
Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 307 of 342

Go Back

Full Screen

Close

Quit

Chapter 5

Universal RAM Programs and

Undecidability of the Halting

Problem



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 308 of 342

Go Back

Full Screen

Close

Quit

5.1. Pairing Functions

Pairing functions are used to encode pairs of integers into sin-
gle integers, or more generally, finite sequences of integers into
single integers.

We begin by exhibiting a bijective pairing function
J : N2 → N.

The function J has the graph partially showed below:

...
6 . . .

�
3 7 . . .

� �
1 4 8 . . .

� � �
0 2 5 9 . . .



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 309 of 342

Go Back

Full Screen

Close

Quit

The function J corresponds to a certain way of enumerating
pairs of integers. Note that the value of x+y is constant along
each diagonal, and consequently, we have

J(x, y) = 1 + 2 + · · · + (x + y) + x,

= ((x + y)(x + y + 1) + 2x)/2,

= ((x + y)2 + 3x + y)/2,

that is,
J(x, y) = ((x + y)2 + 3x + y)/2.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 310 of 342

Go Back

Full Screen

Close

Quit

Let K: N → N and L: N → N be the projection functions onto
the axes, that is, the unique functions such that

K(J(a, b)) = a and L(J(a, b)) = b,

for all a, b ∈ N.

Clearly, J is primitive recursive, since it is given by a polyno-
mial.

It is not hard to prove that J is injective and surjective, and
that it is strictly monotonic in each argument, which means
that for all x, x�, y, y� ∈ N, if x < x� then J(x, y) < J(x�, y),
and if y < y� then J(x, y) < J(x, y�).



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 311 of 342

Go Back

Full Screen

Close

Quit

The projection functions can be computed explicitly, although
this is a bit tricky.

We only need to observe that by monotonicity of J ,

x ≤ J(x, y) and y ≤ J(x, y),

and thus,

K(z) = min(x ≤ z)(∃y ≤ z)[J(x, y) = z],

and

L(z) = min(y ≤ z)(∃x ≤ z)[J(x, y) = z].



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 312 of 342

Go Back

Full Screen

Close

Quit

The pairing function J(x, y) is also denoted as �x, y�, and K
and L are also denoted as Π1 and Π2.

By induction, we can define bijections between Nn and N for
all n ≥ 1. We let �z�1 = z,

�x1, x2�2 = �x1, x2�,

and
�x1, . . . , xn, xn+1�n+1 = �x1, . . . , �xn, xn+1��n.

Note that

�x1, . . . , xn, xn+1�n+1 = �x1, �x2, . . . , xn+1�n�.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 313 of 342

Go Back

Full Screen

Close

Quit

We can define a uniform projection function Π with the fol-
lowing property:
if z = �x1, . . . , xn�, with n ≥ 2, then

Π(i, n, z) = xi

for all i, where 1 ≤ i ≤ n.

The function Π is defined by cases as follows:

Π(i, 0, z) = 0, for all i ≥ 0,

Π(i, 1, z) = z, for all i ≥ 0,

Π(i, 2, z) = Π1(z), if 0 ≤ i ≤ 1,

Π(i, 2, z) = Π2(z), for all i ≥ 2,

and for all n ≥ 2,

Π(i, n + 1, z) =






Π(i, n, z) if 0 ≤ i < n,
Π1(Π(n, n, z)) if i = n,
Π2(Π(n, n, z)) if i > n.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 314 of 342

Go Back

Full Screen

Close

Quit

By a previous exercise, this is a legitimate primitive recursive
definition. Some basic properties of Π are given as exercises.
In particular, the following properties are easily shown:

(a) �0, . . . , 0�n = 0, �x, 0� = �x, 0, . . . , 0�n;

(b) Π(0, n, z) = Π(1, n, z) and Π(i, n, z) = Π(n, n, z), for all
i ≥ n and all n, z ∈ N;

(c) �Π(1, n, z), . . . , Π(n, n, z)�n = z, for all n ≥ 1 and all
z ∈ N;

(d) Π(i, n, z) ≤ z, for all i, n, z ∈ N;

(e) There is a primitive recursive function Large, such that,

Π(i, n + 1, Large(n + 1, z)) = z,

for i, n, z ∈ N.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 315 of 342

Go Back

Full Screen

Close

Quit

As a first application, we observe that we need only consider
partial recursive functions of a single argument.

Indeed, let ϕ: Nn → N be a partial recursive function of n ≥ 2
arguments. Let

ϕ(z) = ϕ(Π(1, n, z), . . . , Π(n, n, z)),

for all z ∈ N.

Then, ϕ is a partial recursive function of a single argument,
and ϕ can be recovered from ϕ, since

ϕ(x1, . . . , xn) = ϕ(�x1, . . . , xn�).

Thus, using �−,−� and Π as coding and decoding functions,
we can restrict our attention to functions of a single argument.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 316 of 342

Go Back

Full Screen

Close

Quit

It can be shown that there exist coding and decoding func-
tions between Σ∗ and {a1}∗, and that partial recursive func-
tions over Σ∗ can be recoded as partial recursive functions over
{a1}∗.

Since {a1}∗ is isomorphic to N, this shows that we can restrict
out attention to functions defined over N.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 317 of 342

Go Back

Full Screen

Close

Quit

5.2. Coding of RAM Programs

In this Section, we present a specific encoding of RAM pro-
grams which allows us to treat programs as integers.

Encoding programs as integers also allows us to have programs
that take other programs as input, and we obtain a universal
program.

Universal programs have the property that given two inputs,
the first one being the code of a program and the second one
an input data, the universal program simulates the actions of
the encoded program on the input data.

A coding scheme is also called an indexing or a Gödel num-
bering, in honor to Gödel, who invented this technique.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 318 of 342

Go Back

Full Screen

Close

Quit

From results of the previous Chapter, without loss of general-
ity, we can restrict out attention to RAM programs computing
partial functions of one argument over N. Furthermore, we
only need the following kinds of instructions, each instruction
being coded as shown below. Because we are only considering
functions over N, there is only one kind of instruction of the
form add and jmp (and add increments by 1 the contents of
the specified register Rj).

Ni add Rj code = �1, i, j, 0�
Ni tail Rj code = �2, i, j, 0�
Ni continue code = �3, i, 1, 0�
Ni Rj jmp Nka code = �4, i, j, k�
Ni Rj jmp Nkb code = �5, i, j, k�

Recall that a conditional jump causes a jump to the closest
address Nk above or below iff Rj is nonzero, and if Rj is null,
the next instruction is executed.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 319 of 342

Go Back

Full Screen

Close

Quit

We assume that all lines in a RAM program are numbered.
This is always feasible, by labeling unnamed instructions with
a new and unused line number.

The code of an instruction I is denoted as #I. To simplify the
notation, we introduce the following decoding primitive recur-
sive functions Typ, Nam, Reg, and Jmp, defined as follows:

Typ(x) = Π(1, 4, x),

Nam(x) = Π(2, 4, x),

Reg(x) = Π(3, 4, x),

Jmp(x) = Π(4, 4, x).

The functions yield the type, line number, register name, and
line number jumped to, if any, for an instruction coded by x.

We can define the primitive recursive predicate INST, such
that INST(x) holds iff x codes an instruction.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 320 of 342

Go Back

Full Screen

Close

Quit

First, we need the connective ⊃ (implies), defined such that

P ⊃ Q iff ¬P ∨Q.

Then, INST(x) holds iff:

[1 ≤ Typ(x) ≤ 5] ∧ [1 ≤ Reg(x)]∧
[Typ(x) ≤ 3 ⊃ Jmp(x) = 0]∧
[Typ(x) = 3 ⊃ Reg(x) = 1]

Program are coded as follows. If P is a RAM program com-
posed of the n instructions I1, . . . , In, the code of P , denoted
as #P , is

#P = �n, #I1, . . . , #In�.

Recall from a previous exercise that

�n, #I1, . . . , #In� = �n, �#I1, . . . , #In��.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 321 of 342

Go Back

Full Screen

Close

Quit

We define the primitive recursive functions Ln, Pg, and Line,
such that:

Ln(x) = Π(1, 2, x),

Pg(x) = Π(2, 2, x),

Line(i, x) = Π(i, Ln(x), Pg(x)).

The function Ln yields the length of the program (the number
of instructions), Pg yields the sequence of instructions in the
program (really, a code for the sequence), and Line(i, x) yields
the code of the ith instruction in the program.

If x does not code a program, there is no need to interpret
these functions.

The primitive recursive predicate PROG is defined such that
PROG(x) holds iff x codes a program.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 322 of 342

Go Back

Full Screen

Close

Quit

Thus, PROG(x) holds if each line codes an instruction, each
jump has an instruction to jump to, and the last instruction
is a continue. Thus, PROG(x) holds iff

∀i ≤ Ln(x)[i ≥ 1 ⊃
[INST(Line(i, x)) ∧ Typ(Line(Ln(x), x)) = 3

∧[Typ(Line(i, x)) = 4 ⊃
∃j ≤ i− 1[j ≥ 1 ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]]∧

[Typ(Line(i, x)) = 5 ⊃
∃j ≤ Ln(x)[j > i ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]]]]

Note that we have used the fact proved as an exercise that if f
is a primitive recursive function and P is a primitive recursive
predicate, then ∃x ≤ f(y)P (x) is primitive recursive.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 323 of 342

Go Back

Full Screen

Close

Quit

We are now ready to prove a fundamental result in the theory
of algorithms. This result points out some of the limitations
of the notion of algorithm.

Theorem 5.2.1 (Undecidability of the halting problem) There
is no RAM program P which halts for all inputs and has the
following property when started with input x in register R1
and with input i in register R2 (the other registers being set
to zero):

(1) P halts with output 1 iff i codes a program that eventually
halts when started on input x (all other registers set to
zero).

(2) P halts with output 0 in R1 iff i codes a program that runs
forever when started on input x in R1 (all other registers
set to zero).

(3) If i does not code a program, then P halts with output 2
in R2.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 324 of 342

Go Back

Full Screen

Close

Quit

Proof . Assume that P is such a RAM program, and let Q be
the following program:

Program Q (code q)






R2 ← R1
P

N1 continue

R1 jmp N1a
continue

The program Q can be translated into a program using only
instructions of type 1, 2, 3, 4, 5, described previously, and let
q be the code of this program.

Let us see what happens if we run the program Q on input q
in R1 (all other registers set to zero).

Just after execution of the assignment R2 ← R1, the program
P is started with q in both R1 and R2.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 325 of 342

Go Back

Full Screen

Close

Quit

Since P is supposed to halt for all inputs, it eventually halts
with output 0 or 1 in R1.

If P halts with output 1 in R1, then Q goes into an infinite
loop, while if P halts with output 0 in R1, then Q halts.

But then, because of the definition of P , we see that P says
that Q halts when started on input q iff Q loops forever on
input q, and that Q loops forever on input q iff Q halts on
input q, a contradiction.

Therefore, P cannot exist.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 326 of 342

Go Back

Full Screen

Close

Quit

If we identify the notion of algorithm with that of a RAM pro-
gram which halts for all inputs, the above theorem says that
there is no algorithm for deciding whether a RAM program
eventually halts for a given input.

We say that the halting problem for RAM programs is unde-
cidable (or unsolvable). The above theorem also implies that
the halting problem for Turing machines is undecidable.

Indeed, if we had an algorithm for solving the halting problem
for Turing machines, we could solve the halting problem for
RAM programs as follows: first, apply the algorithm for trans-
lating a RAM program into an equivalent Turing machine, and
then apply the algorithm solving the halting problem for Tur-
ing machines.

The argument is typical in computability theory and is called
a “reducibility argument”.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 327 of 342

Go Back

Full Screen

Close

Quit

Our next goal is to define a primitive recursive function that
describes the computation of RAM programs.

Assume that we have a RAM program P using n registers
R1, . . . , Rn, whose contents are denoted as r1, . . . , rn.

We can code r1, . . . , rn into a single integer �r1, . . . , rn�.

Conversely, every integer x can be viewed as coding the con-
tents of R1, . . . , Rn, by taking the sequence
Π(1, n, x), . . . , Π(n, n, x).



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 328 of 342

Go Back

Full Screen

Close

Quit

Actually, it is not necessary to know n, the number of registers,
if we make the following observation:

Reg(Line(i, x)) ≤ Line(i, x) ≤ Pg(x)

for all i, x ∈ N.

Then, if x codes a program, then R1, . . . , Rx certainly include
all the registers in the program. Also note that from a previous
exercise,

�r1, . . . , rn, 0, . . . , 0� = �r1, . . . , rn, 0�.

We now define the primitive recursive functions Nextline, Nextcont,
and Comp, describing the computation of RAM programs.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 329 of 342

Go Back

Full Screen

Close

Quit

Definition 5.2.2 Let x code a program and let i be such that
1 ≤ i ≤ Ln(x). The following functions are defined:

(1) Nextline(i, x, y) is the number of the next instruction to
be executed after executing the ith instruction in the pro-
gram coded by x, where the contents of the registers is
coded by y.

(2) Nextcont(i, x, y) is the code of the contents of the reg-
isters after executing the ith instruction in the program
coded by x, where the contents of the registers is coded
by y.

(3) Comp(x, y, m) = �i, z�, where i and z are defined such
that after running the program coded by x for m steps,
where the initial contents of the program registers are
coded by y, the next instruction to be executed has line
number i, and z is the code of the current contents of the
registers.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 330 of 342

Go Back

Full Screen

Close

Quit

Lemma 5.2.3 The functions Nextline, Nextcont, and Comp,
are primitive recursive.

We can now reprove that every RAM computable function is
partial recursive.

Indeed, assume that x codes a program P .

We define the partial function End so that for all x, y, where
x codes a program and y codes the contents of its registers,
End(x, y) is the number of steps for which the computation
runs before halting, if it halts.

If the program does not halt, then End(x, y) is undefined.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 331 of 342

Go Back

Full Screen

Close

Quit

Since

End(x, y) = min m[Π1(Comp(x, y, m)) = Ln(x)],

End is a partial recursive function. However, in general, End
is not a total function.

If ϕ is the partial recursive function computed by the program
P coded by x, then we have

ϕ(y) = Π1(Π2(Comp(x, �y, 0�, End(x, �y, 0�)))).

Observe that ϕ is written in the form ϕ = g ◦min f , for some
primitive recursive functions f and g.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 332 of 342

Go Back

Full Screen

Close

Quit

We can also exhibit a partial recursive function which enumer-
ates all the unary partial recursive functions. It is a universal
function.

Abusing the notation slightly, we will write ϕ(x, y) for ϕ(�x, y�),
viewing ϕ as a function of two arguments (however, ϕ is really
a function of a single argument).

We define the function ϕuniv as follows:

ϕuniv(x, y) =

�
Π1(Π2(Comp(x, �y, 0�, End(x, �y, 0�))))

if PROG(x),
undefined otherwise.

The function ϕuniv is a partial recursive function with the fol-
lowing property: For every x coding a RAM program P , for
every input y,



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 333 of 342

Go Back

Full Screen

Close

Quit

ϕuniv(x, y) = ϕx(y),

the value of the partial recursive function ϕx computed by the
RAM program P coded by x.

If x does not code a program, then ϕuniv(x, y) is undefined for
all y.

By Lemma 4.8.2, ϕuniv is not recursive. Indeed, being an
enumerating function for the partial recursive functions, it is
an enumerating function for the total recursive functions, and
thus, it cannot be recursive.

Being a partial function saves us from a contradiction.

The existence of the function ϕuniv leads us to the notion of
an indexing of the RAM programs.

We can define a listing of the RAM programs as follows.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 334 of 342

Go Back

Full Screen

Close

Quit

If x codes a program (that is, if PROG(x) holds) and P is the
program that x codes, we call this program P the xth RAM
program and denote it as Px. If x does not code a program,
we let Px be the program that diverges for every input:

N1 add R1
N1 R1 jmp N1a
N1 continue

Therefore, in all cases, Px stands for the xth RAM program.
Thus, we have a listing of RAM programs,
P0, P1, P2, P3, . . ., such that every RAM program (of the re-
stricted type considered here) appears in the list exactly once,
except for the “infinite loop” program.

In particular, note that ϕuniv being a partial recursive func-
tion, it is computed by some RAM program UNIV that has a
code univ and is the program Puniv in the list.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 335 of 342

Go Back

Full Screen

Close

Quit

Having an indexing of the RAM programs, we also have an
indexing of the partial recursive functions.

Definition 5.2.4 For every integer x ≥ 0, we let Px be the
RAM program coded by x as defined earlier, and ϕx be the
partial recursive function computed by Px.

Remark : Kleene used the notation {x} for the partial recursive
function coded by x. Due to the potential confusion with
singleton sets, we follow Rogers, and use the notation ϕx.

The existence of the universal function ϕuniv is sufficiently
important to be recorded in the following Lemma.

Lemma 5.2.5 For the indexing of RAM programs defined ear-
lier, there is a universal partial recursive function ϕuniv such
that, for all x, y ∈ N, if ϕx is the partial recursive function
computed by Px, then

ϕx(y) = ϕuniv(�x, y�).



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 336 of 342

Go Back

Full Screen

Close

Quit

The program UNIV computing ϕuniv can be viewed as an in-
terpreter for RAM programs. By giving the universal program
UNIV the “program” x and the “data” y, we get the result
of executing program Px on input y. We can view the RAM
model as a stored program computer .

By Theorem 5.2.1 and Lemma 5.2.5, the halting problem for
the single program UNIV is undecidable. Otherwise, the halt-
ing problem for RAM programs would be decidable, a contra-
diction.

It should be noted that the program UNIV can actually be
written (with a certain amount of pain).

The object of the next Section is to show the existence of
Kleene’s T -predicate. This will yield another important nor-
mal form. In addition, the T -predicate is a basic tool in re-
cursion theory.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 337 of 342

Go Back

Full Screen

Close

Quit

5.3. Kleene’s T -Predicate

In Section 5.2, we have encoded programs. The idea of this
Section is to also encode computations of RAM programs.

Assume that x codes a program, that y is some input (not a
code), and that z codes a computation of Px on input y. The
predicate T (x, y, z) is defined as follows:

T (x, y, z) holds iff x codes a RAM program, y is an input, and
z codes a halting computation of Px on input y.

We will show that T is primitive recursive.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 338 of 342

Go Back

Full Screen

Close

Quit

First, we need to encode computations. We say that z codes
a computation of length n ≥ 1 if

z = �n + 2, �1, y0�, �i1, y1�, . . . , �in, yn��,

where each ij is the physical location (not the line number)
of the next instruction to be executed and each yj codes the
contents of the registers just before execution of the instruc-
tion at the location ij. Thus, in−1 = Ln(x) and in is irrele-
vant. Writing the definition of T is a little simpler if we let
in = Ln(x) + 1.

Also, y0 codes the initial contents of the registers, that is,
y0 = �y, 0�, for some input y. We let Ln(z) = Π1(z).



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 339 of 342

Go Back

Full Screen

Close

Quit

Definition 5.3.1 The T -predicate is the primitive recursive
predicate defined as follows:

T (x, y, z) iff PROG(x) and (Ln(z) ≥ 3) and

∀j ≤ Ln(z)− 3[0 ≤ j ⊃
Nextline(Π1(Π(j + 2, Ln(z), z)), x, Π2(Π(j + 2, Ln(z), z)))

= Π1(Π(j + 3, Ln(z), z))

and

Nextcont(Π1(Π(j + 2, Ln(z), z)), x, Π2(Π(j + 2, Ln(z), z)))

= Π2(Π(j + 3, Ln(z), z))

and

Π1(Π(Ln(z)− 1, Ln(z), z)) = Ln(x) and

Π1(Π(2, Ln(z), z)) = 1 and

y = Π1(Π2(Π(2, Ln(z), z))) and Π2(Π2(Π(2, Ln(z), z))) = 0]



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 340 of 342

Go Back

Full Screen

Close

Quit

The reader can verify that T (x, y, z) holds iff x codes a RAM
program, y is an input, and z codes a halting computation of
Px on input y.

In order to extract the output of Px from z, we define the
primitive recursive function Res as follows:

Res(z) = Π1(Π2(Π(Ln(z), Ln(z), z))).

Using the T -predicate, we get the so-called Kleene normal
form.

Theorem 5.3.2 (Kleene Normal Form) Using the indexing
of the partial recursive functions defined earlier, we have

ϕx(y) = Res[min z(T (x, y, z))],

where T (x, y, z) and Res are primitive recursive.



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 341 of 342

Go Back

Full Screen

Close

Quit

Note that the universal function ϕuniv can be defined by

ϕuniv(x, y) = Res[min z(T (x, y, z))].

There is another important property of the partial recursive
functions, namely, that composition is effective.

We need two auxiliary primitive recursive functions. The
function Conprogs creates the code of the program obtained
by concatenating the programs Px and Py, and for i ≥ 2,
Cumclr(i) is the code of the program which clears registers
R2, . . . , Ri.

To get Cumclr, we can use the function clr(i) such that clr(i)
is the code of the program

N1 tail Ri
N1 Ri jmp N1a
N continue



Pairing Functions

Coding of RAM . . .

Kleene’s T -Predicate

Home Page

Title Page

�� ��

� �

Page 342 of 342

Go Back

Full Screen

Close

Quit

We leave it as an exercise to prove that clr, Conprogs, and
Cumclr, are primitive recursive.

Theorem 5.3.3 There is a primitive recursive function c such
that

ϕc(x,y) = ϕx ◦ ϕy.


	Universal RAM Programs and the Halting Problem
	Pairing Functions
	Coding of RAM Programs
	Kleene's T-Predicate


