
Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 241 of 305

Go Back

Full Screen

Close

Quit

Chapter 4

RAM Programs, Turing
Machines, and the Partial
Recursive Functions

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 242 of 305

Go Back

Full Screen

Close

Quit

4.1. Partial Functions and RAM Programs

We define an abstract machine model for computing functions

f : Σ∗ × · · · × Σ∗
� �� �

n

→ Σ∗,

where Σ = {a1, . . . , ak} is some input alphabet. Numerical
functions f : Nn → N can be viewed as functions defined over
the one-letter alphabet {a1}, using the bijection m �→ am

1 .

Let us recall the definition of a partial function.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 243 of 305

Go Back

Full Screen

Close

Quit

A binary relation R ⊆ A × B between two sets A and B is
functional iff, for all x ∈ A, and y, z ∈ B,

(x, y) ∈ R and (x, z) ∈ R implies that y = z.

A partial function is a triple f = �A, G, B�, where A and B are
arbitrary sets (possibly empty) and G is a functional relation
(possibly empty) between A and B, called the graph of f .

Hence, a partial function is a functional relation such that
every argument has at most one image under f .

The graph of a function f is denoted as graph(f). When no
confusion can arise, a function f and its graph are usually
identified.

A partial function f = �A, G, B� is often denoted as f : A → B.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 244 of 305

Go Back

Full Screen

Close

Quit

The domain dom(f) of a partial function f = �A, G, B� is the
set

dom(f) = {x ∈ A | ∃y ∈ B, (x, y) ∈ G}.

For every element x ∈ dom(f), the unique element y ∈ B such
that (x, y) ∈ graph(f) is denoted as f(x). We say that f(x)
converges , also denoted as f(x) ↓.

If x ∈ A and x /∈ dom(f), we say that f(x) diverges , also
denoted as f(x) ↑.

Intuitively, if a function is partial, it does not return any out-
put for any input not in its domain. This corresponds to an
infinite computation.

A partial function f : A → B is a total function iff dom(f) = A.
It is customary to call a total function simply a function.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 245 of 305

Go Back

Full Screen

Close

Quit

We now define a model of computation know as the RAM
programs , or Post machines . RAM programs are written in
a sort of assembly language involving simple instructions ma-
nipulating strings stored into registers.

Every RAM program uses a fixed and finite number of registers
denoted as R1, . . . , Rp, with no limitation on the size of strings
held in the registers.

RAM programs can be defined either in flowchart form or
in linear form. Since the linear form is more convenient for
coding purposes, we present RAM programs in linear form.

A RAM program P (in linear form) consists of a finite se-
quence of instructions using a finite number of registers
R1, . . . , Rp.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 246 of 305

Go Back

Full Screen

Close

Quit

Instructions may optionally be labeled with line numbers de-
noted by N1, . . . , Nq.

It is neither mandatory to label all instructions, nor to use
distinct line numbers!

Thus, the same line number can be used in more than one line.
As we will see later on, this makes it easier to concatenate two
different programs without performing a renumbering of line
numbers.

Every instruction has four fields, not necessarily all used. The
main field is the op-code.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 247 of 305

Go Back

Full Screen

Close

Quit

Definition 4.1.1 RAM programs are constructed from seven
types of instructions shown below:

(1j) N addj Y
(2) N tail Y
(3) N clr Y
(4) N Y ← X
(5a) N jmp N1a
(5b) N jmp N1b
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 248 of 305

Go Back

Full Screen

Close

Quit

An instruction of type (1j) concatenates the letter aj to the
right of the string held by register Y (1 ≤ j ≤ k). The effect
is the assignment

Y := Y aj

An instruction of type (2) deletes the leftmost letter of the
string held by the register Y . This corresponds to the function
tail, defined such that

tail(�) = �,

tail(aju) = u.

The effect is the assignment

Y := tail(Y)

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 249 of 305

Go Back

Full Screen

Close

Quit

An instruction of type (3) clears register Y , i.e., sets its value
to the empty string �. The effect is the assignment

Y := �

An instruction of type (4) assigns the value of register X to
register Y . The effect is the assignment

Y := X

An instruction of type (5a) or (5b) is an unconditional jump.

The effect of (5a) is to jump to the closest line number N1
occurring above the instruction being executed, and the effect
of (5b) is to jump to the closest line number N1 occurring
below the instruction being executed.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 250 of 305

Go Back

Full Screen

Close

Quit

An instruction of type (6ja) or (6jb) is a conditional jump.
Let head be the function defined as follows:

head(�) = �,

head(aju) = aj.

The effect of (6ja) is to jump to the closest line number N1
occurring above the instruction being executed iff
head(Y) = aj, else to execute the next instruction (the one
immediately following the instruction being executed).

The effect of (6jb) is to jump to the closest line number N1
occurring below the instruction being executed iff
head(Y) = aj, else to execute the next instruction.

When computing over N, instructions of type (6jb) jump to
the closest N1 above or below iff Y is nonnull.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 251 of 305

Go Back

Full Screen

Close

Quit

An instruction of type (7) is a no-op, i.e., the registers are
unaffected. If there is a next instruction, then it is executed,
else, the program stops.

Obviously, a program is syntactically correct only if certain
conditions hold.

Definition 4.1.2 A RAM program P is a finite sequence of
instructions as in Definition 4.1.1, and satisfying the following
conditions:

(1) For every jump instruction (conditional or not), the line
number to be jumped to must exist in P .

(2) The last instruction of a RAM program is a continue.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 252 of 305

Go Back

Full Screen

Close

Quit

The reason for allowing multiple occurences of line numbers is
to make it easier to concatenate programs without having to
perform a renaming of line numbers. The technical choice of
jumping to the closest address N1 above or below comes from
the fact that it is easy to search up or down using primitive
recursion, as we will see later on.

It is fairly obvious that linear RAM programs can be repre-
sented in flowchart form, and that the two models are equiv-
alent. We will not worry about this in this Chapter.

For the purpose of computing a function
f : Σ∗ × · · · × Σ∗

� �� �
n

→ Σ∗ using a RAM program P , we assume

that P has at least n registers called input registers , and that
these registers R1, . . . , Rn are initialized with the input values
of the function f . We also assume that the output is returned
in register R1.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 253 of 305

Go Back

Full Screen

Close

Quit

The following RAM program concatenates two strings x1 and
x2 held in registers R1 and R2:

R3 ← R1
R4 ← R2

N0 R4 jmpa N1b
R4 jmpb N2b

jmp N3b
N1 adda R3

tail R4
jmp N0a

N2 addb R3
tail R4
jmp N0a

N3 R1 ← R3
continue

Since Σ = {a, b}, for more clarity, we wrote jmpa instead of
jmp1, jmpb instead of jmp2, adda instead of add1, and addb

instead of add2.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 254 of 305

Go Back

Full Screen

Close

Quit

Definition 4.1.3 A RAM program P computes the partial
function ϕ: (Σ∗)n → Σ∗ if the following conditions hold: For
every input (x1, . . . , xn) ∈ (Σ∗)n, having initialized the input
registers R1, . . . , Rn with x1, . . . , xn, the program eventually
halts iff ϕ(x1, . . . , xn) converges, and if and when P halts, the
value of R1 is equal to ϕ(x1, . . . , xn). A partial function ϕ is
RAM-computable iff it is computed by some RAM program.

For example, the following program computes the erase func-
tion E defined such that

E(u) = �

for all u ∈ Σ∗:

clr R1
continue

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 255 of 305

Go Back

Full Screen

Close

Quit

The following program computes the jth successor function
Sj defined such that

Sj(u) = uaj

for all u ∈ Σ∗:

addj R1
continue

The following program (with n input variables) computes the
projection function P n

i defined such that

P n
i (u1, . . . , un) = ui,

where n ≥ 1, and 1 ≤ i ≤ n:

R1 ← Ri
continue

Note that P 1
1 is the identity function.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 256 of 305

Go Back

Full Screen

Close

Quit

Having a programming language, we would like to know how
powerful it is, that is, we would like to know what kind of
functions are RAM-computable.

At first glance, RAM programs don’t do much, but this is
not so. Indeed, we will see shortly that the class of RAM-
computable functions is quite extensive.

One way of getting new programs from previous ones is via
composition. Another one is by primitive recursion. We will
investigate these constructions after introducing another model
of computation, Turing machines .

Remarkably, the classes of (partial) functions computed by
RAM programs and by Turing machines are identical. This is
the class of partial recursive function. This class can be given
several other definitions. We will present the definition of the
so-called µ-recursive functions (due to Kleene).

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 257 of 305

Go Back

Full Screen

Close

Quit

The following Lemma will be needed to simplify the encoding
of RAM programs as numbers:

Lemma 4.1.4 Every RAM program can be converted to an
equivalent program only using the following type of instruc-
tions:
(1j) N addj Y
(2) N tail Y
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue

The proof is fairly simple. For example, instructions of the
form

Ri ← Rj

can be eliminated by tranferring the contents of Rj in reverse
order into an auxiliary register Rk, and then by transferring
the contents of Rk in reverse order into Ri.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 258 of 305

Go Back

Full Screen

Close

Quit

4.2. Definition of a Turing Machine

We define a Turing machine model for computing functions

f : Σ∗ × · · · × Σ∗
� �� �

n

→ Σ∗,

where Σ = {a1, . . . , aN} is some input alphabet. We only
consider deterministic Turing machines.

A Turing machine also uses a tape alphabet Γ such that Σ ⊂ Γ.
The tape alphabet contains some special symbol B /∈ Σ, the
blank .

In this model, a Turing machine uses a single tape. This tape
can be viewed as a string over Γ. The tape is both an input
tape and a storage mechanism.

Symbols on the tape can be overwritten, and the tape can
grow either on the left or on the right. There is a read/write
head pointing to some symbol on the tape.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 259 of 305

Go Back

Full Screen

Close

Quit

Unlike Pushdown automata or NFA’s, the read/write head
can move left or right.

Definition 4.2.1 A (deterministic) Turing machine (or TM)
M is a sextuple M = (K, Σ, Γ, {L, R}, δ, q0), where

• K is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite tape alphabet , s.t. Σ ⊂ Γ, K ∩ Γ = ∅, and
with blank B /∈ Σ;

• q0 ∈ K is the start state (or initial state);

• δ is the transition function, a (finite) set of quintuples

δ ⊆ K × Γ× Γ× {L, R} ×K,

such that for all (p, a) ∈ K×Γ, there is at most one triple
(b, m, q) ∈ Γ× {L, R} ×K such that (p, a, b, m, q) ∈ δ.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 260 of 305

Go Back

Full Screen

Close

Quit

A quintuple (p, a, b, m, q) ∈ δ is called an instruction. It is
also denoted as

p, a → b, m, q.

The effect of an instruction is to switch from state p to state
q, overwrite the symbol currently scanned a with b, and move
the read/write head either left or right, according to m.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 261 of 305

Go Back

Full Screen

Close

Quit

4.3. Computations of Turing Machines

To explain how a Turing machine works, we describe its action
on Instantaneous descriptions . We take advantage of the fact
that K ∩ Γ = ∅ to define instantaneous descriptions.

Definition 4.3.1 Given a Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0),

an instantaneous description (for short an ID) is a (nonempty)
string in Γ∗KΓ+, that is, a string of the form

upav,

where u, v ∈ Γ∗, p ∈ K, and a ∈ Γ.

The intuition is that an ID upav describes a snapshot of a TM
in the current state p, whose tape contains the string uav, and
with the read/write head pointing to the symbol a.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 262 of 305

Go Back

Full Screen

Close

Quit

Thus, in upav, the state p is just to the left of the symbol
presently scanned by the read/write head.

We explain how a TM works by showing how it acts on ID’s.

Definition 4.3.2 Given a Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0),

the yield relation (or compute relation) � is a binary relation
defined on the set of ID’s as follows:

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 263 of 305

Go Back

Full Screen

Close

Quit

For any two ID’s ID1 and ID2, we have ID1 � ID2 iff either

(1) (p, a, b, R, q) ∈ δ, and either

(a) ID1 = upacv, c ∈ Γ, and ID2 = ubqcv, or

(b) ID1 = upa and ID2 = ubqB;

or

(2) (p, a, b, L, q) ∈ δ, and either

(a) ID1 = ucpav, c ∈ Γ, and ID2 = uqcbv, or

(b) ID1 = pav and ID2 = qBbv.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 264 of 305

Go Back

Full Screen

Close

Quit

Note how the tape is extended by one blank after the rightmost
symbol in case (1)(b), and by one blank before the leftmost
symbol in case (2)(b).

As usual, we let �+ denote the transitive closure of �, and we
let �∗ denote the reflexive and transitive closure of �.

We can now explain how a Turing function computes a partial
function

f : Σ∗ × · · · × Σ∗
� �� �

n

→ Σ∗.

Since we allow functions taking n ≥ 1 input strings, we as-
sume that Γ contains the special delimiter , not in Σ, used to
separate the various input strings.

It is convenient to assume that a Turing machine “cleans up”
its tape when it halts, before returning its output. For this,
we will define proper ID’s.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 265 of 305

Go Back

Full Screen

Close

Quit

Definition 4.3.3 Given a Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0),

where Γ contains some delimiter , not in Σ in addition to the
blank B, a starting ID is of the form

q0w1,w2, . . . ,wn

where w1, . . . , wn ∈ Σ∗ and n ≥ 2, or q0w with w ∈ Σ+, or
q0B.

A blocking (or halting) ID is an ID upav such that there are
no instructions (p, a, b, m, q) ∈ δ for any
(b, m, q) ∈ Γ× {L, R} ×K.

A proper ID is a halting ID of the form

BkpwBl,

where w ∈ Σ∗, and k, l ≥ 0 (with l ≥ 1 when w = �).

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 266 of 305

Go Back

Full Screen

Close

Quit

Computation sequences are defined as follows:

Definition 4.3.4 Given a Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0),

a computation sequence (or computation) is a finite or infinite
sequence of ID’s

ID0, ID1, . . . , IDi, IDi+1, . . . ,

such that IDi � IDi+1 for all i ≥ 0.

A computation sequence halts iff it is a finite sequence of ID’s,
so that ID0 �∗ IDn and IDn is a halting ID.

A computation sequence diverges if it is an infinite sequence
of ID’s.

We now explain how a Turing machine computes a partial
function.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 267 of 305

Go Back

Full Screen

Close

Quit

Definition 4.3.5 A Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0)

computes the partial function

f : Σ∗ × · · · × Σ∗
� �� �

n

→ Σ∗

iff the following conditions hold:

(1) For every w1, . . . , wn ∈ Σ∗, given the starting ID

ID0 = q0w1,w2, . . . ,wn

or q0w with w ∈ Σ+, or q0B, the computation sequence
of M from ID0 halts in a proper ID
iff f(w1, . . . , wn) is defined.

(2) If f(w1, . . . , wn) is defined, then M halts in a proper ID
of the form

IDn = Bkpf(w1, . . . , wn)B
h,

which means that it computes the right value.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 268 of 305

Go Back

Full Screen

Close

Quit

A function f (over Σ∗) is Turing computable iff it is computed
by some Turing machine M .

Note that by (1), the TM M may halt in an improper ID, in
which case f(w1, . . . , wn) must be undefined. This corresponds
to the fact that we only accept to retrieve the output of a
computation if the TM has cleaned up its tape, i.e., produced
a proper ID. In particular, intermediate calculations have to
be erased before halting.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 269 of 305

Go Back

Full Screen

Close

Quit

Example.

K = {q0, q1, q2, q3};

Σ = {a, b};

Γ = {a, b, B};

The instructions in δ are:

q0, B → B, R, q3,

q0, a → b, R, q1,

q0, b → a, R, q1,

q1, a → b, R, q1,

q1, b → a, R, q1,

q1, B → B, L, q2,

q2, a → a, L, q2,

q2, b → b, L, q2,

q2, B → B, R, q3.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 270 of 305

Go Back

Full Screen

Close

Quit

The reader can easily verify that this machine exchanges the
a’s and b’s in a string. For example, on input w = aaababb,
the output is bbbabaa.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 271 of 305

Go Back

Full Screen

Close

Quit

4.4. RAM-computable functions are Turing-
computable

Turing machines can simulate RAM programs, and as a result,
we have the following Theorem:

Theorem 4.4.1 Every RAM-computable function is Turing-
computable. Furthermore, given a RAM program P , we can
effectively construct a Turing machine M computing the same
function.

The idea of the proof is to represent the contents of the regis-
ters R1, . . . Rp on the Turing machine tape by the string

#r1#r2# · · ·#rp#,

Where # is a special marker and ri represents the string held
by Ri, We also use Lemma 4.1.4 to reduce the number of
instructions to be dealt with.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 272 of 305

Go Back

Full Screen

Close

Quit

The Turing machine M is built of blocks, each block simu-
lating the effect of some instruction of the program P . The
details are a bit tedious, and can be found in the notes or in
Machtey and Young.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 273 of 305

Go Back

Full Screen

Close

Quit

4.5. Turing-computable functions are RAM-
computable

RAM programs can also simulate Turing machines.

Theorem 4.5.1 Every Turing-computable function is RAM-
computable. Furthermore, given a Turing machine M , one can
effectively construct a RAM program P computing the same
function.

The idea of the proof is to design a RAM program containing
an encoding of the current ID of the Turing machine M in
register R1, and to use other registers R2, R3 to simulate the
effect of executing an instruction of M by updating the ID of
M in R1.

The details are tedious and can be found in the notes.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 274 of 305

Go Back

Full Screen

Close

Quit

Another proof can be obtained by proving that the class of
Turing computable functions coincides with the class of par-
tial recursive functions . Indeed, it turns out that both RAM
programs and Turing machines compute precisely the class of
partial recursive functions.

First, we define the primitive recursive functions .

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 275 of 305

Go Back

Full Screen

Close

Quit

4.6. The Primitive Recursive Functions

The class of primitive recursive functions is defined in terms
of base functions and closure operations.

Definition 4.6.1 Let Σ = {a1, . . . , aN}. The base functions
over Σ are the following functions:

(1) The erase function E, defined such that E(w) = �, for all
w ∈ Σ∗;

(2) For every j, 1 ≤ j ≤ N , the j-successor function Sj,
defined such that Sj(w) = waj, for all w ∈ Σ∗;

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 276 of 305

Go Back

Full Screen

Close

Quit

(3) The projection functions P n
i , defined such that

P n
i (w1, . . . , wn) = wi,

for every n ≥ 1, every i, 1 ≤ i ≤ n, and for all w1, . . . , wn ∈
Σ∗.

Note that P 1
1 is the identity function on Σ∗. Projection func-

tions can be used to permute the arguments of another func-
tion.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 277 of 305

Go Back

Full Screen

Close

Quit

A crucial closure operation is (extended) composition.

Definition 4.6.2 Let Σ = {a1, . . . , aN}. For any function

g: Σ∗ × · · · × Σ∗
� �� �

m

→ Σ∗,

and any m functions

hi: Σ
∗ × · · · × Σ∗

� �� �
n

→ Σ∗,

the composition of g and the hi is the function

f : Σ∗ × · · · × Σ∗
� �� �

n

→ Σ∗,

denoted as g ◦ (h1, . . . , hm), such that

f(w1, . . . , wn) = g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)),

for all w1, . . . , wn ∈ Σ∗.

As an example, f = g ◦ (P 2
2 , P 2

1) is such that

f(w1, w2) = g(w2, w1).

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 278 of 305

Go Back

Full Screen

Close

Quit

Another crucial closure operation is primitive recursion.

Definition 4.6.3 Let Σ = {a1, . . . , aN}. For any function

g: Σ∗ × · · · × Σ∗
� �� �

m−1

→ Σ∗,

where m ≥ 2, and any N functions

hi: Σ
∗ × · · · × Σ∗

� �� �
m+1

→ Σ∗,

the function
f : Σ∗ × · · · × Σ∗

� �� �
m

→ Σ∗,

is defined by primitive recursion from g and h1, . . . , hN , if

f(�, w2, . . . , wm) = g(w2, . . . , wm),

f(ua1, w2, . . . , wm) = h1(u, f(u, w2, . . . , wm), w2, . . . , wm),

. . . = . . .

f(uaN , w2, . . . , wm) = hN(u, f(u, w2, . . . , wm), w2, . . . , wm),

for all u, w2, . . . , wm ∈ Σ∗.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 279 of 305

Go Back

Full Screen

Close

Quit

When m = 1, for some fixed w ∈ Σ∗, we have

f(�) = w,

f(ua1) = h1(u, f(u)),

. . . = . . .

f(uaN) = hN(u, f(u)),

for all u ∈ Σ∗.

For numerical functions (i.e., when Σ = {a1}), the scheme of
primitive recursion is simpler:

f(0, x2, . . . , xm) = g(x2, . . . , xm),

f(x + 1, x2, . . . , xm) = h1(x, f(x, x2, . . . , xm), x2, . . . , xm),

for all x, x2, . . . , xm ∈ N.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 280 of 305

Go Back

Full Screen

Close

Quit

The successor function S is the function

S(x) = x + 1.

Addition, multiplication, exponentiation, and
super-exponentiation can, be defined by primitive recursion as
follows (being a bit loose, we should use some projections ...):

add(0, n) = n,

add(m + 1, n) = S(add(m, n)),

mult(0, n) = 0,

mult(m + 1, n) = add(mult(m, n), n),

rexp(0, m) = 1,

rexp(m + 1, n) = mult(rexp(m, n), n),

exp(m, n) = rexp ◦ (P 2
2 , P 2

1),

supexp(0, n) = 1,

supexp(m + 1, n) = exp(n, supexp(m, n)).

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 281 of 305

Go Back

Full Screen

Close

Quit

As an example over {a, b}∗, the following function
g: Σ∗ × Σ∗ → Σ∗, is defined by primitive recursion:

g(�, v) = P 1
1 (v),

g(uai, v) = Si ◦ P 3
2 (u, g(u, v), v),

where 1 ≤ i ≤ N . It is easily verified that g(u, v) = vu. Then,

f = g ◦ (P 2
2 , P 2

1)

computes the concatenation function, i.e. f(u, v) = uv.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 282 of 305

Go Back

Full Screen

Close

Quit

Definition 4.6.4 Let Σ = {a1, . . . , aN}. The class of primi-
tive recursive functions is the smallest class of functions (over
Σ∗) which contains the base functions and is closed under com-
position and primitive recursion.

We leave as an exercise to show that every primitive recursive
function is a total function. The class of primitive recursive
functions may not seem very big, but it contains all the total
functions that we would ever want to compute.

Although it is rather tedious to prove, the following theorem
can be shown:

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 283 of 305

Go Back

Full Screen

Close

Quit

Theorem 4.6.5 For an alphabet Σ = {a1, . . . , aN}, every prim-
itive recursive function is Turing computable.

The best way to prove the above theorem is to use the com-
putation model of RAM programs. Indeed, it was shown in
Theorem 4.4.1 that every Turing machine can simulate a RAM
program.

It is also rather easy to show that the primitive recursive func-
tions are RAM-computable.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 284 of 305

Go Back

Full Screen

Close

Quit

In order to define new functions it is also useful to use predi-
cates.

Definition 4.6.6 An n-ary predicate P (over Σ∗) is any sub-
set of (Σ∗)n. We write that a tuple (x1, . . . , xn) satisfies P
as (x1, . . . , xn) ∈ P or as P (x1, . . . , xn). The characteristic
function of a predicate P is the function CP : (Σ∗)n → {a1}∗
defined by

Cp(x1, . . . , xn) =

�
a1 iff P (x1, . . . , xn)
� iff not P (x1, . . . , xn).

A predicate P is primitive recursive iff its characteristic func-
tion CP is primitive recursive.

We leave to the reader the obvious adaptation of the the notion
of primitive recursive predicate to functions defined over N. In
this case, 0 plays the role of � and 1 plays the role of a1.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 285 of 305

Go Back

Full Screen

Close

Quit

It is easily shown that if P and Q are primitive recursive predi-
cates (over (Σ∗)n), then P∨Q, P∧Q and ¬P are also primitive
recursive.

As an exercise, the reader may want to prove that the predi-
cate (defined over N):
prime(n) iff n is a prime number, is a primitive recursive pred-
icate.

For any fixed k ≥ 1, the function:
ord(k, n) = exponent of the kth prime in the prime factoriza-
tion of n, is a primitive recursive function.

We can also define functions by cases.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 286 of 305

Go Back

Full Screen

Close

Quit

Lemma 4.6.7 If P1, . . . , Pn are pairwise disjoint primitive re-
cursive predicates (which means that Pi∩Pj = ∅ for all i �= j)
and f1, . . . , fn+1 are primitive recursive functions, the function
g defined below is also primitive recursive:

g(x) =






f1(x) iff P1(x)
...
fn(x) iff Pn(x)
fn+1(x) otherwise.

(writing x for (x1, . . . , xn).)

It is also useful to have bounded quantification and bounded
minimization.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 287 of 305

Go Back

Full Screen

Close

Quit

Definition 4.6.8 If P is an (n + 1)-ary predicate, then the
bounded existential predicate ∃y/xP (y, z) holds iff some prefix
y of x makes P (y, z) true.

The bounded universal predicate ∀y/xP (y, z) holds iff every
prefix y of x makes P (y, z) true.

Lemma 4.6.9 If P is an (n+1)-ary primitive recursive pred-
icate, then ∃y/xP (y, z) and ∀y/xP (y, z) are also primitive re-
cursive predicates.

As an application, we can show that the equality predicate,
u = v?, is primitive recursive.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 288 of 305

Go Back

Full Screen

Close

Quit

Definition 4.6.10 If P is an (n + 1)-ary predicate, then the
bounded minimization of P , min y/x P (y, z), is the function
defined such that min y/x P (y, z) is the shortest prefix of x
such that P (y, z) if such a y exists, xa1 otherwise.

The bounded maximization of P , max y/x P (y, z), is the func-
tion defined such that max y/x P (y, z) is the longest prefix of
x such that P (y, z) if such a y exists, xa1 otherwise.

Lemma 4.6.11 If P is an (n + 1)-ary primitive recursive
predicate, then min y/x P (y, z) and max y/x P (y, z) are prim-
itive recursive functions.

So far, the primitive recursive functions do not yield all the
Turing-computable functions. In order to get a larger class of
functions, we need the closure operation known as minimiza-
tion.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 289 of 305

Go Back

Full Screen

Close

Quit

4.7. The Partial Recursive Functions

The operation of minimization (sometimes called minimaliza-
tion) is defined as follows:

Definition 4.7.1 Let Σ = {a1, . . . , aN}. For any function

g: Σ∗ × · · · × Σ∗
� �� �

m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ N , the function

f : Σ∗ × · · · × Σ∗
� �� �

m

→ Σ∗,

is defined by minimization over {aj}∗ from g, if the following
conditions hold for all w1, . . . , wm ∈ Σ∗:

(1) f(w1, . . . , wm) is defined iff there is some n ≥ 0 such that
g(ap

j , w1, . . . , wm) is defined for all p, 0 ≤ p ≤ n, and

g(an
j , w1, . . . , wm) = �.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 290 of 305

Go Back

Full Screen

Close

Quit

(2) When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = an
j ,

where n is such that

g(an
j , w1, . . . , wm) = �

and
g(ap

j , w1, . . . , wm) �= �

for every p, 0 ≤ p ≤ n− 1.

We also write

f(w1, . . . , wm) = minju[g(u, w1, . . . , wm) = �].

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 291 of 305

Go Back

Full Screen

Close

Quit

Note: When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = an
j ,

where n is the smallest integer such that condition (1) holds. It
is very important to require that all the values g(ap

j , w1, . . . , wm)
be defined for all p, 0 ≤ p ≤ n, when defining f(w1, . . . , wm).
Failure to do so allows non-computable functions.

Minimization can be viewed as an abstract version of a while
loop:

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 292 of 305

Go Back

Full Screen

Close

Quit

u := �;
while g(u, w1, . . . , wm) �= � do
u := uaj;
endwhile
let f(w1, . . . , wm) = u

Remark : Kleene used the µ-notation:

f(w1, . . . , wm) = µju[g(u, w1, . . . , wm) = �],

actually, its numerical form:

f(x1, . . . , xm) = µx[g(x, x1, . . . , xm) = 0],

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 293 of 305

Go Back

Full Screen

Close

Quit

The class of partial computable functions is defined as follows.

Definition 4.7.2 Let Σ = {a1, . . . , aN}. The class of partial
recursive functions is the smallest class of functions (over Σ∗)
which contains the base functions and is closed under com-
position, primitive recursion, and minimization. The class of
recursive functions is the subset of the class of partial recursive
functions consisting of functions defined for every input.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 294 of 305

Go Back

Full Screen

Close

Quit

One of the major results of computability theory is the follow-
ing theorem:

Theorem 4.7.3 For an alphabet Σ = {a1, . . . , aN}, every par-
tial recursive function is Turing-computable. Conversely, ev-
ery Turing-computable function is a partial recursive function.
Similarly, the class of recursive functions is equal to the class
of Turing-computable functions that halt in a proper ID for
every input.

To prove that every partial recursive function is indeed Turing-
computable, since by Theorem 4.4.1, every Turing machine
can simulate a RAM program, the simplest thing to do is to
show that every partial recursive function is RAM-computable.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 295 of 305

Go Back

Full Screen

Close

Quit

For the converse, one can show that given a Turing machine,
there is a primitive recursive function describing how to go
from one ID to the next. Then, minimization is used to guess
whether a computation halts. The proof shows that every
partial recursive function needs minimization at most once.
The characterization of the recursive functions in terms of
TM’s follows easily.

There are recursive functions that are not primitive recursive.
Such an example is given by Ackermann’s function.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 296 of 305

Go Back

Full Screen

Close

Quit

Ackermann’s function: A recursive function which is not prim-
itive recursive:

A(0, y) = y + 1,

A(x + 1, 0) = A(x, 1),

A(x + 1, y + 1) = A(x, A(x + 1, y)).

It can be shown that:

A(0, x) = x + 1,

A(1, x) = x + 2,

A(2, x) = 2x + 3,

A(3, x) = 2x+3 − 3,

and

A(4, x) = 22··
·2

16

}x − 3,

with A(4, 0) = 16− 3 = 13.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 297 of 305

Go Back

Full Screen

Close

Quit

For example

A(4, 1) = 216 − 3, A(4, 2) = 2216 − 3.

Actually, it is not so obvious that A is a total function. This
can be shown by induction, using the lexicographic ordering
� on N× N, which is defined as follows:

(m, n) � (m�, n�) iff either

m = m� and n = n�, or

m < m�, or

m = m� and n < n�.

We write (m, n) ≺ (m�, n�) when (m, n) � (m�, n�) and
(m, n) �= (m�, n�).

We prove that A(m, n) is defined for all (m, n) ∈ N × N by
complete induction over the lexicographic ordering on N×N.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 298 of 305

Go Back

Full Screen

Close

Quit

In the base case, (m, n) = (0, 0), and since A(0, n) = n + 1,
we have A(0, 0) = 1, and A(0, 0) is defined.

For (m, n) �= (0, 0), the induction hypothesis is that A(m�, n�)
is defined for all (m�, n�) ≺ (m, n). We need to conclude that
A(m, n) is defined.

If m = 0, since A(0, n) = n + 1, A(0, n) is defined.

If m �= 0 and n = 0, since

(m− 1, 1) ≺ (m, 0),

by the induction hypothesis, A(m− 1, 1) is defined, but
A(m, 0) = A(m− 1, 1), and thus A(m, 0) is defined.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 299 of 305

Go Back

Full Screen

Close

Quit

If m �= 0 and n �= 0, since

(m, n− 1) ≺ (m, n),

by the induction hypothesis, A(m, n− 1) is defined. Since

(m− 1, A(m, n− 1)) ≺ (m, n),

by the induction hypothesis, A(m− 1, A(m, n− 1)) is defined.
But
A(m, n) = A(m−1, A(m, n−1)), and thus A(m, n) is defined.

Thus, A(m, n) is defined for all (m, n) ∈ N×N. It is possible
to show that A is a recursive function, although the quickest
way to prove it requires some fancy machinery (the recursion
theorem).

Proving that A is not primitive recursive is harder.

We can also deal with languages.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 300 of 305

Go Back

Full Screen

Close

Quit

4.8. Recursively Enumerable Languages and
Recursive Languages

We define the recursively enumerable languages and the recur-
sive languages. We assume that the TM’s under consideration
have a tape alphabet containing the special symbols 0 and 1.

Definition 4.8.1 Let Σ = {a1, . . . , aN}. A language L ⊆ Σ∗

is recursively enumerable (for short, an r.e. set) iff there is
some TM M such that for every w ∈ L, M halts in a proper
ID with the output 1, and for every w /∈ L, either M halts in
a proper ID with the output 0, or it runs forever. A language
L ⊆ Σ∗ is recursive iff there is some TM M such that for
every w ∈ L, M halts in a proper ID with the output 1, and
for every w /∈ L, M halts in a proper ID with the output 0.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 301 of 305

Go Back

Full Screen

Close

Quit

Thus, given a recursively enumerable language L, for some
w /∈ L, it is possible that a TM accepting L runs forever on
input w. On the other hand, for a recursive language L, a TM
accepting L always halts in a proper ID.

When dealing with languages, it is often useful to consider
nondeterministic Turing machines . Such machines are de-
fined just like deterministic Turing machines, except that their
transition function δ is just a (finite) set of quintuples

δ ⊆ K × Γ× Γ× {L, R} ×K,

with no particular extra condition.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 302 of 305

Go Back

Full Screen

Close

Quit

It can be shown that every nondeterministic Turing machine
can be simulated by a deterministic Turing machine, and thus,
nondeterministic Turing machines also accept the class of r.e.
sets.

It can be shown that a recursively enumerable language is
the range of some recursive function. It can also be shown
that a language L is recursive iff both L and its complement
are recursively enumerable. There are recursively enumerable
languages that are not recursive.

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 303 of 305

Go Back

Full Screen

Close

Quit

Turing machines were invented by Turing around 1935. The
primitive recursive functions were known to Hilbert circa 1890.
Gödel formalized their definition in 1929. The partial recursive
functions were defined by Kleene around 1934. Church also
introduced the λ-calculus as a model of computation around
1934. Other models: Post systems, Markov systems. The
equivalence of the various models of computation was shown
around 1935/36. RAM programs were only defined around
1963.

A further study of the partial recursive functions requires the
notions of pairing functions and of universal functions (or uni-
versal Turing machines).

First, we prove the following lemma showing that restricting
ourselves to total functions is too limiting:

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 304 of 305

Go Back

Full Screen

Close

Quit

Let F be any set of total functions that contains the base func-
tions and is closed under composition and primitive recursion
(and thus, F contains all the primitive recursive functions).

We say that a function f : Σ∗ × Σ∗ → Σ∗ is universal for the
one-argument functions in F iff for every function g: Σ∗ → Σ∗

in F , there is some n ∈ N such that

f(an
1 , u) = g(u)

for all u ∈ Σ∗.

Lemma 4.8.2 For any countable set F of total functions con-
taining the base functions and closed under composition and
primitive recursion, if f is a universal function for the func-
tions g: Σ∗ → Σ∗ in F , then f /∈ F .

Thus, either a universal function for F is partial, or it is not
in F .

Partial Functions . . .

Definition of a . . .

Computations of . . .

RAM-computable . . .

Turing-computable . . .

The Primitive . . .

The Partial . . .

Recursively . . .

Home Page

Title Page

�� ��

� �

Page 305 of 305

Go Back

Full Screen

Close

Quit

Proof . Assume that the universal function f is in F . Let g
be the function such that

g(u) = f(a|u|
1 , u)a1

for all u ∈ Σ∗. We claim that g ∈ F .

It it enough to prove that the function h such that

h(u) = a|u|
1

is primitive recursive, which is easily shown.

Then, because f is universal, there is some m such that

g(u) = f(am
1 , u)

for all u ∈ Σ∗. Letting u = am
1 , we get

g(am
1) = f(am

1 , am
1) = f(am

1 , am
1)a1,

a contradiction.

	RAM Programs, Turing Machines
	Partial Functions and RAM Programs
	Definition of a Turing Machine
	Computations of Turing Machines
	RAM-computable functions are Turing-computable
	Turing-computable functions are RAM-computable
	The Primitive Recursive Functions
	The Partial Recursive Functions
	Recursively Enumerable and Recursive Languages

