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Abstract. The definition of the regular languages (over some alphabet Σ) as the smallest
family of languages that contains some basic languages and is closed under union, concate-
nation and Kleene ∗, is often confusing to novices. In these notes, we attempt to explain
clearly how this definition goes and what it achieves.
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1 The Closure Definition of the Regular Languages

Let Σ = {a1, . . . , am} be some alphabet. We would like to define a family of languages, R(Σ),
by singling out some very basic (atomic) languages, namely the languages {a1}, . . . , {am},
the empty language, and the trivial language, {ε}, and then forming more complicated
languages by repeatedly forming union, concatenation and Kleene ∗ of previously constructed
languages. By doing so, we hope to get a family of languages (R(Σ)) that is closed under
union, concatenation, and Kleene ∗. This means that for any two languages, L1, L2 ∈ R(Σ),
we also have L1 ∪ L2 ∈ R(Σ) and L1L2 ∈ R(Σ), and for any language L ∈ R(Σ), we have
L∗ ∈ R(Σ). Furthermore, we would like R(Σ) to be the smallest family with these properties.
How do we achieve this rigorously?

First, let us look more closely at what we mean by a family of languages. Recall that a
language (over Σ) is any subset, L, of Σ∗. Thus, the set of all languages is 2Σ∗

, the power
set of Σ∗. If Σ is nonempty, this is an uncountable set. Next, we define a family , L, of

languages to be any subset of 2Σ∗
. This time, the set of families of languages is 22Σ∗

. This

is a huge set. We can use the inclusion relation on 22Σ∗
to define a partial order on families

of languages. So, L1 ⊆ L2 iff for every language, L, if L ∈ L1 then L ∈ L2.

We can now state more precisely what we are trying to do. Consider the following
properties for a family of languages, L:

(1) We have {a1}, . . . , {am}, ∅, {ε} ∈ L, i.e., L contains the “atomic” languages.

(2a) For all L1, L2 ∈ L, we also have L1 ∪ L2 ∈ L.

(2b) For all L1, L2 ∈ L, we also have L1L2 ∈ L.

(2c) For all L ∈ L, we also have L∗ ∈ L.

In other words, L is closed under union, concatenation and Kleene ∗.
Now, what we want is the smallest (w.r.t. inclusion) family of languages that satisfies

properties (1) and (2)(a)(b)(c). We can construct such a family using an inductive definition.
This inductive definition constructs a sequence of families of languages, (R(Σ)n)n≥0, called
the stages of the inductive definition, as follows:

R(Σ)0 = {{a1}, . . . , {am}, ∅, {ε}},
R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L∗ | L1, L2, L ∈ R(Σ)n}.

Then, we define R(Σ) by

R(Σ) =
⋃
n≥0

R(Σ)n.

Thus, a language L belongs to R(Σ) iff it belongs Ln, for some n ≥ 0. Observe that

R(Σ)0 ⊆ R(Σ)1 ⊆ R(Σ)2 ⊆ · · ·R(Σ)n ⊆ R(Σ)n+1 ⊆ · · · ⊆ R(Σ),
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so that if L ∈ R(Σ)n, then L ∈ R(Σ)p, for all p ≥ n. Also, there is some smallest n for
which L ∈ R(Σ)n (the birthdate of L!). In fact, all these inclusions are strict. Note that
each R(Σ)n only contains a finite number of languages (but some of the languages in R(Σ)n

are infinite, because of Kleene ∗). Then we define the Regular languages, Version 2 , as the
family R(Σ).

Of course, it is far from obvious that R(Σ) coincides with the family of languages accepted
by DFA’s (or NFA’s), what we call the regular languages, version 1. However, this is the case,
and this can be demonstrated by giving two algorithms. Actually, it will be slightly more
convenient to define a notation system, the regular expressions , to denote the languages
in R(Σ). Then, we will give an algorithm that converts a regular expression, R, into an
NFA, NR, so that LR = L(NR), where LR is the language (in R(Σ)) denoted by R. We
will also give an algorithm that converts an NFA, N , into a regular expression, RN , so that
L(RN) = L(N).

But before doing all this, we should make sure that R(Σ) is indeed the family that we
are seeking. This is the content of

Lemma 1.1 The family, R(Σ), is the smallest family of languages which contains the atomic
languages {a1}, . . . , {am}, ∅, {ε}, and is closed under union, concatenation, and Kleene ∗.

Proof . There are two things to prove.

(i) We need to prove that R(Σ) has properties (1) and (2)(a)(b)(c).

(ii) We need to prove that R(Σ) is the smallest family having properties (1) and
(2)(a)(b)(c).

(i) Since
R(Σ)0 = {{a1}, . . . , {am}, ∅, {ε}},

it is obvious that (1) holds. Next, assume that L1, L2 ∈ R(Σ). This means that there are
some integers n1, n2 ≥ 0, so that L1 ∈ R(Σ)n1 and L2 ∈ R(Σ)n2 . Now, it is possible that
n1 6= n2, but if we let n = max{n1, n2}, as we observed that R(Σ)p ⊆ R(Σ)q whenever
p ≤ q, we are guaranteed that both L1, L2 ∈ R(Σ)n. However, by the definition of R(Σ)n+1

(that’s why we defined it this way!), we have L1 ∪ L2 ∈ R(Σ)n+1 ⊆ R(Σ). The same
argument proves that L1L2 ∈ R(Σ)n+1 ⊆ R(Σ). Also, if L ∈ R(Σ)n, we immediately have
L∗ ∈ R(Σ)n+1 ⊆ R(Σ). Therefore, R(Σ) has properties (1) and (2)(a)(b)(c).

(ii) Let L be any family of languages having properties (1) and (2)(a)(b)(c). We need to
prove that R(Σ) ⊆ L. If we can prove that R(Σ)n ⊆ L, for all n ≥ 0, we are done (since
then, R(Σ) =

⋃
n≥0 R(Σ)n ⊆ L). We prove by induction on n that R(Σ)n ⊆ L, for all n ≥ 0.

The base case n = 0 is trivial, since L has (1), which says that R(Σ)0 ⊆ L. Assume
inductively that R(Σ)n ⊆ L. We need to prove that R(Σ)n+1 ⊆ L. Pick any L ∈ R(Σ)n+1.
Recall that

R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L∗ | L1, L2, L ∈ R(Σ)n}.
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If L ∈ R(Σ)n, then L ∈ L, since R(Σ)n ⊆ L, by the induction hypothesis. Otherwise, there
are three cases:

(a) L = L1 ∪ L2, where L1, L2 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we
get L1, L2 ∈ L; since L has 2(a), we have L1 ∪ L2 ∈ L.

(b) L = L1L2, where L1, L2 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we get
L1, L2 ∈ L; since L has 2(b), we have L1L2 ∈ L.

(c) L = L∗
1, where L1 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we get

L1 ∈ L; since L has 2(c), we have L∗
1 ∈ L.

Thus, in all cases, we showed that L ∈ L, and so, R(Σ)n+1 ⊆ L, which proves the induction
step.

Students should study carefully the above proof. Although simple, it is the prototype of
many proofs appearing in the theory of computation.
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