
3.13. PUSHDOWN AUTOMATA 237

3.13 Pushdown Automata

We have seen that the regular languages are exactly the
languages accepted by DFA’s or NFA’s. The context-free
languages are exactly the languages accepted by push-
down automata, for short, PDA’s. However, although
there are two versions of PDA’s, deterministic and non-
deterministic, contrary to the fact that every NFA can be
converted to a DFA, nondeterministic PDA’s are strictly
more poweful than deterministic PDA’s (DPDA’s). In-
deed, there are context-free languages that cannot be ac-
cepted by DPDA’s.

Thus, the natural machine model for the context-free lan-
guages is nondeterministic, and for this reason, we just
use the abbreviation PDA, as opposed to NPDA.



238 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

We adopt a definition of a PDA in which the pushdown
store, or stack, must not be empty for a move to take
place. Other authors allow PDA’s to make move when
the stack is empty. Novices seem to be confused by such
moves, and this is why we do not allow moves with an
empty stack.

Intuitively, a PDA consists of an input tape, a nondeter-
ministic finite-state control, and a stack.

Given any set X possibly infinite, let Pfin(X) be the set
of all finite subsets of X .



3.13. PUSHDOWN AUTOMATA 239

Definition 3.13.1 A pushdown automaton is a 7-tuple
M = (Q, Σ, Γ, δ, q0, Z0, F ), where

• Q is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite pushdown store (or stack) alphabet ;

• q0 ∈ Q is the start state (or initial state);

• Z0 ∈ Γ is the initial stack symbol (or bottom marker );

• F ⊆ Q is the set of final (or accepting) states ;

• δ: Q×(Σ∪{ε})×Γ → Pfin(Q×Γ∗) is the transition
function .

A transition is of the form (q, γ) ∈ δ(p, a, Z), where
p, q ∈ Q, Z ∈ Γ, γ ∈ Γ∗ and a ∈ Σ ∪ {ε}. A transition
of the form (q, γ) ∈ δ(p, ε, Z) is called an ε-transition
(or ε-move).



240 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The way a PDA operates is explained in terms of In-
stantaneous Descriptions , for short ID’s. Intuitively,
an Instantaneous Description is a snapshot of the PDA.
An ID is a triple of the form

(p, u, α) ∈ Q × Σ∗ × Γ∗.

The idea is that p is the current state, u is the remaining
input, and α represents the stack.

It is important to note that we use the convention that
the leftmost symbol in α represents the topmost stack
symbol.

Given a PDA M , we define a relation �M between pairs
of ID’s. This is very similar to the derivation relation
=⇒G associated with a context-free grammar.



3.13. PUSHDOWN AUTOMATA 241

Intuitively, a PDA scans the input tape symbol by symbol
from left to right, making moves that cause a change of
state, an update to the stack (but only at the top), and
either advancing the reading head to the next symbol, or
not moving the reading head during an ε-move.

Definition 3.13.2 Given a PDA

M = (Q, Σ, Γ, δ, q0, Z0, F ),

the relation �M is defined as follows:

(1) For any move (q, γ) ∈ δ(p, a, Z), where p, q ∈ Q, Z ∈
Γ, a ∈ Σ, for every ID of the form (p, av, Zα), we have

(p, av, Zα) �M (q, v, γα).

(2) For any move (q, γ) ∈ δ(p, ε, Z), where p, q ∈ Q, Z ∈
Γ, for every ID of the form (p, u, Zα), we have

(p, u, Zα) �M (q, u, γα).

As usual, �+
M is the transitive closure of �M , and �∗

M is
the reflexive and transitive closure of �M .



242 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

A move of the form

(p, au, Zα) �M (q, u, α)

where a ∈ Σ ∪ {ε}, is called a pop move.

A move on a real input symbol a ∈ Σ causes this input
symbol to be consumed, and the reading head advances
to the next input symbol. On the other hand, during an
ε-move, the reading head stays put.

When
(p, u, α) �∗

M (q, v, β)

we say that we have a computation.

There are several equivalent ways of defining acceptance
by a PDA.



3.13. PUSHDOWN AUTOMATA 243

Definition 3.13.3 Given a PDA

M = (Q, Σ, Γ, δ, q0, Z0, F ),

the following languages are defined:

(1) T (M) = {w ∈ Σ∗ | (q0, w, Z0) �∗
M (f, ε, α), where

f ∈ F , and α ∈ Γ∗}.
We say that T (M) is the language accepted by M
by final state.

(2) N(M) = {w ∈ Σ∗ | (q0, w, Z0) �∗
M (q, ε, ε), where

q ∈ Q}.
We say that N(M) is the language accepted by M
by empty stack .

(3) L(M) = {w ∈ Σ∗ | (q0, w, Z0) �∗
M (f, ε, ε), where

f ∈ F}.
We say that L(M) is the language accepted by M
by final state and empty stack .

In all cases, note that the input w must be consumed
entirely.



244 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The following lemma shows that the acceptance mode
does not matter for PDA’s. As we will see shortly, it does
matter for DPDAs.

Lemma 3.13.4 For any language L, the following facts
hold.

(1) If L = T (M) for some PDA M , then L = L(M ′)
for some PDA M ′.

(2) If L = N(M) for some PDA M , then L = L(M ′)
for some PDA M ′.

(3) If L = L(M) for some PDA M , then L = T (M ′)
for some PDA M ′.

(4) If L = L(M) for some PDA M , then L = N(M ′)
for some PDA M ′.

In view of lemma 3.13.4, the three acceptance modes
T, N, L are equivalent.



3.13. PUSHDOWN AUTOMATA 245

The following PDA accepts the language

L = {anbn | n ≥ 1}
by empty stack.

Q = {1, 2}, Γ = {Z0, a};
(1, a) ∈ δ(1, a, Z0),

(1, aa) ∈ δ(1, a, a),

(2, ε) ∈ δ(1, b, a),

(2, ε) ∈ δ(2, b, a).



246 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The following PDA accepts the language

L = {anbn | n ≥ 1}
by final state (and also by empty stack).

Q = {1, 2, 3}, Γ = {Z0, A, a}, F = {3};
(1, A) ∈ δ(1, a, Z0),

(1, aA) ∈ δ(1, a, A),

(1, aa) ∈ δ(1, a, a),

(2, ε) ∈ δ(1, b, a),

(2, ε) ∈ δ(2, b, a),

(3, ε) ∈ δ(1, b, A),

(3, ε) ∈ δ(2, b, A).



3.13. PUSHDOWN AUTOMATA 247

DPDA’s are defined as follows.

Definition 3.13.5 A PDA

M = (Q, Σ, Γ, δ, q0, Z0, F )

is a deterministic PDA (for short, DPDA), iff the fol-
lowing conditions hold for all (p, Z) ∈ Q × Γ: either

(1) |δ(p, a, Z)| = 1 for all a ∈ Σ, and δ(p, ε, Z) = ∅, or

(2) δ(p, a, Z) = ∅ for all a ∈ Σ, and |δ(p, ε, Z)| = 1.

A DPDA operates in realtime iff it has no ε-transitions.



248 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

It turns out that for DPDA’s the most general acceptance
mode is by final state. Indeed, there are language that
can only be accepted deterministically as T (M). The
language

L = {ambn | m ≥ n ≥ 1}
is such an example. The problem is that amb is a prefix
of all strings ambn, with m ≥ n ≥ 2.

A language L is a deterministic context-free language
iff L = T (M) for some DPDA M .

It is easily shown that if L = N(M) (or L = L(M)) for
some DPDA M , then L = T (M ′) for some DPDA M ′

easily constructed from M .



3.13. PUSHDOWN AUTOMATA 249

A PDA is unambiguous iff for every w ∈ Σ∗, there is at
most one computation

(q0, w, Z0) �∗ IDn,

where IDn is an accepting ID.

There are context-free languages that are not accepted
by any DPDA. For example, it can be shown that the
languages

L1 = {anbn | n ≥ 1} ∪ {anb2n | n ≥ 1},
and

L2 = {wwR | w ∈ {a, b}∗},
are not accepted by any DPDA.

Also note that unambiguous grammars for these languages
can be easily given.

We now show that every context-free language is accepted
by a PDA.



250 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

3.14 From Context-Free Grammars To PDA’s

We show how a PDA can be easily constructed from a
context-free grammar. Although simple, the construction
is not practical for parsing purposes, since the resulting
PDA is horribly nondeterministic.

Given a context-free grammar G = (V, Σ, P, S), we de-
fine a one-state PDA M as follows:

Q = {q0}; Γ = V ; Z0 = S; F = ∅;

For every rule (A → α) ∈ P , there is a transition

(q0, α) ∈ δ(q0, ε, A).

For every a ∈ Σ, there is a transition

(q0, ε) ∈ δ(q0, a, a).

The intuition is that a computation of M mimics a left-
most derivation in G. One might say that we have a
“pop/expand” PDA.



3.14. FROM CONTEXT-FREE GRAMMARS TO PDA’S 251

Lemma 3.14.1 Given any context-free grammar
G = (V, Σ, P, S), the PDA M just described accepts
L(G) by empty stack, i.e., L(G) = N(M).

Proof . The following two claims are proved by induction.

Claim 1:

For all u, v ∈ Σ∗ and all α ∈ NV ∗ ∪ {ε}, if S
∗

=⇒
lm

uα,

then
(q0, uv, S) �∗ (q0, v, α).

Claim 2:

For all u, v ∈ Σ∗ and all α ∈ V ∗, if

(q0, uv, S) �∗ (q0, v, α)

then S
∗

=⇒
lm

uα.

We now show how a PDA can be converted to a context-
free grammar



252 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

3.15 From PDA’s To Context-Free Grammars

The construction of a context-free grammar from a PDA
is not really difficult, but it is quite messy. The construc-
tion is simplified if we first convert a PDA to an equivalent
PDA such that for every move (q, γ) ∈ δ(p, a, Z) (where
a ∈ Σ ∪ {ε}), we have |γ| ≤ 2. In some sense, we form a
kind of PDA in Chomsky Normal Form.

Lemma 3.15.1 Given any PDA

M = (Q, Σ, Γ, δ, q0, Z0, F ),

another PDA

M ′ = (Q′, Σ, Γ′, δ′, q′0, Z
′
0, F

′)

can be constructed, such that L(M) = L(M ′) and the
following conditions hold:

(1) There is a one-to-one correspondence between ac-
cepting computations of M and M ′;

(2) If M has no ε-moves, then M ′ has no ε-moves; If
M is unambiguous, then M ′ is unambiguous;

(3) For all p ∈ Q′, all a ∈ Σ ∪ {ε}, and all Z ∈ Γ′, if
(q, γ) ∈ δ′(p, a, Z), then q �= q′0 and |γ| ≤ 2.



3.15. FROM PDA’S TO CONTEXT-FREE GRAMMARS 253

The crucial point of the construction is that accepting
computations of a PDA accepting by empty stack and
final state can be decomposed into subcomputations of
the form

(p, uv, Zα) �∗ (q, v, α),

where for every intermediate ID (s, w, β), we have β =
γα for some γ �= ε.

The nonterminals of the grammar constructed from the
PDA M are triples of the form [p, Z, q] such that

(p, u, Z) �+ (q, ε, ε)

for some u ∈ Σ∗.

Given a PDA

M = (Q, Σ, Γ, δ, q0, Z0, F )

satisfying the conditions of lemma 3.15.1, we construct a
context-free grammar G = (V, Σ, P, S) as follows:



254 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

V = {[p, Z, q] | p, q ∈ Q, Z ∈ Γ} ∪ Σ ∪ {S},
where S is a new symbol, and the productions are defined
as follows: for all p, q ∈ Q, all a ∈ Σ∪{ε}, all X,Y, Z ∈
Γ, we have:

(1) S → ε ∈ P , if q0 ∈ F ;

(2) S → a ∈ P , if (f, ε) ∈ δ(q0, a, Z0), and f ∈ F ;

(3) S → a[p, X, f ] ∈ P , for every f ∈ F , if (p, X) ∈
δ(q0, a, Z0);

(4) S → a[p, X, s][s, Y, f ] ∈ P , for every f ∈ F , for
every s ∈ Q, if (p, XY ) ∈ δ(q0, a, Z0);

(5) [p, Z, q] → a ∈ P , if (q, ε) ∈ δ(p, a, Z) and p �= q0;

(6) [p, Z, s] → a[q, X, s] ∈ P , for every s ∈ Q, if (q, X) ∈
δ(p, a, Z) and p �= q0;

(7) [p, Z, t] → a[q, X, s][s, Y, t] ∈ P , for every s, t ∈ Q,
if (q, XY ) ∈ δ(p, a, Z) and p �= q0.



3.15. FROM PDA’S TO CONTEXT-FREE GRAMMARS 255

Lemma 3.15.2 Given any PDA

M = (Q, Σ, Γ, δ, q0, Z0, F )

satisfying the conditions of lemma 3.15.1, the context-
free grammar G = (V, Σ, P, S) constructed as above
generates L(M), i.e., L(G) = L(M). Furthermore, G
is unambiguous iff M is unambiguous.

Proof . We have to prove that

L(G) = {w ∈ Σ+ | (q0, w, Z0) �+ (f, ε, ε), f ∈ F}
∪ {ε | q0 ∈ F}.

For this, the following claim is proved by induction.



256 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Claim:

For all p, q ∈ Q, all Z ∈ Γ, all k ≥ 1, and all w ∈ Σ∗,

[p, Z, q]
k

=⇒
lm

w iff (p, w, Z) �+ (q, ε, ε).

Using the claim, it is possible to prove that L(G) =
L(M).

In view of lemmas 3.14.1 and 3.15.2, the family of context-
free languages is exactly the family of languages accepted
by PDA’s. It is harder to give a grammatical character-
ization of the deterministic context-free languages. One
method is to use Knuth LR(k)-grammars .

Another characterization can be given in terms of strict
deterministic grammars due to Harrison and Havel.



3.16. THE CHOMSKY-SCHUTZENBERGER THEOREM 257

3.16 The Chomsky-Schutzenberger Theorem

Unfortunately, there is no characterization of the context-
free languages analogous to the characterization of the
regular languages in terms of closure properties (R(Σ)).

However, there is a famous theorem due to Chomsky and
Schutzenberger showing that every context-free language
can be obtained from a special language, the Dyck set ,
in terms of homomorphisms, inverse homomorphisms and
intersection with the regular languages.

Definition 3.16.1 Given the alphabet Σ2 = {a, b, a, b},
define the relation 
 on Σ∗

2 as follows: For all u, v ∈ Σ∗
2,

u 
 v iff ∃x, y ∈ Σ∗
2, u = xaay, v = xy or

u = xbby, v = xy.

Let 
∗ be the reflexive and transitive closure of 
, and
let D2 = {w ∈ Σ∗

2 | w 
∗ ε}. This is the Dyck set on
two letters.

It is not hard to prove that D2 is context-free.



258 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Theorem 3.16.2 (Chomsky-Schutzenberger)
For every PDA, M = (Q, Σ, Γ, δ, q0, Z0, F ), there is a
regular language R and two homomorphisms g, h such
that

L(M) = h(g−1(D2) ∩ R).

Observe that Theorem 3.16.2 yields another proof of the
fact that the language accepted a PDA is context-free.

Indeed, the context-free languages are closed under, ho-
momorphisms, inverse homomorphisms, intersection with
the regular languages, and D2 is context-free.

From the characterization of a-transducers in terms of ho-
momorphisms, inverse homomorphisms, and intersection
with regular languages, we deduce that every context-free
language is the image of D2 under some a-transduction.


