
112 CHAPTER 2. REGULAR LANGUAGES

2.17 Right-Invariant Equivalence Relations on Σ∗

Let D = (Q,Σ, δ, q0, F) be a DFA. The DFA D may be
redundant, for example, if there are states that are not
accessible from the start state.

The set Qr of accessible or reachable states is the subset
of Q defined as

Qr = {p ∈ Q | ∃w ∈ Σ∗, δ∗(q0, w) = p}.

The set Qr can be easily computed by stages.

If Q $= Qr, we can “clean up” D by deleting the states in
Q−Qr and restricting the transition function δ to Qr.

This way, we get an equivalent DFADr such that L(D) =
L(Dr), where all the states of Dr are reachable. From
now on, we assume that we are dealing with DFA’s such
that D = Dr (called reachable, or trim).

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 113

Recall that an equivalence relation & on a set A is a
relation which is reflexive, symmetric, and transitive.

Given any a ∈ A, the set

{b ∈ A | a & b}

is called the equivalence class of a, and it is denoted as
[a]&, or even as [a].

Recall that for any two elements a, b ∈ A, [a] ∩ [b] = ∅
iff a $& b, and [a] = [b] iff a & b. The set of equivalence
classes associated with the equivalence relation & is a
partition Π of A (also denoted as A/ &). This means
that it is a family of nonempty pairwise disjoint sets whose
union is equal to A itself.

The equivalence classes are also called the blocks of the
partition Π. The number of blocks in the partition Π is
called the index of & (and Π).

114 CHAPTER 2. REGULAR LANGUAGES

Given any two equivalence relations &1 and &2 with as-
sociated partitions Π1 and Π2,

&1 ⊆&2

iff every block of the partition Π1 is contained in some
block of the partition Π2. Then, every block of the parti-
tion Π2 is the union of blocks of the partition Π1, and we
say that &1 is a refinement of &2 (and similarly, Π1 is
a refinement of Π2). Note that Π2 has at most as many
blocks as Π1 does.

We now define an equivalence relation on strings induced
by a DFA. This equivalence is a kind of “observational”
equivalence, in the sense that we decide that two strings
u, v are equivalent iff, when feeding first u and then v to
the DFA, u and v drive the DFA to the same state. From
the point of view of the observer, u and v have the same
effect (reaching the same state).

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 115

Definition 2.17.1 Given a DFA D = (Q,Σ, δ, q0, F),
we define the relation &D (Myhill-Nerode equivalence)
on Σ∗ as follows: for any two strings u, v ∈ Σ∗,

u &D v iff δ∗(q0, u) = δ∗(q0, v).

We can figure out what the equivalence classes of &D are
for the following DFA:

a b
0 1 0
1 2 1
2 0 2

with 0 both start state and (unique) final state. For ex-
ample

abbabbb &D aa

ababab &D ε

bba &D a.

116 CHAPTER 2. REGULAR LANGUAGES

There are three equivalences classes:

[ε]&, [a]&, [aa]&.

Observe that L(D) = [ε]&. Also, the equivalence classes
are in one–to–one correspondence with the states of D.

The relation &D turns out to have some interesting prop-
erties. In particular, it is right-invariant , which means
that for all u, v, w ∈ Σ∗, if u & v, then uw & vw.

Lemma 2.17.2 Given any trim (accessible) DFA
D = (Q,Σ, δ, q0, F), the relation &D is an equivalence
relation which is right-invariant and has finite index.
Furthermore, if Q has n states, then the index of &D

is n, and every equivalence class of &D is a regular
language. Finally, L(D) is the union of some of the
equivalence classes of &D.

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 117

The remarkable fact due to Myhill and Nerode, is that
lemma 2.17.2 has a converse.

Lemma 2.17.3 Given any equivalence relation & on
Σ∗, if & is right-invariant and has finite index n, then
every equivalence class (block) in the partition Π as-
sociated with & is a regular language.

Proof . Let C1, . . . , Cn be the blocks of Π, and assume
that C1 = [ε] is the equivalence class of the empty string.

First, we claim that for every block Ci and every w ∈ Σ∗,
there is a unique block Cj such that Ciw ⊆ Cj, where
Ciw = {uw | u ∈ Ci}.

We also claim that for every w ∈ Σ∗, for every block Ci,

C1w ⊆ Ci iff w ∈ Ci.

118 CHAPTER 2. REGULAR LANGUAGES

For every class Ck, let

Dk = ({1, . . . , n},Σ, δ, 1, {k}),

where δ(i, a) = j iff Cia ⊆ Cj.

Using induction, we have

δ∗(i, w) = j iff Ciw ⊆ Cj,

and using claim 2, it is immediately verified that
L(Dk) = Ck, proving that every block Ck is a regular
language.

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 119

We can combine lemma 2.17.2 and lemma 2.17.3 to get
the following characterization of a regular language due
to Myhill and Nerode:

Theorem 2.17.4 (Myhill-Nerode) A language L (over
an alphabet Σ) is a regular language iff it is the union
of some of the equivalence classes of an equivalence
relation & on Σ∗, which is right-invariant and has fi-
nite index.

Given two DFA’s D1 and D2, whether or not there is
a morphism h:D1 → D2 depends on the relationship
between &D1 and &D2. More specifically, we have the
following lemma:

120 CHAPTER 2. REGULAR LANGUAGES

Lemma 2.17.5 Given two DFA’s D1 and D2, with
D1 trim, the following properties hold.

(1) There is a DFA morphism h:D1 → D2 iff

&D1 ⊆&D2 .

(2) There is a DFA F -map h:D1 → D2 iff

&D1 ⊆&D2 and L(D1) ⊆ L(D2);

(3) There is a DFA B-map h:D1 → D2 iff

&D1 ⊆&D2 and L(D2) ⊆ L(D1).

Furthermore, h is surjective iff D2 is trim.

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 121

Theorem 2.17.4 can also be used to prove that certain
languages are not regular. For example, we prove that
L = {anbn | n ≥ 1} is not regular.

The general method is to find three strings

x, y, z ∈ Σ∗

such that

x & y

and

xz ∈ L and yz /∈ L.

122 CHAPTER 2. REGULAR LANGUAGES

Another useful tool for proving that languages are not
regular is the so-called pumping lemma.

Lemma 2.17.6 Given any DFA D = (Q,Σ, δ, q0, F)
there is some m ≥ 1 such that for every w ∈ Σ∗, if w ∈
L(D) and |w| ≥ m, then there exists a decomposition
of w as w = uxv, where

(1) x $= ε,

(2) uxiv ∈ L(D), for all i ≥ 0, and

(3) |ux| ≤ m.

Moreover, m can be chosen to be the number of states
of the DFA D.

Typically, the pumping lemma is used to prove that a
language is not regular. The method is to proceed by
contradiction, i.e., to assume (contrary to what we wish
to prove) that a language L is indeed regular, and derive
a contradiction of the pumping lemma.

2.17. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 123

Thus, it would be helpful to see what the negation of
the pumping lemma is, and for this, we first state the
pumping lemma as a logical formula.

We will use the following abbreviations:

nat = {0, 1, 2, . . .},
pos = {1, 2, . . .},
A ≡ w = uxv,

B ≡ x $= ε,

C ≡ |ux| ≤ m,

P ≡ ∀i:nat (uxiv ∈ L(D)).

The pumping lemma can be stated as

∀D: DFA ∃m: pos ∀w:Σ∗

((w ∈ L(D)∧ |w| ≥ m) ⊃ (∃u, x, v:Σ∗A∧B∧C∧P)).

124 CHAPTER 2. REGULAR LANGUAGES

Recalling that

¬(A∧B∧C∧P) ≡ ¬(A∧B∧C)∨¬P ≡ (A∧B∧C) ⊃ ¬P

and
¬(R ⊃ S) ≡ R ∧ ¬S,

the negation of the pumping lemma can be stated as

∃D: DFA ∀m: pos ∃w:Σ∗

((w ∈ L(D)∧|w| ≥ m)∧(∀u, x, v:Σ∗(A∧B∧C) ⊃ ¬P)).

Since
¬P ≡ ∃i:nat (uxiv /∈ L(D)),

in order to show that the pumping lemma is contradicted,
one needs to show that for some DFAD, for everym ≥ 1,
there is some string w ∈ L(D) of length at least m, such
that for every possible decomposition w = uxv satisfying
the constraints x $= ε and |ux| ≤ m, there is some i ≥ 0
such that uxiv /∈ L(D).

We now consider an equivalence relation associated with
a language L.

2.18. MINIMAL DFA’S 125

2.18 Minimal DFA’s

Given any language L (not necessarily regular), we can
define an equivalence relation ρL which is right-invariant,
but not necessarily of finite index. However, when L is
regular, the relation ρL has finite index. In fact, this index
is the size of a smallest DFA accepting L. This will lead
us to a construction of minimal DFA’s.

Definition 2.18.1 Given any language L (over Σ), we
define the relation ρL on Σ∗ as follows: for any two strings
u, v ∈ Σ∗,

uρLv iff ∀w ∈ Σ∗(uw ∈ L iff vw ∈ L).

We leave as an easy exercise to prove that ρL is an equiv-
alence relation which is right-invariant. It is also clear
that L is the union of the equivalence classes of strings in
L.

126 CHAPTER 2. REGULAR LANGUAGES

When L is also regular, we have the following remarkable
result:

Lemma 2.18.2 Given any regular language L, for
any (accessible) DFA D = (Q,Σ, δ, q0, F) such that
L = L(D), ρL is a right-invariant equivalence rela-
tion, and we have &D ⊆ ρL. Furthermore, if ρL has
m classes and Q has n states, then m ≤ n.

Lemma 2.18.2 shows that when L is regular, the index m
of ρL is finite, and it is a lower bound on the size of all
DFA’s accepting L.

2.18. MINIMAL DFA’S 127

It remains to show that a DFA withm states accepting L
exists. However, going back to the proof of lemma 2.17.3
starting with the right-invariant equivalence relation ρL of
finite indexm, if L is the union of the classes Ci1, . . . , Cik,
the DFA

DρL = ({1, . . . ,m},Σ, δ, 1, {i1, . . . , ik}),

where δ(i, a) = j iff Cia ⊆ Cj, is such that L = L(DρL).
Thus, DρL is a minimal DFA accepting L.

In the next section, we give an algorithm which allows
us to find DρL, given any DFA D accepting L. This
algorithms finds which states of D are equivalent.

128 CHAPTER 2. REGULAR LANGUAGES

2.19 State Equivalence and Minimal DFA’s

The proof of lemma 2.18.2 suggests the following defini-
tion of an equivalence between states.

Definition 2.19.1 Given any DFAD = (Q,Σ, δ, q0, F),
the relation ≡ on Q, called state equivalence, is defined
as follows: for all p, q ∈ Q,

p ≡ q iff ∀w ∈ Σ∗(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

When p ≡ q, we say that p and q are indistinguishable.

It is trivial to verify that ≡ is an equivalence relation, and
that it satisfies the following property:

if p ≡ q then δ(p, a) ≡ δ(q, a),

for all a ∈ Σ.

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 129

In the DFA of Figure 2.18, states A and C are equivalent.
No other two states are equivalent.

A

B

C

D E

a

b

a

b

a b

b

a

b

a

Figure 2.18: A non-minimal DFA for {a, b}∗{abb}

If L = L(D), the following lemma shows the relationship
between ρL and ≡ and, more generally, between the DFA
DρL and the DFA, D/ ≡, obtained as the quotient of
the DFA D modulo the equivalence relation ≡ on Q and
defined such that

130 CHAPTER 2. REGULAR LANGUAGES

D/ ≡ = (Q/ ≡,Σ, δ/ ≡, [q0]≡, F/ ≡),

where
δ/ ≡ ([p]≡, a) = [δ(p, a)]≡.

The minimal DFA D/ ≡ is obtained by merging the
states in each block of the partition Π associated with
≡, forming states corresponding to the blocks of Π, and
drawing a transition on input a from a block Ci to a block
Cj of Π iff there is a transition q = δ(p, a) from any state
p ∈ Ci to any state q ∈ Cj on input a.

The start state is the block containing q0, and the final
states are the blocks consisting of final states.

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 131

Lemma 2.19.2 For any (accessible) DFA
D = (Q,Σ, δ, q0, F) accepting the regular language
L = L(D), the function ϕ:Σ∗ → Q defined such that

ϕ(u) = δ∗(q0, u)

induces a bijection ϕ̂:Σ∗/ρL → Q/ ≡, defined such
that

ϕ̂([u]ρL) = [δ∗(q0, u)]≡.

Furthermore, we have

[u]ρLa ⊆ [v]ρL iff δ(ϕ(u), a) ≡ ϕ(v).

Consequently, ϕ̂, induces an isomorphism of DFA’s,
ϕ̂:DρL → D/ ≡ (an invertible F -map whose inverse
is also an F -map; from a homework problem, such
a map must be an invertible proper homomorphism
whose inverse is also a proper homomorphism).

The DFA D/ ≡ is isomorphic to the minimal DFA DρL
accepting L, and thus, it is a minimal DFA accepting L.

132 CHAPTER 2. REGULAR LANGUAGES

Note that if F = ∅, then ≡ has a single block (Q), and
if F = Q, then ≡ has a single block (F). In the first
case, the minimal DFA is the one state DFA rejecting all
strings. In the second case, the minimal DFA is the one
state DFA accepting all strings.

When F $= ∅ and F $= Q, there are at least two states
in Q, and ≡ also has at least two blocks, as we shall see
shortly.

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 133

It remains to compute ≡ explicitly. This is done using
a sequence of approximations. In view of the previous
discussion, we are assuming that F $= ∅ and F $= Q,
which means that n ≥ 2, where n is the number of states
in Q.

Definition 2.19.3 Given any DFAD = (Q,Σ, δ, q0, F),
for every i ≥ 0, the relation≡i onQ, called i-state equiv-
alence, is defined as follows: for all p, q ∈ Q,

p ≡i q iff ∀w ∈ Σ∗, |w| ≤ i

(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

When p ≡i q, we say that
p and q are i-indistinguishable.

134 CHAPTER 2. REGULAR LANGUAGES

It remains to compute ≡i+1 from ≡i, which can be done
using the following lemma. The lemma also shows that

≡ =≡i0 .

Lemma 2.19.4 For any (accessible) DFA
D = (Q,Σ, δ, q0, F), for all p, q ∈ Q,

p ≡i+1 q iff p ≡i q and δ(p, a) ≡i δ(q, a), for every
a ∈ Σ.

Furthermore, if F $= ∅ and F $= Q, there is a smallest
integer i0 ≤ n− 2, such that

≡i0+1 =≡i0 =≡ .

Note that if F = Q or F = ∅, then ≡ =≡0, and the in-
ductive characterization of Lemma 2.19.4 holds trivially.

Using lemma 2.19.4, we can compute≡ inductively, start-
ing from ≡0= (F,Q−F), and computing ≡i+1 from ≡i,
until the sequence of partitions associated with the ≡i

stabilizes.

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 135

There are a number of algorithms for computing ≡, or to
determine whether p ≡ q for some given p, q ∈ Q.

A simple method to compute ≡ is described in Hopcroft
and Ullman. It consists in forming a triangular array
corresponding to all unordered pairs (p, q), with p $= q
(the rows and the columns of this triangular array are
indexed by the states in Q, where the entries are below
the descending diagonal).

Initially, the entry (p, q) is marked iff p and q are not 0-
equivalent, which means that p and q are not both in F
or not both in Q−F . Then, we process every unmarked
entry on every row as follows: for any unmarked pair
(p, q), we consider pairs (δ(p, a), δ(q, a)), for all a ∈ Σ.
If any pair (δ(p, a), δ(q, a)) is already marked, this means
that δ(p, a) and δ(q, a) are inequivalent, and thus p and
q are inequivalent, and we mark the pair (p, q).

136 CHAPTER 2. REGULAR LANGUAGES

We continue in this fashion, until at the end of a round
during which all the rows are processed, nothing has
changed. When the algorithm stops, all marked pairs
are inequivalent, and all unmarked pairs correspond to
equivalent states.

Let us illustrates the above method. Consider the follow-
ing DFA accepting {a, b}∗{abb}.

a b
A B C
B B D
C B C
D B E
E B C

The start state is A, and the set of final states is
F = {E}.

2.19. STATE EQUIVALENCE AND MINIMAL DFA’S 137

The initial (half) array is as follows, using × to indicate
that the corresponding pair (say, (E,A)) consists of in-
equivalent states, and to indicate that nothing is known
yet.

B
C
D
E × × × ×

A B C D

After the first round, we have

B
C
D × × ×
E × × × ×

A B C D

After the second round, we have

B ×
C ×
D × × ×
E × × × ×

A B C D

138 CHAPTER 2. REGULAR LANGUAGES

Finally, nothing changes during the third round, and thus,
only A and C are equivalent, and we get the four equiv-
alence classes

({A,C}, {B}, {D}, {E}).

There are ways of improving the efficiency of this algo-
rithm, see Hopcroft and Ullman for such improvements.

Fast algorithms for testing whether p ≡ q for some given
p, q ∈ Q also exist. One of these algorithms is based
on “forward closures”, an idea due to Knuth. Such an
algorithm is related to a fast unification algorithm.

