
The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 406 of 420

Go Back

Full Screen

Close

Quit

6.8. The Post Correspondence Problem

The Post correspondence problem (due to Emil Post) is another undecid-
able problem that turns out to be a very helpful tool for proving problems
in logic or in formal language theory to be undecidable.

Let Σ be an alphabet with at least two letters. An instance of the Post
Correspondence problem (for short, PCP) is given by two sequences U =
(u1, . . . , um) and V = (v1, . . . , vm), of strings ui, vi ∈ Σ∗. The problem is to
find whether there is a (finite) sequence (i1, . . . , ip), with ij ∈ {1, . . . ,m}
for
j = 1, . . . , p, so that

ui1ui2 · · ·uip = vi1vi2 · · · vip .

Equivalently, an instance of the PCP is a sequence of pairs(
u1

v1

)
, . . . ,

(
um

vm

)
.



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 407 of 420

Go Back

Full Screen

Close

Quit

For example, consider the following problem:(
abab

ababaaa

)
,

(
aaabbb

bb

)
,

(
aab
baab

)
,

(
ba
baa

)
,

(
ab
ba

)
,

(
aa
a

)
.

There is a solution for the string 1234556:

abab aaabbb aab ba ab ab aa = ababaaa bb baab baa ba ba a.

We are beginning to suspect that this is a hard problem. Indeed, it is
undecidable!

Theorem 6.8.1 (Emil Post, 1946) The Post correspondence problem is
undecidable, provided that the alphabet Σ has at least two symbols.



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 408 of 420

Go Back

Full Screen

Close

Quit

There are several ways of proving Theorem 6.8.1, but the strategy is more
or less the same: Reduce the halting problem to the PCP, by encoding
sequences of ID’s as partial solutions of the PCP.

For instance, this can be done for RAM programs. The first step is to
show that every RAM program can be simulated by a single register RAM
program.

Then, the halting problem for RAM programs with one register is reduced
to the PCP (using the fact that only four kinds of instructions are needed).
A proof along these lines was given by Dana Scott.



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 409 of 420

Go Back

Full Screen

Close

Quit

As an application, we prove the following result:

Theorem 6.8.2 It is undecidable whether a context-free grammar is am-
biguous.

Proof . We reduce the PCP to the ambiguity problem for CFG’s. Given
any instance U = (u1, . . . , um) and V = (v1, . . . , vm) of the PCP, let
c1, . . . , cm be m new symbols, and consider the following languages:

LU = {ui1 · · ·uipcip · · · ci1 | 1 ≤ ij ≤ m, 1 ≤ j ≤ p, p ≥ 1},

LV = {vi1 · · · vipcip · · · ci1 | 1 ≤ ij ≤ m, 1 ≤ j ≤ p, p ≥ 1},

and LU,V = LU ∪ LV .



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 410 of 420

Go Back

Full Screen

Close

Quit

We can easily construct a CFG, GU,V , generating LU,V . The productions
are:

S −→ SU

S −→ SV

SU −→ uiSUci

SU −→ uici

SV −→ viSV ci

SV −→ vici.

It is easily seen that the PCP for (U, V ) has a solution iff LU ∩ LV 6= ∅ iff
G is ambiguous.

Remark: As a corollary, we also obtain the following result: It is unde-
cidable for arbitrary context-free grammars G1 and G2 whether L(G1) ∩
L(G2) = ∅ (see also Theorem 6.9.2).



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 411 of 420

Go Back

Full Screen

Close

Quit

6.9. Undecidable Properties of Languages,

Greibach’s Theorem

Recall that the computations of a Turing Machine, M , can be described
in terms of instantaneous descriptions, upav.

We can encode computations

ID0 ` ID1 ` · · · ` IDn

halting in a proper ID, as the language, LM , consisting all of strings

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1,

or
w0#wR

1 #w2#wR
3 # · · ·#w2k−2#wR

2k−1#w2k,

where k ≥ 0, w0 is a starting ID, wi ` wi+1 for all i with 0 ≤ i < 2k + 1
and w2k+1 is proper halting ID in the first case, 0 ≤ i < 2k and w2k is
proper halting ID in the second case.



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 412 of 420

Go Back

Full Screen

Close

Quit

The language LM turns out to be the intersection of two context-free lan-
guages L0

M and L1
M defined as follows:

(1) The strings in L0
M are of the form

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1

or
w0#wR

1 #w2#wR
3 # · · ·#w2k−2#wR

2k−1#w2k,

where w2i ` w2i+1 for all i ≥ 0, and w2k is a proper halting ID in the
second case.

(2) The strings in L1
M are of the form

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1

or
w0#wR

1 #w2#wR
3 # · · ·#w2k−2#wR

2k−1#w2k,

where w2i+1 ` w2i+2 for all i ≥ 0, w0 is a starting ID, and w2k+1 is a
proper halting ID in the first case.



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 413 of 420

Go Back

Full Screen

Close

Quit

Theorem 6.9.1 Given any Turing machine M , the languages L0
M and

L1
M are context-free, and LM = L0

M ∩ L1
M .

Proof . We can construct PDA’s accepting L0
M and L1

M . It is easily checked
that LM = L0

M ∩ L1
M .

As a corollary, we obtain the following undecidability result:

Theorem 6.9.2 It is undecidable for arbitrary context-free grammars G1

and G2 whether L(G1) ∩ L(G2) = ∅.

Proof . We can reduce the problem of deciding whether a partial recursive
function is undefined everywhere to the above problem. By Rice’s theorem,
the first problem is undecidable.



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 414 of 420

Go Back

Full Screen

Close

Quit

However, this problem is equivalent to deciding whether a Turing machine
never halts in a proper ID. By Theorem 6.9.1, the languages L0

M and L1
M

are context-free. Thus, we can construct context-free grammars G1 and
G2 so that L0

M = L(G1) and L1
M = L(G2). Then, M never halts in a

proper ID iff LM = ∅ iff (by Theorem 6.9.1), LM = L(G1)∩L(G2) = ∅.

Given a Turing machine M , the language LM is defined over the alphabet
∆ = Γ∪Q∪{#}. The following fact is also useful to prove undecidability:

Theorem 6.9.3 Given any Turing machine M , the language ∆∗−LM is
context-free.

Proof . One can easily check that the conditions for not belonging to LM

can be checked by a PDA.



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 415 of 420

Go Back

Full Screen

Close

Quit

As a corollary, we obtain:

Theorem 6.9.4 Given any context-free grammar,
G = (V, Σ, P, S), it is undecidable whether L(G) = Σ∗.

Proof . We can reduce the problem of deciding whether a Turing machine
never halts in a proper ID to the above problem.

Indeed, given M , by Theorem 6.9.3, the language ∆∗−LM is context-free.
Thus, there is a CFG, G, so that L(G) = ∆∗ − LM . However, M never
halts in a proper ID iff LM = ∅ iff L(G) = ∆∗.

As a consequence, we also obtain the following:



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 416 of 420

Go Back

Full Screen

Close

Quit

Theorem 6.9.5 Given any two context-free grammar, G1 and G2, and
any regular language, R, the following facts hold:

(1) L(G1) = L(G2) is undecidable.

(2) L(G1) ⊆ L(G2) is undecidable.

(3) L(G1) = R is undecidable.

(4) R ⊆ L(G2) is undecidable.

In contrast to (4), the property L(G1) ⊆ R is decidable!



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 417 of 420

Go Back

Full Screen

Close

Quit

We conclude with a nice theorem of S. Greibach, which is a sort of version
of Rice’s theorem for families of languages.

Let L be a countable family of languages. We assume that there is a
coding function c:L → N and that this function can be extended to code
the regular languages (all alphabets are subsets of some given countably
infinite set).

We also assume that L is effectively closed under union and concatenation
with regular languages.

This means that given any two languages L1 and L2 in L, we have L1∪L2 ∈
L, and c(L1 ∪ L2) is given by a recursive function of c(L1) and c(L2), and
that for every regular language R, we have L1R ∈ L, RL1 ∈ L, and c(RL1)
and c(L1R) are recursive functions of c(R) and c(L1).



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 418 of 420

Go Back

Full Screen

Close

Quit

Given any language, L ⊆ Σ∗, and any string, w ∈ Σ∗, we define L/w by

L/w = {u ∈ Σ∗ | uw ∈ L}.

Theorem 6.9.6 (Greibach) Let L be a countable family of languages that
is effectively closed under union and concatenation with the regular lan-
guages, and assume that the problem L = Σ∗ is undecidable for L ∈ L and
any given sufficiently large alphabet Σ. Let P be any nontrivial property of
languages that is true for the regular languages and so that if P (L) holds
then P (L/a) also holds for any letter a. Then, P is undecidable for L.

Proof . Since P is nontrivial for L, there is some L0 ∈ L so that P (L0) is
false.

Let Σ be large enough, so that L0 ⊆ Σ∗, and the problem L = Σ∗ is
undecidable for L ∈ L.



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 419 of 420

Go Back

Full Screen

Close

Quit

We show that given any L ∈ L, with L ⊆ Σ∗, we can construct a language
L1 ∈ L, so that L = Σ∗ iff P (L1) holds. Thus, the problem L = Σ∗ for
L ∈ L reduces to property P for L, and since for Σ big enough, the first
problem is undecidable, so is the second.

For any L ∈ L, with L ⊆ Σ∗, let

L1 = L0#Σ∗ ∪ Σ∗#L.

Since L is effectively closed under union and concatenation with the regular
languages, we have L1 ∈ L.

If L = Σ∗, then L1 = Σ∗#Σ∗, a regular language, and thus, P (L1) holds,
since P holds for the regular languages.



The Post . . .

Undecidable . . .

Home Page

Title Page

JJ II

J I

Page 420 of 420

Go Back

Full Screen

Close

Quit

Conversely, we would like to prove that if L 6= Σ∗, then P (L1) is false.

Since L 6= Σ∗, there is some w /∈ L. But then,

L1/#w = L0.

Since P is preserved under quotient by a single letter, by a trivial induction,
if P (L1) holds, then P (L0) also holds. However, P (L0) is false, so P (L1)
must be false.

Thus, we proved that L = Σ∗ iff P (L1) holds, as claimed.

Greibach’s theorem can be used to show that it is undecidable whether a
context-free grammar generates a regular language.

It can also be used to show that it is undecidable whether a context-free
language is inherently ambiguous.


	The Post Correspondence Problem
	Undecidable Properties of Languages

