
3.10. TREE DOMAINS AND GORN TREES 211

3.10 Tree Domains and Gorn Trees

Derivation trees play a very important role in parsing
theory and in the proof of a strong version of the pumping
lemma for the context-free languages known as Ogden’s
lemma. Thus, it is important to define derivation trees
rigorously. We do so using Gorn trees .

Let N+ = {1, 2, 3, . . .}.

212 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Definition 3.10.1 A tree domain D is a nonempty
subset of strings in N∗+ satisfying the conditions:

(1) For all u, v ∈ N∗+, if uv ∈ D, then u ∈ D.

(2) For all u ∈ N∗+, for every i ∈ N+, if ui ∈ D then
uj ∈ D for every j, 1 ≤ j ≤ i.

The tree domain

D = {ε, 1, 2, 11, 21, 22, 221, 222, 2211}
is represented as follows:

ε
↙ ↘

1 2
↙ ↙ ↘

11 21 22
↙ ↘

221 222
↓

2211

3.10. TREE DOMAINS AND GORN TREES 213

A tree labeled with symbols from a set ∆ is defined as
follows.

Definition 3.10.2 Given a set ∆ of labels, a ∆-tree
(for short, a tree) is a total function t : D → ∆, where
D is a tree domain.

The domain of a tree t is denoted as dom(t). Every string
u ∈ dom(t) is called a tree address or a node.

Let ∆ = {f, g, h, a, b}. The tree t : D → ∆, where D
is the tree domain of the previous example and t is the
function whose graph is

{(ε, f), (1, h), (2, g), (11, a), (21, a),

(22, f), (221, h), (222, b), (2211, a)}
is represented as follows:

214 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

f
↙ ↘

h g
↙ ↙ ↘

a a f
↙ ↘

h b
↓
a

The outdegree (sometimes called ramification) r(u) of a
node u is the cardinality of the set

{i | ui ∈ dom(t)}.

3.10. TREE DOMAINS AND GORN TREES 215

Note that the outdegree of a node can be infinite. Most of
the trees that we shall consider will be finite-branching ,
that is, for every node u, r(u) will be an integer, and
hence finite. If the outdegree of all nodes in a tree is
bounded by n, then we can view the domain of the tree
as being defined over {1, 2, . . . , n}∗.

A node of outdegree 0 is called a leaf . The node whose
address is ε is called the root of the tree. A tree is finite
if its domain dom(t) is finite. Given a node u in dom(t),
every node of the form ui in dom(t) with i ∈ N+ is called
a son (or immediate successor) of u.

216 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Tree addresses are totally ordered lexicographically :
u ≤ v if either u is a prefix of v or, there exist strings
x, y, z ∈ N∗+ and i, j ∈ N+, with i < j, such that
u = xiy and v = xjz.

In the first case, we say that u is an ancestor
(or predecessor) of v (or u dominates v) and in the
second case, that u is to the left of v.

If y = ε and z = ε, we say that xi is a left brother (or
left sibling) of xj, (i < j). Two tree addresses u and v
are independent if u is not a prefix of v and v is not a
prefix of u.

3.10. TREE DOMAINS AND GORN TREES 217

Given a finite tree t, the yield of t is the string

t(u1)t(u2) · · · t(uk),

where u1, u2, . . . , uk is the sequence of leaves of t in lexi-
cographic order.

For example, the yield of the tree below is aaab:

f
↙ ↘

h g
↙ ↙ ↘

a a f
↙ ↘

h b
↓
a

218 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Given a finite tree t, the depth of t is the integer

d(t) = max{|u| | u ∈ dom(t)}.

Given a tree t and a node u in dom(t), the subtree rooted
at u is the tree t/u, whose domain is the set

{v | uv ∈ dom(t)}
and such that t/u(v) = t(uv) for all v in dom(t/u).

Another important operation is the operation of tree re-
placement (or tree substitution).

3.10. TREE DOMAINS AND GORN TREES 219

Definition 3.10.3 Given two trees t1 and t2 and a tree
address u in t1, the result of substituting t2 at u in t1,
denoted by t1[u← t2], is the function whose graph is the
set of pairs

{(v, t1(v)) | v ∈ dom(t1), u is not a prefix of v}
∪ {(uv, t2(v)) | v ∈ dom(t2)}.

Let t1 and t2 be the trees defined by the following dia-
grams:

220 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Tree t1

f
↙ ↘

h g
↙ ↙ ↘

a a f
↙ ↘

h b
↓
a

Tree t2

g
↙ ↘

a b

3.10. TREE DOMAINS AND GORN TREES 221

The tree t1[22← t2] is defined by the following diagram:

f
↙ ↘

h g
↙ ↙ ↘

a a g
↙ ↘

a b

We can now define derivation trees and relate derivations
to derivation trees.

222 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

3.11 Derivations Trees

Definition 3.11.1 Given a context-free grammar
G = (V, Σ, P, S), for any A ∈ N , an A-derivation tree
for G is a (V ∪ {ε})-tree t (a tree with set of labels
(V ∪ {ε})) such that:

(1) t(ε) = A;

(2) For every nonleaf node u ∈ dom(t), if u1, . . . , uk are
the successors of u, then either there is a production
B → X1 · · ·Xk in P such that t(u) = B and t(ui) =
Xi for all i, 1 ≤ i ≤ k, or B → ε ∈ P , t(u) = B and
t(u1) = ε. A complete derivation (or parse tree) is
an S-tree whose yield belongs to Σ∗.

Derivations trees are associated to derivations inductively
as follows.

3.11. DERIVATIONS TREES 223

Definition 3.11.2 Given a context-free grammar
G = (V, Σ, P, S), for any A ∈ N , if π : A

n
=⇒ α is

a derivation in G, we construct an A-derivation tree tπ
with yield α as follows.

(1) If n = 0, then tπ is the one-node tree such that
dom(tπ) = {ε} and tπ(ε) = A.

(2) If A
n−1
=⇒ λBρ =⇒ λγρ = α, then if t1 is the A-

derivation tree with yield λBρ associated with the

derivation A
n−1
=⇒ λBρ, and if t2 is the tree associated

with the production B → γ (that is, if

γ = X1 · · ·Xk,

then dom(t2) = {ε, 1, . . . , k}, t2(ε) = B, and t2(i) =
Xi for all i, 1 ≤ i ≤ k, or if γ = ε, then dom(t2) =
{ε, 1}, t2(ε) = B, and t2(1) = ε), then

tπ = t1[u← t2],

where u is the address of the leaf labeled B in t1. The
tree tπ is the A-derivation tree associated with the
derivation A

n
=⇒ α.

224 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The following lemma is easily shown.

Lemma 3.11.3 Let G = (V, Σ, P, S) be a context-free

grammar. For any derivation A
n

=⇒ α, there is a
unique A-derivation tree associated with this deriva-
tion, with yield α. Conversely, for any A-derivation
tree t with yield α, there a unique leftmost derivation
A

∗
=⇒
lm

α in G having t as its associated derivation

tree.

We will now prove a strong version of the pumping lemma
for context-free languages due to Bill Ogden (1968).

3.12. OGDEN’S LEMMA 225

3.12 Ogden’s Lemma

Ogden’s lemma states some combinatorial properties of
parse trees that are deep enough. The yield w of such a
parse tree can be split into 5 substrings u, v, x, y, z such
that

w = uvxyz,

where u, v, x, y, z satisfy certain conditions. It turns out
that we get a more powerful version of the lemma if we
allow ouselves to mark certain occurrences of symbols
in w before invoking the lemma. We can imagine that
marked occurrences in a nonempty string w are occur-
rences of symbols in w in boldface, or red, or any given
color. For example, given w = aaababbbaa, we can mark
the symbols of even index as follows:

aaababbbaa.

226 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

A marking of a nonnull string w: {1, . . . , n} → Σ is any
function m: {1, . . . , n} → {0, 1}. Then, a letter wi in w
is a marked occurrence iff m(i) = 1, and an unmarked
occurrence if m(i) = 0. The number of marked occur-
rences in w is

n∑

i=1

m(i).

3.12. OGDEN’S LEMMA 227

Lemma 3.12.1 For every context-free grammar G,
there is some integer K > 1 such that, for every string
w ∈ Σ+, for every marking of w, if w ∈ L(G) and w
contains at least K marked occurrences, then there
exists some decomposition of w as w = uvxyz, and
some A ∈ N , such that the following properties hold:

(1) There are derivations S
+

=⇒ uAz, A
+

=⇒ vAy, and

A
+

=⇒ x, so that

uvnxynz ∈ L(G)

for all n ≥ 0 (the pumping property);

(2) x contains some marked occurrence;

(3) Either (both u and v contain some marked occur-
rence), or (both y and z contain some marked oc-
currence);

(4) vxy contains less than K marked occurrences.

228 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Proof . The general idea is to make sure that K is large
enough so that parse trees with yield w contain enough
repeated nonterminals along some path from the root to
some marked leaf. Let r = |N |, and let

p = max{2, max{|α| | (A→ α) ∈ P}}.
We claim that K = p2r+3 does the job.

The condition p ≥ 2 is needed to ensure that pm ≤ pn

implies that m ≤ n.

The key concept of the proof is the notion of a B-node.
Given a parse tree, a B-node is a node with at least
two immediate successors u1, u2, such that for i = 1, 2,
either ui is a marked leaf, or ui has some marked leaf as
a descendant.

We construct a path from the root to some marked leaf, so
that for every B-node, we pick the leftmost successor with
the maximum number of marked leaves as descendants.

3.12. OGDEN’S LEMMA 229

The “standard pumping lemma” due to Bar-Hillel, Per-
les, and Shamir, is obtained by letting all occurrences be
marked in w ∈ L(G).

Lemma 3.12.2 For every context-free grammar G
(without ε-rules), there is some integer K > 1 such
that, for every string w ∈ Σ+, if w ∈ L(G) and
|w| ≥ K, then there exists some decomposition of w as
w = uvxyz, and some A ∈ N , such that the following
properties hold:

(1) There are derivations S
+

=⇒ uAz, A
+

=⇒ vAy, and

A
+

=⇒ x, so that

uvnxynz ∈ L(G)

for all n ≥ 0 (the pumping property);

(2) x �= ε;

(3) Either v �= ε or y �= ε;

(4) |vxy| ≤ K.

230 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

A stronger version could be stated, and we are just fol-
lowing tradition in stating this standard version of the
pumping lemma.

The pumping lemma or Ogden’s lemma can be used to
show that certain languages are not context-free.

The method is to proceed by contradiction, i.e., to assume
(contrary to what we wish to prove) that a language L is
indeed context-free, and derive a contradiction of Ogden’s
lemma (or of the pumping lemma).

Thus, as in the case of the regular languages, it would
be helpful to see what the negation of Ogden’s lemma is,
and for this, we first state Ogden’s lemma as a logical
formula.

3.12. OGDEN’S LEMMA 231

For any nonnull string w: {1, . . . , n} → Σ, for any mark-
ing m: {1, . . . , n} → {0, 1} of w, for any substring y of
w, where w = xyz, with |x| = h and k = |y|, the number
of marked occurrences in y, denoted as |m(y)|, is defined
as

|m(y)| =
i=h+k∑

i=h+1

m(i).

We will also use the following abbreviations:

nat = {0, 1, 2, . . .},
nat32 = {32, 33, . . .},

A ≡ w = uvxyz,

B ≡ |m(x)| ≥ 1,

C ≡ (|m(u)| ≥ 1 ∧ |m(v)| ≥ 1)

∨ (|m(y)| ≥ 1 ∧ |m(z)| ≥ 1),

D ≡ |m(vxy)| < K,

P ≡ ∀n: nat (uvnxynz ∈ L(D)).

232 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Ogden’s lemma can then be stated as

∀G: CFG ∃K: nat32 ∀w: Σ∗ ∀m: marking

((w ∈ L(D) ∧ |m(w)| ≥ K)

⊃ (∃u, v, x, y, z: Σ∗ A ∧B ∧ C ∧D ∧ P)).

Recalling that

¬(P ∧Q) ≡ ¬P ∨ ¬Q ≡ P ⊃ ¬Q

and
¬(P ⊃ Q) ≡ P ∧ ¬Q,

the negation of Ogden’s lemma can be stated as

∃G: CFG ∀K: nat32 ∃w: Σ∗ ∃m: marking

((w ∈ L(D) ∧ |m(w)| ≥ K)

∧ (∀u, v, x, y, z: Σ∗ (A ∧B ∧ C ∧D) ⊃ ¬P)).

3.12. OGDEN’S LEMMA 233

Since
¬P ≡ ∃n: nat (uvnxynz /∈ L(D)),

in order to show that Ogden’s lemma is contradicted, one
needs to show that for some context-free grammar G, for
every K ≥ 2, there is some string w ∈ L(D) and some
marking m of w with at least K marked occurrences in w,
such that for every possible decomposition w = uvxyz
satisfying the constraints A ∧ B ∧ C ∧D, there is some
n ≥ 0 such that uvnxynz /∈ L(D).

When proceeding by contradiction, we have a language
L that we are (wrongly) assuming to be context-free and
we can use any CFG grammar G generating L.

The creative part of the argument is to pick the right
w ∈ L and the right marking of w (not making any
assumption on K).

234 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

As an illustration, we show that the language

L = {anbncn | n ≥ 1}
is not context-free. Since L is infinite, we can use Ogden’s
lemma.

We can also show that the language

L = {ambncmdn | m, n ≥ 1}
is not context-free.

Ogden’s lemma can also be used to show that the lan-
guage

{ambncn | m, n ≥ 1} ∪ {ambmcn | m, n ≥ 1}
is inherently ambiguous. The proof is quite involved.

3.12. OGDEN’S LEMMA 235

Another corollary of the pumping lemma is that it is de-
cidable whether a context-free grammar generates an in-
finite language.

Lemma 3.12.3 Given any context-free grammar, G,
if K is the constant of Ogden’s lemma, then the fol-
lowing equivalence holds:

L(G) is infinite iff there is some w ∈ L(G) such that
K ≤ |w| < 2K.

In particular, if G is in Chomsky Normal Form, it can be
shown that we just have to consider derivations of length
at most 4K − 3.

236 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

