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3.6 The Greibach Normal Form

Every CFG G can also be converted to an equivalent
grammar in Greibach Normal Form (for short, GNF).
A context-free grammar G = (V, Σ, P, S) is in Greibach
Normal Form iff its productions are of the form

A → aBC,

A → aB,

A → a, or

S → ε,

where A, B, C ∈ N , a ∈ Σ, S → ε is in P iff ε ∈
L(G), and S does not occur on the right-hand side of
any production.
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Note that a grammar in Greibach Normal Form does not
have ε-rules other than possibly S → ε. More impor-
tantly, except for the special rule S → ε, every rule pro-
duces some terminal symbol.

An important consequence of the Greibach Normal Form
is that every nonterminal is not left recursive. A nonter-

minal A is left recursive iff A
+

=⇒ Aα for some α ∈ V ∗.
Left recursive nonterminals cause top-down determinitic
parsers to loop. The Greibach Normal Form provides a
way of avoiding this problem.

There are no easy proofs that every CFG can be converted
to a Greibach Normal Form. We will give an elegant
method due to Rosenkrantz (using matrices).
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Lemma 3.6.1 Given any context-free grammar G =
(V, Σ, P, S), one can construct a context-free grammar
G′ = (V ′, Σ, P ′, S ′) such that L(G′) = L(G) and G′ is
in Greibach Normal Form, that is, a grammar whose
productions are of the form

A → aBC,

A → aB,

A → a, or

S ′ → ε,

where A, B, C ∈ N ′, a ∈ Σ, S ′ → ε is in P ′ iff ε ∈
L(G), and S ′ does not occur on the right-hand side of
any production in P ′.
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3.7 Least Fixed-Points

Context-free languages can also be characterized as least
fixed-points of certain functions induced by grammars.

This characterization yields a rather quick proof that ev-
ery context-free grammar can be converted to Greibach
Normal Form.

This characterization also reveals very clearly the recur-
sive nature of the context-free languages.

We begin by reviewing what we need from the theory of
partially ordered sets.



186 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Definition 3.7.1 Given a partially ordered set 〈A,≤〉,
an ω-chain (an)n≥0 is a sequence such that an ≤ an+1

for all n ≥ 0. The least-upper bound of an ω-chain (an)
is an element a ∈ A such that:

(1) an ≤ a, for all n ≥ 0;

(2) For any b ∈ A, if an ≤ b, for all n ≥ 0, then a ≤ b.

A partially ordered set 〈A,≤〉 is an ω-chain complete
poset iff it has a least element ⊥, and iff every ω-chain
has a least upper bound denoted as

⊔
an.

Remark : The ω in ω-chain means that we are considering
countable chains (ω is the ordinal associated with the
order-type of the set of natural numbers).

For example, given any set X , the power set 2X ordered
by inclusion is an ω-chain complete poset with least ele-
ment ∅.
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The Cartesian product 2X × · · · × 2X︸ ︷︷ ︸
n

ordered such that

(A1, . . . , An) ≤ (B1, . . . , Bn)

iff Ai ⊆ Bi (where Ai, Bi ∈ 2X) is an ω-chain complete
poset with least element (∅, . . . , ∅).

We are interested in functions between partially ordered
sets.

Definition 3.7.2 Given any two partially ordered sets
〈A1,≤1〉 and 〈A2,≤2〉, a function f : A1 → A2 is mono-
tonic iff for all x, y ∈ A1,

x ≤1 y implies that f (x) ≤2 f (y).

If 〈A1,≤1〉 and 〈A2,≤2〉 are ω-chain complete posets, a
function f : A1 → A2 is ω-continuous iff it is monotonic,
and for every ω-chain (an),

f (
⊔

an) =
⊔

f (an).
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Remark : Note that we are not requiring that an ω-
continuous function f : A1 → A2 preserve least elements,
i.e., it is possible that f (⊥1) =⊥2.

We now define the crucial concept of a least fixed-point.

Definition 3.7.3 Let 〈A,≤〉 be a partially ordered set,
and let f : A → A be a function. A fixed-point of f is an
element a ∈ A such that f (a) = a. The least fixed-point
of f is an element a ∈ A such that f (a) = a, and for
every b ∈ A such that f (b) = b, then a ≤ b.

The following lemma gives sufficient conditions for the
existence of least fixed-points. It is one of the key lemmas
in denotational semantics.
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Lemma 3.7.4 Let 〈A,≤〉 be an ω-chain complete poset
with least element ⊥. Every ω-continuous function
f : A → A has a unique least fixed-point x0 given by

x0 =
⊔

fn(⊥).

Furthermore, for any b ∈ A such that f (b) ≤ b, then
x0 ≤ b.

The second part of lemma 3.7.4 is very useful to prove
that functions have the same least fixed-point.

For example, under the conditions of lemma 3.7.4, if
g: A → A is another ω-chain continuous function, letting
x0 be the least fixed-point of f and y0 be the least fixed-
point of g, if f (y0) ≤ y0 and g(x0) ≤ x0, we can deduce
that x0 = y0.
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Lemma 3.7.4 also shows that the least fixed-point x0 of
f can be approximated as much as desired, using the
sequence (fn(⊥)).

We will now apply this fact to context-free grammars.
For this, we need to show how a context-free grammar
G = (V, Σ, P, S) with m nonterminals induces an ω-
continuous map

ΦG: 2Σ∗ × · · · × 2Σ∗︸ ︷︷ ︸
m

→ 2Σ∗ × · · · × 2Σ∗︸ ︷︷ ︸
m

.
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3.8 Context-Free Languages as Least Fixed-Points

Given a context-free grammar G = (V, Σ, P, S) with
m nonterminals A1, . . . Am, grouping all the productions
having the same left-hand side, the grammar G can be
concisely written as

A1 → α1,1 + · · · + α1,n1,

· · · → · · ·
Ai → αi,1 + · · · + αi,ni

,

· · · → · · ·
Am → αm,1 + · · · + αm,nn.

Given any set A, let Pfin(A) be the set of finite subsets
of A.
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Definition 3.8.1 Let G = (V, Σ, P, S) be a context-
free grammar with m nonterminals A1, . . ., Am. For any
m-tuple Λ = (L1, . . . , Lm) of languages Li ⊆ Σ∗, we
define the function

Φ[Λ]:Pfin(V
∗) → 2Σ∗

inductively as follows:

Φ[Λ](∅) = ∅,
Φ[Λ]({ε}) = {ε},
Φ[Λ]({a}) = {a}, if a ∈ Σ,

Φ[Λ]({Ai}) = Li, if Ai ∈ N ,

Φ[Λ]({αX}) = Φ[Λ]({α})Φ[Λ]({X}),
if α ∈ V +, X ∈ V,

Φ[Λ](Q ∪ {α}) = Φ[Λ](Q) ∪ Φ[Λ]({α}),
if Q ∈ Pfin(V

∗), Q = ∅, α ∈ V ∗, α /∈ Q.
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Then, writing the grammar G as

A1 → α1,1 + · · · + α1,n1,

· · · → · · ·
Ai → αi,1 + · · · + αi,ni

,

· · · → · · ·
Am → αm,1 + · · · + αm,nn,

we define the map

ΦG: 2Σ∗ × · · · × 2Σ∗︸ ︷︷ ︸
m

→ 2Σ∗ × · · · × 2Σ∗︸ ︷︷ ︸
m

such that

ΦG(L1, . . . Lm) =

(Φ[Λ]({α1,1, . . . , α1,n1}), . . . , Φ[Λ]({αm,1, . . . , αm,nm}))
for all Λ = (L1, . . . , Lm) ∈ 2Σ∗ × · · · × 2Σ∗︸ ︷︷ ︸

m

.

One should verify that the map Φ[Λ] is well defined, but
this is easy.
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The following lemma is easily shown:

Lemma 3.8.2 Given a context-free grammar
G = (V, Σ, P, S) with m nonterminals A1, . . ., Am, the
map

ΦG: 2Σ∗ × · · · × 2Σ∗︸ ︷︷ ︸
m

→ 2Σ∗ × · · · × 2Σ∗︸ ︷︷ ︸
m

is ω-continuous.

Now, 2Σ∗ × · · · × 2Σ∗︸ ︷︷ ︸
m

is an ω-chain complete poset, and

the map ΦG is ω-continous.

Thus, by lemma 3.7.4, the map ΦG has a least-fixed point.

It turns out that the components of this least fixed-point
are precisely the languages generated by the grammars
(V, Σ, P, Ai).
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Example . Consider the grammar
G = ({A, B, a, b}, {a, b}, P, A) defined by the rules

A → BB + ab,

B → aBb + ab.

The least fixed-point of ΦG is the least upper bound of
the chain

(Φn
G(∅, ∅)) = ((Φn

G,A(∅, ∅), Φn
G,B(∅, ∅)),

where
Φ0

G,A(∅, ∅) = Φ0
G,B(∅, ∅) = ∅,

and

Φn+1
G,A(∅, ∅) = Φn

G,B(∅, ∅)Φn
G,B(∅, ∅) ∪ {ab},

Φn+1
G,B(∅, ∅) = aΦn

G,B(∅, ∅)b ∪ {ab}.
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It is easy to verify that

Φ1
G,A(∅, ∅) = {ab},

Φ1
G,B(∅, ∅) = {ab},

Φ2
G,A(∅, ∅) = {ab, abab},

Φ2
G,B(∅, ∅) = {ab, aabb},

Φ3
G,A(∅, ∅) = {ab, abab, abaabb, aabbab, aabbaabb},

Φ3
G,B(∅, ∅) = {ab, aabb, aaabbb}.

By induction, we can easily prove that the two compo-
nents of the least fixed-point are the languages

LA = {ambmanbn | m, n ≥ 1} ∪ {ab}
and

LB = {anbn | n ≥ 1}.

Letting GA = ({A, B, a, b}, {a, b}, P, A) and
GB = ({A, B, a, b}, {a, b}, P, B), it is indeed true that
LA = L(GA) and LB = L(GB) .
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We have the following theorem due to Ginsburg and Rice:

Theorem 3.8.3 Given a context-free grammar G =
(V, Σ, P, S) with m nonterminals A1, . . ., Am, the least
fixed-point of the map ΦG is the m-tuple of languages

(L(GA1), . . . , L(GAm)),

where GAi
= (V, Σ, P, Ai).

Proof . Writing G as

A1 → α1,1 + · · · + α1,n1,

· · · → · · ·
Ai → αi,1 + · · · + αi,ni

,

· · · → · · ·
Am → αm,1 + · · · + αm,nn,

let M = max{|αi,j|} be the maximum length of right-
hand sides of rules in P .
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Let

Φn
G(∅, . . . , ∅) = (Φn

G,1(∅, . . . , ∅), . . . , Φn
G,m(∅, . . . , ∅)).

Then, for any w ∈ Σ∗, observe that

w ∈ Φ1
G,i(∅, . . . , ∅)

iff there is some rule Ai → αi,j with w = αi,j, and that

w ∈ Φn
G,i(∅, . . . , ∅)

for some n ≥ 2 iff there is some rule Ai → αi,j with αi,j

of the form

αi,j = u1Aj1u2 · · ·ukAjkuk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, and some w1, . . . , wk ∈
Σ∗ such that

wh ∈ Φn−1
G,jh

(∅, . . . , ∅),
and

w = u1w1u2 · · ·ukwkuk+1.

We prove the following two claims:
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Claim 1: For every w ∈ Σ∗, if Ai
n

=⇒ w, then w ∈
Φp

G,i(∅, . . . , ∅), for some p ≥ 1.

Claim 2: For every w ∈ Σ∗, if w ∈ Φn
G,i(∅, . . . , ∅), with

n ≥ 1, then Ai
p

=⇒ w for some p ≤ (M + 1)n−1.

Combining Claim 1 and Claim 2, we have

L(GAi
) =

⋃
n

Φn
G,i(∅, . . . , ∅),

which proves that the least fixed-point of the map ΦG is
the m-tuple of languages

(L(GA1), . . . , L(GAm)).

We now show how theorem 3.8.3 can be used to give
a short proof that every context-free grammar can be
converted to Greibach Normal Form.



200 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

3.9 Least Fixed-Points and the Greibach Normal Form

The hard part in converting a grammar G = (V, Σ, P, S)
to Greibach Normal Form is to convert it to a grammar
in so-called weak Greibach Normal Form, where the
productions are of the form

A → aα, or

S → ε,

where a ∈ Σ, α ∈ V ∗, and if S → ε is a rule, then S
does not occur on the right-hand side of any rule.

Indeed, if we first convert G to Chomsky Normal Form,
it turns out that we will get rules of the form A → aBC,
A → aB or A → a.

Using the algorithm for eliminating ε-rules and chain rules,
we can first convert the original grammar to a grammar
with no chain rules and no ε-rules except possibly S → ε,
in which case, S does not appear on the right-hand side
of rules.
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Thus, for the purpose of converting to weak Greibach
Normal Form, we can assume that we are dealing with
grammars without chain rules and without ε-rules.

Let us also assume that we computed the set T (G) of non-
terminals that actually derive some terminal string, and
that useless productions involving symbols not in T (G)
have been deleted.

Let us explain the idea of the conversion using the follow-
ing grammar:

A → AaB + BB + b.

B → Bd + BAa + aA + c.

The first step is to group the right-hand sides α into two
categories: those whose leftmost symbol is a terminal
(α ∈ ΣV ∗) and those whose leftmost symbol is a non-
terminal (α ∈ NV ∗).
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It is also convenient to adopt a matrix notation, and we
can write the above grammar as

(A, B) = (A, B)

(
aB ∅
B {d, Aa}

)
+ (b, {aA, c})

Thus, we are dealing with matrices (and row vectors)
whose entries are finite subsets of V ∗.

For notational simplicity, braces around singleton sets are
omitted.

The finite subsets of V ∗ form a semiring, where addition
is union, and multiplication is concatenation.

Addition and multiplication of matrices are as usual, ex-
cept that the semiring operations are used.

We will also consider matrices whose entries are languages
over Σ.
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Again, the languages over Σ form a semiring, where ad-
dition is union, and multiplication is concatenation. The
identity element for addition is ∅, and the identity ele-
ment for multiplication is {ε}.

As above, addition and multiplication of matrices are as
usual, except that the semiring operations are used.

For example, given any languages Ai,j and Bi,j over Σ,
where i, j ∈ {1, 2}, we have

(
A1,1 A1,2

A2,1 A2,2

) (
B1,1 B1,2

B2,1 B2,2

)

=

(
A1,1B1,1 ∪ A1,2B2,1 A1,1B1,2 ∪ A1,2B2,2

A2,1B1,1 ∪ A2,2B2,1 A2,1B1,2 ∪ A2,2B2,2

)
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Letting X = (A, B), K = (b, {aA, c}), and

H =

(
aB ∅
B {d, Aa}

)

the above grammar can be concisely written as

X = XH + K.

More generally, given any context-free grammar G =
(V, Σ, P, S) with m nonterminals A1, . . ., Am, assum-
ing that there are no chain rules, no ε-rules, and that
every nonterminal belongs to T (G), letting

X = (A1, . . . , Am),

we can write G as

X = XH + K,

for some appropriate m × m matrix H in which every
entry contains a set (possibly empty) of strings in V +,
and some row vector K in which every entry contains a
set (possibly empty) of strings α each beginning with a
terminal (α ∈ ΣV ∗).
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Given an m × m square matrix A = (Ai,j) of languages
over Σ, we can define the matrix A∗ whose entry A∗

i,j is
given by

A∗
i,j =

⋃
n≥0

An
i,j,

where A0 = Idm, the identity matrix, and An is the n-th
power of A. Similarly, we define A+, where

A+
i,j =

⋃
n≥1

An
i,j.

Given a matrix A where the entries are finite subset of
V ∗, where N = {A1, . . . , Am}, for any m-tuple
Λ = (L1, . . . , Lm) of languages over Σ, we let

Φ[Λ](A) = (Φ[Λ](Ai,j)).

Given a system X = XH + K where H is an m × m
matrix and X,K are row matrices, if H and K do not
contain any nonterminals, we claim that the least fixed-
point of the grammar G associated with X = XH + K
is KH∗.
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This is easily seen by computing the approximations
Xn = Φn

G(∅, . . . , ∅). Indeed, X0 = K, and

Xn = KHn + KHn−1 + · · · + KH + K

= K(Hn + Hn−1 + · · · + H + Im).

Similarly, if Y is an m × m matrix of nonterminals, the
least fixed-point of the grammar associated with Y =
HY + H is H+ (provided that H does not contain any
nonterminals).

Given any context-free grammar G = (V, Σ, P, S) with
m nonterminals A1, . . ., Am, writing G as X = XH +K
as explained earlier, we can form another grammar GH
by creating m2 new nonterminals Yi,j, where the rules
of this new grammar are defined by the system of two
matrix equations

X = KY + K,

Y = HY + H,

where Y = (Yi,j).
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The following lemma is the key to the Greibach Normal
Form:

Lemma 3.9.1 Given any context-free grammar G =
(V, Σ, P, S) with m nonterminals A1, . . ., Am, writing
G as

X = XH + K

as explained earlier, if GH is the grammar defined by
the system of two matrix equations

X = KY + K,

Y = HY + H,

as explained above, then the components in X of the
least-fixed points of the maps ΦG and ΦGH are equal.

Note that the above lemma actually applies to any gram-
mar.
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Applying lemma 3.9.1 to our example grammar, we get
the following new grammar:

(A, B) = (b, {aA, c})
(

Y1 Y2

Y3 Y4

)
+ (b, {aA, c}),(

Y1 Y2

Y3 Y4

)
=(

aB ∅
B {d, Aa}

) (
Y1 Y2

Y3 Y4

)
+

(
aB ∅
B {d, Aa}

)

There are still some nonterminals appearing as leftmost
symbols, but using the equations defining A and B, we
can replace A with

{bY1, aAY3, cY3, b}
and B with

{bY2, aAY4, cY4, aA, c},
obtaining a system in weak Greibach Normal Form.

This amounts to converting the matrix

H =

(
aB ∅
B {d, Aa}

)

to the matrix L shown below(
aB ∅

{bY2, aAY4, cY4, aA, c} {d, bY1a, aAY3a, cY3a, ba}
)
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The weak Greibach Normal Form corresponds to the new
system

X = KY + K,

Y = LY + L.

This method works in general for any input grammar with
no ε-rules, no chain rules, and such that every nontermi-
nal belongs to T (G).

Under these conditions, the row vector K contains some
nonempty entry, all strings in K are in ΣV ∗, and all
strings in H are in V +.

After obtaining the grammar GH defined by the system

X = KY + K,

Y = HY + H,

we use the system X = KY + K to express every non-
terminal Ai in terms of expressions containing strings αi,j

involving a terminal as the leftmost symbol (αi,j ∈ ΣV ∗),
and we replace all leftmost occurrences of nonterminals
in H (occurrences Ai in strings of the form Aiβ, where
β ∈ V ∗) using the above expressions.
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In this fashion, we obtain a matrix L, and it is immedi-
ately shown that the system

X = KY + K,

Y = LY + L,

generates the same tuple of languages. Furthermore, this
last system corresponds to a weak Greibach Normal Form.

It we start with a grammar in Chomsky Normal Form
(with no production S → ε) such that every nonterminal
belongs to T (G), we actually get a Greibach Normal Form
(the entries in K are terminals, and the entries in H are
nonterminals).

The method is also quite economical, since it introduces
only m2 new nonterminals. However, the resulting gram-
mar may contain some useless nonterminals.


