that these tensors are linearly independent, by computing a
determinant. As earlier, using the basis (δ, 0) for Â, we express every point u as uδ +̂ 0, and
we get

dk = (uk+1δ +̂ 0) · · · (uk+mδ +̂ 0) =
∑

0≤i≤m

σi(uk+1, . . . , uk+m)0
m−i

δi.

The m + 1 tensors dk are linearly independent iff the determinant of the (m + 1)(m + 1)
matrice M = (mi,k) = (σi(uk+1, . . . , uk+m)), where 0 ≤ i ≤ m, and 1 ≤ k ≤ m+ 1,

det(M) =

∣∣∣∣∣∣∣∣∣∣∣

1 σ1(u1, . . . , um) . . . σm(u1, . . . , um)
1 σ1(u2, . . . , um+1) . . . σm(u2, . . . , um+1)
1 σ1(u3, . . . , um+2) . . . σm(u3, . . . , um+2)
...

...
. . .

...
1 σ1(um+1, . . . , u2m) . . . σm(um+1, . . . , u2m)

∣∣∣∣∣∣∣∣∣∣∣

is nonnull. We claim that
det(M) =

∏

1≤i≤j≤m

(um+i − uj).

We will proceed by induction. One way two compute det(M), is to imitate what we did in
the computation of the Vandermonde determinant. If we subtract the m-th row from the
(m+1)-th (the last row), then the (m−1)-th row from the m-th, etc, ending by subtracting
the first row from the second, we notice that the first column contains 1 in the first row, and
0 elsewhere, and that all the other entries on row i, where 2 ≤ i ≤ m+1 (counting from top
down), contain the factor (um+i−1 − ui−1). Thus, we can factor

∏

2≤i≤m+1

(um+i−1 − ui−1) =
∏

1≤i≤m

(um+i − ui),
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and by expanding according to the first column, we get a similar determinant, but of size
m × m, and involving only the 2m − 2 elements u2, . . . , u2m−1. Then, we can conclude by
induction.

Of, course, we rediscover the condition for a progressive sequence, namely, det(M) 6= 0
iff um+i 6= uj, for all i, j, with 1 ≤ i ≤ j ≤ m.

It is also instructive to go through the steps of polarizing, homogenizing, and tensoring,
explicitly, and we now give such an example. Consider the polynomial curve F : A → A3,
defined as follows (assuming the standard affine frame (Ω, (−→e1 ,−→e2 ,−→e3 )), for A3):

F1(u) = 7u3 + 6u2 − 3u+ 4

F2(u) = 1u3 + 3u2 + 9u− 5

F3(u) = 2u3 − 3u2 + 12u− 8.

We first polarize F : A → A3, getting f : A× A× A → A3, given by

f1(u1, u2, u3) = 7u1u2u3 + 2u1u2 + 2u1u3 + 2u2u3 − 1u1 − 1u2 − 1u3 + 4

f2(u1, u2, u3) = 1u1u2u3 + 1u1u2 + 1u1u3 + 1u2u3 + 3u1 + 3u2 + 3u3 − 5

f3(u1, u2, u3) = 2u1u2u3 − 1u1u2 − 1u1u3 − 1u2u3 + 4u1 + 4u2 + 4u3 − 8.

Taking the basis (δ, 0) for Â, and (−→e1 ,−→e2 ,−→e3 ,Ω) for Â3, the result of homogenizing

f : A× A× A → A3, is f̂ : (Â)3 → Â3, given by

f̂1((u1, r1), (u2, r2), (u3, r3))

= 7u1u2u3 + 2u1u2r3 + 2u1u3r2 + 2u2u3r1 − 1u1r2r3 − 1u2r1r3 − 1u3r1r2 + 4r1r2r3

f̂2((u1, r1), (u2, r2), (u3, r3))

= 1u1u2u3 + 1u1u2r3 + 1u1u3r2 + 1u2u3r1 + 3u1r2r3 + 3u2r1r3 + 3u3r1r2 − 5r1r2r3

f̂3((u1, r1), (u2, r2), (u3, r3))

= 2u1u2u3 − 1u1u2r3 − 1u1u3r2 − 1u2u3r1 + 4u1r2r3 + 4u2r1r3 + 4u3r1r2 − 8r1r2r3

f̂4((u1, r1), (u2, r2), (u3, r3))

= 0u1u2u3 + 0u1u2r3 + 0u1u3r2 + 0u2u3r1 + 0u1r2r3 + 0u2r1r3 + 0u3r1r2 + 1r1r2r3.

Note that we could have first homogenized F : A → A3, getting

F̂1(u, r) = 7u3 + 6u2r − 3ur2 + 4r3

F̂2(u, r) = 1u3 + 3u2r + 9ur2 − 5r3

F̂3(u, r) = 2u3 − 3u2r + 12ur2 − 8r3

F̂4(u, r) = 0u3 + 0u2r + 0ur2 + 1r3.
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and then polarized F̂ : Â → Â3, getting the same trilinear map f̂ : (Â)3 → Â3.

Finally, we compute the tensored version (f̂)⊙ :
⊙3

Â → Â3 of f̂ : (Â)3 → Â3, assuming

the power basis of
⊙3

Â, i.e., that we write a symmetric tensor in
⊙3

Â as

a δ3 + b 0δ2 + c 0
2
δ + d 0

3
.

For example, for
(u1δ +̂ r10) (u2δ +̂ r20) (u3δ +̂ r30),

we have a = u1u2u3, b = (u1u2r3 + u1u3r2 + u2u3r1), c = (u1r2r3 + u2r1r3 + u3r1r2), and
d = r1r2r3. Then, we easily see that

(f̂1)⊙(a δ
3 + b 0δ2 + c 0

2
δ + d 0

3
) = 7a+ 2b+−1c + 4d

(f̂2)⊙(a δ
3 + b 0δ2 + c 0

2
δ + d 0

3
) = 1a+ 1b+ 3c− 5d

(f̂3)⊙(a δ
3 + b 0δ2 + c 0

2
δ + d 0

3
) = 2a− 1b+ 4c− 8d

(f̂4)⊙(a δ
3 + b 0δ2 + c 0

2
δ + d 0

3
) = 0a+ 0b+ 0c+ 1d.

Note how tensoring eliminates duplicates that polarizing introduced. This is because
symmetry is built-in. The columns of the above matrix have a geometric significance. Note
that the four columns happen to be the tensors, in the present case vectors,

(f̂)⊙(δ
3), (f̂)⊙(0δ

2), (f̂)⊙(0
2
δ), (f̂)⊙(0

3
).

The first three are vectors, and the last one is a a point. Now if we rescale each tensor

0
m−k

δk by

(
m
k

)
, we arrive at a geometric interpretation for the columns of the coefficients

of the homogenized map F̂ : the coefficients of uk in the formula for the coordinates of F (u)
are precisely the coordinates (except the last one) of the tensor (in this case, vector)

(f̂)⊙

((
m
k

)
0
m−k

δk
)
.

This explains why it is interesting to rescale by

(
m
k

)
.

Similarly, if the affine basis (r, s) for A is used, it is easy to see that the tensors (in this
case, points)

f̂⊙(r
m−k s k),

are the Bézier control points of the curve F . Thus, as abstract as it is, f̂⊙ carries some very
tangible geometric significance. An advantage of the Bézier basis is that the tensors rm−k s k

are really points.

Some results on osculating flats can are also shown as well as a generalized version of
lemma 5.5.2 (conditions on polar forms for polynomial maps to agree to kth order). However,
this material is quite technical. It can be be found in Chapter B, Section B.4.
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11.6 Problems

Problem 1 (10 pts). Fill in the details of the proof of lemma 11.1.5.

Problem 2 (10 pts). Given some linear maps f : E → E ′, g : F → F ′, f ′ : E ′ → E ′′, and
g′ : F ′ → F ′′, prove that

(f ′ ◦ f)⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g).

Problem 3 (20 pts). Let E and F be two vector spaces of finite dimension. Recall that
the set of linear maps from E to F is denoted as L(E;F ). Let α : E∗×F → L(E;F ) be the
map defined such that

α(f, −→v )(−→u ) = f(−→u )−→v ,

for all f ∈ E∗, −→v ∈ F , and −→u ∈ E. Prove that α is bilinear and that the unique linear map

α⊗ : E
∗ ⊗ F → L(E;F )

induced by α is an isomorphism.

Hint . Show that if α(f, −→v )(−→u ) =
−→
0 for all −→u ∈ E, then either f = 0 or −→v =

−→
0 .

Problem 4 (20 pts).
(1) Prove that the notion of an affine space freely generated by a set I makes sense (mimic

the construction of the free vector space K(I)).

(2) Quotients of affine spaces can be defined as follows. Given an affine space E and a

subspace
−→
F of

−→
E , an affine congruence on E is defined as a relation ≡F on E, determined

such that

a ≡F b iff
−→
ab ∈ −→

F .

Prove that E/ ≡F is an affine space with associated vector space
−→
E /

−→
F .

(3) Prove that tensor products of affine spaces exist.

Problem 5 (10 pts). Prove lemma 11.3.2.

Problem 6 (10 pts). Prove that
⊙̂n E and

⊙n Ê are isomorphic.

Problem 7 (10 pts). Prove that the number of homogeneous monomials

Xj1
1 · · ·Xjp

p
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of total degree n in p variables is

(
p+ n− 1

n

)
. Prove that this is also the number of finite

multisets (j1, . . . , jp) such that j1 + · · ·+ jp = n, jk ≥ 0.

Problem 8 (10 pts). Prove that the dimension of
⊙nE is

(
p+ n− 1

n

)
.

Problem 9 (20 pts). Let E be a real vector space of dimension n. Viewing C as a vector
space (of dimension 2) over R, we can define the tensor product C⊗E, which is a real vector

space. Since every element of C ⊗ E is of the form
∑

i xi ⊗ −→ui , where xi ∈ C and −→ui ∈ E,
we can define multiplication by a complex scalar z ∈ C as

z ·
(∑

i

xi ⊗−→ui

)
=
∑

i

zxi ⊗−→ui .

(i) Prove that the above operation makes C ⊗ E into a complex vector space called the
complexification of E. Show that every vector in C⊗E can be written as

∑

j

λj ⊗−→uj + i
∑

j

µj ⊗−→uj ,

where λj , µj ∈ R, i.e. as −→u + i−→v , where −→u ,−→v ∈ R⊗E (and recall that R⊗E is isomorphic
to E).

(ii) Consider the structure E × E under the addition operation

(−→u1 ,
−→u2 ) + (−→v1 , −→v2 ) = (−→u1 +

−→v1 , −→u2 +
−→v2 ),

and the multiplication by a complex scalar z = x+ iy defined such that

(x+ iy) · (−→u , −→v ) = (x−→u − y−→v , y−→u + x−→v ).

Prove that the above structure is a complex vector space. Denoting the above vector space
as EC, prove that C⊗ E is isomorphic to EC.

Hint . Note that

(
−→
0 , −→v ) = i(−→v ,

−→
0 ),

and thus, identifying E with the subspace of EC consisting of all vectors of the form (−→u ,
−→
0 ),

we can write

(−→u , −→v ) = −→u + i−→v .

Prove that if (−→e 1, . . . ,
−→e n) is any basis of E, then ((−→e 1,

−→
0 ), . . . , (−→e n,

−→
0 )) is a basis of

EC. We call such a basis a real basis .
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(iii) Prove that every linear map f : E → E can be extended to a linear map fC : EC → EC

defined such that
fC(

−→u + i−→v ) = f(−→u ) + if(−→v ).

(iv) Prove that every bilinear form ϕ : E × E → R can be extended to a bilinear map
ϕC : EC ×EC → C defined such that

ϕC(
−→u1 + i−→v1 , −→u2 + i−→v2 ) = ϕ(−→u1 ,

−→u2 )− ϕ(−→v1 , −→v2 ) + i[ϕ(−→v1 , −→u2 ) + ϕ(−→u1 ,
−→v2 )].

Furthermore, if ϕ is symmetric, so is ϕC.
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Appendix A

Linear Algebra

A.1 Vector Spaces

The purpose of the appendices is to gather results of Linear Algebra and Analysis used in
our treatment of the algorithmic geometry of curves and surfaces. In fact, there is probably
more material than really needed, and we advise our readers to proceed “by need”.

The appendices contain no original material, except perhaps for the presentation and the
point of view. We recommend the following excellent books for an extensive treatment of
linear algebra, polynomials, and geometry:

Linear Algebra and its Applications, by Strang [81], Algebra, by Lang [47], Algebra, by
Michael Artin [1], Algebra, by Mac Lane and Birkhoff [52], Algèbre, by Bourbaki [14, 15],
Algebra 1, by Van Der Waerden [84], Algèbre linéaire et géométrie classique, by Bertin [8],
Géométrie 1 and 2, by Berger [5, 6], Géométries affines, projectives, and euclidiennes, by
Tisseron [83], Algèbre Linéaire et Géométrie Elémentaire by Dieudonné [25].

Another useful and rather complete reference is the text Finite-Dimensional Spaces, by
Walter Noll [57]. But beware, the notation and terminology is a bit strange! The text
Geometric Concepts for Geometric Design, by Boehm and Prautzsch [11] is also an excellent
reference on geometry geared towards computer aided geometric design.

We begin by reviewing some basic properties of vector spaces. The first two chapters of
Strang [81] are highly recommended.

Given a set A, recall that a family (ai)i∈I of elements of A is simply a function a : I → A.
If A is ring with additive identity 0, we say that a family (ai)i∈I has finite support iff ai = 0
for all i ∈ I − J , where J is a finite subset of I (the support of the family). We can deal
with an arbitrary set X by viewing it as the family (Xx)x∈X corresponding to the identity
function id: X → X . We agree that when I = ∅, (ai)i∈I = ∅. A family (ai)i∈I is finite if
I is finite. Given a family (ui)i∈I and any element v, we denote as (ui)i∈I ∪k (v) the family
(wi)i∈I∪{k} defined such that, wi = ui if i ∈ I, and wk = v, where k is any index such that
k /∈ I. Given a family (ui)i∈I , a subfamily of (ui)i∈I is a family (uj)j∈J where J is any subset
of I.

423
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In this chapter, unless specified otherwise, it is assumed that all families of scalars have
finite support. We begin by reviewing the definition of a vector space. For every n ≥ 1, let
Rn be the set of n-tuples x = (x1, . . . , xn). Addition can be extended to Rn as follows:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

We can also define an operation · : R× Rn → Rn as follows:

λ · (x1, . . . , xn) = (λx1, . . . , λxn).

The resulting algebraic structure has some interesting properties, those of a vector space.
The definition below is stated for an arbitrary field K, but readers may safely assume that
K = R.

Definition A.1.1. Given a field K, a vector space over K (or K-vector space) is a set E
(of vectors) together with two operations +: E × E → E (called vector addition),1 and
· : K × E → E (called scalar multiplication), satisfying the following conditions:

(V0) E is an abelian group w.r.t. +, with identity element
−→
0 ;

(V1) α · (−→u +−→v ) = (α · −→u ) + (α · −→v ), for all α ∈ K, −→u ,−→v ∈ E;

(V2) (α + β) · −→u = (α · −→u ) + (β · −→u ), for all α, β ∈ K, −→u ∈ E;

(V3) (αβ) · −→u = α · (β · −→u ), for all α, β ∈ K, −→u ∈ E;

(V4) 1 · −→u = −→u , for all −→u ∈ E.

Given α ∈ K and −→v ∈ E, the element α ·−→v is also denoted as α−→v . The field K is often
called the field of scalars. Unless specified otherwise or unless we are dealing with several
different fields, in the rest of this chapter, we assume that all K-vector spaces are defined
with respect to a fixed field K. Thus, we will refer to a K-vector space simply as a vector
space. For simplicity, we also assume that K = R, the field of real numbers, although all
definitions and proofs hold for any commutative field K.

From (V0), a vector space always contains the null vector
−→
0 , and thus is nonempty. From

(V1), we get α · −→0 =
−→
0 , and α · (−−→v ) = −(α · −→v ). From (V2), we get 0 · −→v =

−→
0 , and

(−α) ·−→v = −(α ·−→v ). The field K itself can be viewed as a vector space over itself, addition
of vectors being addition in the field, and multiplication by a scalar being multiplication in
the field. As noted earlier, Rn is a vector space over R. Next, we review the concepts of
linear combination and linear independence.

1The symbol + is overloaded, since it denotes both addition in the field K and addition of vectors in E.
However, if we write elements of E as vectors, i.e. of the form −→u , it will always be clear from the type of
the arguments which + is intended.
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Definition A.1.2. Let E be a vector space. A vector −→v ∈ E is a linear combination of a
family (−→ui )i∈I of elements of E iff there is a family (λi)i∈I of scalars in K such that

−→v =
∑

i∈I
λi
−→ui .

When I = ∅, we stipulate that −→v =
−→
0 . We say that a family (−→ui )i∈I is linearly independent

iff for every family (λi)i∈I of scalars in K,

∑

i∈I
λi
−→ui =

−→
0 implies that λi = 0 for all i ∈ I.

Equivalently, a family (−→ui )i∈I is linearly dependent iff there is some family (λi)i∈I of scalars
in K such that ∑

i∈I
λi
−→ui =

−→
0 and λj 6= 0 for some j ∈ I.

We agree that when I = ∅, the family ∅ is linearly independent.

A family (−→ui )i∈I is linearly dependent iff some −→uj in the family can be expressed as a
linear combination of the others vectors in the family. Indeed, there is some family (λi)i∈I
of scalars in K such that

∑

i∈I
λi
−→ui =

−→
0 and λj 6= 0 for some j ∈ I,

which implies that
−→uj =

∑

i∈(I−{j})
−λ−1

j λi
−→ui .

The notion of a subspace of a vector space is defined as follows.

Definition A.1.3. Given a vector space E, a subset F of E is a linear subspace (or subspace)

of E iff F is nonempty and λ−→u + µ−→v ∈ F for all −→u ,−→v ∈ F , and all λ, µ ∈ K.

It is easy to see that a subspace F of E is closed under arbitrary linear combinations of
vectors from F , and that any intersection of subspaces is a subspace. Letting λ = µ = 0,

we see that every subspace contains the vector
−→
0 . The subspace {−→0 } will be denoted as 0

(with a mild abuse of notation).

Given a vector space E, given a family (−→vi )i∈I , the subset V of E consisting of the

null vector
−→
0 and of all linear combinations of (−→vi )i∈I is easily seen to be a subspace of

E. Subspaces having such a “generating family” play an important role, and motivate the
following definition.
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Definition A.1.4. Given a vector space E and a subspace V of E, a family (−→vi )i∈I of

vectors −→vi ∈ V spans V or generates V iff for every −→v ∈ V , there is some family (λi)i∈I of
scalars in K such that

−→v =
∑

i∈I
λi
−→vi .

We also say that the elements of (−→vi )i∈I are generators of V and that V is spanned by (−→vi )i∈I ,
or generated by (−→vi )i∈I . If a subspace V of E is generated by a finite family (−→vi )i∈I , we say

that V is finitely generated . A family (−→ui )i∈I that spans V and is linearly independent is
called a basis of V .

It is a standard result of linear algebra that every vector space E has a basis, and that
for any two bases (−→ui )i∈I and (−→vj )j∈J , I and J have the same cardinality. In particular, if E
has a finite basis of n elements, every basis of E has n elements, and the integer n is called
the dimension of the vector space E. We prove the above result in the case where a vector
space is generated by a finite family. We begin with a crucial lemma.

Lemma A.1.5. Given a linearly independent family (−→ui )i∈I of elements of a vector space

E, if −→v ∈ E is not a linear combination of (−→ui )i∈I , then the family (−→ui )i∈I ∪k (
−→v ) obtained

by adding −→v to the family (−→ui )i∈I is linearly independent (where k /∈ I).

Proof. Assume that µ−→v +
∑

i∈I λi
−→ui =

−→
0 , for any family (λi)i∈I of scalars in K. If µ 6= 0,

then µ has an inverse (because K is a field), and thus we have −→v = −∑i∈I(µ
−1λi)

−→ui , show-

ing that −→v is a linear combination of (−→ui )i∈I and contradicting the hypothesis. Thus, µ = 0.

But then, we have
∑

i∈I λi
−→ui =

−→
0 , and since the family (−→ui )i∈I is linearly independent, we

have λi = 0 for all i ∈ I.

Note that the proof of the above lemma holds for arbitrary vector spaces, not only for
finitely generated vector spaces. The next theorem also holds in general, but the proof is
more sophisticated for vector spaces that do not have a finite set of generators (it uses Zorn’s
lemma). Thus, we only prove the theorem for finitely generated vector spaces.

Theorem A.1.6. Given any finite family S = (−→ui )i∈I generating a vector space E and any

linearly independent subfamily L = (−→uj )j∈J of S (where J ⊆ I), there is a basis B of E such
that L ⊆ B ⊆ S.

Proof. Consider the set of linearly independent families B such that L ⊆ B ⊆ S. Since this
set is nonempty and finite, it has some maximal element, say B = (−→uh)h∈H . We claim that

B generates E. Indeed, if B does not generate E, then there is some −→up ∈ S that is not
a linear combination of vectors in B (since S generates E), with p /∈ H . Then, by lemma

A.1.5, the family B′ = (−→uh)h∈H∪{p} is linearly independent, and since L ⊆ B ⊂ B′ ⊆ S, this
contradicts the maximality of B. Thus, B is a basis of E such that L ⊆ B ⊆ S.
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Theorem A.1.6 also holds for vector spaces that are not finitely generated. In this case,
the problem is to garantee the existence of a maximal linearly independent family B such
that L ⊆ B ⊆ S. The existence of such a maximal family can be shown using Zorn’s lemma.
Readers who want to know more about Zorn’s lemma and the proof of theorem A.1.6 should
consult either Lang [47], Appendix 2, §2 (pp. 878-884) and Chapter III, §5 (pp. 139-140),
or Artin [1], Appendix §1 (pp. 588-589). The following lemma giving useful properties

characterizing a basis is an immediate consequence of theorem A.1.6.

Lemma A.1.7. Given a vector space E, for any family B = (−→vi )i∈I of vectors of E, the
following properties are equivalent:

(1) B is a basis of E.

(2) B is a maximal linearly independent family of E.

(3) B is a minimal generating family of E.

The following replacement lemma shows the relationship between finite linearly indepen-
dent families and finite families of generators of a vector space.

Lemma A.1.8. Given a vector space E, let (−→ui )i∈I be any finite linearly independent family

in E, where |I| = m, and let (−→vj )j∈J be any finite family such that every −→ui is a linear

combination of (−→vj )j∈J , where |J | = n. Then, there exists a set L and an injection ρ : L → J

such that L ∩ I = ∅, |L| = n−m, and the families (−→ui )i∈I ∪ (−→vρ(l))l∈L and (−→vj )j∈J generate
the same subspace of E. In particular, m ≤ n.

Proof. We proceed by induction on |I| = m. When m = 0, the family (−→ui )i∈I is empty, and
the lemma holds trivially with L = J (ρ is the identity). Assume |I| = m + 1. Consider

the linearly independent family (−→ui )i∈(I−{p}), where p is any member of I. By the induction
hypothesis, there exists a set L and an injection ρ : L → J such that L ∩ (I − {p}) = ∅,
|L| = n−m, and the families (−→ui )i∈(I−{p})∪(−→vρ(l))l∈L and (−→vj )j∈J generate the same subspace
of E. If p ∈ L, we can replace L by (L− {p}) ∪ {p′} where p′ does not belong to I ∪ L, and
replace ρ by the injection ρ′ which agrees with ρ on L − {p} and such that ρ′(p′) = ρ(p).

Thus, we can always assume that L∩ I = ∅. Since −→up is a linear combination of (−→vj )j∈J and

the families (−→ui )i∈(I−{p}) ∪ (−→vρ(l))l∈L and (−→vj )j∈J generate the same subspace of E, −→up is a

linear combination of (−→ui )i∈(I−{p}) ∪ (−→vρ(l))l∈L. Let
−→up =

∑

i∈(I−{p})
λi
−→ui +

∑

l∈L
λl
−→vρ(l) (1)

If λl = 0 for all l ∈ L, we have

∑

i∈(I−{p})
λi
−→ui −−→up =

−→
0 ,
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contradicting the fact that (−→ui )i∈I is linearly independent. Thus, λl 6= 0 for some l ∈ L, say
l = q. Since λq 6= 0, we have

−−→vρ(q) =
∑

i∈(I−{p})
(−λ−1

q λi)
−→ui + λ−1

q
−→up +

∑

l∈(L−{q})
(−λ−1

q λl)
−→vρ(l) (2)

We claim that the families (−→ui )i∈(I−{p}) ∪ (−→vρ(l))l∈L and (−→ui )i∈I ∪ (−→vρ(l))l∈(L−{q}) generate
the same subset of E. Indeed, the second family is obtained from the first by replacing
−−→vρ(q) by −→up , and vice-versa, and −→up is a linear combination of (−→ui )i∈(I−{p}) ∪ (−→vρ(l))l∈L, by
(1), and −−→vρ(q) is a linear combination of (−→ui )i∈I ∪ (−→vρ(l))l∈(L−{q}), by (2). Thus, the families

(−→ui )i∈I ∪ (−→vρ(l))l∈(L−{q}) and (−→vj )j∈J generate the same subspace of E, and the lemma holds
for L − {q} and the restriction of the injection ρ : L → J to L − {q}, since L ∩ I = ∅ and
|L| = n−m imply that (L− {q}) ∩ I = ∅ and |L− {q}| = n− (m+ 1).

Actually, one can prove that lemma A.1.8 implies theorem A.1.6 when the vector space if
finitely generated. Putting theorem A.1.6 and lemma A.1.8 together, we obtain the following
fundamental theorem.

Theorem A.1.9. Let E be a finitely generated vector space. Any family (−→ui )i∈I generating

E contains a subfamily (−→uj )j∈J which is a basis of E. Furthermore, for every two bases

(−→ui )i∈I and (−→vj )j∈J of E, we have |I| = |J | = n.

Proof. The first part follows immediately by applying theorem A.1.6 with L = ∅ and
S = (−→ui )i∈I . Assume that (−→ui )i∈I and (−→vj )j∈J are bases of E. Since (−→ui )i∈I is linearly

independent and (−→vj )j∈J spans E, lemma A.1.8 implies that |I| ≤ |J |. A symmetric argu-
ment yields |J | ≤ |I|.

Remark: Theorem A.1.9 also holds for vector spaces that are not finitely generated. This
can be shown as follows. Let (−→ui )i∈I be a basis of E, let (−→vj )j∈J be a generating family of
E, and assume that I is infinite. For every j ∈ J , let Lj ⊆ I be the finite set

Lj = {i ∈ I | −→vj =
∑

i∈I
vi
−→ui , vi 6= 0}.

Let L =
⋃

j∈J Lj . Since (−→ui )i∈I is a basis of E, we must have I = L, since otherwise (−→ui )i∈L

would be another basis of E, and by lemma A.1.5, this would contradict the fact that (−→ui )i∈I
is linearly independent. Furthermore, J must be infinite, since otherwise, because the Lj are
finite, I would be finite. But then, since I =

⋃
j∈J Lj with J infinite and the Lj finite, by a

standard result of set theory, |I| ≤ |J |. If (−→vj )j∈J is also a basis, by a symmetric argument,

we obtain |J | ≤ |I|, and thus, |I| = |J | for any two bases (−→ui )i∈I and (−→vj )j∈J of E.

When |I| is infinite, we say that E is of infinite dimension, the dimension |I| being a
cardinal number which depends only on the vector space E. The dimension of a vector space
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E is denoted as dim(E). Clearly, if the field K itself is viewed as a vector space, then every
family (a) where a ∈ K and a 6= 0 is a basis. Thus dim(K) = 1.

Let (−→ui )i∈I be a basis of a vector space E. For any vector −→v ∈ E, since the family

(−→ui )i∈I generates E, there is a family (λi)i∈I of scalars K such that

−→v =
∑

i∈I
λi
−→ui .

A very important fact is that the family (λi)i∈I is unique.

Lemma A.1.10. Given a vector space E, let (−→ui )i∈I be a family of vectors in E. Let
−→v ∈ E, and assume that −→v =

∑
i∈I λi

−→ui . Then, the family (λi)i∈I of scalars such that
−→v =

∑
i∈I λi

−→ui is unique iff (−→ui )i∈I is linearly independent.

Proof. First, assume that (−→ui )i∈I is linearly independent. If (µi)i∈I is another family of

scalars in K such that −→v =
∑

i∈I µi
−→ui , then we have

∑

i∈I
(λi − µi)

−→ui =
−→
0 ,

and since (−→ui )i∈I is linearly independent, we must have λi − µi = 0 for all i ∈ I, that

is, λi = µi for all i ∈ I. The converse is shown by contradiction. If (−→ui )i∈I was linearly
dependent, there would be a family (µi)i∈I of scalars not all null such that

∑

i∈I
µi
−→ui =

−→
0

and µj 6= 0 for some j ∈ I. But then,

−→v =
∑

i∈I
λi
−→ui +

−→
0 =

∑

i∈I
λi
−→ui +

∑

i∈I
µi
−→ui =

∑

i∈I
(λi + µi)

−→ui ,

with λj 6= λj+µj since µj 6= 0, contradicting the assumption that (λi)i∈I is the unique family

such that −→v =
∑

i∈I λi
−→ui .

If (−→ui )i∈I is a basis of a vector space E, for any vector −→v ∈ E, if (vi)i∈I is the unique
family of scalars in K such that

−→v =
∑

i∈I
vi
−→ui ,

each vi is called the component (or coordinate) of index i of −→v with respect to the basis

(−→ui )i∈I .

Given a field K and any (nonempty) set I, we can form a vector space K(I) which, in
some sense, is the standard vector space of dimension |I|.
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Definition A.1.11. Given a field K and any (nonempty) set I, let K(I) be the subset of
the cartesian product KI consisting of families (λi)i∈I with finite support of scalars in K.2

We define addition and multiplication by a scalar as follows:

(λi)i∈I + (µi)i∈I = (λi + µi)i∈I ,

and

λ · (µi)i∈I = (λµi)i∈I .

It is immediately verified that, because families with finite support are considered, addi-
tion and multiplication by a scalar are well defined. Thus, K(I) is a vector space. Further-

more, the family (−→ei )i∈I of vectors −→ei defined such that
−−→
(ei)j = 0 if j 6= i and

−−→
(ei)i = 1, is

clearly a basis of the vector space K(I). When I = {1, . . . , n}, we denote K(I) as Kn. The

function ι : I → K(I), such that ι(i) = −→ei for every i ∈ I, is clearly an injection.

� When I is a finite set, K(I) = KI , but this is false when I is infinite. In fact, dim(K(I)) =
|I|, but dim(KI) is strictly greater when I is infinite.

A.2 Linear Maps

A function between two vector spaces that preserves the vector space structure is called
a homomorphism of vector spaces, or linear map. Linear maps formalize the concept of
linearity of a function.

Definition A.2.1. Given two vector spaces E and F , a linear map between E and F is a
function f : E → F satisfying the following two conditions:

f(−→x +−→y ) = f(−→x ) + f(−→y ) for all −→x ,−→y ∈ E;

f(λ−→x ) = λf(−→x ) for all λ ∈ K, −→x ∈ E.

Setting −→x = −→y =
−→
0 in the first identity, we get f(

−→
0 ) =

−→
0 . The basic property of

linear maps is that they transform linear combinations into linear combinations. Given a
family (−→ui )i∈I of vectors in E, given any family (λi)i∈I of scalars in K, we have

f(
∑

i∈I
λi
−→ui ) =

∑

i∈I
λif(

−→ui ).

The above identity is shown by induction on the size of the support of the family (λi
−→ui )i∈I ,

using the properties of definition A.2.1.

2Where KI denotes the set of all functions from I to K.
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Given a linear map f : E → F , we define its image (or range) Im f = f(E), as the set

Im f = {−→y ∈ F | f(−→x ) = −→y , for some −→x ∈ E},

and its Kernel (or nullspace) Ker f = f−1(
−→
0 ), as the set

Ker f = {−→x ∈ E | f(−→x ) =
−→
0 }.

Lemma A.2.2. Given a linear map f : E → F , the set Im f is a subspace of F and the set
Ker f is a subspace of E. The linear map f : E → F is injective iff Ker f = 0 (where 0 is

the trivial subspace {−→0 }).

Proof. Given any −→x ,−→y ∈ Im f , there are some −→u ,−→v ∈ E such that −→x = f(−→u ) and
−→y = f(−→v ), and for all λ, µ ∈ K, we have

f(λ−→u + µ−→v ) = λf(−→u ) + µf(−→v ) = λ−→x + µ−→y ,

and thus, λ−→x +µ−→y ∈ Im f , showing that Im f is a subspace of F . Given any −→x ,−→y ∈ Ker f ,

we have f(−→x ) =
−→
0 and f(−→y ) =

−→
0 , and thus,

f(λ−→x + µ−→y ) = λf(−→x ) + µf(−→y ) =
−→
0 ,

that is, λ−→x +µ−→y ∈ Ker f , showing that Ker f is a subspace of E. Note that f(−→x ) = f(−→y )

iff f(−→x −−→y ) =
−→
0 . Thus, f is injective iff Ker f = 0.

A fundamental property of bases in a vector space is that they allow the definition of
linear maps as unique homomorphic extensions, as shown in the following lemma.

Lemma A.2.3. Given any two vector spaces E and F , given any basis (−→ui )i∈I of E, given

any other family of vectors (−→vi )i∈I in F , there is a unique linear map f : E → F such that

f(−→ui ) =
−→vi for all i ∈ I. Furthermore, f is injective iff (−→vi )i∈I is linearly independent, and

f is surjective iff (−→vi )i∈I generates F .

Proof. If such a linear map f : E → F exists, since (−→ui )i∈I is a basis of E, every vector
−→x ∈ E can written uniquely as a linear combination

−→x =
∑

i∈I
xi
−→ui ,

and by linearity, we must have

f(−→x ) =
∑

i∈I
xif(

−→ui ) =
∑

i∈I
xi
−→vi .
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Define the function f : E → F , by letting

f(−→x ) =
∑

i∈I
xi
−→vi

for every −→x =
∑

i∈I xi
−→ui . It is easy to verify that f is indeed linear, it is unique by the

previous reasoning, and obviously, f(−→ui ) =
−→vi .

Now, assume that f is injective. Let (λi)i∈I be any family of scalars, and assume that

∑

i∈I
λi
−→vi =

−→
0 .

Since −→vi = f(−→ui ) for every i ∈ I, we have

f(
∑

i∈I
λi
−→ui ) =

∑

i∈I
λif(

−→ui ) =
∑

i∈I
λi
−→vi =

−→
0 .

Since f is injective iff Ker f = 0, we have

∑

i∈I
λi
−→ui =

−→
0 ,

and since (−→ui )i∈I is a basis, we have λi = 0 for all i ∈ I, and (−→vi )i∈I is linearly independent.

Conversely, assume that (−→vi )i∈I is linearly independent. If

f(
∑

i∈I
λi
−→ui ) =

−→
0

then ∑

i∈I
λi
−→vi =

∑

i∈I
λif(

−→ui ) = f(
∑

i∈I
λi
−→ui ) =

−→
0 ,

and λi = 0 for all i ∈ I, since (−→vi )i∈I is linearly independent. Since (−→ui )i∈I is a basis of E,
we just showed that Ker f = 0, and f is injective. The part where f is surjective is left as a
simple exercise.

By the second part of lemma A.2.3, an injective linear map f : E → F sends a basis
(−→ui )i∈I to a linearly independent family (f(−→ui ))i∈I of F , which is also a basis when f is

bijective. Also, when E and F have the same finite dimension n, (−→ui )i∈I is a basis of E, and

f : E → F is injective, then (f(−→ui ))i∈I is a basis of F (by lemma A.1.7).

We can now show that the vector space K(I) of definition A.1.11 has a universal property
which amounts to saying that K(I) is the vector space freely generated by I. Recall that
ι : I → K(I), such that ι(i) = −→ei for every i ∈ I, is an injection from I to K(I).
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Lemma A.2.4. Given any set I, for any vector space F , and for any function f : I → F ,
there is a unique linear map f : K(I) → F , such that

f = f ◦ ι,

as in the following diagram:

I
ι //

f !!❈
❈
❈
❈
❈
❈
❈
❈
❈ K(I)

f
��
F

Proof. If such a linear map f : K(I) → F exists, since f = f ◦ ι, we must have

f(i) = f(ι(i)) = f(−→ei ),

for every i ∈ I. However, the family (−→ei )i∈I is a basis of K(I), and (f(i))i∈I is a family
of vectors in F , and by lemma A.2.3, there is a unique linear map f : K(I) → F such that
f(−→ei ) = f(i) for every i ∈ I, which proves the existence and uniqueness of a linear map f
such that f = f ◦ ι.

The following simple lemma will be needed later when we study spline curves.

Lemma A.2.5. Given any two vector spaces E and F , with F nontrivial, given any family
(−→ui )i∈I of vectors in E, the following properties hold:

(1) The family (−→ui )i∈I generates E iff for every family of vectors (−→vi )i∈I in F , there is at

most one linear map f : E → F such that f(−→ui ) =
−→vi for all i ∈ I.

(2) The family (−→ui )i∈I is linearly independent iff for every family of vectors (−→vi )i∈I in F ,

there is some linear map f : E → F such that f(−→ui ) =
−→vi for all i ∈ I.

Proof. (1) If there is any linear map f : E → F such that f(−→ui ) = −→vi for all i ∈ I, since

(−→ui )i∈I generates E, every vector −→x ∈ E can written as some linear combination

−→x =
∑

i∈I
xi
−→ui ,

and by linearity, we must have

f(−→x ) =
∑

i∈I
xif(

−→ui ) =
∑

i∈I
xi
−→vi .

This shows that f is unique if it exists. Conversely, assume that (−→ui )i∈I does not generate

E. Since F is nontrivial, there is some some vector −→y ∈ F such that −→y 6= −→
0 . Since (−→ui )i∈I

does not generate E, there is some vector −→w ∈ E which is not in the subspace generated
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by (−→ui )i∈I . By lemma A.1.6, there is a linearly independent subfamily (−→ui )i∈I0 of (−→ui )i∈I
generating the same subspace, and by lemma A.1.6 again, there is a basis (−→ej )j∈I0∪J of E,

such that −→ei = −→ui , for all i ∈ I0, and
−→w = −→ej0 , for some j0 ∈ J . Letting (−→vi )i∈I be the

family in F such that −→vi =
−→
0 for all i ∈ I, defining f : E → F to be the constant linear

map with value
−→
0 , we have a linear map such that f(−→ui ) =

−→
0 for all i ∈ I. By lemma

A.2.3, there is a unique linear map g : E → F such that g(−→w ) = −→y , and g(−→ej ) =
−→
0 , for all

j ∈ (I0 ∪ J) − {j0}. By definition of the basis (−→ej )j∈I0∪J of E, we have, g(−→ui ) =
−→
0 for all

i ∈ I, and since f 6= g, this contradicts the fact that there is at most one such map.

(2) if the family (−→ui )i∈I is linearly independent, then the conclusion follows by lemma

A.2.3. Conversely, assume that (−→ui )i∈I is linearly dependent. Then, there is some family
(λi)i∈I of scalars (not all zero) such that

∑

i∈I
λi
−→ui =

−→
0 .

By the assumption, for every i ∈ I, there is some linear map fi : E → F , such that fi(
−→ui ) =

−→y , and fi(
−→uj ) =

−→
0 , for j ∈ I − {i}. Then, we would get

−→
0 = fi(

∑

i∈I
λi
−→ui ) =

∑

i∈I
λifi(

−→ui ) = λi
−→y ,

and since −→y 6= −→
0 , this implies λi = 0, for every i ∈ I. Thus, (−→ui )i∈I is linearly independent.

Although in this course, we will not have many occasions to use quotient spaces, they
are fundamental in algebra, and they are needed to define tensor products, which are useful
to provide nice conceptual proofs of certain properties of splines. The next section may be
omitted until needed.

A.3 Quotient Spaces

Let E be a vector space, and let M be any subspace of E. The subspace M induces a relation
≡M on E, defined as follows: For all −→u ,−→v ∈ E,

−→u ≡M
−→v iff −→u −−→v ∈ M .

We have the following simple lemma.

Lemma A.3.1. Given any vector space E and any subspace M of E, the relation ≡M is an
equivalence relation with the following two congruential properties:

1. If −→u1 ≡M
−→v1 and −→u2 ≡M

−→v2 , then −→u1 +
−→u2 ≡M

−→v1 +−→v2 , and
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2. if −→u ≡M
−→v , then λ−→u ≡M λ−→v .

Proof. It is obvious that ≡M is an equivalence relation. Note that −→u1 ≡M
−→v1 and −→u2 ≡M

−→v2
are equivalent to −→u1 −−→v1 = −→w1 and −→u2 −−→v2 = −→w2, with

−→w1,
−→w2 ∈ M , and thus,

(−→u1 +
−→u2 )− (−→v1 +−→v2 ) = −→w1 +

−→w2,

and −→w1 +
−→w2 ∈ M , since M is a subspace of E. Thus, we have −→u1 + −→u2 ≡M

−→v1 + −→v2 . If
−→u −−→v = −→w , with −→w ∈ M , then

λ−→u − λ−→v = λ−→w ,

and λ−→w ∈ M , since M is a subspace of E, and thus λ−→u ≡M λ−→v .

Lemma A.3.1 shows that we can define addition and multiplication by a scalar on the set
E/M of equivalence classes of the equivalence relation ≡M .

Definition A.3.2. Given any vector space E and any subspace M of E, we define the
following operations of addition and multiplication by a scalar on the set E/M of equivalence

classes of the equivalence relation ≡M as follows: for any two equivalence classes [−→u ], [−→v ] ∈
E/M , we have

[−→u ] + [−→v ] = [−→u +−→v ],

λ[−→u ] = [λ−→u ].

By lemma A.3.1, the above operations do not depend on the specific choice of representatives
in the equivalence classes [−→u ], [−→v ] ∈ E/M . It is also immediate to verify that E/M is a

vector space. The function π : E → E/F , defined such that π(−→u ) = [−→u ] for every −→u ∈ E,
is a surjective linear map called the natural projection of E onto E/F . The vector space
E/M is called the quotient space of E by the subspace M .

Given any linear map f : E → F , we know that Ker f is a subspace of E, and it is
immediately verified that Im f is isomorphic to the quotient space E/Ker f .

A.4 Direct Sums

Before considering linear forms and hyperplanes, we define the notion of direct sum and
prove some simple lemmas. There is a subtle point, which is that if we attempt to define the
direct sum E⊕F of two vector spaces using the cartesian product E×F , we don’t quite get
the right notion because elements of E × F are ordered pairs, but we want E ⊕F = F ⊕E.
Thus, we want to think of the elements of E ⊕F as multisets of two elements. It is possible
to do so by considering the direct sum of a family (Ei)i∈{1,2}, and more generally of a family
(Ei)i∈I . For simplicity, we begin by considering the case where I = {1, 2}.
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Definition A.4.1. Given two vector spaces E1 and E2, we define the (external) direct sum
E1 ⊕E2 of E1 and E2, as the set

E1 ⊕ E2 = {{〈1,−→u 〉, 〈2,−→v 〉} | −→u ∈ E1,
−→v ∈ E2},

with addition

{〈1,−→u1 〉, 〈2,−→v1 〉}+ {〈1,−→u2〉, 〈2,−→v2 〉} = {〈1,−→u1 +
−→u2 〉, 〈2,−→v1 +−→v2 〉},

and scalar multiplication

λ{〈1,−→u 〉, 〈2,−→v 〉} = {〈1, λ−→u 〉, 〈2, λ−→v 〉}.

We define the injections in1 : E1 → E1 ⊕ E2 and in2 : E2 → E1 ⊕ E2 as the linear maps
defined such that,

in1(
−→u ) = {〈1,−→u 〉, 〈2,−→0 〉},

and

in2(
−→v ) = {〈1,−→0 〉, 〈2,−→v 〉}.

Note that

E2 ⊕ E1 = {{〈2,−→v 〉, 〈1,−→u 〉} | −→v ∈ E2,
−→u ∈ E1} = E1 ⊕ E2.

Thus, every member {〈1,−→u 〉, 〈2,−→v 〉} of E1 ⊕ E2 can be viewed as an unordered pair con-

sisiting of the two vectors −→u and −→v , that is, as a multiset consisting of two elements.

Remark: In fact, E1 ⊕E2 is just the product
∏

i∈{1,2} Ei of the family (Ei)i∈{1,2}.

� This is not to be confused with the cartesian product E1×E2. The vector space E1×E2

is the set of all ordered pairs 〈−→u ,−→v 〉, where −→u ∈ E1, and
−→v ∈ E2, with addition and

multiplication by a scalar defined such that

〈−→u1 ,
−→v1 〉+ 〈−→u2 ,

−→v2 〉 = 〈−→u1 +
−→u2 ,

−→v1 +−→v2 〉,
λ〈−→u ,−→v 〉 = 〈λ−→u , λ−→v 〉.

There is a bijection between
∏

i∈{1,2} Ei and E1 × E2, but as we just saw, elements of∏
i∈{1,2} Ei are unordered pairs!

Of course, we can define E1 × · · · × En for any number of vector spaces, and when
E1 = . . . = En, we denote this product as En.

The following property holds.
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Lemma A.4.2. Given two vector spaces E1 and E2, E1⊕E2 is a vector space. For every pair
of linear maps f : E1 → G and g : E2 → G, there is a unique linear map f+g : E1⊕E2 → G,
such that (f + g) ◦ in1 = f , and (f + g) ◦ in2 = g, as in the following diagram:

E1

in1

��

f

((PP
PP

PP
PP

PP
PP

PP
PP

E1 ⊕E2
f+g // G

E2

in2

OO

g

66♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

Proof. Define

(f + g)({〈1,−→u 〉, 〈2,−→v 〉}) = f(−→u ) + g(−→v ),

for every −→u ∈ E1 and −→v ∈ E2. It is immediately verified that f + g is the unique linear
map with the required properties.

We already noted that E1 ⊕E2 is in bijection with E1 ×E2. If we define the projections
π1 : E1 ⊕ E2 → E1 and π2 : E1 ⊕ E2 → E2, such that

π1({〈1,−→u 〉, 〈2,−→v 〉}) = −→u ,

and

π2({〈1,−→u 〉, 〈2,−→v 〉}) = −→v ,

we have the following lemma.

Lemma A.4.3. Given two vector spaces E1 and E2, for every pair of linear maps f : D → E1

and g : D → E2, there is a unique linear map f×g : D → E1⊕E2, such that π1◦(f×g) = f ,
and π2 ◦ (f × g) = g, as in the following diagram:

E1

D
f×g //

f

66♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

g
((PP

PP
PP

PP
PP

PP
PP

PP
E1 ⊕ E2

π1

OO

π2

��
E2

Proof. Define

(f × g)(−→w ) = {〈1, f(−→w )〉, 〈2, g(−→w )〉},

for every −→w ∈ D. It is immediately verified that f × g is the unique linear map with the
required properties.
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It is a peculiarity of linear algebra that sums and products of finite families are isomorphic.
However, this is no longer true for products and sums of infinite families. When U, V are
subspaces of a vector space E, letting i1 : U → E and i2 : V → E be the inclusion maps,
when U ⊕V is isomomorphic to E under the map i1 + i2 given by lemma A.4.2, we say that
E is a direct (internal) sum of U and V , and we write E = U ⊕ V (with a slight abuse of
notation, since E and U ⊕ V are only isomorphic). It is also convenient to define the sum
U + V of U and V .

Definition A.4.4. Given a vector space E, let U, V be any subspaces of E. We define the
sum U + V of U and V as the set

U + V = {−→w ∈ E | −→w = −→u +−→v , for some −→u ∈ U and some −→v ∈ V }.

We say that E is the (internal) direct sum of U and V , denoted as E = U ⊕V ,3 iff for every
−→x ∈ E, there exist unique vectors −→u ∈ U and −→v ∈ V , such that −→x = −→u +−→v .

It is immediately verified that U + V is the least subspace of E containing U and V .
Note that by definition, U + V = V + U , and U ⊕ V = V ⊕ U . The following two simple
lemmas holds.

Lemma A.4.5. Let E be a vector space. The following properties are equivalent:

(1) E = U ⊕ V .

(2) E = U + V and U ∩ V = 0.

Proof. First, assume that E is the direct sum of U and V . If −→x ∈ U ∩V and −→x 6= −→
0 , since

−→x can be written both as −→x +
−→
0 and

−→
0 +−→x , we have a contradiction. Thus U ∩ V = 0.

Conversely, assume that −→x = −→u +−→v and −→x =
−→
u′ +

−→
v′ , where −→u ,

−→
u′ ∈ U and −→v ,

−→
v′ ∈ V .

Then,
−→
v′ −−→v = −→u −

−→
u′ ,

where
−→
v′ −−→v ∈ V and −→u −

−→
u′ ∈ U . Since U ∩V = 0, we must have

−→
u′ = −→u and

−→
v′ = −→v ,

and thus E = U ⊕ V .

Lemma A.4.6. Let E be a vector space, and assume that E = U ⊕ V . Then,

dim(E) = dim(U) + dim(V ).

Proof. Let (−→ui )i∈I be a basis of U and let (−→vj )j∈J be a basis of V , where I and J are disjoint.

Clearly, (−→ui )i∈I ∪ (−→vj )j∈J is a basis of E.

3Again, with a slight abuse of notation!
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We now give the definition of a direct sum for any arbitrary nonempty index set I. First,
let us recall the notion of the product of a family (Ei)i∈I . Given a family of sets (Ei)i∈I , its
product

∏
i∈I Ei, is the set of all functions f : I → ⋃

i∈I Ei, such that, f(i) ∈ Ei, for every
i ∈ I. It is one of the many versions of the axiom of choice, that, if Ei 6= ∅ for every i ∈ I,
then

∏
i∈I Ei 6= ∅. A member f ∈ ∏i∈I Ei, is often denoted as (fi)i∈I . For every i ∈ I, we

have the projection πi :
∏

i∈I Ei → Ei, defined such that, πi((fi)i∈I) = fi. We now define
direct sums.

Definition A.4.7. Let I be any nonempty set, and let (Ei)i∈I be a family of vector spaces.
The (external) direct sum

⊕
i∈I Ei of the family (Ei)i∈I is defined as follows:

⊕
i∈I Ei consists of all f ∈ ∏i∈I Ei, which have finite support, and addition and multi-

plication by a scalar are defined as follows:

(fi)i∈I + (gi)i∈I = (fi + gi)i∈I ,

λ(fi)i∈I = (λfi)i∈I .

We also have injection maps ini : Ei → ⊕
i∈I Ei, defined such that, ini(x) = (fi)i∈I ,

where fi = x, and fj = 0, for all j ∈ (I − {i}).

The following lemma is an obvious generalization of lemma A.4.2.

Lemma A.4.8. Let I be any nonempty set, let (Ei)i∈I be a family of vector spaces, and let
G be any vector space. The direct sum

⊕
i∈I Ei is a vector space, and for every family (hi)i∈I

of linear maps hi : Ei → G, there is a unique linear map
(∑

i∈I
hi

)
:
⊕

i∈I
Ei → G,

such that, (
∑

i∈I hi) ◦ ini = hi, for every i ∈ I.

Remark: When Ei = E, for all i ∈ I, we denote
⊕

i∈I Ei as E(I). In particular, when
Ei = K, for all i ∈ I, we find the vector space K(I) of definition A.1.11.

We also have the following basic lemma about injective or surjective linear maps.

Lemma A.4.9. Let E and F be vector spaces, and let f : E → F be a linear map. If
f : E → F is injective, then, there is a surjective linear map r : F → E called a retraction,
such that r ◦ f = idE. If f : E → F is surjective, then, there is an injective linear map
s : F → E called a section, such that f ◦ s = idF .

Proof. Let (−→ui )i∈I be a basis of E. Since f : E → F is an injective linear map, by lemma

A.2.3, (f(−→ui ))i∈I is linearly independent in F . By theorem A.1.6, there is a basis (−→vj )j∈J
of F , where I ⊆ J , and where −→vi = f(−→ui ), for all i ∈ I. By lemma A.2.3, a linear map

r : F → E can be defined such that r(−→vi ) = −→ui , for all i ∈ I, and r(−→vj ) = −→w for all
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j ∈ (J − I), where −→w is any given vector in E, say −→w =
−→
0 . Since r(f(−→ui )) =

−→ui for all
i ∈ I, by lemma A.2.3, we have r ◦ f = idE .

Now, assume that f : E → F is surjective. Let (−→vj )j∈J be a basis of F . Since f : E → F

is surjective, for every −→vj ∈ F , there is some −→uj ∈ E such that f(−→uj ) =
−→vj . Since (−→vj )j∈J is

a basis of F , by lemma A.2.3, there is a unique linear map s : F → E such that s(−→vj ) = −→uj .

Also, since f(s(−→vj )) = −→vj , by lemma A.2.3 (again), we must have f ◦ s = idF .

The converse of lemma A.4.9 is obvious. We now have the following fundamental lemma.

Lemma A.4.10. Let E, F and G, be three vector spaces, f : E → F an injective linear
map, g : F → G a surjective linear map, and assume that Im f = Ker g. Then, the following
properties hold.

(a) For any section s : G → F of g, Ker g ⊕ Im s is isomorphic to F , and the linear map
f + s : E ⊕G → F is an isomorphism.4

(b) For any retraction r : F → E of f , Im f ⊕Ker r is isomorphic to F .5

Proof. (a) Since s : G → F is a section of g, we have g ◦ s = idG, and for every −→u ∈ F ,

g(−→u − s(g(−→u ))) = g(−→u )− g(s(g(−→u ))) = g(−→u )− g(−→u ) =
−→
0 .

Thus, −→u − s(g(−→u )) ∈ Ker g, and we have F = Ker g + Im s. On the other hand, if
−→u ∈ Ker g∩ Im s, then −→u = s(−→v ) for some −→v ∈ G because −→u ∈ Im s, g(−→u ) =

−→
0 because

−→u ∈ Ker g, and so,

g(−→u ) = g(s(−→v )) = −→v =
−→
0 ,

because g ◦ s = idG, which shows that −→u = s(−→v ) =
−→
0 . Thus, F = Ker g ⊕ Im s, and

since by assumption, Im f = Ker g, we have F = Im f ⊕ Im s. But then, since f and s are
injective, f + s : E ⊕G → F is an isomorphism. The proof of (b) is very similar.

Given a sequence of linear maps E
f−→ F

g−→ G, when Im f = Ker g, we say that the

sequence E
f−→ F

g−→ G is exact at F . If in addition to being exact at F , f is injective
and g is surjective, we say that we have a short exact sequence, and this is denoted as

0 −→ E
f−→ F

g−→ G −→ 0.

The property of a short exact sequence given by lemma A.4.10 is often described by saying

that 0 −→ E
f−→ F

g−→ G −→ 0 is a (short) split exact sequence.

As a corollary of lemma A.4.10, we have the following result.

4The existence of a section s : G → F of g follows from lemma A.4.9.
5The existence of a retraction r : F → E of f follows from lemma A.4.9.
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Lemma A.4.11. Let E and F be vector spaces, and let f : E → F a linear map. Then, E
is isomorphic to Ker f ⊕ Im f , and thus,

dim(E) = dim(Ker f) + dim(Im f).

Proof. Consider

Ker f
i−→ E

f ′

−→ Im f,

where Ker f
i−→ E is the inclusion map, and E

f ′

−→ Im f is the surjection associated

with E
f−→ F . Then, we apply lemma A.4.10 to any section Im f

s−→ E of f ′ to get an
isomorphism between E and Ker f ⊕ Im f , and lemma A.4.6, to get dim(E) = dim(Ker f) +
dim(Im f).

The following lemma will also be useful.

Lemma A.4.12. Let E be a vector space. If E = U ⊕ V and E = U ⊕W , then there is an
isomorphism f : V → W between V and W .

Proof. Let R be the relation between V and W , defined such that

〈−→v ,−→w 〉 ∈ R iff −→w −−→v ∈ U.

We claim that R is a functional relation that defines a linear isomorphism f : V → W
between V and W , where f(−→v ) = −→w iff 〈−→v ,−→w 〉 ∈ R (R is the graph of f). If −→w −−→v ∈ U

and
−→
w′ − −→v ∈ U , then

−→
w′ − −→w ∈ U , and since U ⊕ W is a direct sum, U ∩ W = 0, and

thus
−→
w′ − −→w =

−→
0 , that is

−→
w′ = −→w . Thus, R is functional. Similarly, if −→w − −→v ∈ U

and −→w −
−→
v′ ∈ U , then

−→
v′ − −→v ∈ U , and since U ⊕ V is a direct sum, U ∩ V = 0, and

−→
v′ = −→v . Thus, f is injective. Since E = U ⊕ V , for every −→w ∈ W , there exists a unique
pair 〈−→u ,−→v 〉 ∈ U ×V , such that −→w = −→u +−→v . Then, −→w −−→v ∈ U , and f is surjective. We
also need to verify that f is linear. If

−→w −−→v = −→u
and −→

w′ −
−→
v′ =

−→
u′ ,

where −→u ,
−→
u′ ∈ U , then, we have

(−→w +
−→
w′)− (−→v +

−→
v′ ) = (−→u +

−→
u′ ),

where −→u +
−→
u′ ∈ U . Similarly, if −→w −−→v = −→u

where −→u ∈ U , then we have
λ−→w − λ−→v = λ−→u ,

where λ−→u ∈ U . Thus, f is linear.
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Given a vector space E and any subspace U of E, lemma A.4.12 shows that the dimension
of any subspace V such that E = U⊕V depends only on U . We call dim(V ) the codimension
of U , and we denote it as codim(U). A subspace U of codimension 1 is called a hyperplane.

The notion of rank of a linear map or of a matrix is often needed.

Definition A.4.13. Given two vector spaces E and F and a linear map f : E → F , the
rank rk(f) of f is the dimension dim(Im f) of the image subspace Im f of F .

We have the following simple lemma.

Lemma A.4.14. Given a linear map f : E → F , the following properties hold:

(i) rk(f) = codim(Ker f).

(ii) rk(f) + dim(Ker f) = dim(E).

(iii) rk(f) ≤ min(dim(E), dim(F )).

Proof. Since by lemma A.4.11, dim(E) = dim(Ker f)+dim(Im f), and by definition, rk(f) =
dim(Im f), we have rk(f) = codim(Ker f). Since rk(f) = dim(Im f), (ii) follows from
dim(E) = dim(Ker f) + dim(Im f). As for (iii), since Im f is a subspace of F , we have
rk(f) ≤ dim(F ), and since rk(f) + dim(Ker f) = dim(E), we have rk(f) ≤ dim(E).

The rank of a matrix is defined as follows.

Definition A.4.15. Given a m×n-matrix A = (ai j) over the field K, the rank rk(A) of the
matrix A is the maximum number of linearly independent columns of A (viewed as vectors
in Km).

In view of lemma A.1.7, the rank of a matrix A is the dimension of the subspace of Km

generated by the columns of A. Let E and F be two vector spaces, and let (−→u1 , . . . ,
−→un) be

a basis of E, and (−→v1 , . . . ,−→vm) a basis of F . Let f : E → F be a linear map, and let M(f)

be its matrix w.r.t. the bases (−→u1 , . . . ,
−→un) and (−→v1 , . . . ,−→vm). Since the rank rk(f) of f is the

dimension of Im f , which is generated by (f(−→u1), . . . , f(
−→un)), the rank of f is the maximum

number of linearly independent vectors in (f(−→u1 ), . . . , f(
−→un)), which is equal to the number

of linearly independent columns of M(f), since F and Km are isomorphic. Thus, we have
rk(f) = rk(M(f)), for every matrix representing f .

It can be shown using duality that the rank of a matrix A is also equal to the maximal
number of linearly independent rows of A.

If U is a hyperplane, then E = U ⊕ V for some subspace V of dimension 1. However, a
subspace V of dimension 1 is generated by any nonzero vector −→v ∈ V , and thus we denote
V as K−→v , and we write E = U ⊕K−→v . Clearly, −→v /∈ U . Conversely, let −→x ∈ E be a vector

such that −→x /∈ U (and thus, −→x 6= −→
0 ). We claim that E = U ⊕K−→x . Indeed, since U is a



A.5. HYPERPLANES AND LINEAR FORMS 443

hyperplane, we have E = U ⊕K−→v for some −→v /∈ U (with −→v 6= −→
0 ). Then, −→x ∈ E can be

written in a unique way as −→x = −→u + λ−→v , where −→u ∈ U , and since −→x /∈ U , we must have
λ 6= 0, and thus, −→v = −λ−1−→u +λ−1−→x . Since E = U⊕K−→v , this shows that E = U+K−→x .
Since −→x /∈ U , we have U ∩K−→x = 0, and thus E = U ⊕K−→x . This argument shows that a
hyperplane is a maximal proper subspace H of E.

In the next section, we shall see that hyperplanes are precisely the Kernels of nonnull
linear maps f : E → K, called linear forms.

A.5 Hyperplanes and Linear Forms

Given a vector space E over a field K, a linear map f : E → K is called a linear form. The
set of all linear forms f : E → K is a vector space called the dual space of E, and denoted
as E∗. We now prove that hyperplanes are precisely the Kernels of nonnull linear forms.

Lemma A.5.1. Let E be a vector space. The following properties hold:

(a) Given any nonnull linear form f ∈ E∗, its kernel H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull) linear form f ∈ E∗ such that H =
Ker f .

(c) Given any hyperplane H in E and any (nonnull) linear form f ∈ E∗ such that H =
Ker f , for every linear form g ∈ E∗, H = Ker g iff g = λf for some λ 6= 0 in K.

Proof. (a) If f ∈ E∗ is nonnull, there is some vector −→v0 ∈ E such that f(−→v0 ) 6= 0. Let

H = Ker f . For every −→v ∈ E, we have

f

(
−→v − f(−→v )

f(−→v0 )
−→v0
)

= f(−→v )− f(−→v )

f(−→v0 )
f(−→v0 ) = f(−→v )− f(−→v ) = 0.

Thus,

−→v − f(−→v )

f(−→v0 )
−→v0 =

−→
h ∈ H,

and

−→v =
−→
h +

f(−→v )

f(−→v0 )
−→v0 ,

that is, E = H+K−→v0 . Also, since f(−→v0 ) 6= 0, we have −→v0 /∈ H , that is, H ∩K−→v0 = 0. Thus,

E = H ⊕K−→v0 , and H is a hyperplane.

(b) If H is a hyperplane, E = H ⊕K−→v0 for some −→v0 /∈ H . Then, every −→v ∈ E can be

written in a unique way as −→v =
−→
h +λ−→v0 . Thus, there is a well defined function f : E → K,
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such that, f(−→v ) = λ, for every −→v =
−→
h +λ−→v0 . We leave as a simple exercise the verification

that f is a linear form. Since f(−→v0 ) = 1, the linear form f is nonnull. Also, by definition, it

is clear that λ = 0 iff −→v ∈ H , that is, Ker f = H .

(c) Let H be a hyperplane in E, and let f ∈ E∗ be any (nonnull) linear form such that
H = Ker f . Clearly, if g = λf for some λ 6= 0, then H = Ker g. Conversely, assume that
H = Ker g for some nonnull linear form g. From (a), we have E = H ⊕K−→v0 , for some −→v0
such that f(−→v0 ) 6= 0 and g(−→v0 ) 6= 0. Then, observe that

g − g(−→v0 )
f(−→v0 )

f

is a linear form which vanishes on H , since both f and g vanish on H , but also vanishes on
K−→v0 . Thus, g = λf , with

λ =
g(−→v0 )
f(−→v0 )

.

If E is a vector space of finite dimension n and (−→u1 , . . . ,
−→un) is a basis of E, for any linear

form f ∈ E∗, for every −→x = x1
−→u1 + · · ·+ xn

−→un ∈ E, we have

f(−→x ) = λ1x1 + · · ·+ λnxn,

where λi = f(−→ui ) ∈ K, for every i, 1 ≤ i ≤ n. Thus, with respect to the basis (−→u1 , . . . ,
−→un),

f(−→x ) is a linear combination of the coordinates of −→x , as expected.

We leave as an exercise the fact that every subspace V 6= E of a vector space E, is the
intersection of all hyperplanes that contain V .



Appendix B

Complements of Affine Geometry

B.1 Affine and Multiaffine Maps

This section provides missing proofs of various results stated earlier. We begin with Lemma
2.7.2.

Lemma 2.7.2 Given an affine map f : E → E ′, there is a unique linear map
−→
f :

−→
E →

−→
E ′,

such that

f(a+ v) = f(a) +
−→
f (v),

for every a ∈ E and every v ∈ −→
E

Proof. Let a ∈ E be any point in E. We claim that the map defined such that

−→
f (v) =

−−−−−−−−−→
f(a)f(a+ v)

for every v ∈ −→
E is a linear map

−→
f :

−→
E →

−→
E ′ . Indeed, we can write

a+ λv = λ(a+ v) + (1− λ)a,

since a+ λv = a + λ
−−−−−→
a(a+ v) + (1− λ)−→aa, and also

a+ u+ v = (a+ u) + (a+ v)− a,

since a+ u+ v = a+
−−−−−→
a(a + u) +

−−−−−→
a(a + v)−−→aa. Since f preserves barycenters, we get

f(a+ λv) = λf(a+ v) + (1− λ)f(a).

If we recall that x =
∑

i∈I λiai is the barycenter of a family ((ai, λi))i∈I of weighted points
(with

∑
i∈I λi = 1) iff

−→
bx =

∑

i∈I
λi

−→
bai for every b ∈ E,

445
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we get
−−−−−−−−−−→
f(a)f(a+ λv) = λ

−−−−−−−−−→
f(a)f(a+ v) + (1− λ)

−−−−−→
f(a)f(a) = λ

−−−−−−−−−→
f(a)f(a+ v),

showing that
−→
f (λv) = λ

−→
f (v). We also have

f(a+ u+ v) = f(a+ u) + f(a+ v)− f(a),

from which we get

−−−−−−−−−−−−→
f(a)f(a+ u+ v) =

−−−−−−−−−→
f(a)f(a+ u) +

−−−−−−−−−→
f(a)f(a+ v),

showing that
−→
f (u + v) =

−→
f (u) +

−→
f (v). Consequently,

−→
f is a linear map. For any other

point b ∈ E, since

b+ v = a +
−→
ab + v = a+

−−−−−→
a(a+ v)−−→aa+−→

ab,

b+ v = (a+ v)− a + b, and since f preserves barycenters, we get

f(b+ v) = f(a+ v)− f(a) + f(b),

which implies that

−−−−−−−−→
f(b)f(b+ v) =

−−−−−−−−→
f(b)f(a+ v)−−−−−−→

f(b)f(a) +
−−−−−→
f(b)f(b),

=
−−−−−→
f(a)f(b) +

−−−−−−−−→
f(b)f(a+ v),

=
−−−−−−−−−→
f(a)f(a+ v).

Thus,
−−−−−−−−→
f(b)f(b+ v) =

−−−−−−−−−→
f(a)f(a+ v), which shows that the definition of

−→
f does not depend

on the choice of a ∈ E. The fact that
−→
f is unique is obvious: we must have

−→
f (v) =−−−−−−−−−→

f(a)f(a+ v).

Lemma 4.1.3 For every m-affine map f : Em → F , there are 2m − 1 unique multilinear

maps fS :
−→
Ek → −→

F , where S ⊆ {1, . . . , m}, k = |S|, S 6= ∅, S = {i1, . . . , ik}, i1 < · · · < ik,
such that

f(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +

∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

i1<···<ik

fS(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E .
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Proof. First, we show that we can restrict our attention to multiaffine maps f : Em → F ,

where F is a vector space. Pick any b ∈ F , and define h : Em → −→
F , where h(a) =

−−−→
bf(a) for

every a = (a1, . . . , am) ∈ Em, so that f(a) = b + h(a). We claim that h is multiaffine. For
every i, 1 ≤ i ≤ m, for every a1, . . . , ai−1, ai+1, . . . , am ∈ E, let fi : E → F be the map

ai 7→ f(a1, . . . , ai−1, ai, ai+1, . . . , am),

and let hi : E → −→
F be the map

ai 7→ h(a1, . . . , ai−1, ai, ai+1, . . . , am).

Since f is multiaffine, we have

hi(ai +
−→u ) =

−−−−−−−−−−−−→
b(f(a) +

−→
fi (

−→u )) =
−−−→
bf(a) +

−→
fi (

−→u ),

where a = (a1, . . . , am), and where
−→
fi is the linear map associated with fi, which shows that

hi is an affine map with associated linear map
−→
fi .

Thus, we now assume that F is a vector space. Given an m-affine map f : Em → F , for

every (−→v1 , . . . ,−→vm) ∈
−→
Em, we define

∆vm∆vm−1 · · ·∆v1f

inductively as follows: for every a = (a1, . . . , am) ∈ Em,

∆v1f(a) = f(a1 +
−→v1 , a2, . . . , am)− f(a1, a2, . . . , am),

and generally, for all i, 1 ≤ i ≤ m,

∆vif(a) = f(a1, . . . , ai−1, ai +
−→vi , ai+1, . . . , am)− f(a1, a2, . . . , am);

Thus, we have

∆vk+1
∆vk · · ·∆v1f(a) = ∆vk · · ·∆v1f(a1, . . . , ak+1 +

−−→vk+1, . . . , am)−∆vk · · ·∆v1f(a),

where 1 ≤ k ≤ m− 1.

We claim that the following properties hold:

(1) Each ∆vk · · ·∆v1f(a) is k-linear in
−→v1 , . . . ,−→vk and (m− k)-affine in ak+1, . . . , am;

(2) We have

∆vm · · ·∆v1f(a) =

m∑

k=0

(−1)m−k
∑

1≤i1<...<ik≤m

f(a1, . . . , ai1 +
−→vi1 , . . . , aik +−→vik , . . . , am).

Properties (1) and (2) are proved by induction on k. We prove (1), leaving (2) as an easy
exercise. Since f is m-affine, it is affine in its first argument, and so,

∆v1f(a) = f(a1 +
−→v1 , a2, . . . , am)− f(a1, a2, . . . , am)
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is a linear map in −→v1 , and since it is the difference of two multiaffine maps in a2, . . . , am, it
is (m− 1)-affine in a2, . . . , am.

Assuming that ∆vk · · ·∆v1f(a) is k-linear in −→v1 , . . . ,−→vk and (m − k)-affine in ak+1, . . .,
am, since it is affine in ak+1,

∆vk+1
∆vk · · ·∆v1f(a) = ∆vk · · ·∆v1f(a1, . . . , ak+1 +

−−→vk+1, . . . , am)−∆vk · · ·∆v1f(a)

is linear in −−→vk+1, and since it is the difference of two k-linear maps in −→v1 , . . . ,−→vk , it is

(k+ 1)-linear in −→v1 , . . . ,−−→vk+1, and since it is the difference of two (m− k− 1)-affine maps in
ak+2 . . . , am, it is (m− k − 1)-affine in ak+2 . . . , am. This concludes the induction.

As a consequence of (1), ∆vm · · ·∆v1f is a m-linear map. Then, in view of (2), we can
write

f(a1 +
−→v1 , . . . , am +−→vm) =

∆vm · · ·∆v1f(a) +

m−1∑

k=0

(−1)m−k−1
∑

1≤i1<...<ik≤m

f(a1, . . . , ai1 +
−→vi1 , . . . , aik +−→vik , . . . , am),

and since every
f(a1, . . . , ai1 +

−→vi1 , . . . , aik +−→vik , . . . , am)
in the above sum contains at most m − 1 of the −→v1 , . . . ,−→vm, we can apply the induction
hypothesis, which gives us sums of k-linear maps, for 1 ≤ k ≤ m − 1, and of 2m − 1 terms
of the form (−1)m−k−1f(a1, . . . , am), which all cancel out except for a single f(a1, . . . , am),
which proves the existence of multilinear maps fS such that

f(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +

∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

i1<···<ik

fS(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E .

We still have to prove the uniqueness of the linear maps in the sum. This can be done
using the ∆vm · · ·∆v1f . We claim the following slightly stronger property, that can be shown
by induction on m: if

g(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +

∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

i1<···<ik

fS(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E , then

∆vjn · · ·∆vj1
g(a) = f{j1,...,jn}(

−→vj1 , . . . ,−→vjn),
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where {j1, . . . , jn} ⊆ {1, . . . , m}, j1 < . . . < jn, and a = (a1, . . . , am). We can now show the
uniqueness of the fS, where S ⊆ {1, . . . , n}, S 6= ∅, by induction. Indeed, from above, we
get

∆vm · · ·∆v1f = f{1,...,m}.

But g − f{1,...,m} is also m-affine, and it is a sum of the above form, where n = m− 1, so we
can apply the induction hypothesis, and conclude the uniqueness of all the fS.

Lemma 4.4.1 Given two affine spaces E and F , for any polynomial function h of degree
m, the polar form f : Em → F of h is unique, and is given by the following expression:

f(a1, . . . , am) =
1

m!




∑

H⊆{1,...,m}
k=|H|, k≥1

(−1)m−k km h

(∑
i∈H ai

k

)

 .

Proof. Let

C = {η : {1, . . . , m} → {0, 1} | η(i) 6= 0 for some i, 1 ≤ i ≤ m},
be the set of characteristic functions of all nonempty subsets of {1, . . . , m}. Then, the
expression

E =
∑

H⊆{1,...,m}
k=|H|, k≥1

(−1)k km h

(∑
i∈H ai

k

)

can be written as

E =
∑

η∈C
(−1)η(1)+···+η(m) (η(1) + · · ·+ η(m))m h

(
η(1)a1 + · · ·+ η(m)am

η(1) + · · ·+ η(m)

)
.

Since
η(1)

η(1) + · · ·+ η(m)
+ · · ·+ η(m)

η(1) + · · ·+ η(m)
= 1,

and

h

(
η(1)a1 + · · ·+ η(m)am

η(1) + · · ·+ η(m)

)
= f

(
η(1)a1 + · · ·+ η(m)am

η(1) + · · ·+ η(m)
, . . . ,

η(1)a1 + · · ·+ η(m)am
η(1) + · · ·+ η(m)

)
,

since f is multiaffine, we have

(η(1) + · · ·+ η(m))m h

(
η(1)a1 + · · ·+ η(m)am

η(1) + · · ·+ η(m)

)

= (η(1) + · · ·+ η(m))m f

(
η(1)a1 + · · ·+ η(m)am

η(1) + · · ·+ η(m)
, . . . ,

η(1)a1 + · · ·+ η(m)am
η(1) + · · ·+ η(m)

)

=
∑

(i1,...,im)∈{1,...,m}m
η(i1) · · ·η(im)f(ai1, . . . , aim).
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Thus, we have

E =
∑

η∈C
(−1)η(1)+···+η(m) (η(1) + · · ·+ η(m))m h

(
η(1)a1 + · · ·+ η(m)am

η(1) + · · ·+ η(m)

)

=
∑

η∈C
(−1)η(1)+···+η(m)


 ∑

(i1,...,im)∈{1,...,m}m
η(i1) · · ·η(im)f(ai1, . . . , aim)




=
∑

(i1,...,im)∈{1,...,m}m

(∑

η∈C
(−1)η(1)+···+η(m) η(i1) · · ·η(im)

)
f(ai1, . . . , aim).

If (i1, . . . , im) is not a permutation of (1, . . . , m), there is some j ∈ {1, . . . , m} such that
j 6= i1, . . . , im. Let

J = {η ∈ C | η(j) = 0},
and for every η ∈ J , let η∗ be defined such that, η∗(i) = η(i), for every i 6= j, and η∗(j) = 1.
Note that

η∗(1) + · · ·+ η∗(m) = η(1) + · · ·+ η(m) + 1.

Then,

∑

η∈C
(−1)η(1)+···+η(m) η(i1) · · ·η(im)

=
∑

η∈J
(−1)η(1)+···+η(m) η(i1) · · ·η(im) +

∑

η∈J
(−1)η

∗(1)+···+η∗(m) η∗(i1) · · ·η∗(im),

and since

(−1)η
∗(1)+···+η∗(m) η∗(i1) · · · η∗(im) = (−1)η(1)+···+η(m)+1 η(i1) · · ·η(im)

= −(−1)η(1)+···+η(m) η(i1) · · ·η(im),

we get ∑

η∈C
(−1)η(1)+···+η(m) η(i1) · · · η(im) = 0.

If (i1, . . . , im) is a permutation of (1, . . . , m), then η(i1) · · ·η(im) 6= 0 iff η(i) = 1 for every
i ∈ {1, . . . , m}, in which case

∑

η∈C
(−1)η(1)+···+η(m) η(i1) · · · η(im) = (−1)m.

Since f is symmetric, in this case

f(ai1, . . . , aim) = f(a1, . . . , am),
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and since there are m! permutations of (1, . . . , m), we get

(−1)mm!f(a1, . . . , am) =
∑

H⊆{1,...,m}
k=|H|, k≥1

(−1)k km h

(∑
i∈H ai

k

)
.

Since (−1)m(−1)m = 1, and (−1)m+k = (−1)m−k, the above identity implies that

f(a1, . . . , am) =
1

m!




∑

H⊆{1,...,m}
k=|H|, k≥1

(−1)m−k km h

(∑
i∈H ai

k

)

 ,

which concludes the proof.

B.2 Homogenizing Multiaffine Maps

This section contains the proof of Lemma 10.4.1.

Lemma 10.4.1 Given any affine space E and any vector space
−→
F , for any m-affine

map f : Em → −→
F , there is a unique m-linear map f̂ : (Ê)m → −→

F extending f , such that, if

f(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +

∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

i1<···<ik

fS(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E , where the fS are uniquely determined

multilinear maps (by lemma 4.1.3), then

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam)

= λ1 · · ·λmf(a1, . . . , am) +
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

i1<···<ik

( ∏

j∈{1,...,m}
j /∈S

λj

)
fS(

−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, all −→v1 , . . . ,−→vm ∈ −→
E , and all λ1, . . . , λm ∈ R. Furthermore, for λi 6= 0,

1 ≤ i ≤ m, we have

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam) = λ1 · · ·λmf(a1 + λ−1

1
−→v1 , . . . , am + λ−1

m
−→vm).
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Proof. Let us assume that f̂ exists. We first prove by induction on k, 1 ≤ k ≤ m, that

f̂(a1, . . . ,
−→vi1 , . . . ,−→vik , . . . , am) = fS(

−→vi1 , . . . ,−→vik),

for every S ⊆ {1, . . . , m}, such that S = {i1, . . . , ik} and k = |S|, for all a1 . . . , am ∈ E, and

all −→v1 , . . . ,−→vm ∈ −→
E .

For k = 1, assuming for simplicity of notation that i1 = 1, for any a1 ∈ E, since f̂ is
m-linear, we have

f̂(a1 +
−→v1 , a2, . . . , am) = f̂(a1, a2, . . . , am) + f̂(−→v1 , a2, . . . , am),

but since f̂ extends f , we have

f̂(a1 +
−→v1 , a2, . . . , am) = f(a1 +

−→v1 , a2, . . . , am) = f(a1, a2, . . . , am) + f̂(−→v1 , a2, . . . , am),

and using the expression of f in terms of the fS, we also have

f(a1 +
−→v1 , a2, . . . , am) = f(a1, a2, . . . , am) + f{1}(

−→v1 ).

Thus, we have
f̂(−→v1 , a2, . . . , am) = f{1}(

−→v1 )

for all −→v1 ∈ −→
E .

Assume that the induction hypothesis holds for all l < k + 1, and let S = {i1, . . . , ik+1},
with k + 1 = |S|, i1 < · · · < ik+1. Since f̂ is multilinear, for any a ∈ E, we have

f̂(a1, . . . , a+
−→vi1 , . . . , a+−−→vik+1

, . . . , am)

= f̂(a1, . . . , a, . . . , a, . . . , am) + f̂(a1, . . . ,
−→vi1 , . . . ,−−→vik+1

, . . . , am)

+
∑

T={j1,...,ji}
T⊆S, 1≤i≤k
j1<···<ji

f̂(a1, . . . ,
−→vj1, . . . ,−→vjl , . . . , am).

However, by the induction hypothesis, we have

f̂(a1, . . . ,
−→vj1, . . . ,−→vjl , . . . , am) = fT (

−→vj1, . . . ,−→vjl),

for every T = {j1, . . . , jl}, 1 ≤ l ≤ k, and since f̂ extends f , we get

f̂(a1, . . . , a+
−→vi1 , . . . , a+−−→vik+1

, . . . , am)

= f(a1, . . . , a, . . . , a, . . . , am) + f̂(a1, . . . ,
−→vi1 , . . . ,−−→vik+1

, . . . , am)

+
∑

T={j1,...,ji}
T⊆S, 1≤i≤k
j1<···<ji

fT (
−→vj1, . . . ,−→vjl ).
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Since f̂ extends f , we also have

f̂(a1, . . . , a+
−→vi1 , . . . , a+−−→vik+1

, . . . , am) = f(a1, . . . , a+
−→vi1 , . . . , a+−−→vik+1

, . . . , am),

and by expanding this expression in terms of the fT , we get

f̂(a1, . . . , a + −→vi1 , . . . , a + −−→vik+1
, . . . , am) = f(a1, . . . , a, . . . , a, . . . , am) + fS(

−→vi1 , . . . ,−−→vik+1
)

+
∑

T={j1,...,ji}
T⊆S, 1≤i≤k
j1<···<ji

fT (
−→vj1 , . . . ,−→vjl).

Thus, we conclude that

f̂(a1, . . . ,
−→vi1 , . . . ,−−→vik+1

, . . . , am) = fS(
−→vi1 , . . . ,−−→vik+1

).

This shows that f̂ is uniquely defined on
−→
E , and clearly, the above defines a multilinear

map. Now, assume that λi 6= 0, 1 ≤ i ≤ m. We get

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam) = f̂(λ1(a1 + λ−1

1
−→v1 ), . . . , λm(am + λ−1

m
−→vm)),

and since f̂ is m-linear, we get

f̂(λ1(a1 + λ−1
1
−→v1 ), . . . , λm(am + λ−1

m
−→vm)) = λ1 · · ·λmf̂(a1 + λ−1

1
−→v1 , . . . , am + λ−1

m
−→vm).

Since f̂ extends f , we get

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam) = λ1 · · ·λmf(a1 + λ−1

1
−→v1 , . . . , am + λ−1

m
−→vm).

We can expand the right-hand side using the fS, and we get

f(a1 + λ−1
1
−→v1 , . . . , am + λ−1

m
−→vm) = f(a1, . . . , am) +

∑

S⊆{1,...,m}
S={i1,...ik}, k≥1

i1<···<ik

λ−1
i1

· · ·λ−1
ik
fS(

−→vi1 , . . . ,−→vik),

and thus, we get

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam)

= λ1 · · ·λmf(a1, . . . , am) +
∑

S⊆{1,...,m}
S={i1,...ik}, k≥1

i1<···<ik

( ∏

j∈{1,...,m}
j /∈S

λj

)
fS(

−→vi1 , . . . ,−→vik).

This expression agrees with the previous one when λi = 0 for some of the λi, 1 ≤ i ≤ m,
and this shows that f̂ is uniquely defined. Clearly, the above expression defines an m-linear
map. Thus, the lemma is proved.
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B.3 Intersection and Direct Sums of Affine Spaces

In this section, we take a closer look at the intersection of affine subspaces, and at the notion
of direct sum of affine spaces which will be needed in the section on differentiation.

First, we need a result of linear algebra. Given a vector space E and any two subspaces M
and N , there are several interesting linear maps. We have the canonical injections i : M →
M+N and j : N → M+N , the canonical injections in1 : M → M⊕N and in2 : N → M⊕N ,
and thus, injections f : M∩N → M⊕N , and g : M∩N → M⊕N , where f is the composition
of the inclusion map from M ∩ N to M with in1, and g is the composition of the inclusion
map from M ∩ N to N with in2. Then, we have the maps f + g : M ∩ N → M ⊕ N , and
i− j : M ⊕N → M +N .

Lemma B.3.1. Given a vector space E and any two subspaces M and N , with the definitions
above, the following is a short exact sequence:

0 −→ M ∩N
f+g−→ M ⊕N

i−j−→ M +N −→ 0,

which means that f + g is injective, i− j is surjective, and that Im (f + g) = Ker (i− j). As
a consequence, we have the Grassmann relation:

dim(M) + dim(N) = dim(M +N) + dim (M ∩N).

Proof. It is obvious that i − j is surjective and that f + g is injective. Assume that (i −
j)(u+ v) = 0, where u ∈ M , and v ∈ N . Then, i(u) = j(v), and thus, by definition of i and
j, there is some w ∈ M ∩ N , such that, i(u) = j(v) = w ∈ M ∩ N . By definition of f and
g, u = f(w), and v = g(w), and thus, Im (f + g) = Ker (i− j), as desired. The second part
of the lemma follows from lemma A.4.10 and lemma A.4.6.

We now prove a simple lemma about the intersection of affine subspaces.

Lemma B.3.2. Given any affine space E, for any two nonempty affine subspaces M and
N , the following facts hold:

(1) M ∩N 6= ∅ iff
−→
ab ∈ M +N for some a ∈ M and some b ∈ N .

(2) M ∩ N consists of a single point iff
−→
ab ∈ M + N for some a ∈ M and some b ∈ N ,

and
−→
M ∩ −→

N = {−→0 }.

(3) If S is the least affine subspace containing M and N , then S = M +N + R
−→
ab.

Proof. (1) Pick any a ∈ M and any b ∈ N , which is possible since M and N are nonempty.

Since M = {−→ax | x ∈ M} and N = {−→by | y ∈ N}, if M ∩ N 6= ∅, for any c ∈ M ∩ N , we

have
−→
ab = −→ac − −→

bc, with −→ac ∈ M and
−→
bc ∈ N , and thus,

−→
ab ∈ M + N . Conversely, assume
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that
−→
ab ∈ M +N for some a ∈ M and some b ∈ N . Then,

−→
ab = −→ax +

−→
by, for some x ∈ M

and some y ∈ N . But we also have

−→
ab = −→ax+−→xy +−→

yb,

and thus, we get 0 = −→xy +
−→
yb −−→

by, that is, −→xy = 2
−→
by. Thus, b is the middle of the segment

[x, y], and since −→yx = 2
−→
yb, x = 2b − y is the barycenter of the weighted points (b, 2) and

(y,−1). Thus x also belongs to N , since N being an affine subspace, it is closed under
barycenters. Thus, x ∈ M ∩N , and M ∩N 6= ∅.

(2) Note that in general, if M ∩N 6= ∅, then

−−−−→
M ∩N =

−→
M ∩ −→

N ,

because

−−−−→
M ∩N = {−→ab | a, b ∈ M ∩N} = {−→ab | a, b ∈ M} ∩ {−→ab | a, b ∈ N} =

−→
M ∩ −→

N .

Since M ∩N = c+
−−−−→
M ∩N for any c ∈ M ∩N , we have

M ∩N = c+
−→
M ∩ −→

N for any c ∈ M ∩N.

From this, it follows that ifM∩N 6= ∅, thenM∩N consists of a single point iff
−→
M∩−→N = {−→0 }.

This fact together with what we proved in (1) proves (2).

(3) It is left as an easy exercise.

Remarks:

(1) The proof of Lemma B.3.2 shows that if M ∩ N 6= ∅ then
−→
ab ∈ M +N for all a ∈ M

and all b ∈ N .

(2) Lemma B.3.2 implies that for any two nonempty affine subspaces M and N , if E =

M ⊕N , then M ∩N consists of a single point. Indeed, if E = M ⊕ N , then
−→
ab ∈ −→

E

for all a ∈ M and all b ∈ N , and since
−→
M ∩ −→

N = {−→0 }, the result follows from part
(2) of the lemma.

We can now state the following lemma

Lemma B.3.3. Given an affine space E and any two nonempty affine subspaces M and N ,
if S is the least affine subspace containing M and N , then the following properties hold:
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(1) If M ∩N = ∅, then

dim(M) + dim(N) < dim(E) + dim(M +N),

and

dim(S) = dim(M) + dim(N) + 1− dim(M ∩N).

(2) If M ∩N 6= ∅, then

dim(S) = dim(M) + dim(N)− dim(M ∩N).

Proof. It is not difficult, using lemma B.3.2 and lemma B.3.1, but we leave it as an exercise.

We now consider direct sums of affine spaces.

Given an indexed family (Ei)i∈I of affine spaces (where I is nonempty), where each Ei is

really an affine space 〈Ei,
−→
Ei ,+i〉, we define an affine space E whose associated vector space

is the direct sum
⊕

i∈I
−→
Ei of the family (

−→
E i)i∈I . However, there is a difficulty if we take E

to be the direct product
∏

i∈I Ei, because axiom (AF3) may not hold. Thus, we define the
direct sum of the family (Ei)i∈I of affine spaces, relative to a fixed choice of points (one point
in each Ei). When I is finite, the same affine space is obtained no matter which points are
chosen. When I is infinite, we get isomorphic affine spaces.

Definition B.3.4. Let 〈Ei,
−→
Ei ,+i〉i∈I be a family of affine spaces (where I is nonempty),

where each Ei is nonempty. For each i ∈ I, let ai be some chosen point in Ei, and let
a = (ai)i∈I . We define the direct sum

⊕
i∈I(Ei, ai) of the family (Ei)i∈I relative to a, as the

following affine space 〈Ea,
−→
E ,+a〉:

Ea = {(xi)i∈I ∈
∏

i∈I Ei | xi 6= ai for finitely many i ∈ I};
−→
E =

⊕
i∈I

−→
Ei ;

+a : Ea ×
−→
E → Ea is defined such that,

(xi)i∈I + (−→ui )i∈I = (xi + ui)i∈I .

We define the injections ina
i : Ei →

⊕
i∈I(Ei, ai) such that, ina

i (y) = (xi)i∈I , where xi = y,
and xj = aj, for all j ∈ I − {i}. We also have functions pai :

⊕
i∈I(Ei, ai) → Ei, where pai is

the restriction to
⊕

i∈I(Ei, ai) of the projection πi :
∏

i∈I Ei → Ei. Thus, pai ((xi)i∈I) = xi,
and we also call pai a projection.
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It is easy to verify that
⊕

i∈I(Ei, ai) is an affine space. Let us check (AF3). Given any
two points x, y ∈⊕i∈I(Ei, ai), we have x = (xi)i∈I and y = (yi)i∈I , where xi 6= ai on a finite
subset I ′ of I, and yi 6= ai on a finite subset I ′′ of I. Then, by definition of

⊕
i∈I(Ei, ai), it is

clear that the only vector w ∈⊕i∈I
−→
Ei such that y = x+w, is w = (−→wi)i∈I , where wi =

−−→xiyi,
for i ∈ I ′ ∪ I ′′, and wi = 0, for all i ∈ I − (I ′ ∪ I ′′).

The injections ina
i : Ei →

⊕
i∈I(Ei, ai) are affine maps. This is because for every y ∈ Ei,

we have ina
i (y) = a + ini(

−→aiy), where ini :
−→
Ei → ⊕

i∈I
−→
Ei is the injection from the vector

space
−→
Ei into

⊕
i∈I

−→
Ei . We leave as an exercise to prove the analog of lemma A.4.8 for a

direct sum of affine spaces and affine maps.

Remark: Observe that the intersection of the affine subspaces ina
i (Ei) reduces to the single

point a. This is consistent with the corollary of lemma B.3.3. When I is finite and I =
{1, . . . , m}, Ea and +a do not depend on the choice of a, but the injections ina

i do. In
this case, we write

⊕
i∈I(Ei, ai) as (E1, a1) ⊕ · · · ⊕ (Em, am), and we denote each (xi)i∈I as

(x1, . . . , xm). The order of the factors (Ei, ai) is irrelevant.

When I = {1, . . . , m}, m ≥ 1, if E is an affine space and F1, . . . , Fm are m affine spaces,
for any function f : E → (F1, b1) ⊕ · · · ⊕ (Fm, bm), letting fi = pi ◦ f , we see immediately
that f(a) = (f1(a), . . . , fm(a)), for every a ∈ E. If the Fi are vector spaces, we have

f(a) = in1(f1(a)) + · · ·+ inm(fm(a)),

and thus, we write f = in1 ◦ f1 + · · ·+ inm ◦ fm. It is also obvious that

in1 ◦ π1 + · · ·+ inm ◦ πm = id.

Sometimes, instead of the unordered concept of the finite direct sum of affine spaces
(E1, a1)⊕· · ·⊕ (Em, am), we have use for the finite (ordered) product of affine spaces. Given

any m affine spaces 〈Ei,
−→
Ei ,+i〉, we define the affine space 〈E,

−→
E ,+〉, called the (finite)

product of the affine spaces 〈Ei,
−→
Ei ,+i〉, as follows: E = E1× · · ·×Em,

−→
E =

−→
E1× · · ·×−→

Em,

and +: E ×−→
E → E, is defined such that

(a1, . . . , am) + (u1, . . . , um) = (a1 + u1, . . . , am + um).

The verification that this is an affine space is obvious. The finite product of the affine spaces

〈Ei,
−→
Ei ,+i〉 is also denoted simply as E1 × · · · × Em. Clearly, E1 × · · · ×Em and (E1, a1)⊕

· · ·⊕(Em, am) are isomorphic, except that the order of the factors in (E1, a1)⊕· · ·⊕(Em, am)
is irrelevant, and that designated origins are picked in each Ei.
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B.4 Osculating Flats Revisited

This Section contains various results on osculating flats as well as a generalized version of
lemma 5.5.2 (conditions on polar forms for polynomial maps to agree to kth order). Given
an affine space E , and a subset S of E , we denote as Span(S) the affine subspace (the flat)
of E generated by S. First, given a polynomial map F : E → E of degree m, we relate

Span(F̂ (Ê)) to f̂⊙

(⊙m Ê

)
.

Lemma B.4.1. Given any two affine spaces E and E , for every polynomial map F : E → E
of degree m with polar form f : Em → E , if f̂ : (Ê)m → Ê is the homogenized version of f ,

F̂ : Ê → Ê is the polynomial map associated with f̂ , and f̂⊙ :
⊙m Ê → Ê is the unique linear

map from the tensor product
⊙m Ê associated with f̂ , we have

Span(F̂ (Ê)) = f̂⊙

( m⊙
Ê

)
.

Proof. First, we show that

Span(F̂ (Ê)) ⊆ Span(f̂((Ê)m)) ⊆ f̂⊙

( m⊙
Ê

)
.

The first inclusion is trivial, and since

f̂(θ1, . . . , θm) = f̂⊙(θ1 · · · θm),
we have

f̂((Ê)m) ⊆ f̂⊙

( m⊙
Ê

)
.

Since f̂⊙ is a linear map, its range is a vector space, and thus

Span(f̂((Ê)m)) ⊆ f̂⊙

( m⊙
Ê

)
.

Since the tensors of the form θ1 · · · θm, where θ1, . . . , θm ∈ Ê, generate
⊙m Ê, if we can show

that f̂⊙(θ1 · · · θm) ∈ Span(F̂ (Ê)), the proof will be complete. Thus, we just have to show

that f̂(θ1, . . . , θm) ∈ Span(F̂ (Ê)). However, this is an immediate consequence of lemma
4.4.1, since a multilinear map is multiaffine.

Remark: We can easily prove a version of lemma B.4.1 for the affine symmetric tensor
power of E, and the affine blossom f⊙ of F : we have

Span(F (E)) = f⊙

( m⊙
E

)
.

Now, lemma 10.5.3 can also be stated as follows in terms of f̂⊙.
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Lemma B.4.2. Given an affine polynomial function F : E → E of polar degree m, where
E and E are normed affine spaces, for any k nonzero vectors −→u1 , . . . ,

−→uk , where 1 ≤ k ≤ m,
the k-th directional derivative Du1 . . .Duk

F (a) can be computed from the homogenized polar

form f̂ of F as follows:

Du1 . . .Duk
F (a) = mk f̂⊙(a

m−k −→u1 · · ·−→uk ).

We can now fix the problem encountered in relating the polar form gka of the polynomial
map Gk

a osculating F to kth order at a, with the polar form f of F .

Lemma B.4.3. Given an affine polynomial function F : E → E of polar degree m, where E
and E are normed affine spaces, if E is of finite dimension n and (δ1, . . . , δn) is a basis of
−→
E , for any a ∈ E, for any k, with 0 ≤ k ≤ m, the polar form g : Ek → E of the polynomial
map Gk

a : E → E that osculates F to kth order at a, is determined such that

ĝ⊙(θ) = f̂⊙(κ(θ) a
m−k),

for all θ ∈⊙k Ê, and where κ :
⊙k Ê →⊙k Ê is a bijective weight-preserving linear map

defined as follows: since the tensors

δi11 · · · δinn ak−i,

where i = i1 + · · ·+ in, form a basis of
⊙k Ê, κ is the unique linear map such that

κ(δi11 · · · δinn ak−i) =
mi

ki
δi11 · · · δinn ak−i.

Proof. By lemma B.4.2, we have

Duj1
. . .Dujk

F (a) = mk f̂⊙(a
m−k −→uj1 · · ·−→ujk),

and thus, we get

(
∂

∂x1

)i1

· · ·
(

∂

∂xn

)in

F (a) = mi f̂⊙(δ
i1
1 · · · δinn am−i),

where i1 + · · ·+ in = i. Letting b = a+ h1δ1 + · · ·+ hnδn, since on one hand, we have

Gk
a(b) = F (a) +

∑

1≤i1+···+in≤k

hi1
1 · · ·hin

n

i1! · · · in!

(
∂

∂x1

)i1

· · ·
(

∂

∂xn

)in

F (a),

and on the other hand, we have

(
∂

∂x1

)i1

· · ·
(

∂

∂xn

)in

Gk
a(a) = ki ĝ⊙(δ

i1
1 · · · δinn ak−i),
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where i1 + · · ·+ in = i, we conclude that

ki ĝ⊙(δ
i1
1 · · · δinn ak−i) = mi f̂⊙(δ

i1
1 · · · δinn am−i),

that is,

ĝ⊙(δ
i1
1 · · · δinn ak−i) = f̂⊙

((
mi

ki
δi11 · · · δinn ak−i

)
am−k

)
,

and thus, defining the bijective linear map κ :
⊙k Ê →⊙k Ê, such that

κ(δi11 · · · δinn ak−i) =
mi

ki
δi11 · · · δinn ak−i,

we have
ĝ⊙(θ) = f̂⊙(κ(θ) a

m−k),

for all θ ∈⊙k Ê. Clearly, κ is weight-preserving.

At last, we obtain the relationship between osculating flats and polar forms stated without
proof in section 5.4.

Lemma B.4.4. Given an affine polynomial function F : E → E of polar degree m, where E
and E are normed affine spaces, and E is of finite dimension n, for any k, with 0 ≤ k ≤ m,
and for any a ∈ E, the affine subspace spanned by the range of the multiaffine map

(b1, . . . , bk) 7→ f(a, . . . , a︸ ︷︷ ︸
m−k

, b1, . . . , bk),

is the osculating flat OsckF (a).

Proof. Let G be the polynomial map osculating F to kth order at a. From lemma B.4.1, we
know that

Span(Ĝ(Ê)) = ĝ⊙

( k⊙
Ê

)
,

where g is the polar form of G. Thus, we get

Span(G(E)) = {ĝ⊙(θ) | θ is an affine combination of simple k-tensors of points in E}

= g⊙

( k⊙
E

)
.

From lemma B.4.3, we have
ĝ⊙(θ) = f̂⊙(κ(θ) a

m−k),

for all θ ∈⊙k Ê, and where κ :
⊙k Ê →⊙k Ê is a bijective weight-preserving linear map.

Since κ is weight-preserving and since OsckF (a) = Span(G(E)), we conclude that

OsckF (a) = {f̂⊙(θ am−k) | θ is an affine combination of simple k-tensors of points in E}.
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However, since f̂ agrees with f on Em, the affine subspace spanned by the range of the
multiaffine map

(b1, . . . , bk) 7→ f(a, . . . , a︸ ︷︷ ︸
m−k

, b1, . . . , bk),

is the osculating flat OsckF (a).

We can also give a short proof of a generalized version of lemma 5.5.2.

Lemma B.4.5. Given any two affine spaces E and E , where E is of finite dimension, for
every a ∈ E, for every k ≤ m, two polynomial maps F : E → E and G : E → E of polar
degree m agree to kth order at a, i.e.

Du1 . . .Dui
F (a) = Du1 . . .Dui

G(a),

for all −→u1 , . . . ,
−→ui ∈ −→

E , where 0 ≤ i ≤ k, iff their polar forms f : Em → E and g : Em → E
agree on all multisets of points that contain at least m− k copies of a, that is, iff

f(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

) = g(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ E, iff

f̂⊙(u1 · · ·uk a
m−k) = ĝ⊙(u1 · · ·uk a

m−k),

for all u1, . . . , uk ∈ E.

Proof. Assume that the polar forms agree as stated. This can be restated as

f̂⊙(θ a
m−k) = ĝ⊙(θ a

m−k),

for all simple k-tensors θ ∈ ⊙k Ê of the form u1 · · ·uk, where u1, . . . , uk ∈ E. We have

shown that these tensors generate
⊙k Ê, and thus, we have

f̂⊙(θ a
m−k) = ĝ⊙(θ a

m−k),

for all k-tensors θ ∈⊙k Ê. By lemma B.4.2, since

Du1 . . .Dui
F (a) = mi f̂⊙(a

m−i −→u1 · · ·−→ui )

and
Du1 . . .Dui

G(a) = mi ĝ⊙(a
m−i −→u1 · · ·−→ui ),

by letting θ = ak−i−→u1 · · ·−→ui in

f̂⊙(θ a
m−k) = ĝ⊙(θ a

m−k),
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we have
f̂⊙(a

m−i −→u1 · · ·−→ui ) = ĝ⊙(a
m−i −→u1 · · ·−→ui ),

and thus, we have shown that

Du1 . . .Dui
F (a) = Du1 . . .Dui

G(a).

Conversely, assume that F and G agree to kth order at a. Let (δ1, . . . , δn) be a basis of
−→
E .

We have shown that the family of tensors

δi11 · · · δinn ak−i,

where i = i1 + · · · + in, forms a basis of
⊙k Ê. Letting θ = δi11 · · · δinn ak−i, where i =

i1 + · · ·+ in, by lemma B.4.2, since

Du1 . . .Dui
F (a) = mi f̂⊙(a

m−i −→u1 · · ·−→ui )

and
Du1 . . .Dui

G(a) = mi ĝ⊙(a
m−i −→u1 · · ·−→ui ),

letting −→u1 · · ·−→ui = δi11 · · · δinn , since by assumption these derivatives agree, and since

am−k θ = δi11 · · · δinn am−i = −→u1 · · ·−→ui a
m−i,

we have
f̂⊙(a

m−k θ) = ĝ⊙(a
m−k θ),

for all basis tensors θ of
⊙k Ê, and thus, for all θ ∈ ⊙k Ê. In particular, this is true for

k-tensors of the form θ = u1 · · ·uk, where u1, . . . , uk ∈ E, and thus,

f̂⊙(u1 · · ·uk a
m−k) = ĝ⊙(u1 · · ·uk a

m−k),

for all u1, . . . , uk ∈ E.

For those readers who got hooked on tensors, we mention that Ramshaw’s paper [65]
contains a fascinating study of the algebra and geometry of the tensor powers

⊙m
A and⊙m

Â for m = 2, 3, and much more. The Möbius strip even manages to show its tail!

To close this chapter, we mention that there is a third version of the tensor product,
the exterior (or alternating) tensor product (or Grassmann algebra). Roughly speaking, this
tensor product has the property that

−→u1 ∧ · · · ∧ −→ui ∧ · · · ∧ −→uj ∧ · · · ∧ −→un =
−→
0

whenever −→ui = −→uj , for i 6= j. It follows that the exterior product changes sign when two
factors are permuted. The corresponding algebra

∧
(E) plays an important role in differential
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geometry. Determinants can also be defined in an intrinsic manner. The exterior algebra∧
(E) can also be obtained as the quotient of T(E), by the subspace of T(E) generated by

all vectors in T(E), of the form −→u ⊗ −→u (this requires defining a multiplication operation
(⊗) on T(E)).

For an extensive treatment (in fact, very extensive!) of tensors, tensor algebras, etc, the
reader is urged to consult Bourbaki ([14] Chapter III, and [15], Chapter IV).
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Appendix C

Topology

C.1 Metric Spaces and Normed Vector Spaces

This appendix contains a review of basic topological concepts. First, metric spaces are
defined. Next, normed vector spaces are defined. Closed and open sets are defined, and
their basic properties are stated. The chapter ends with the definition of a normed affine
space. We recommend the following texts for a thorough treatment of topology and analysis:
Topology, a First Course, by Munkres [54], Undergraduate Analysis, by Lang [48], and the
Analysis Courses Analyse I-IV, by Schwartz [70, 71, 72, 73].

Most spaces considered in this book have a topological structure given by a metric or a
norm, and we first review these notions. We begin with metric spaces. Recall that R+ =
{x ∈ R | x ≥ 0}.

Definition C.1.1. A metric space is a set E together with a function d : E × E → R+,
called a metric, or distance, assigning a nonnegative real number d(x, y) to any two points
x, y ∈ E, and satisfying the following conditions for all x, y, z ∈ E:

(D1) d(x, y) = d(y, x). (symmetry)

(D2) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y. (positivity)

(D3) d(x, z) ≤ d(x, y) + d(y, z). (triangular inequality)

Geometrically, condition (D3) expresses the fact that in a triangle with vertices x, y, z,
the length of any side is bounded by the sum of the lengths of the other two sides. From
(D3), we immediately get

|d(x, y)− d(y, z)| ≤ d(x, z).

Let us give some examples of metric spaces. Recall that the absolute value |x| of a real
number x ∈ R is defined such that |x| = x if x ≥ 0, |x| = −x if x < 0, and for a complex
number x = a+ ib, as |x| =

√
a2 + b2.

465
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Example 1: Let E = R, and d(x, y) = |x − y|, the absolute value of x − y. This is the
so-called natural metric on R.

Example 2: Let E = Rn (or E = Cn). We have the Euclidean metric

d2(x, y) =
(
|x1 − y1|2 + · · ·+ |xn − yn|2

) 1
2 ,

the distance between the points (x1, . . . , xn) and (y1, . . . , yn).

Example 3: For every set E, we can define the discrete metric, defined such that d(x, y) =
1 iff x 6= y, and d(x, x) = 0.

Example 4: For any a, b ∈ R such that a < b, we define the following sets:

[a, b] = {x ∈ R | a ≤ x ≤ b}, (closed interval)

]a, b[ = {x ∈ R | a < x < b}, (open interval)

[a, b[ = {x ∈ R | a ≤ x < b}, (interval closed on the left, open on the right)

]a, b] = {x ∈ R | a < x ≤ b}, (interval open on the left, closed on the right)

Let E = [a, b], and d(x, y) = |x− y|. Then, ([a, b], d) is a metric space.

We will need to define the notion of proximity in order to define convergence of limits
and continuity of functions. For this, we introduce some standard “small neighborhoods”.

Definition C.1.2. Given a metric space E with metric d, for every a ∈ E, for every ρ ∈ R,
with ρ > 0, the set

B(a, ρ) = {x ∈ E | d(a, x) ≤ ρ}
is called the closed ball of center a and radius ρ, the set

B0(a, ρ) = {x ∈ E | d(a, x) < ρ}
is called the open ball of center a and radius ρ, and the set

S(a, ρ) = {x ∈ E | d(a, x) = ρ}
is called the sphere of center a and radius ρ. It should be noted that ρ is finite (i.e. not
+∞). A subset X of a metric space E is bounded if there is a closed ball B(a, ρ) such that
X ⊆ B(a, ρ).

Clearly, B(a, ρ) = B0(a, ρ) ∪ S(a, ρ).

In E = R with the distance |x − y|, an open ball of center a and radius ρ is the open
interval ]a − ρ, a + ρ[. In E = R2 with the Euclidean metric, an open ball of center a and
radius ρ is the set of points inside the disk of center a and radius ρ, excluding the boundary
points on the circle. In E = R3 with the Euclidean metric, an open ball of center a and
radius ρ is the set of points inside the sphere of center a and radius ρ, excluding the boundary
points on the sphere.

One should be aware that intuition can be midleading in forming a geometric image of a
closed (or open) ball. For example, if d is the discrete metric, a closed ball of center a and
radius ρ < 1 consists only of its center a, and a closed ball of center a and radius ρ ≥ 1
consists of the entire space!



C.1. METRIC SPACES AND NORMED VECTOR SPACES 467

� If E = [a, b], and d(x, y) = |x−y|, as in example 4, an open ball B0(a, ρ), with ρ < b−a,
is in fact the interval [a, a+ ρ[, which is closed on the left.

We now consider a very important special case of metric spaces, normed vector spaces.

Definition C.1.3. Let E be a vector space over a field K, where K is either the field
R of reals, or the field C of complex numbers. A norm on E is a function ‖ ‖ : E → R+,

assigning a nonnegative real number
∥∥∥−→u

∥∥∥ to any vector −→u ∈ E, and satisfying the following

conditions for all −→x ,−→y ,−→z ∈ E:

(N1)
∥∥∥−→x

∥∥∥ ≥ 0, and
∥∥∥−→x

∥∥∥ = 0 iff −→x =
−→
0 . (positivity)

(N2)
∥∥∥λ−→x

∥∥∥ = |λ|
∥∥∥−→x

∥∥∥ . (scaling)

(N3)
∥∥∥−→x +−→y

∥∥∥ ≤
∥∥∥−→x

∥∥∥+
∥∥∥−→y

∥∥∥ . (convexity inequality)

A vector space E together with a norm ‖ ‖ is called a normed vector space.

From (N3), we easily get

|
∥∥∥−→x

∥∥∥−
∥∥∥−→y

∥∥∥ | ≤
∥∥∥−→x −−→y

∥∥∥ .

Given a normed vector space E, if we define d such that

d(−→x , −→y ) =
∥∥∥−→x −−→y

∥∥∥ ,

it is easily seen that d is a metric. Thus, every normed vector space is immediately a metric
space. Note that the metric associated with a norm is invariant under translation, that is,

d(−→x +−→u , −→y +−→u ) = d(−→x , −→y ).

For this reason, we can restrict ourselves to open or closed balls of center
−→
0 .

Let us give some examples of normed vector spaces.

Example 5: Let E = R, and ‖x‖ = |x|, the absolute value of x. The associated metric is
|x− y|, as in example 1.

Example 6: Let E = Rn (or E = Cn). There are three standard norms. For every

(x1, . . . , xn) ∈ E, we have the norm
∥∥∥−→x

∥∥∥
1
, defined such that,

∥∥∥−→x
∥∥∥
1
= |x1|+ · · ·+ |xn|,
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we have the Euclidean norm
∥∥∥−→x

∥∥∥
2
, defined such that,

∥∥∥−→x
∥∥∥
2
=
(
|x1|2 + · · ·+ |xn|2

) 1
2 ,

and the sup-norm
∥∥∥−→x

∥∥∥
∞
, defined such that,

∥∥∥−→x
∥∥∥
∞

= max{|xi| | 1 ≤ i ≤ n}.

Some work is required to show the convexity inequality for the Euclidean norm, but
this can be found in any standard text. Note that the Euclidean distance is the distance
associated with the Euclidean norm. The following lemma is easy to show.

Lemma C.1.4. The following inequalities hold for all −→x ∈ Rn (or −→x ∈ Cn):
∥∥∥−→x

∥∥∥
∞

≤
∥∥∥−→x

∥∥∥
1
≤ n

∥∥∥−→x
∥∥∥
∞
,

∥∥∥−→x
∥∥∥
∞

≤
∥∥∥−→x

∥∥∥
2
≤ √

n
∥∥∥−→x

∥∥∥
∞
,

∥∥∥−→x
∥∥∥
2
≤
∥∥∥−→x

∥∥∥
1
≤ √

n
∥∥∥−→x

∥∥∥
2
.

In a normed vector space, we define a closed ball or an open ball of radius ρ as a closed

ball or an open ball of center
−→
0 . We may use the notation B(ρ) and B0(ρ).

We will now define the crucial notions of open sets and closed sets, and of a topological
space.

Definition C.1.5. Let E be a metric space with metric d. A subset U ⊆ E is an open
set in E iff either U = ∅, or for every a ∈ U , there is some open ball B0(a, ρ) such that,
B0(a, ρ) ⊆ U .1 A subset F ⊆ E is a closed set in E iff its complement E − F is open in E.

The set E itself is open, since for every a ∈ E, every open ball of center a is contained in
E. In E = Rn, given n intervals [ai, bi], with ai < bi, it is easy to show that the open n-cube

{(x1, . . . , xn) ∈ E | ai < xi < bi, 1 ≤ i ≤ n}

is an open set. In fact, it is possible to find a metric for which such open n-cubes are open
balls! Similarly, we can define the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n},

which is a closed set.

The open sets satisfy some important properties that lead to the definition of a topological
space.

1Recall that ρ > 0.
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Lemma C.1.6. Given a metric space E with metric d, the family O of open sets defined in
definition C.1.5 satisfies the following properties:

(O1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we have U1 ∩ · · · ∩ Un ∈ O, i.e. O is
closed under finite intersections.

(O2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O, we have
⋃

i∈I Ui ∈ O, i.e. O is closed
under arbitrary unions.

(O3) ∅ ∈ O, and E ∈ O, i.e. ∅ and E belong to O.

Furthermore, for any two distinct points a 6= b in E, there exist two open sets Ua and Ub

such that, a ∈ Ua, b ∈ Ub, and Ua ∩ Ub = ∅.

Proof. It is straightforward. For the last point, letting ρ = d(a, b)/3 (in fact ρ = d(a, b)/2
works too), we can pick Ua = B0(a, ρ) and Ub = B0(b, ρ). By the triangle inequality, we
must have Ua ∩ Ub = ∅.

The above lemma leads to the very general concept of a topological space. The reader is
referred to standard texts on topology, such as Munkres [54].

� One should be careful that in general, the family of open sets is not closed under infinite
intersections. For example, in R under the metric |x − y|, letting Un =] − 1/n, +1/n[,

each Un is open, but
⋂

n Un = {0}, which is not open.

If each (Ei, ‖ ‖i) is a normed vector space, there are three natural norms that can be
defined on E1 × · · · × En:

‖(x1, . . . , xn)‖1 = ‖x1‖1 + · · ·+ ‖xn‖n ,

‖(x1, . . . , xn)‖2 =
(
‖x1‖21 + · · ·+ ‖xn‖2n

) 1
2
,

‖(x1, . . . , xn)‖∞ = max{‖x1‖1 , . . . , ‖xn‖n}.

It is easy to show that they all define the same topology, which is the product topology,
that is, the same set of open sets. One can also verify that when Ei = R, with the standard
topology induced by |x − y|, the topology product on Rn is the standard topology induced
by the Euclidean norm.

C.2 Continuous Functions, Limits

If E and F are metric spaces defined by metrics d1 and d2, f is continuous at a iff

for every ǫ > 0, there is some η > 0, such that, for every x ∈ E,

if d1(a, x) ≤ η, then d2(f(a), f(x)) ≤ ǫ.
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Similarly, if E and F are normed vector spaces defined by norms ‖ ‖1 and ‖ ‖2, f is

continuous at −→a iff

for every ǫ > 0, there is some η > 0, such that, for every −→x ∈ E,

if
∥∥∥−→x −−→a

∥∥∥
1
≤ η, then

∥∥∥f(−→x )− f(−→a )
∥∥∥
2
≤ ǫ.

The following lemma is useful for showing that real-valued functions are continuous.

Lemma C.2.1. If E is a topological space, and (R, |x − y|) the reals under the standard
topology, for any two functions f : E → R and g : E → R, for any a ∈ E, for any λ ∈ R, if
f and g are continuous at a, then f+g, λf , f ·g, are continuous at a, and f/g is continuous
at a if g(a) 6= 0.

Proof. Left as an exercise.

Using lemma C.2.1, we can show easily that every real polynomial function is continuous.

When E is a metric space with metric d, a sequence (xn)n∈N converges to some a ∈ E iff

for every ǫ > 0, there is some n0 ≥ 0, such that, d(xn, a) ≤ ǫ, for all n ≥ n0.

When E is a normed vector space with norm ‖ ‖, a sequence (xn)n∈N converges to some
a ∈ E iff

for every ǫ > 0, there is some n0 ≥ 0, such that,
∥∥∥−→xn −−→a

∥∥∥ ≤ ǫ, for all n ≥ n0.

Finally, we consider normed affine spaces.

C.3 Normed Affine Spaces

For geometric applications, we will need to consider affine spaces (E,
−→
E ) where the associated

space of translations
−→
E is a vector space equipped with a norm.

Definition C.3.1. Given an affine space (E,
−→
E ), where the space of translations

−→
E is a

vector space over R or C, we say that (E,
−→
E ) is a normed affine space iff

−→
E is a normed

vector space with norm ‖ ‖.

Given a normed affine space, there is a natural metric on E itself, defined such that

d(a, b) =
∥∥∥−→ab
∥∥∥ .

Observe that this metric is invariant under translation, that is

d(a+−→u , b+−→u ) = d(a, b).
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Also, for every fixed a ∈ E and λ > 0, is we consider the map h : E → E, defined such that,

h(x) = a + λ−→ax,

then d(h(x), h(y)) = λd(x, y).

Note that the map (a, b) 7→ −→
ab from E×E to

−→
E is continuous, and similarly for the map

a 7→ a+−→u from E ×−→
E to E. In fact, the map −→u 7→ a+−→u is a homeomorphism from

−→
E

to Ea.

Of course, Rn is a normed affine space under the Euclidean metric, and it is also complete.

If an affine space E is a finite direct sum (E1, a1)⊕ · · · ⊕ (Em, am), and each Ei is also a
normed affine space with norm ‖ ‖i, we make (E1, a1)⊕ · · · ⊕ (Em, am) into a normed affine
space, by giving it the norm

‖(x1, . . . , xn)‖ = max(‖x1‖1 , . . . , ‖xn‖n).

Similarly, the finite product E1 × · · · × Em is made into a normed affine space, under the
same norm.

We are now ready to define the derivative (or differential) of a map between two normed
affine spaces. This will lead to tangent spaces to curves and surfaces (in normed affine
spaces).
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Appendix D

Differential Calculus

D.1 Directional Derivatives, Total Derivatives

This appendix contains a review of basic notions of differential calculus. First, we review the
definition of the derivative of a function f : R → R. Next, we define directional derivatives
and the total derivative of a function f : E → F between normed affine spaces. Basic
properties of derivatives are shown, including the chain rule. We show how derivatives are
represented by Jacobian matrices.

A thorough treatment of differential calculus can be found in Munkres [55], Lang [48],
Schwartz [71], Cartan [16], and Avez [2]. We first review the notion of derivative of a real-
valued function whose domain is an open subset of R.

Let f : A → R, where A is a nonempty open subset of R, and consider any a ∈ A.
The main idea behind the concept of the derivative of f at a, denoted as f ′(a), is that
locally around a (that is, in some small open set U ⊆ A containing a), the function f is
approximated linearly by the map

x 7→ f(a) + f ′(a)(x− a).

Part of the difficulty in extending this idea to more complex spaces, is to give an adequate
notion of linear approximation. Of course, we will use linear maps! Let us now review the
formal definition of the derivative of a real-valued function.

Definition D.1.1. Let A be any nonempty open subset of R, and let a ∈ A. For any
function f : A → R, the derivative of f at a ∈ A is the limit (if it exists)

lim
h→0, h∈U

f(a+ h)− f(a)

h
,

where U = {h ∈ R | a + h ∈ A, h 6= 0}. This limit is denoted as f ′(a), or Df(a), or
df

dx
(a).

If f ′(a) exists for every a ∈ A, we say that f is differentiable on A. In this case, the map

a 7→ f ′(a) is denoted as f ′, or Df , or
df

dx
.

473
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Note that since A is assumed to be open, A − {a} is also open, and since the function
h 7→ a + h is continuous and U is the inverse image of A − {a} under this function, U is
indeed open and the definition makes sense. We can also define f ′(a) as follows: there is
some function ǫ(h), such that,

f(a+ h) = f(a) + f ′(a) · h+ ǫ(h)h,

whenever a+ h ∈ A, where ǫ(h) is defined for all h such that a+ h ∈ A, and

lim
h→0, h∈U

ǫ(h) = 0.

Remark: We can also define the notion of derivative of f at a on the left , and derivative
of f at a on the right . For example, we say that the derivative of f at a on the left , is the
limit f ′(a−), if it exists,

lim
h→0, h∈U

f(a+ h)− f(a)

h
,

where U = {h ∈ R | a+ h ∈ A, h < 0}.
If a function f as in definition D.1.1 has a derivative f ′(a) at a, then it is continuous at

a. If f is differentiable on A, then f is continuous on A. The composition of differentiable
functions is differentiable.

Remark: A function f has a derivative f ′(a) at a iff the derivative of f on the left at a and
the derivative of f on the right at a exist, and if they are equal. Also, if the derivative of f
on the left at a exists, then f is continuous on the left at a (and similarly on the right).

We would like to extend the notion of derivative to functions f : A → F , where E and F
are normed affine spaces, and A is some nonempty open subset of E. The first difficulty is
to make sense of the quotient

f(a+ h)− f(a)

h
.

If E and F are normed affine spaces, it will be notationally convenient to assume that

the vector space associated with E is denoted as
−→
E , and that the vector space associated

with F is denoted as
−→
F .

Since F is a normed affine space, making sense of f(a+
−→
h )− f(a) is easy: we can define

this as

−−−−−−−−−−→
f(a)f(a+

−→
h ), the unique vector translating f(a) to f(a +

−→
h ). We should note

however, that this quantity is a vector and not a point. Nevertheless, in defining derivatives,

it is notationally more pleasant to denote

−−−−−−−−−−→
f(a)f(a+

−→
h ) as f(a +

−→
h )− f(a). Thus, in the

rest of this chapter, the vector
−→
ab will be denoted as b − a. But now, how do we define the

quotient by a vector? Well, we don’t!
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A first possibility is to consider the directional derivative with respect to a vector −→u 6= −→
0

in
−→
E . We can consider the vector f(a+ t−→u )− f(a), where t ∈ R (or t ∈ C). Now,

f(a+ t−→u )− f(a)

t

makes sense. The idea is that in E, the points of the form a+ t−→u form a line, where t ∈ R

(or C) (more exactly, for t in some small closed interval [r, s] in A containing a, the points

of the form a + t−→u form a line segment), and that the image of this line defines a curve in
F , curve which lies on the image f(E) of E under the map f : E → F (more exactly, a small

curve segment on f(A)). This curve (segment) is defined by the map t 7→ f(a + t−→u ), from
R to F (more exactly from [r, s] to F ), and the directional derivative Duf(a), defines the
direction of the tangent line at a to this curve. This leads us to the following definition.

Definition D.1.2. Let E and F be two normed affine spaces, let A be a nonempty open

subset of E, and let f : A → F be any function. For any a ∈ A, for any −→u 6= −→
0 in

−→
E ,

the directional derivative of f at a w.r.t. the vector −→u , denoted as Duf(a), is the limit (if it
exists)

lim
t→0, t∈U

f(a+ t−→u )− f(a)

t
,

where U = {t ∈ R | a+ t−→u ∈ A, t 6= 0} (or U = {t ∈ C | a+ t−→u ∈ A, t 6= 0}).

Since the map t 7→ a+ t−→u is continuous, and since A−{a} is open, the inverse image U
of A − {a} under the above map is open, and the definition of the limit in definition D.1.2
makes sense. Since the notion of limit is purely topological, the existence and value of a
directional derivative is independent of the choice of norms in E and F , as long as they are
equivalent norms. The directional derivative is sometimes called the Gâteaux derivative.

In the special case where E = R and F = R, and we let −→u =
−→
1 (i.e. the real number 1,

viewed as a vector), it is immediately verified that D1f(a) = f ′(a), in the sense of definition
D.1.1. When E = R (or E = C) and F is any normed vector space, the derivative D1f(a),
also denoted as f ′(a), provides a suitable generalization of the notion of derivative.

However, when E has dimension ≥ 2, directional derivatives present a serious problem,
which is that their definition is not sufficiently uniform. Indeed, there is no reason to believe
that the directional derivatives w.r.t. all nonnull vectors −→u share something in common. As
a consequence, a function can have all directional derivatives at a, and yet not be continuous
at a. Two functions may have all directional derivatives in some open sets, and yet their
composition may not. Thus, we introduce a more uniform notion.

Definition D.1.3. Let E and F be two normed affine spaces, let A be a nonempty open
subset of E, and let f : A → F be any function. For any a ∈ A, we say that f is differentiable
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at a ∈ A iff there is a linear continuous map L :
−→
E → −→

F and a function ǫ(
−→
h ), such that

f(a+
−→
h ) = f(a) + L(

−→
h ) + ǫ(

−→
h )

∥∥∥∥
−→
h

∥∥∥∥

for every a +
−→
h ∈ A, where ǫ(

−→
h ) is defined for every

−→
h such that a +

−→
h ∈ A and

lim
h→0, h∈U

ǫ(
−→
h ) =

−→
0 ,

where U = {−→h ∈ −→
E | a +

−→
h ∈ A,

−→
h 6= −→

0 }. The linear map L is denoted as Df(a), or
Dfa, or df(a), or dfa, or f

′(a), and it is called the Fréchet derivative, or derivative, or total
derivative, or total differential , or differential , of f at a.

Since the map
−→
h 7→ a +

−→
h from

−→
E to E is continuous, and since A is open in E, the

inverse image U of A − {a} under the above map is open in
−→
E , and it makes sense to say

that

lim
h→0, h∈U

ǫ(
−→
h ) =

−→
0 .

Note that for every
−→
h ∈ U , since

−→
h 6= −→

0 , ǫ(
−→
h ) is uniquely determined since

ǫ(
−→
h ) =

f(a+
−→
h )− f(a)− L(

−→
h )∥∥∥∥

−→
h

∥∥∥∥
,

and that the value ǫ(
−→
0 ) plays absolutely no role in this definition. The condition for f to

be differentiable at a amounts to the fact that the right-hand side of the above expression

approaches
−→
0 as

−→
h 6= −→

0 approaches
−→
0 , when a +

−→
h ∈ A. However, it does no harm to

assume that ǫ(
−→
0 ) =

−→
0 , and we will assume this from now on.

Again, we note that the derivative Df(a) of f at a provides an affine approximation of f ,
locally around a. Since the notion of limit is purely topological, the existence and value of a
derivative is independent of the choice of norms in E and F , as long as they are equivalent
norms. Note that the continuous linear map L is unique, if it exists. In fact, the next lemma
implies this as a corollary. The following lemma shows that our new definition is consistent
with the definition of the directional derivative.

Lemma D.1.4. Let E and F be two normed affine spaces, let A be a nonempty open subset
of E, and let f : A → F be any function. For any a ∈ A, if Df(a) is defined, then f is

continuous at a, and f has a directional derivative Duf(a) for every −→u 6= −→
0 in

−→
E , and

furthermore,
Duf(a) = Df(a)(−→u ).
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Proof. If
−→
h 6= −→

0 approaches
−→
0 , since L is continuous, ǫ(

−→
h )

∥∥∥∥
−→
h

∥∥∥∥ approaches
−→
0 , and

thus, f is continuous at a. For any −→u 6= −→
0 in

−→
E , for |t| ∈ R small enough (where t ∈ R or

t ∈ C), we have a+ t−→u ∈ A, and letting
−→
h = t−→u , we have

f(a+ t−→u ) = f(a) + tL(−→u ) + ǫ(t−→u )|t|
∥∥∥−→u

∥∥∥ ,

and for t 6= 0,

f(a+ t−→u )− f(a)

t
= L(−→u ) +

|t|
t
ǫ(t−→u )

∥∥∥−→u
∥∥∥ ,

and the limit when t 6= 0 approaches 0 is indeed Duf(a).

The uniqueness of L follows from lemma D.1.4. Also, when E is of finite dimension, it is
easily shown that every linear map is continuous, and this assumption is then redundant.

It is important to note that the derivative Df(a) of f at a is a continuous linear map

from the vector space
−→
E to the vector space

−→
F , and not a function from the affine space E

to the affine space F . If Df(a) exists for every a ∈ A, we get a map Df : A → L(−→E ;
−→
F ),

called the derivative of f on A, and also denoted as df .

When E is of finite dimension n, for any frame (a0, (
−→u1 , . . . ,

−→un)) of E, where (−→u1 , . . . ,
−→un)

is a basis of
−→
E , we can define the directional derivatives with respect to the vectors in the

basis (−→u1 , . . . ,
−→un) (actually, we can also do it for an infinite frame). This way, we obtain the

definition of partial derivatives, as follows.

Definition D.1.5. For any two normed affine spaces E and F , if E is of finite dimension
n, for every frame (a0, (

−→u1 , . . . ,
−→un)) for E, for every a ∈ E, for every function f : E → F ,

the directional derivatives Duj
f(a), if they exist, are called the partial derivatives of f with

respect to the frame (a0, (
−→u1 , . . . ,

−→un)). The partial derivative Duj
f(a) is also denoted as

∂jf(a), or
∂f

∂xj

(a).

The notation
∂f

∂xj

(a) for a partial derivative, although customary and going back to

Leibnitz, is a “logical obscenity”. Indeed, the variable xj really has nothing to do with the
formal definition. This is just another of these situations where tradition is just too hard to
overthrow!

We now consider a number of standard results about derivatives.

Lemma D.1.6. Given two normed affine spaces E and F , if f : E → F is a constant
function, then Df(a) = 0, for every a ∈ E. If f : E → F is a continuous affine map, then

Df(a) =
−→
f , for every a ∈ E, the linear map associated with f .
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Proof. Straightforward.

Lemma D.1.7. Given a normed affine space E and a normed vector space F , for any two
functions f : E → F , for every a ∈ E, if Df(a) and Dg(a) exists, then D(f + g)(a) and
D(λf)(a) exists, and

D(f + g)(a) = Df(a) + Dg(a),

D(λf)(a) = λDf(a).

Proof. Straightforward.

Lemma D.1.8. Given three normed vector spaces E1, E2, and F , for any continuous bilinear

map f : E1×E2 → F , for every (−→a ,
−→
b ) ∈ E1×E2, Df(−→a ,

−→
b ) exists, and for every −→u ∈ E1

and −→v ∈ E2,

Df(−→a ,
−→
b )(−→u ,−→v ) = f(−→u ,

−→
b ) + f(−→a ,−→v ).

Proof. Straightforward.

We now state the very useful chain rule.

Lemma D.1.9. Given three normed affine spaces E, F , and G, let A be an open set in
E, and let B an open set in F . For any functions f : A → F and g : B → G, such that
f(A) ⊆ B, for any a ∈ A, if Df(a) exists and Dg(f(a)) exists, then D(g ◦ f)(a) exists, and

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a).

Proof. It is not difficult, but more involved than the previous two.

Lemma D.1.9 has many interesting consequences. We mention two corollaries.

Lemma D.1.10. Given three normed affine spaces E, F , and G, for any open subset A in
E, for any a ∈ A, let f : A → F such that Df(a) exists, and let g : F → G be a continuous
affine map. Then, D(g ◦ f)(a) exists, and

D(g ◦ f)(a) = −→g ◦Df(a),

where −→g is the linear map associated with the affine map g.

Lemma D.1.11. Given two normed affine spaces E and F , let A be some open subset in
E, let B some open subset in F , let f : A → B be a bijection from A to B, and assume that
Df exists on A and that Df−1 exists on B. Then, for every a ∈ A,

Df−1(f(a)) = (Df(a))−1.
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Lemma D.1.11 has the remarkable consequence that the two vector spaces
−→
E and

−→
F

have the same dimension. In other words, a local property, the existence of a bijection f
between an open set A of E and an open set B of F , such that f is differentiable on A and

f−1 is differentiable on B, implies a global property, that the two vector spaces
−→
E and

−→
F

have the same dimension.

We now consider the situation where the normed affine space F is a finite direct sum
F = (F1, b1)⊕ · · · ⊕ (Fm, bm).

Lemma D.1.12. Given normed affine spaces E and F = (F1, b1)⊕· · ·⊕ (Fm, bm), given any
open subset A of E, for any a ∈ A, for any function f : A → F , letting f = (f1, . . . , fm),
Df(a) exists iff every Dfi(a) exists, and

Df(a) = in1 ◦Df1(a) + · · ·+ inm ◦Dfm(a).

Proof. Observe that f(a+
−→
h )− f(a) = (f(a+

−→
h )− b)− (f(a)− b), where b = (b1, . . . , bm),

and thus, as far as dealing with derivatives, Df(a) is equal to Dfb(a), where fb : E → −→
F is

defined such that, fb(x) = f(x) − b, for every x ∈ E. Thus, we can work with the vector

space
−→
F instead of the affine space F . The lemma is then a simple application of lemma

D.1.9.

In the special case where F is a normed affine space of finite dimension m, for any

frame (b0, (
−→v1 , . . . ,−→vm)) of F , where (−→v1 , . . . ,−→vm) is a basis of

−→
F , every point x ∈ F can be

expressed uniquely as
x = b0 + x1

−→v1 + · · ·+ xm
−→vm,

where (x1, . . . , xm) ∈ Km, the coordinates of x in the frame (b0, (
−→v1 , . . . ,−→vm)) (where K = R

or K = C). Thus, letting Fi be the standard normed affine space K with its natural
structure, we note that F is isomorphic to the direct sum F = (K, 0)⊕ · · · ⊕ (K, 0). Then,
every function f : E → F is represented by m functions (f1, . . . , fm), where fi : E → K
(where K = R or K = C), and

f(x) = b0 + f1(x)
−→v1 + · · ·+ fm(x)

−→vm,

for every x ∈ E. The following lemma is an immediate corollary of lemma D.1.12.

Lemma D.1.13. For any two normed affine spaces E and F , if F is of finite dimension m,

for any frame (b0, (
−→v1 , . . . ,−→vm)) of F , where (−→v1 , . . . ,−→vm) is a basis of

−→
F , for every a ∈ E,

a function f : E → F is differentiable at a iff each fi is differentiable at a, and

Df(a)(−→u ) = Df1(a)(
−→u )−→v1 + · · ·+Dfm(a)(

−→u )−→vm,

for every −→u ∈ −→
E .
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We now consider the situation where E is a finite direct sum. Given a normed affine
space E = (E1, a1)⊕· · ·⊕ (En, an) and a normed affine space F , given any open subset A of
E, for any c = (c1, . . . , cn) ∈ A, we define the continuous functions icj : Ej → E, such that,

icj(x) = (c1, . . . , cj−1, x, cj+1, . . . , cn).

For any function f : A → F , we have functions f ◦ icj : Ej → F , defined on (icj)
−1(A), which

contains cj . If D(f ◦icj)(cj) exists, we call it the partial derivative of f w.r.t. its jth argument,

at c. We also denote this derivative as Djf(c). Note that Djf(c) ∈ L(−→Ej ;
−→
F ). This notion is

a generalization of the notion defined in definition D.1.5. In fact, when E is of dimension n,
and a frame (a0, (

−→u1 , . . . ,
−→un)) has been chosen, we can write E = (E1, a1)⊕ · · · ⊕ (En, an),

for some obvious (Ej , aj) (as explained just after lemma lemma D.1.12), and then

Djf(c)(λ
−→uj ) = λ∂jf(c),

and the two notions are consistent. The definition of icj and of Djf(c) also makes sense for
a finite product E1 × · · · × En of affine spaces Ei. We will use freely the notation ∂jf(c)
instead of Djf(c).

The notion ∂jf(c) introduced in definition D.1.5 is really that of the vector derivative,
whereas Djf(c) is the corresponding linear map. Although perhaps confusing, we identify
the two notions. The following lemma holds.

Lemma D.1.14. Given a normed affine space E = (E1, a1)⊕ · · · ⊕ (En, an), and a normed
affine space F , given any open subset A of E, for any function f : A → F , for every c ∈ A,if
Df(c) exists, then each Djf(c) exists, and

Df(c)(−→u1 , . . . ,
−→un) = D1f(c)(

−→u1 ) + · · ·+Dnf(c)(
−→un),

for every −→ui ∈
−→
Ei , 1 ≤ i ≤ n. The same result holds for the finite product E1 × · · · ×En.

Proof. Since every c ∈ E can be written as c = a + c − a, where a = (a1, . . . , an), defining

fa :
−→
E → F such that, fa(

−→u ) = f(a +−→u ), for every −→u ∈ −→
E , clearly, Df(c) = Dfa(c− a),

and thus, we can work with the function fa whose domain is the vector space
−→
E . The lemma

is then a simple application of lemma D.1.9.

D.2 Jacobian Matrices

If both E and F are of finite dimension, and E has a frame (a0, (
−→u1 , . . . ,

−→un)) and F has a

frame (b0, (
−→v1 , . . . ,−→vm)), every function f : E → F is determined by m functions fi : E → R

(or fi : E → C), where

f(x) = b0 + f1(x)
−→v1 + · · ·+ fm(x)

−→vm,
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for every x ∈ E. From lemma D.1.4, we have

Df(a)(−→uj ) = Duj
f(a) = ∂jf(a),

and from lemma D.1.13, we have

Df(a)(−→uj ) = Df1(a)(
−→uj )

−→v1 + · · ·+Dfi(a)(
−→uj )

−→vi + · · ·+Dfm(a)(
−→uj )

−→vm,

that is,
Df(a)(−→uj ) = ∂jf1(a)

−→v1 + · · ·+ ∂jfi(a)
−→vi + · · ·+ ∂jfm(a)

−→vm.

Since the j-th column of the m × n-matrix J(f)(a) w.r.t. the bases (−→u1 , . . . ,
−→un) and

(−→v1 , . . . ,−→vm) representing Df(a), is equal to the components of the vector Df(a)(−→uj ) over

the basis (−→v1 , . . . ,−→vm), the linear map Df(a) is determined by the m× n-matrix J(f)(a) =

(∂jfi(a)), (or J(f)(a) = (
∂fi

∂xj

(a))):

J(f)(a) =




∂1f1(a) ∂2f1(a) . . . ∂nf1(a)
∂1f2(a) ∂2f2(a) . . . ∂nf2(a)

...
...

. . .
...

∂1fm(a) ∂2fm(a) . . . ∂nfm(a)




or

J(f)(a) =




∂f1
∂x1

(a)
∂f1
∂x2

(a) . . .
∂f1
∂xn

(a)

∂f2
∂x1

(a)
∂f2
∂x2

(a) . . .
∂f2
∂xn

(a)

...
...

. . .
...

∂fm
∂x1

(a)
∂fm
∂x2

(a) . . .
∂fm
∂xn

(a)




This matrix is called the Jacobian matrix of Df at a. Its determinant det(J(f)(a)) is
called the Jacobian of Df(a). From a previous remark, we know that this determinant in
fact only depends on Df(a), and not on specific bases. However, partial derivatives give a
means for computing it.

When E = Rn and F = Rm, for any function f : Rn → Rm, it is easy to compute the

partial derivatives
∂fi

∂xj

(a). We simply treat the function fi : R
n → R as a function of its j-th

argument, leaving the others fixed, and compute the derivative as in definition D.1.1, that
is, the usual derivative. For example, consider the function f : R2 → R2, defined such that,

f(r, θ) = (r cos θ, r sin θ).
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Then, we have

J(f)(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)

and the Jacobian (determinant) has value det(J(f)(r, θ)) = r.

In the case where E = R (or E = C), for any function f : R → F (or f : C → F ), the
Jacobian matrix of Df(a) is a column vector. In fact, this column vector is just D1f(a).
Then, for every λ ∈ R (or λ ∈ C),

Df(a)(λ) = λD1f(a).

This case is sufficiently important to warrant a definition.

Definition D.2.1. Given a function f : R → F (or f : C → F ), where F is a normed affine
space, the vector

Df(a)(1) = D1f(a)

is called the vector derivative, or velocity vector (in the real case) at a. We usually identify
Df(a) with its Jacobian matrix D1f(a), which is the column vector corresponding to D1f(a).

By abuse of notation, we also let Df(a) denote the vector Df(a)(
−→
1 ) = D1f(a).

When E = R, the physical interpretation is that f defines a (parametric) curve which is
the trajectory of some particle moving in Rm as a function of time, and the vector D1f(a)
is the velocity of the moving particle f(t) at t = a. It is often useful to consider functions
f : [a, b] → F from a closed interval [a, b] ⊆ R to a normed affine space F , and its derivative
Df(a) on [a, b], even though [a, b] is not open. In this case, as in the case of a real-valued
function, we define the right derivative D1f(a+) at a, and the left derivative D1f(b−) at
b, and we assume their existence. For example, when E = [0, 1], and F = R3, a function
f : [0, 1] → R3 defines a (parametric) curve in R3. Letting f = (f1, f2, f3), its Jacobian
matrix at a ∈ R is

J(f)(a) =




∂f1
∂t

(a)

∂f2
∂t

(a)

∂f3
∂t

(a)




When E = R2, and F = R3, a function ϕ : R2 → R3 defines a parametric surface. Letting
ϕ = (f, g, h), its Jacobian matrix at a ∈ R2 is

J(ϕ)(a) =




∂f

∂u
(a)

∂f

∂v
(a)

∂g

∂u
(a)

∂g

∂v
(a)

∂h

∂u
(a)

∂h

∂v
(a)



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When E = R3, and F = R, for a function f : R3 → R, the Jacobian matrix at a ∈ R3 is

J(f)(a) =

(
∂f

∂x
(a)

∂f

∂y
(a)

∂f

∂z
(a)

)
.

More generally, when f : Rn → R, the Jacobian matrix at a ∈ Rn is the row vector

J(f)(a) =

(
∂f

∂x1

(a) · · · ∂f

∂xn

(a)

)
.

Its transpose is a column vector called the gradient of f at a, denoted as gradf(a) or ∇f(a).

Then, given any −→v ∈ Rn, note that

Df(a)(−→v ) =
∂f

∂x1

(a) v1 + · · ·+ ∂f

∂xn

(a) vn = gradf(a) · −→v ,

the scalar product of gradf(a) and −→v .

When E, F , and G have finite dimensions, and (a0, (
−→u1 , . . . ,

−→up )) is an affine frame for

E, (b0, (
−→v1 , . . . ,−→vn )) is an affine frame for F , and (c0, (

−→w1, . . . ,
−→wm)) is an affine frame for

G, if A is an open subset of E, B is an open subset of F , for any functions f : A → F
and g : B → G, such that f(A) ⊆ B, for any a ∈ A, letting b = f(a), and h = g ◦ f , if
Df(a) exists and Dg(b) exists, by lemma D.1.9, the Jacobian matrix J(h)(a) = J(g ◦ f)(a)
w.r.t the bases (−→u1 , . . . ,

−→up ) and (−→w1, . . . ,
−→wm) is the product of the Jacobian matrices J(g)(b)

w.r.t the bases (−→v1 , . . . ,−→vn ) and (−→w1, . . . ,
−→wm), and J(f)(a) w.r.t the bases (−→u1 , . . . ,

−→up ) and

(−→v1 , . . . ,−→vn ):

J(h)(a) =




∂1g1(b) ∂2g1(b) . . . ∂ng1(b)
∂1g2(b) ∂2g2(b) . . . ∂ng2(b)

...
...

. . .
...

∂1gm(b) ∂2gm(b) . . . ∂ngm(b)







∂1f1(a) ∂2f1(a) . . . ∂pf1(a)
∂1f2(a) ∂2f2(a) . . . ∂pf2(a)

...
...

. . .
...

∂1fn(a) ∂2fn(a) . . . ∂pfn(a)




or

J(h)(a) =




∂g1
∂y1

(b)
∂g1
∂y2

(b) . . .
∂g1
∂yn

(b)

∂g2
∂y1

(b)
∂g2
∂y2

(b) . . .
∂g2
∂yn

(b)

...
...

. . .
...

∂gm
∂y1

(b)
∂gm
∂y2

(b) . . .
∂gm
∂yn

(b)







∂f1
∂x1

(a)
∂f1
∂x2

(a) . . .
∂f1
∂xp

(a)

∂f2
∂x1

(a)
∂f2
∂x2

(a) . . .
∂f2
∂xp

(a)

...
...

. . .
...

∂fn
∂x1

(a)
∂fn
∂x2

(a) . . .
∂fn
∂xp

(a)




Thus, we have the familiar formula

∂hi

∂xj

(a) =

k=n∑

k=1

∂gi

∂yk
(b)

∂fk

∂xj

(a).
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Given two normed affine spaces E and F of finite dimension, given an open subset A of
E, if a function f : A → F is differentiable at a ∈ A, then its Jacobian matrix is well defined.

� One should be warned that the converse is false. There are functions such that all the
partial derivatives exist at some a ∈ A, but yet, the function is not differentiable at a,

and not even continuous at a. For example, consider the function f : R2 → R, defined such
that, f(0, 0) = 0, and

f(x, y) =
x2y

x4 + y2
if (x, y) 6= (0, 0).

For any −→u 6= −→
0 , letting −→u =

(
h
k

)
, we have

f(
−→
0 + t−→u )− f(

−→
0 )

t
=

h2k

t2h4 + k2
,

so that

Duf(0) =

{
h2

k
if k 6= 0

0 if k = 0.

Thus, Duf(0) exists for all −→u 6= −→
0 . On the other hand, if Df(0) existed, it would be

a linear map Df(0) : R2 → R represented by a row matrix (α β), and we would have

Duf(0) = Df(0)(−→u ) = αh + βk, but the explicit formula for Duf(0) is not linear. As a
matter of fact, the function f is not continuous at (0, 0). For example, on the parabola
y = x2, f(x, y) = 1

2
, and when we approach the origin on this parabola, the limit is 1

2
, when

in fact, f(0, 0) = 0.

However, there are sufficient conditions on the partial derivatives for Df(a) to exist,
namely continuity of the partial derivatives. If f is differentiable on A, then f defines a

function Df : A → L(−→E ;
−→
F ). It turns out that the continuity of the partial derivatives on

A is a necessary and sufficient condition for Df to exist and to be continuous on A. We
first state a lemma which plays an important role in the proof of several major results of
differential calculus. If E is an affine space (over R or C), given any two points a, b ∈ E, the
closed segment [a, b] is the set of all points a + λ(b − a), where 0 ≤ λ ≤ 1, λ ∈ R, and the
open segment ]a, b[ is the set of all points a+ λ(b− a), where 0 < λ < 1, λ ∈ R.

Lemma D.2.2. Let E and F be two normed affine spaces, let A be an open subset of E,

and let f : A → F be a continuous function on A. Given any a ∈ A and any
−→
h 6= −→

0 in
−→
E , if the closed segment [a, a+

−→
h ] is contained in A, if f : A → F is differentiable at every

point of the open segment ]a, a +
−→
h [, and

max
x∈]a,a+h[

‖Df(x)‖ ≤ M,

for some M ≥ 0, then ∥∥∥∥f(a+
−→
h )− f(a)

∥∥∥∥ ≤ M

∥∥∥∥
−→
h

∥∥∥∥ .
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As a corollary, if L :
−→
E → −→

F is a continuous linear map, then

∥∥∥∥f(a+
−→
h )− f(a)− L(

−→
h )

∥∥∥∥ ≤ M

∥∥∥∥
−→
h

∥∥∥∥ ,

where M = maxx∈]a,a+h[ ‖Df(x)− L‖.

The above lemma is sometimes called the “mean-value theorem”. Lemma D.2.2 can be
used to show the following important result.

Lemma D.2.3. Given two normed affine spaces E and F , where E is of finite dimension
n, and where (a0, (

−→u1 , . . . ,
−→un)) is a frame of E, given any open subset A of E, given any

function f : A → F , the derivative Df : A → L(−→E ;
−→
F ) is defined and continuous on A iff

every partial derivative ∂jf (or
∂f

∂xj

) is defined and continuous on A, for all j, 1 ≤ j ≤ n.

As a corollary, if F is of finite dimension m, and (b0, (
−→v1 , . . . ,−→vm)) is a frame of F , the

derivative Df : A → L(−→E ;
−→
F ) is defined and continuous on A iff every partial derivative

∂jfi (or
∂fi

∂xj

) is defined and continuous on A, for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Lemma D.2.3 gives a necessary and sufficient condition for the existence and continuity
of the derivative of a function on an open set. It should be noted that a more general version
of lemma D.2.3 holds, assuming that E = (E1, a1) ⊕ · · · ⊕ (En, an), or E = E1 × · · · × En,
and using the more general partial derivatives Djf introduced before lemma D.1.14.

Definition D.2.4. Given two normed affine spaces E and F , and an open subset A of E, we
say that a function f : A → F is of class C0 on A, or a C0-function on A, iff f is continuous
on A. We say that f : A → F is of class C1 on A, or a C1-function on A, iff Df exists and
is continuous on A.

Since the existence of the derivative on an open set implies continuity, a C1-function is of
course a C0-function. Lemma D.2.3 gives a necessary and sufficient condition for a function
f to be a C1-function (when E is of finite dimension). It is easy to show that the composition
of C1-functions (on appropriate open sets) is a C1-function.

It is also possible to define higher-order derivatives. For a complete treatment of higher-
order derivatives and of various versions of the Taylor formula, see Lang [48].
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[30] G. Farin. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design,
3:83–127, 1986.

[31] Gerald Farin. NURB Curves and Surfaces, from Projective Geometry to practical use.
AK Peters, first edition, 1995.

[32] Gerald Farin. Curves and Surfaces for CAGD. Academic Press, fourth edition, 1998.

[33] Olivier Faugeras. Three-Dimensional Computer Vision, A geometric Viewpoint. the
MIT Press, first edition, 1996.

[34] D.J. Filip. Adapative subdivision algorithms for a set of Bézier triangles. Computer
Aided Design, 18:74–78, 1986.

[35] J.-C. Fiorot and P. Jeannin. Courbes et Surfaces Rationelles. RMA 12. Masson, first
edition, 1989.

[36] J.-C. Fiorot and P. Jeannin. Courbes Splines Rationelles. RMA 24. Masson, first edition,
1992.

[37] William Fulton. Algebraic Curves. Advanced Book Classics. Addison Wesley, first
edition, 1989.

[38] R. N. Goldman. Subdivision algorithms for Bézier triangles. Computer Aided Design,
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