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Chapter 1

Complex Algebraic Varieties;
Elementary Local And Global Theory

1.1 What is Geometry & What is Complex Algebraic Geometry?

The presumption is that we study systems of polynomial equations

(X, .. X)) = 0
: Do (1)
fpX1,...,Xy) = 0
where the f; are polynomials in C[X4, ..., X].

Fact: Solving a system of equations of arbitrary degrees reduces to solving a system of quadratic equations
(no restriction on the number of variables) (DX).

What is geometry?

Experience shows that we need
(1) A topological space, X.
(2) There exist (at least locally defined) functions on X.

(3) More experience shows that the “correct bookkeeping scheme” for encompassing (2) is a “sheaf” of
functions on X; notation Ox.

Aside on Presheaves and Sheaves.
(1) A presheaf, P, on X is determined by the following data:
(i) For every open U C X, a set (or group, or ring, or space), P(U), is given.
(ii) If V C U (where U,V are open in X) then there is a map p};: P(U) — P(V) (restriction) such that

oY =idy and
p[V}/ = py ) pg, for all open subsets U, V, W with W CV CU.

(2) A sheaf, F, on X is just a presheaf satisfying the following (patching) conditions:

7
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(i) For every open U C X and for every open cover {Uy}qo of U (which means that U = |J,, Ua, notation
{Uoa = U}, if frg € F(U) so that f [ Uy = g | Uy, for all a, then f =g.

(ii) For all o, if we are given f, € F(U,) and if for all «, 8 we have

UaNU, Un.NU,
Pu, ﬁ(fa):pUB B(fﬁ)a

@

(the f, agree on overlaps), then there exists f € F(U) so that pp~(f) = fa, all a.

Our Ox is a sheaf of rings, i.e, Ox(U) is a commutative ring, for all U. We have (X, Ox), a topological
space and a sheaf of rings.

Moreover, our functions are always (at least) continuous. Pick some 2 € X and look at all opens, U C X,
where x € U. If a small U > z is given and f,g € Ox(U), we say that f and g are equivalent, denoted
f ~ g, iff there is some open V C U with x € V so that f [ V =g [ V. This is an equivalence relation and
[f] = the equivalence class of f is the germ of f at x.

Check (DX) that
h_rn) Ox (U) = collection of germs at x.
Usz
The left hand side is called the stalk of Ox at x, denoted Ox . By continuity, Ox , is a local ring with
maximal ideal m, = germs vanishing at z. In this case, Ox is called a sheaf of local rings.

In summary, a geometric object yields a pair (X, Ox), where Ox is a sheaf of local rings. Such a pair,
(X,0x), is called a local ringed space (LRS).

LRS’s would be useless without a notion of morphism from one LRS to another, ®: (X,0x) — (Y, Oy).

(A) We need a continuous map ¢: X — Y and whatever a morphism does on Oy, Oy, taking a clue
from the case where Ox and Oy are sets of functions, we need something “Oy — Ox.”

Given a map ¢: X — Y with Ox on X, we can make ¢.Ox (= direct image of Ox), a sheaf on Y, as
follows: For any open U C Y, consider the open ¢~}(U) C X, and set
(00x)(U) = Ox (¢~ H(U)).
This is a sheaf on Y (DX).

Alternatively, we have Oy on Y (and the map ¢: X — Y) and we can try making a sheaf on X: Pick
r € X and make the stalk of “something” at z. Given z, we make p(z) € Y, we make Oy, ,(,) and define
©*Oy so that

(90* (OY))E = OY,«p(m)'
More precisely, we define the presheaf ppOy on X by
ppOy(U) = lim Oy(V),
V2p(U)

where V ranges over open subsets of Y containing ¢(U). Unfortunately, this is not always a sheaf and we
need to “sheafify” it to get ¢*Oy, the inverse image of Oy. For details, consult the Appendix on sheaves
and ringed spaces. We now have everything we need to define morphisms of LRS’s.

(B) A map of sheaves, ¢: Oy — ¢.Ox, on Y, is also given.

It turns out that this is equivalent to giving a map of sheaves, é: ©*Oy — Ox, on X (This is because
v« and @* are adjoint functors, again, see the Appendix on sheaves.)
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In conclusion, a morphism (X, Ox) — (Y, Oy) is a pair (¢, $) (or a pair (¢, Fﬁ)), as above.

When we look at the “trivial case”’ (of functions) we see that we want ¢ to satisfy
@(mw(w)) Cm,, forallze X.

This condition says that ¢ is a local morphism. We get a category LRS.

After all these generalities, we show how most geometric objects of interest arise are special kinds of
LRS’s. The key idea is to introduce “standard” models and to define a corresponding geometric objects,
X, to be an LRS that is “locally isomorphic” to a standard model. First, observe that given any open
subset U C X, we can form the restriction of the sheaf Ox to U, denoted Ox | U or (Opy) and we get an
LRS (U,Ox | U). Now, if we also have a collection of LRS’s (the standard models), we consider LRS’s,
(X, Ox), such that (X, Ox) is locally isomorphic to a standard model. This means that we can cover X by
opens and that for every open U C X in this cover, there is a standard model (W, Oy ) and an isomorphism
(U,0x 1U) =2 (W,Ow), as LRS’s.

Some Standard Models.

(1) Let U be an open ball in R™ or C", and let Oy be the sheaf of germs of continuous functions on U
(this means, the sheaf such that for every open V' C U, Oy (V) = the restrictions to V' of the continuous
functions on U). If (X, O) is locally isomorphic to a standard, we get a topological manifold.

(2) Let U be an open as in (1) and let Oy be the sheaf of germs of C*-functions on U, with 1 < k < oo. If
(X, 0) is locally isomorphic to a standard, we get a C*-manifold (when k = oo, call these smooth manifolds).

(3) Let U be an open ball in R™ and let Oy be the sheaf of germs of real-valued C*-functions on U (i.e.,
real analytic functions). If (X, O) is locally isomorphic to a standard, we get a real analytic manifold.

(4) Let U be an open ball in C™ and let Oy be the sheaf of germs of complex-valued C*-functions on U
(i.e., complex analytic functions). If (X, Q) is locally isomorphic to a standard, we get a complex analytic
manifold.

(5) Consider an LRS as in (2), with & > 2. For every z € X, we have the tangent space, Tx 5, at .
Say we also have @, a positive definite quadratic form on Tx ., varying C* as x varies. If (X, O) is locally
isomorphic to a standard, we get a Riemannian manifold.

(6) Suppose W is open in C". Look at some subset V' C W and assume that V is defined as follows: For
any v € V, there is an open ball B(v, €) = B, and there are some functions fi, ..., f, holomorphic on B, so
that

VN B, e)={(z1,...,2¢) € Be | fi(#1,...,2¢) =+ = fp(21,...,24) =0}
The question is, what should be Oy ?

We need only find out that what is Oynp, (DX). We set Oynp, = the sheaf of germs of holomorphic
functions on B, modulo the ideal (f1,...,fp), and then restrict to V. Such a pair (V,0Oy) is a complex
analytic space chunk. An algebraic function on V is a ratio P/Q of polynomials with @ # 0 everywhere

on V. If we replace the term “holomorphic” everywhere in the above, we obtain a complex algebraic space
chunk.

Actually, the definition of a manifold requires that the underlying space is Hausdorff. The spaces that
we have defined in (1)—(6) above are only locally Hausdorft and are “generalized manifolds”.

Examples.

(1) Take W = C4, pick some polynomials fi,..., fp in C[Z1,...,Z,] and let V be cut out by
fi =---= fp = 0; so, we can pick B(v,e) = C?. This shows that the example (}) is a complex algebraic
variety (in fact, a chunk). This is what we call an affine variety.
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Remark: (to be proved later) If V' is a complex algebraic variety and V' C C™, then V is affine.
This remark implies that a complex algebraic variety is locally just given by equations of type ().

(2) The manifolds of type (4) are among the complex analytic spaces (of (6)). Take W = B(v, €) and no
equations for V', so that V N B(v,€) = B(v,¢).

Say (X,Ox) is a complex algebraic variety. On a chunk, V' C W and a ball B(v,€), we can replace
the algebraic functions heretofore defining Ox by holomorphic functions. We get a complex analytic chunk
and thus, X gives us a special kind of complex analytic variety, denoted X", which is locally cut out by
polynomials but with holomorphic functions. We get a functor

X ~ Xan

from complex algebraic varieties to complex analytic spaces. A complex space of the form X?2" for some
complex algebraic variety, X, is called an algebraizable complex analytic space.

Take n + 1 copies of C™ (C™ with either its sheaf of algebraic functions or holomorphic functions). Call
the j-copy Uj;, where j = 0,...,n. In Uj;, we have coordinates

©) (1) ~G) (n)
(2, z",.. 2D, 2y

(Here, as usual, the hat over an expression means that the corresponding item is omitted.) For all i # j, we
have the open, UJ@ C Uj, namely the set {5 € U; | (ith coord.) 5]@ # 0}. We are going to glue UJ@ to U
as follows: Define the map from U]@ to Ui(J) by

(0) (i-1) (i+1) (n)
70 _ % -0 _ % S+ _ i S0 _ 1 0 _ %
i Z(l),, i Z(Z) yeees 4y Z(Z) IRRREP/H Z(l)7, i Z(l)7
J J J J J

with the corresponding map on functions. Observe that the inverse of the above map is obtained by replacing

Z;i) with Zl-(j). However, to continue glueing, we need a consistency requirement. Here is the abstract
requirement.

Proposition 1.1 (Glueing Lemma) Given a collection (Uy, Ou,) of LRS’, suppose for all a, 3, there exists
an open U(f C Uy, with US = U,, and say there exist isomorphisms of LRS’s,
po: (US,0u, 1US) = (Ug,Ou, | Ug), satisfying

(0) & =id, for all a,

(1) &5 = ()", for all a, B and

(2) For all a, 3,7, we have o2 (UPNUY) = Ugn Ug and
a =pso0 P (glueing condition or cocycle condition).

Then, there exists an LRS (X,0x) so that X is covered by opens, X, and there are isomomorphisms of
LRS’s, 9o: (Ua,Ov.) = (Xa,Ox | X4), in such a way that

(a) pa(UF) = XaNXp (C Xa) and

(b) ©a [U(f “s” the 1somorphism cpg, i.€., Yo [U(f =pp [ Ugo gog.
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Proof. (DX) O

In Example (3), the consitency conditions hold (DX). Therefore, we get an algebraic (or analytic) variety.
In fact, it turns our that in the analytic case, it is a manifold—this is CP", also denoted P in algebraic
geometry (complex projective space of dimension n).

It should be noted that “bad glueing” can produce non-Hausdorff spaces, as the following simple example
shows. Take two copies of C!, consider the two open U = C* — {0} in the first copy and V = C! — {0} in
the second and use the coordinate z in the first copy and w in the second. Now, glue U and V by w = z.
The result is a space consisting of a punctured line plus two points “above and below” the punctured line
(as shown in Figure 1.1) and these points cannot be separated by any open.

Figure 1.1: A non-Hausdorff space obtained by “bad gluing”.

Miracle: Say X is a closed analytic subvariety of P (analytic or algebraic). Then, X is algebraizable
(Chow’s theorem).

What are some of the topics that we would like to study in algebraic geometry?

1) Algebraic varieties

2) Maps between them.

3) Structures to be superimposed on (1).

4) Local and global invariants of (1).

5) Classifications of (1).

(1)
(2)
3)
(4)
()
(6)

6) Constructions of (1).

But then, one might ask, why consider such general objects as algebraic varieties and why not just study
affine varieties defined by equations of type (f)?

The reason is that affine varieties are just not enough. For example, classification problems generally
cannot be tackled using only affine varieties; more general varieties come up naturally. The following example
will illustrate this point.

Look at (5) and take X = C™. The general problem of classifying all subvarieties of C™ (in some geometric
fashion) is very difficult, so we consider the easier problem of classifying all linear subvarieties through the
origin of C™. In this case, there is a discrete invariant, namely, the dimension of the linear subspace, say d.
Thus, we let

G(n,d) = {all d-dimensional linear subspaces of C™}.
By duality, there is a bijection between G(n,d) and G(n,n — d). Also, G(n,0) = G(n,n) = one point. We
have the classification |J;_, G(n,d). Let’s examine G(n, 1) more closely.

Let ¥ be the unit sphere in C”,

> = {(zl,...,zn) | zn:|zl-|2_1}

= {(5517---7557173/17---73/71)|$iayi€Ra Z(‘T?—i_y?):l}
i=1
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We see that ¥ is isomorphic to the real sphere S?"~!, a compact space. Let L (€ G(n,1)) be any line
through the origin. This line is given parametrically by the equations

Zj = ajt,

where aq, ..., a, are fixed elements of C, not all zero, and t € C is arbitrary. It follows that

{t eC| ; o 2|2 = 1}

{te(C | |t|_ﬁ}:sl.
i=11%i

Therefore, LN Y is a circle. Since a (complex) line is determined by two points and the origin is one of these
points, we deduce that

LN

L=L iff (LNn2)n(LNX)#£0.
Therefore, as a topological space, G(n,1) = §?"=1/S a compact space.
Claim: No affine algebraic variety has a compact underlying space, unless it is a discrete space.

Given a variety V in C™ (algebraic or analytic), call V irreducible iff V' # W U Z, for any two properly
contained closed (algebraic or analytic) varieties, W, Z C V. It is well-known that each variety is an
irredundant finite union of irreducible varieties and that a variety V' is irreducible iff the (radical) ideal,
J(V), associated with V' is a prime ideal. Thus, we are reduced to proving that no irreducible affine is
compact. Now, as J(V) is prime (because V is irreducible), the ring C[Zy, ..., Z,]/I(V), called the affine
coordinate ring of V and denoted C[V] or A[V], is an integral domain, so K = Frac(C[Z1,...,Z,]/3(V)) is
a field that contains C. By definition, the transcendence degree, tr.dc K, of K is the dimension of V', where
0 <dimV < n. If we let z; be the image of Z; under the projection C[Z1,...,Z,] — C[Z1,...,Z,]/I(V),
then C[Zy,...,2,]/3(V) = C[z,...,2,]. To prove our above claim, we will make use of a famous theorem
of Emmy Noether:

Theorem 1.2 (Noether Normalization Theorem) Say V- C C™ is an irreducible affine variety and dim(V') =
r (< n). Then, if C[V] = Clz1,..., 2], there are some elements y1,...,y, € Clz1,...,2,] so that each
y; is a linear combination of the z;’s and the ring Clz1,..., 2] is an integral extension of Cly1,...,y,].
Geometrically, this means that the projection of C" = C" x C"~" onto C" yields a surjective map (an integral
morphism,)

Vo2

that is a branched covering (the fibres are finite). Furthermore, if C[V] = Clz1,...,2,] is separably gen-
erated over C, then Clz1,...,2,] is a separable extension of Clyr,...,yr] (with {y1,...,yr} a separating
transcendence basis over C).

Proof. If r = dim(V') = n, then we will prove later that V' = C™ and we can take y; = z;, for i = 1,...,n.
Otherwise, r < n, and we use induction on n. The case n = 1, r = 0, is trivial. Owing to the transitivity
of integral dependence and separability, we only have to prove: If C[z1,...,2,] is an integral domain of
transcendence degree » < n — 1, then there exist n — 1 linear combinations y1, ..., yn—1 or the z;’s such that
Clz1,. .., zn] is integral over Clys, ..., yn—1] (and such that C[zq,..., z,] is separable over Cly, ..., yn—1] if
Clz1,- .., 2n] is separably generated over C).

By renumbering the z;’s if necessary, we may assume that z; is algebraically dependent over zs, ..., z,,
and in the separable case, we pick a separating transcendence base (by MacLane’s theorem). Write the
minimal polynomial for z; over k(za,...,2,) as

P(U, z,...,2n) = 0.
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We can assume that the coefficients of P(U, za,. .., 2z,) are in C[za, ..., 2,], so that the polynomial
P(U, za,...,2y) is the result of substituting U, zs, ..., z, for X1, Xs,..., X, in some non-zero polynomial
P(Xi,...,X,) with coefficients in C. Perform the linear change of variables

yj =z; —ajz, forj=2,...,n, ()
and where ay,...,a, € C will be determined later. Since z; = y; + a;z1, it is sufficient to prove that z;
is integral (and separable in the separable case) over Clya,...,ys]. The minimal equation P(z1,2) = 0

(abbreviating P(z1, 22, ..., 2n) by P(z1,2)) becomes
P(Zlqu + a221,---,Yn + anzl) = 07

which can be written as

P(Zlay) = fo(laa/?a cee 7an) + Q(217y27 cee 7yn) = 07 (**)
where f(X1, Xa,...,X,) is the highest degree form of P(X1,...,X,,) and ¢ its degree, and @ contains terms
of degree lower than ¢ in z;. If we can find some a;’s such that f(1,az,...,a,) # 0, then we have an
integral dependence of z; on yo,...,yy; thus, the z;’s are integrally dependent on ¥, ..., ¥, and we finish
by induction. In the separable case, we need the minimal polynomial for z; to have a simple root, i.e.,

dP
— 0.
le (Zl7 y) #
We have
I (1) = 20 (21.2) 4 a2 92 (22,2) -+ Ao (21, 2)
—(z =—(z1,2)+as —(21,2) + -+ an—>_21, 2).
dz LY Oz 7 2020 Ozn
But this is a linear form in the a;’s which is not identically zero, since it takes for az = --- = a, = 0 the
value op
8_21 (Zla Z) 7& 07
z1 being separable over C(za,...,2,). Thus, the equation
oP OP oP
6—:101(21’Z) +az 8_22(Z1’Z) Tt an 6—%(2’172’) =0
defines an affine hyperplane, i.e., the translate of a (linear) hyperplane. But then,
dP
d_zl(zl’ z) #0
on the complement of a hyperplane, that is, an infinite open subset of C"~!, since C is infinite. On this
infinite set where 3—2(21,2) # 0, we can find ag,...,a, so that f(1,as,...,a,) # 0, which concludes the
proof. []

Now, we know that our G(n, 1) cannot be affine (i.e., of the form (})) as it is compact
(G(n,1) = §27=1/81). However, were G(n, 1) affine, Noether’s theorem would imply that C" is compact, a
contradiction. Therefore, G(n, 1) is not an affine variety.

However, observe that G(n, 1) is locally affine, i.e., it is an algebraic variety. Indeed a line, L, corresponds
to a tuple (aq,...,a,) € C™ with not all &; = 0. So, we can multiply by any A € C* and not change the
line. Look at

Uj = {(al,...,an) eCcn | Qi 750}

We have G(n,1) =J'_, U;. On Uj, if we use A = 1/« as a multiplier, we get

a1 Qg1 1 Q541 (679
YRR Rt ARV I
Qj Qj Qj Q;
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so we see that U; is canonically C"~!. The patching on the overlaps is the previous glueing which gave Pg_l

(with its functions). Therefore, we have
G(n,1) =P 1.

1.2 Local Structure of Complex Varieties; Implicit Function The-
orems and Tangent Spaces

We have the three rings
ClZ1,...,Z,) CC{Z1,...,Z,} CC[[Z1,...,Z4]],

where C{Z1,...,Z,} is the ring of convergent powers series, which means that for every power series in
C{Z,...,Z,} there is some open ball B, containing the origin so that f [ B. converges, and C[[Z1,..., Z,]]
is the ring of all power series, i.e., the ring of formal power series.

Remarks: (on (formal) power series).

Say A is a commutative ring (say, one of C{Z1, ..., Z,} or C[[Z1, ..., Z,]]) and look at A[[X1,...,X,]] =
B.

(1) f e Bisaunit (in B) iff f(0,...,0) is a unit of A.

(2) B is alocal ring iff A is a local ring, in which case the unique maximal ideal of B is
mp={f€B|f0,....,0) e ma}.

(3) B is noetherian iff A is noetherian (OK for us).

(4) If A is a domain then B is a domain.

(5) If B is a local ring, write B = lim B/m™B, the completion of B. We know that B has the m-adic

topology, where a basis of opens at 0 is given by the m%, with i > 0. The topology in B is given by
the m BB and the topology in B and B is Hausdorff iff Moo m’% = (0), which holds in the noetherian

case, by Krull’s theorem.
The fundamental results in this case are all essentially easy corollaries of the following lemma:

Lemma 1.3 Let O be a complete Hausdorff local domain with respect to the m-adic topology, and let
f € O[[X]]. Assume that

(a) f(0) €m
(b) (%) (0) is a unit of O.
Then, there exist unique elements o € m and u(X) € O[[X]], so that
(1) uw(X) is a unit of O[X]].
(2) f(X)=u(X)(X —a).

Proof. We get u(X) and « by successive approximations as follows. Refer to equation (2) by (1) in what
follows. We compute the unknown coefficients of u(X) and the element a by successive approximations.
Write u(X) = 3272 u; X7 and f(X) = Y77%a;X7; reduce the coefficients modulo m in (f); then, since
a € m, (1) becomes

f(X) = Xu(X),
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which implies that

oo oo

X = Jj+1
E a; X7 = E u; X
Jj=0 Jj=0

Note that

in k = O/m, which implies that if u(X) exists at all, then it is a unit. Write
1
uj = aj + &,

where §J(»1) €m, j > 0. Remember that a € m; so, upon reducing (1) modulo m?, we get

f(X) = u(X)(X —a).

This implies that

SN - Y-
j=0 §=0
= szX”l —Zu aX’
§=0 §=0
= Z (ij.,.l +§J(-1)> D G- Z (ij.,.l + 5](_1)) ax’
=0 =0
— ZngXjH + Z§§1)Xj+l _ Zﬁﬂlan'
§=0 j=0 j=0

Equating the constant coefficients, we get

0= —a1 Q.

Since a; is a unit, & exists. Now, looking at the coefficient of X711, we get

which implies that

and @ exists.

We now proceed by induction. Assume that we know the coefficients ug-t) € O of the t-th approximation
to u(X) and that u(X) using these coefficients (mod m**!) works in (1), and further that the ul(t)’s are
consistent for I < t. Also, assume o) € m, that a® (mod m**!) works in (f), and that the a®) are
consistent for [ < t. Look at u§t) + §§t+1), a® 4+ where §§t+1),77(t+1) € m!*tl, We want to determine
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§§t+1) and n**t1 | so that (1) will work for these modulo m**2. For simplicity, write bar as a superscript to
denote reduction modulo m‘*2. Then, reducing (1) modulo m!*2, we get

Y omX = ) mXI(X -a)
, P

= Z . CAR iu—jan
7=0
_ Y ) gt X W 4 DY (G 1 5D ) X
S () w5 () (777

_ Zu t)XJ+1 + Zg (t+1) g+l _ Zu(t) a®) X7 _ Zu t+1)XJ

Equating the constant coefficients, we get

But uét) is a unit, and so, n(t+1) exists. Now, look at the coefficient of X7*!, we have

a1 = u §(t+1 5’21 a®) — u5t421 (D),

But u( ) a(t) and u( ) n(+1 are now known and in m**! modulo m!*2, and thus,

§§t+1) =TT 5) + u( ) a(t) + u( ) (t+1)

exists and the induction step goes through. As a consequence
u(X) € lim(O/m")[[X]]

and
a € lim(m/m")[[X]]

exist; and so, u(X) € O[[X]] = O[[X]], and a € @ = m.
We still have to prove the uniqueness of u(X) and «. Assume that
f=uX —-a)=u(X —a).

Since u is a unit,

o tu(X —a) =X —a.
Thus, we may assume that uw = 1. Since @ € m, we can plug « into the power series which defines u, and
get convergence in the m-adic topology of O. We get

ula)(a—a) =a—aq,
so that a = a. Then,

u(X —a)=X —q,

and since we assumed that O is a domain, so is O[[X]], and thus, v = 1. []

Suppose that instead of 7% af ( ) being a unit, we have f(0),..., j;lé (0) € m, but dXJ: (0) is a unit. We

can apply the fundamental lemma to f d;: + and then, we can apply (a rather obvious) induction and
get the general form of the fundamental lemma;:
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Lemma 1.4 Let O be a complete Hausdorff local domain with respect to the m-adic topology, and let
f e O[[X]]. Assume that

(a) f(0),..., 52L(0) € m and
(b) %(O) is a unit of O (r > 1).
Then, there exist unique elements aq, ..., o, € m and a unique power series u(X) € O[[X]], so that
JX)=uX)(X" + X"+ H o X + o)
and w(X) is a unit of O[[X]].
From the above, we get

Theorem 1.5 (Formal Weierstrass Preparation Theorem) Given f € C[[Z1,...,Z,]], suppose

(9][ ar—lf arf
:—(0):: r—1 r
97, A dZ;

£(0,...,0) (0)=0, yet (0) # 0.

Then, there exist unique power series, w(Z1,...,Zy), 9;(Z2,...,Zy,), with 1 < j <r, so that
(1) w(Zy,...,Zy,) is a unit
(2) g;(0,...,0) =0, where 1 < j <r and
(3) [(Zv,oo i Zn) = w20, Za)(ZF + 91(Z2s s Z0) 27 e 4 90(Zas o, Z)).
Proof. Let O =C[[Za,...,Zy,]], then O[[Z1]] = C[[Z4, ..., Z,]] and we have

A _ of
iz~ 07

Thus, jZfl” (0)=0forj=0,...,r—1,s0 sz (0) is & non-unit in O[[Z1]] for j = 0,...,7 — 1, yet $£(0) is a

unit. If we let a; of the fundamental lemma be g;(Zs, ..., Z,), then each g;(Zs,..., Z,) vanishes at 0 (else
a; ¢ m) and the rest is obvious. []
Theorem 1.6 (First form of the implicit function theorem) Given f € C|[Z1,...,Z,])], if

of
07,

then there exist unique power series u(Z1,...,Zy,) and g(Za, ..., Zy,) so that w(Z,...,Zy,) is a unit,
g(0,...,0) =0, and f(Z1,...,Zy,) factors as

f(Zy,.. .. Zn) =uw(Zy, ..., Zn) (21 — g(Za, ..., Zn)). (%)
Moreover, every power series h(Zy,...,Zy,) factors uniquely as
WZy,y .o Zn) = f(Z1,. . Z0) (21, oo Zn) +17(Zay .oy D).
Hence, there is a canonical isomorphism
Cll2y, .-, Zall/(F) = Cl[Zs, . .., Z0]];

so that the following diagram commutes

CllZy, ..., Zy) CllZ1,..., Zu))/(f)

f@0,...,0)=0 and (0) # 0,
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Proof. Observe that equation (x) (the Weierstrass preparation theorem) implies the second statement. For,
assume (x); then, v is a unit, so there is v such that vu = 1. Consequently,

Uf = Zl —g(ZQ,.. .,Zn),

and the ideal (f) equals the ideal (vf), because v is a unit. So,
Cllzi, -+, Zull/(f) = Cl[21, -, Zall/ (v ),

and we get the residue ring by setting Z; equal to g(Zs, ..., Z,). It follows that the canonical isomorphism
CllZzy, ..., Za)l/(f) = Cl[Z2, ..., Zn]]

is given as follows: In h(Z4,...,Z,), replace every occurrence of Z1 by g(Zs, ..., Z,); we obtain

WZoy. .. Zy) =h(g(Zay ..., Z0n), Zay .oy Zn),
and the diagram obviously commutes. Write 7(Za, ..., Z,) instead of h(Za, ..., Z,). Then,
WZi,....Zn) —1(Za,....Zn) = fq
for some ¢(Z1,...,Zy,). We still have to show uniqueness. Assume that
WMZy,....Zn) = fqg+r=fqg+T7.

Since ¢(0,...,0) = 0, we have g € m; thus, we can plug in Z; = g(Zs,...,Z,) and get m-adic convergence.
By (x), f goes to 0, and the commutative diagram shows r (mod f) = r and 7 (mod f) = 7. Hence, we get

r=r,

so that
fa—fa=0.
Now, C[[Z1,...,Z,]] is a domain, so ¢ = ¢. ]

We can now apply induction to get the second version of the formal implicit function theorem, or FIFT.

Theorem 1.7 (Second form of the formal implicit function theorem)
Given f1,..., fr € C[[Z1,....Z,]], if £;(0,...,0) =0 forj=1,...,r and

rk (ggj (0)) =r

(so that n > r), then we can reorder the variables so that

rk (g;; (O)) =r, wherel <i,j<r,

and there is a canonical isomorphism

CllZ1,.- -, Zl/(f1, -5 [r) 2C[Zrs1, - -, Zn]],

which makes the following diagram commute

Cllz, ...,

CllZ1, .-, Zn)l/ (f1y -y fr)

Zy]]
Y\CHZ /

[ R Zn]]
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Proof. The proof of this statement is quite simple (using induction) from the previous theorem (DX). []

What becomes of these results for the convergent case? They hold because we can make estimates
showing all processes converge for C. However, these arguments are tricky and messy (they can be found
in Zariski and Samuel, Volume II [15]). In our case, we can use complex analysis. For any £ € C™ and any
e > 0, we define the polydisc of radius € about &, PD(&,¢€), by

PD(e) ={(21,-.-,2n) €C" | |z; = &] <, for everyi, 1 <i < n}.

Say f(Zu,...,Zy) is holomorphic near the origin and suppose f(0,...,0) = aa—Zfl(O) == g;lfi 0)=0
1

and %(O) # 0, Consider f as a function of Zy, with |[(Z2, ..., Z,)|| < €, for some € > 0. Then, f will have
1
r zeros, each as a function of Zs,..., Z, in the e-disc. Now, we know (by one-dimensional Cauchy theory)

that 5
nq+...+nqzi/ %5 2, ..., Zn) c
1 T 271 |¢€|=R f(§7227"',Zn) ’

where 71, ...,n, are the roots (as functions of Zs, ..., Z,) and ¢ is any integer > 0. Therefore, the power
sums of the roots are holomorphic functions of Z,, ..., Z,. By Newton’s identities, the elementary symmetric
functions o (n1,...,n), for j = 1,...,r, are polynomials in the power sums, call these elementary symmetric
functions ¢1(Za,...,Zyn), ..., g-(Za,...,Zy,). Then, the polynomial

w(Zy, ..., Z0) =27 —g1(Zay. ., Zo) 20 o+ (=1)"9(Zay ..., Z)

vanishes ezactly where f vanishes. Look at f(Z1,...,Z,)/w(Z1,...,Z,) off the zeros. Then, the latter as
a function of Z; has only removable singularities. Thus, by Riemann’s theorem, this function extends to a
holomorphic function in Z7 on the whole disc. As f/w is holomorphic in Z;, by the Cauchy integral formula,

we get
f(Zl,...,Zn) 1 / U(é,ZQ,...,Zn)
WLy ) = ——— = —— ——= 1~ d£.
( ! ) w(Zl,...,Zn) 211 |¢€]=R 5—21 g
Yet, the right hand side is holomorphic in Zs,..., Z,, which means that u(Zy,...,Z,) is holomorphic in
a polydisc and as we let the Z; go to 0, the function u(Z,...,Z,) does not vanish as the zeros cancel.

Consequently, we have
f(Zy,..Z0) =w(Zy . Zo) (25 + 91(Zay oo Z0) 2 4+ 9e(Zay o Z)).
Theorem 1.8 (Weierstrass Preparation Theorem (Convergent Case)) Given f € C{Z,...,Z,}, suppose

B ﬁ B arflf arf
-0 Cazr ! YA

£(0,...,0) )= 0)=0, yet (0) # 0.

Then, there exist unique power series, W(Zi,...,2Zy), 9i(Za,...,Zyn) in C{Z1,...,Zy}, with1 < j <r, and
some € > 0, so that

(1) w(Zy,...,Zy,) is a unit
(2) g;(0,...,0) =0, where 1 < j <r and

(3) f(Z1,....Z0) =u(Z1y. .., Zo) (2] + 91(Zay ..., Z0) 2 4 4 g(Zay ..., Z2)), in some polydisc
PD(0,¢).

Proof . Existence has already been proved. If more than one solution exists, read in C[[Z1,..., Z,]] and
apply uniqueness there. []

As a consequence, we obtain the implicit function theorem and the inverse function theorem in the
convergent case.
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Theorem 1.9 (Implicit Function Theorem (First Form—Convergent Case)) Let f € C{Zi,...,Z,} and
suppose that f(0,...,0) =0, but

af
0.
Then, there exists a unique power series g(Zg, cesZn) €EC{Zy...,Zy} and there is some € > 0, so that in

the polydisc PD(0,¢€), we have f(Z1,...,Z,) =0 if and only if Zy = g(Za,...,Zy). Furthermore, the map
h—h="h(g(Zay...,2Z0), Za,...,Zy) gives rise to the commutative diagram

C{Z,..., C{Zy,....Zn}/(f)

\/

C{Z,,...,
Proof. (DX).

An easy induction yields

Theorem 1.10 (Convergent implicit function theorem) Let f1,..., fr € C{Z1,...,Z,}. If f;(0,...,0) =0

forj=1,....r and
afi _
rk (8Zj(0)) =r

(so that m > 1), then there is a permutation of the variables so that

Ofi .
= < <
k(@Z()> r, wherel1 <14,5<r

and there exist r unique power series gj(Zr41,...,Zn) € C{Zry1...,Z,} (1 <j<r)and an € >0, so that
in the polydisc PD(0,¢€), we have

fl(g)::fT(g):O Zﬁ §j:gj(€r+1""’§n>’ fO’I’j:l,...,’l”

Moreover
C{Z,....Z.})(f1, - fr) 2C{Zr 41, ..., Zn}

and the following diagram commutes:

(C{Zl,...,Zn} (C{Zla-"7Zn}/(f17'-'ufr)

\/

C{Zys1,...\ 20}

When r = n, we have another form of the convergent implicit function theorem also called the inverse
function theorem.

Theorem 1.11 (Inverse function theorem) Let f1,..., fn € C{Z1,...,Z,} and suppose that f;(0,...,0) =0

forj=1,....n, but
Ofi _
rk(aZ (0, O))—n.

Then, there exist n unique power series g;(Wh,...,Wy) € C{Wh...,W,} (1 < j < n) and there are some
open neighborhoods of (0,...,0) (in the Z’s and in the W’s), call them U and V, so that the holomorphic
maps

(Zly---;Zn)H(Wl:fl(Zly--wZn);---;Wn:fn(Zly---;Zn)): U—-V
(Wl,...,Wn)H(Zl:gl(Wl,...,Wn),...,Zn:gn(Wl,...,Wn))tV—>U

are tnverse isomorphisms.
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In order to use these theorems, we need a linear analysis via some kind of “tangent space.” Recall that
a variety, V, is a union of affine opens
V=JVa.
[e3%

Take £ € V, then there is some a (perhaps many) so that £ € V,,. Therefore, assume at first that V' is affine
and say V' C C™ and is cut out by the radical ideal A = J(V) = (f1,..., fp). Pick any f € 2 and write the
Taylor expansion for f at £ € C™

f(Z1,. o Z) = f(&) + Z (87f) (Z; — &;) + O(quadratic).
j=1 17¢
Since £ € V', we have f(£) = 0. This suggests looking at the linear form
" /0
e, da) =) (87f) \;, where X\ =Z; —¢&;.
j=1 17€
Examine the linear subspace
n ~(0f
([ Kerlpe=<{ (A, M) €C | (Vfe) [ D (5] A=0] ¢ (%)
: 0Z;
fexu j=1 13

Note that as f = 25:1 hifi, where h; € C[Z1,...,Z,], we get
¢

of 0f; Oh;
oZ; Z (hlazj +flazj) ’

=1
(2),- S0 (2),

Zn:Z <hi(§) (32)) (Z; — &) =0,

j=1i=1

and, since f;(§) =0,

The equation in (%) becomes

which yields

zt:m(é) zn: (gg;)g(zj —¢)| =o.

i=1 j=1

Hence, the vector space defined by (x) is also defined by

~ [ Of; ,
Z(azj)g(zj—@):& fori=1,...,t ()

Jj=1

Definition 1.1 The linear space at £ € V defined by (xx) is called the Zariski tangent space at £ of V. It
is denoted by Ty¢.

Note that Definition 1.1 is an extrinsic definition. It depends on the embedding of V' in C", but assume
for the moment that it is independent of the embedding. We have the following proposition:
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Proposition 1.12 Let V' be an irreducible complex variety. The function
& — dimcTv e
1S upper-semicontinuous on 'V, i.e.,
S;={£ eV |dimcTy,e > 1}
is Z-closed in V, and furthermore, S;+1 C S; and it is Z-closed in S;.

Proof . Since we are assuming that Ty ¢ is independent of the particular affine patch where £ finds itself, we
may assume that V is affine. So, Ty¢ is the vector space given by the set of (A1,...,A,) € C™ such that

<g—§;> Aj=0, fori=1,...,m,
=1 3

J

where f1,..., fm generate the ideal A = J(V'). Hence, Ty ¢ is the kernel of the linear map from C" to C™

given by the m x n matrix
ofi
0Z; ¢ '
: ofi
dimcTv,e =n —1k ( ) .
¢ ( 07, 5)
Ofi
< 7.
rk ((8Zj)£> <n-—I

and this holds iff the (n — 14 1) x (n — [ 4+ 1) minors are all singular at £&. But the latter is true when and
only when the corresponding determinants vanish at £. These give additional equations on V' at £ in order
that £ € S; and this implies that S; is Z-closed in V. That S;11 C 5; is obvious and since S;41 is given by
more equations, Sy is Z-closed in S;. []

It follows that

Consequently, dimcTy ¢ > [ iff

We now go back to the question: Is the definition of the tangent space intrinsic?

It is possible to give an intrinsic definition. For this, we review the notion of C-derivation. Let M be a
C-module and recall that A[V] = C[Zy,...,Z,]/3(V), the affine coordinate ring of V.

Definition 1.2 A C-derivation of A[V] with values in M centered at £ consists of the following data:

(1) A C-linear map D: A[V] — M. (values in M)
(2) D(fg) = f(&)Dg+g(&)Df (Leibnitz rule) (centered at &)
(3) D(A) =0for all A € C. (C-derivation)

The set of such derivations is denoted by Derc(A[V], M;€).

The composition
ClZy,..., 20 — AlV] 2 M

is again a C-derivation (on the polynomial ring) centered at ¢ with values in M. Note that a C-derivation
on the polynomial ring (call it D again) factors as above iff D | 3(V') = 0. This shows that

Derc(A[V], M;€) = {D € Derc(C[Z1,. .., Zn), M;€) | D [ 3(V) = 0}.
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However, a C-derivation D € Derc(C[Z1,...,Z,], M;§) is determined by its values D(Z;) = A; at the
variables Z;. Clearly (DX),

D(f(Zy,...,Zy)) = zn: (a_zj)g D(Z;).

j=1

But, observe that for any (A1,...,\,), the restriction of D to J(V') vanishes iff

Z (3—23)5 Aj =0, forevery feJ(V),

that is, iff

Z <‘§Z>5)\J =0, foreveryi=1,...,m,

where fi1,..., fm, generate the ideal J(V). Letting n; = A\; +&; € M (with & € M), we have a bijection
between
Derc(A[V], M; &) and

(nla"'ann)eMn ( f
=1

=0, 1<i<
< 8Z])EJ Past=m

It is given by the map
D (7717"'77711)7

with n; = D(Z;) + &;. This gives the isomorphism
Tv,e = Derc(A[V], C;§).

We conclude that Ty ¢ is independent of the embedding of V' into C", up to isomorphism.

Take V' to be irreducible to avoid complications. Then, A[V] is an integral domain (as J(V) is a prime
ideal) and so, Ov,e = A[V]5(¢), the localization of A[V] at the prime ideal J(£) consisting of all g € A[V]
where ¢g(§) = 0. This is because elements of the local ring Oy ¢ are equivalence classes of ratios f/g, where

fyg € A[V] with g(€) # 0 (where g is zero is Z-closed and so, the latter is Z-open), with f/g ~ f/g iff f/g
and f/g agree on a small neighborhood of £&. On the Z-open where gg # 0, we get fg—gf =0iff f/g~ f/7.
By analytic continuation, we get fg — gf = 0 in A[V]. Therefore, Oy¢ = A[V]3(¢).

It follows that
ove={[Z] | racamiagso} ={|Z] | roecam oo 20},

Any C-derivation D € Derc(A[V], M;§) is uniquely extendable to Oy ¢ via

I\ _ g)Df - f(€)Dg
P <§> B 9(6)? '

Therefore,
Derc(A[V], C;§) = Derc(Ov¢, C; §).

There are some difficulties when V is reducible. As an example in C3, consider the union of a plane and
an algebraic curve piercing that plane, with £ any point of intersection.



24 CHAPTER 1. COMPLEX ALGEBRAIC VARIETIES; ELEMENTARY THEORY

Remark: Since the S; manifestly form a nonincreasing chain as ! increases, there is a largest [ for which
S; = V. The set S;41 is closed in V, and its complement {{ | dimcTyv,e = I} is Z-open. This gives us the
tangent space stratification (a disjoint union) by locally closed sets (a locally closed set is the intersection of
an open set with a closed set)

V=UuUU---UUy,

where Uy = {¢ | dimc Ty = [} is open, and U; = {{ | dimc Tve = [ +i}. We have Uy open in
V — Uy = Si4+1, ete.

Now, we have the first main result.

Theorem 1.13 Say V is a complex variety and suppose dime V' = sup,, dimc Vo, < 0o, where V,, is an affine
open in'V), e.g., V is quasi-compact (which means that V is a finite union of open affines). Then, there is
a nonempty open (in fact, Z-open), U, in'V so that for all £ € U,

dim@ Tv_f = dimc V.
Moreover, for all £ € V', if V is irreducible, then dimc Ty,¢ > dimc V.

Proof. We have V. = Ua Vi, where each V,, is affine open and dim¢ V = sup, dim¢ V, < oo so that
dimc V = dimg¢ V,, for some a and if the first statement of the theorem is true for V,, then there is some
open, U C V,, and as V,, is open itself, U is an open in V with the desired property. So, we may assume
that V is affine. Let

V=Vu---uV

be an irredundant decomposition into irreducible components. At least one of the V}’s has dimension dim(V').
Say itis j =1. Look at Vi NV}, j =2,...,t. Bach V1 NV} is a closed set, and so

t
w=Vv-|Jwnny
j=2
is Z-open. Also, W NV} is Z-open in V; because it is the complement of all the closed sets Vi NV; with j > 2.
Take any open subset, U, of V—U;:2 V; for which U is a good open in V7, that is, where dim¢ Ty ¢ = dimc V4
whenever £ € U. Then, U N W also has the right property. Hence, we may assume that V is affine and
irreducible.

Write A[V] for the coordinate ring C[Z1,...,Z,]/3(V), where J(V) is a prime ideal. Then, A[V] is a
domain and write K = Frac(A[V]). I claim that

dimg Derc(K, K) = dimc¢ V. (%)

We know dim V = tr.d¢ K = tr.dc A[V]. Pick a transcendence basis (1,...,¢, for A[V], then A[V] is
algebraic over C[(y,...,(]; therefore, A[V] is separable over C[(y, ..., (] (C has characteristic zero). We

have the isomorphism
Derc(C[(t, ..., ¢, K) — KT,

and if & € A[V], then « satisfies an irreducible polynomial
oo™ +&a" T 6y =0,

where &; € C[(1,...,¢] and « is a simple root. Let f(T) = Y.7",&T™ ", where T is some indeterminate.
We have f(a) =0 and f'(a) # 0. For any D € Derc(C[(y, ..., ], K), we have

m

0=D(f(a)) = f'(a)D(a) + Y a™ "D,

=0



1.2. LOCAL STRUCTURE OF COMPLEX VARIETIES 25

and as f’(a) # 0, we see that D(«) exists and is uniquely determined. Therefore,
Derc(C[(q, - -+, ¢r), K) =2 Derc(A[V], K)
which proves (x).

Now, we have J(V) = (f1,..., fp) and as we observed earlier

Derc(A[V], K) 2= { (Ar,..., Ay) € K™ }:(aﬁf)&w—& 1<i<p
J

Jj=1
Therefore,

dime V = dimg Der(A[V], K) = n — 1k ((ﬁ» .

==((5)

where the above matrix has entries in K. By linear algebra, there are matrices A, B (with entries in K) so

that a7
i (I 0
a(5) o= o)

Let a(Xy,...,X,) and B(X1,...,X,) be the common denominators of entries in A and B, respectively. So,
A= (1/a)A and B = (1/5)B, and the entries in A and B are in A[V]. Let U be the open set where the
polynomial a8 det(A) det(B) is nonzero. Then, as

)
g@%gﬁa<cg)j§@=(ﬁ )

()

Now, if V' is irreducible, we must have a big open subset Uy of V where dim Ty ¢ is equal to the minimum

Let

for any £ € U, we have

and

has rank s, a constant.

it takes on V. Also, we have an open, &B, where dim Ty ¢ = dim(V). Since these opens are dense, we find
Uo Ny # 0.

Therefore, we must have .
Uy = Uy,

and the minimum value taken by the dimension of the Zariski tangent space is just dim(V). In summary,
the set
' ce

is a Z-open dense subset of V. []

Remark: Say V; and V; are irreducible in some irredundant decomposition of V. If £ € V; NV} (¢ # j),
check (DX) that dim Tv,¢ > dim Ty, ¢ + dim Ty, ¢.
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Figure 1.2: Example of A Surface with Singularites

Definition 1.3 If V is an irreducible variety, a point £ € V' is nonsingular if
dim(c Tv)g = dim(c(V).

Otherwise, we say that & is singular. If V is quasi-compact but not irreducible and £ € V; N'V; for two
distinct irreducible (irredundant) components of V', we also say that & is singular. The singular locus of V
is denoted by Sing(V').

Remark: In the interest of brevity, from now on, we will assume that a complex variety is a quasi-compact
(in the Z-topology) complex algebraic variety. A generalized complex variety is a complex variety that is
Hausdorff but not necessarily quasi-compact.

From previous observations, the singular locus, Sing(V'), of V' is a Z-closed set, so it is a complex variety.
This leads to the Zariski stratification. Let Uy be the set of nonsingular points in V', write V; = Sing(V) =
V — Uy, and let Uy be the set of nonsingular points in V3. We can set Vo = V; — Uy, and so on. Then, we
obtain the Zariski-stratification of V into disjoint locally closed strata

V=UuUiU---JUy,
where each U; is a nonsingular variety and Uy is the open subset of nonsingular points in V.

Example 1.1 In this example (see Figure 1.2), Sing(V') consists of a line with a bad point on it (the origin).
V1 is that line, and V2 = Sing(V4) is the bad point.



1.2. LOCAL STRUCTURE OF COMPLEX VARIETIES 27

Let us take a closer look at the tangent space Ty .

Pick, &, a point of an irreducible variety V. We know that
Ty¢ = Derc(Ov, C; )

and Ov,¢ = A[W],, where W is an affine open with £ € W and p is the prime ideal of A[W] consisting of all
g so that g(£) = 0. We have

C— Oye — Oye/me =C.
Therefore, we can write
Ove =CJ[me,
where the multiplication in the ring Oy,¢ is given by
A, m)(N,m’) = (AN, (dm” + X'm +mm)).

Given a derivation D € Derc(Ov¢, C;§), we have D(A) = 0, so D | mg determines D. I claim that the
restriction D [ m¢ of D to m¢ has the property that D | mg = 0. Indeed,

D <Z aibi> = ZD(aibi) = a;(€)Db; + b;(€)Da;.

Since a;,b; € mg, we have a;(§) = bi(§) = 0, and so, D (3, a;ib;) = 0, which proves that D [ m = 0. As a
consequence, D is a C-linear map from mg/ mg to C.

Conversely, given a C-linear map L: m¢/ mg — C how do we make a derivation D inducing L7

Define D on Ovy¢ via
D(\;m) = L(m (mod m?))
We need to check that it is a derivation. Letting f = (A, m) and g = (N, m’), we have
D(fg) = DN, (\m'+Xm+mm'))
= LOm' +XNm+mm’ (mod m?))
= L(m' + Nm (mod m?))
= AL(m') + NL(m)
= [f(&)D(g) +9()D(f)-

If we recall that me/m7 = me/mZ, we get

Derg(Ove, C;§) = (mg/mg)”
)D

(Mg /mZ
Dere(Oy g, C;€).

1%

Finally, we get our intrinsic definition of the Zariski tangent space.

Definition 1.4 If V is a (generalized) complex variety, then the Zariski tangent space to V at &, Ty, is
just the vector space (mg/mg)D. The vector space mg/mg is the Zariski cotangent space to V at €.
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1.3 Local Structure of Complex Varieties, II; Dimension and Use
of the Implicit Function Theorem

Let V be an irreducible variety. For any & € V, we have mg, the maximal ideal of the local ring Ovy¢.
Examine maximal chains of prime ideals of Oy ¢

m5>p1>--->pd:(0). (T)

Such chains exist and end with (0) since Oy ¢ is a noetherian local domain. The length, d, of this chain is
the height of me. The Krull dimension of Oy is the height of m¢ (denoted dim Oy ¢). Since V is locally
affine, every £ € V belongs to some affine open, so we may assume that V is affine, V' C C™ and V is given
by a prime ideal J(V'). Thus, A[V] = C[Zy,...,Z,]/3(V) and Oy, = A[V]g, where

P={gecAV]|g(&) =0}

Our chain (f) corresponds to a maximal chain of prime ideals
F>Pi>->Pa=(0)

of A[V] and the latter chain corresponds to a chain of irreducible subvarieties
<< < V=W

Therefore, the length d of our chains is on one hand the Krull dimension of Oy ¢ and on the other hand it
is the combinatorial dimension of V' at €. Therefore,

ht m¢ = dim Ox ¢ = combinatorial dim. of V' at &.

Nomenclature. Say V and W are affine and we have a morphism ¢: V — W. This gives a map of
C-algebras, A[W] 1) A[V]. Now, we say that

(1) ¢ is an integral morphism if T'(¢) makes A[V] a ring integral over A[W].
(2) ¢ is a finite morphism if A[V] a finitely generated A[W]-module.

(3) If V and W are not necessarily affine and ¢: V' — W is a morphism, then ¢ is an affine morphism iff
there is an open cover of W by affines, Wy, so that o ~1(W,) is again affine as a variety. Then, we can
carry over (1) and (2) to the general case via: A morphism ¢ is integral (vesp. finite) iff

(a) ¢ is affine
(b) For every a, the morphism ¢ | ¢~1(W,) — W, is integral (resp. finite).

An irreducible variety, V, is a normal variety iff it has an open covering, V' = J, Va, so that A[V,] is
integrally closed in its fraction field.

Proposition 1.14 Let V,W be irreducible complex varieties, with W normal. If dim(W) =d and ¢p: V —
W is a finite surjective morphism, then dim(V') = d and ¢ establishes a surjective map from the collection
of closed Z-irreducible subvarieties of V to those of W, so that

(1) mazimal irreducible subvarieties of V- map to mazimal irreducible subvarieties of W
(2) inclusion relations are preserved

(8) dimensions are preserved



1.3. LOCAL STRUCTURE OF COMPLEX VARIETIES, 11 29

(4) mo irreducible subvariety of V', except V itself, maps onto W.

Proof. Let W, be an affine open in W, then so is V,, = ¢~ }(W,,) in V, because ¢ is affine, since it is a finite
morphism. If Z is an irreducible closed variety in V', then Z, = ZNV,, is irreducible in V,, since Z, is dense
in Z. Thus, we may assume that V and W are affine. Let A = A[W] and B = A[V]. Since ¢ is finite and
surjective, we see that I'(¢) is an injection, so B is a finite A-module. Both A, B are integral domains, both
are Noetherian, A is integrally closed, and no nonzero element of A is a zero divisor in B. These are the
conditions for applying the Cohen-Seidenberg theorems I, IT, and III. As A[V] is integral, therefore algebraic
over A[W], we have
d=dim W = tr.dc A[W] = tr.dc A[V] = dim V,

which shows that dim W = dim V.

By Cohen-Seidenberg I (Zariski and Samuel [14], Theorem 3, Chapter V, Section 2, or Atiyah and
Macdonald [1], Chapter 5), there is a surjective correspondence

PT—PNA

between prime ideals of B and prime ideals of A, and thus, there is a surjective correspondence between
irreducible subvarieties of V' and their images in W.

Consider a maximal irreducible variety Z in V. Then, its corresponding ideal is a minimal prime ideal
PB. Let p = PN A, the ideal corresponding to ¢(Z). If ¢(Z) is not a maximal irreducible variety in W, then
p is not a minimal prime, and thus, there is some prime ideal q of A such that

qcp,

where the inclusion is strict. By Cohen-Seidenberg IIT (Zariski and Samuel [14], Theorem 6, Chapter V,
Section 3, or Atiyah and Macdonald [1], Chapter 5), there is some prime ideal 9 in B such that

QCP

and q = QN A, contradicting the fact that 8 is minimal. Thus, ¢ takes maximal irreducible varieties to
maximal irreducible varieties.

Finally, by Cohen-Seidenberg II (Zariski and Samuel [14], Corollary to Theorem 3, Chapter V, Section
2, or Atiyah and Macdonald [1], Chapter 5), inclusions are preserved, and since ¢ is finite, dimension is
preserved. The rest is clear. []

We can finally prove the fundamental fact on dimension.
Proposition 1.15 Let V and W be irreducible complezx varieties with W a mazximal subvariety of V.. Then,
dim(W) = dim(V) — 1.

Proof. We may assume that V and W are affine (using open covers, as usual). By Noether’s normalization
theorem (Theorem 1.2), there is a finite surjective morphism ¢: V' — C”, where r = dim¢(V'). However, C”
is normal, and by Proposition 1.14, we may assume that V' = C". Let W be a maximal irreducible variety
in C". It corresponds to a minimal prime ideal B of A[T1,...,T,], which is a UFD. As a consequence, since
P is a minimal prime, it is equal to some principal ideal, i.e., P = (g), where g is not a unit. Without loss
of generality, we may assume that g involves T,.

Now, the images t1,...,t.—1 of T1,...,T.—1 in A[T1,...,T,]/B are algebraically independent over C.
Otherwise, there would be some polynomial f € A[Th,...,T,_1] such that

f(tl,...,tr_l) =0.
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But then, f(Th,...,Tr—1) € P = (g9). Thus,
f(Tl7"-7T’r‘—1) :Oé(Tl,...,TT)g(Tl,...,TT),

contradicting the algebraic independence of T1, ..., T,. Therefore, dimc (W) > r — 1, but since we also know
that dimc(W) <r — 1, we get dim¢(W) =7 —1. [

Corollary 1.16 The combinatorial dimension of V over {&} is just dimc V; consequently, it is independent
of £ €V (where V is affine irreducible).

Corollary 1.17 IfV is affine and irreducible, then dimc mg/mg > dimc V = comb. dim. V = dimc Oy
(= Krull dimension) and we have equality iff § is a nonsingular point. Therefore, Oy ¢ is a regular local ring
(i.e., dim¢ mg/mg = dimc¢ Ov,¢) iff € is a nonsingular point.

We now use these facts and the implicit function theorem for local analysis near a nonsingular point.

Definition 1.5 Say V' C C™ is an affine variety and write d = dim V. Then, V is called a complete
intersection iff J(V') has n — d generators. If V' is not necessarily affine and £ € V, then V is a local complete
intersection at £ iff there is some affine open, V(§), of V' such that

(a) SeV()CV
(b) V(&) C C", for some n, as a subvariety

(c) V(&) is a complete intersection in C™.

Theorem 1.18 (Local Complete Intersection Theorem) Let V' be an irreducible complex variety, £ € V be
a nonsingular point and write dim(V) = d. Then, V is a local complete intersection at . That is, there is
some affine open, U C V, with £ € U, such that U can be embedded into C" as a Z-closed subset (we may
assume that n is minimal) and U is cut out by r = n—d polynomials. This means that there exists a possibly
smaller Z-open W C U CV with £ € W and some polynomials f1,..., fr, so that

neW if and only if fi(n)=---= fo(n) =0

The local complete intersection theorem will be obtained from the following affine form of the theorem.

Theorem 1.19 (Affine local complete intersection theorem) Let V. C C™ be an affine irreducible complex
variety of dimension dim(V') = d, and assume that V =V (p). If £ € V is nonsingular point, then there exist
fi,- o fr €p, withr =n —d, so that

pz{gec[zl,..., n

g—z lZZ:,-_'_-; ))fz(Zl7"'7Z ), and 1(5)#0}, (1)

where h; andl € C[Zy,...,Zy,]. The f;’s having the above property are exactly those f; € p whose differentials
df; cut out the tangent space Ty ¢ (i.e., these differentials are linearly independent).

Proof of the local complete intersection theorem (Theorem 1.18). We show that the affine local complete
intersection theorem (Theorem 1.19) implies the general one (Theorem 1.18). There is some open affine set,
say U, with & € U. By working with U instead of V', we may assume that V is affine. Let V = V(p), and
let A= (f1,...,fr), in C[Z1,...,Z,]. Suppose that g1, ..., g+ are some generators for p. By the affine local
complete intersection theorem (Theorem 1.19), there are some Iy, ..., with [;(§) # 0, so that

T

9j = Z Ufzu fOI'jzl,...,t

=1



1.3. LOCAL STRUCTURE OF COMPLEX VARIETIES, 11 31
Let I = H;Zl l; and let W be the Z-open of C™ where | does not vanish. We have £ € W, and we also have
e
AV AW] = AlV], = {z_k ‘ aeAV), k> 0},
But,
ligj = Z hij fi,
and on V' N W, the l;’s are units. Therefore,
pA[V N W] = AA[V N W].

Thus, on VNW, we have p = 2 in the above sense, and so, VN W is the variety given by the f;’s. The
affine version of the theorem implies that r =n — d. [

We now turn to the proof of the affine theorem.

Proof of the affine local complete intersection theorem (Theorem 1.19). Let the righthand side of (1) be .
Given any g € ‘B, there is some [ so that
lg= Z hi fi.
i=1

Since f; € p, we have lg € p. But [(£) # 0, so | ¢ p; and since p is prime, we must have g € p. Thus, we have

B Cp.

By translation, we can move p to the origin, and we may assume that £ = 0. Now, the proof of our theorem
rests on the following proposition:

Proposition 1.20 (Zariski) Let f1,..., fr € C[Z1,...,Z,] be polynomials with

f1(0,...,0) =--- = f.(0,...,0) =0, and linearly independent linear terms at (0,...,0). Then, the ideal
P=<SgeClZ,....Z Z Zl""’ )fZ(Zl...Z) and 1(0,...,0) #£0
3 3 l Zl7 e ) ) 3 ) 3 )
is a prime ideal and V(P) has dimension n —r. Moreover, (0,...,0) € V(P) is a nonsingular point and
V(fi,..., fr) =V(B)UY, where Y is Z-closed and (0,...,0) ¢ Y.

If we assume Zariski’s Proposition 1.20, we can finish the proof of the affine local complete intersection
theorem (Theorem 1.19): Since £ = (0,...,0) is nonsingular, we find dim Ty,o = d, the differentials of
fi,..., fr are linearly independent if and only if they cut out Ty,p. Then, V() has dimension n — r = d.
By Proposition 1.20, 3 is prime, and we have already proved B C p. However,

dim V() = dim V(p);
so, we get V(P) = V(p), and thus, P = p. This proves the affine local complete intersection theorem. ]
It remains to prove Zariski’s proposition.
Proof of Proposition 1.20. We have the three rings

R = Cl&,...,Zy),
R/ == (C[Zl, ceey Zn](Zl Zn) == O(C" 05 a,nd

.....

R' = C[[Z,..., 2.
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Figure 1.3: Hlustration of Proposition 1.20

Ifl € Ocn,oNC[Z1,...,Z,] and 1(0) # 0, then

n

WZ1,. o Zn) =10) [ 14D a;(Z1,.... Z0) 25 |

j=1
where a;(Z1,...,2,) € C[Z,...,Z,]. But then,
1 oo n
7 => (-1 a;j(Z1,....,Zn)Z; |
1+Zj:1aj(Zl,...,Zn)Zj TZZO ]:Zl J J
which belongs to C[[Z1, ..., Z,]]. Hence, we have inclusions
R— R < R".

Let P’ = (f1,..., fr)R' and write " = (f1,..., fr)R". By definition, P =P’ N R. If we can show that P’
is a prime ideal, then 3 will be prime, too.

Claim: B =B"NR'.
Let g € B” N R'. Then,

9= hifi
=1

with g € R’, by assumption, and with h; € R”. We can define the notion of “vanishing to order ¢ of a power
series,” and with “obvious notation,” we can write

where deg h; < t. Because f;(0,...,0) = 0 for each i, we find that

9= hifi + O(X*),

i=1
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and thus,
gEP +(Z1,...,Z,)" R, for all t.

As a consequence,

ge (V¥ +(Z1,.... 2" R);
t=1
so,

AR C () (P +(Z1,....2,)"'R).
t=1

But R’ is a Noetherian local ring, and by Krull’s intersection theorem (Zariski and Samuel [14], Theorem
12’, Chapter IV, Section 7), P’ is closed in the M-adic topology of R’ (where, M = (Z1,...,Z,)R').
Consequently,

m/ — ﬂ (m/ + mtJrl) ,
t=1
and we have proved
m/l N R/ g mll

Since we already know that 3’ C P N R’, we get our claim. Thus, if we knew " were prime, then so would
be P’. Now, the linear terms of f1,..., f» at (0,...,0) are linearly independent, thus,

rk (ggj (0)> =,

and we can apply the formal implicit function theorem (Theorem 1.7). As a result, we get the isomorphism

R /" = C[[Zrsr,- ., Zn]]-

However, since C[[Z,4+1,...,Z,]] is an integral domain, " must be a prime ideal. Hence, our chain of
arguments proved that 9 is a prime ideal. To calculate the dimension of V(3), observe that

P'NR=P"NRNR=P NR="2L,
and we also have
ClZ1,. . Zn) /B — Cl[Z1, ..., Z)| /B 2 Cl[Zr31, .-, Zn])-

Therefore, Z,41, ..., Z, (mod*P) are algebraically independent over k, which implies that dimV () > n—r.
Now, the linear terms of f1,..., fr cut out the linear space Ty, and by linear independence, this space has
dimension n — r. Then,

n—r=dmTyo>dimV(P) >n—r,

so that dim V(8) = n — r, and 0 is nonsingular.

If g € B, there exists some [ with [(0) # 0 such that

9=> %fm
i=1

which implies that lg € (f1,..., fr). Applying this fact to each of the generators of B, say, ¢1,...,9:, and
letting | = []._, l;, we have
lmg (fluaf’r) gm

As a consequence,

V(B) SV(fi,..., fr) SVIB) = V() UV R).
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Ifwelet Y =V({)NV(f1,...,fr), we have

V(flu"'ufr) ZV(’I})UY

Since 1(0) # 0, we have 0 ¢ Y. []

Remarks:

(1)

Given an irreducible complex variety, V', we have the intuition that Oy ¢ should control the structure
of V near £. Since the question is local, we may assume that V is affine, say V = V(p), where p is a
prime ideal of C[Zy, ..., Z,]. We have the diagram

(C[Zl, ceey Zn] - (C[Zl, ey Zn]j(g) = Ocn{

| |

The kernel on the left hand side is p and the kernel on the right hand side is p¢. By the LCIT, we have
fi,--+, fr (where n =7+ d and dim V = d) cutting out V. What is the right hand side of ALCIT? It
is A°¢, where A = (f1,..., fr) CC[Z1,...,Z,] and A° = AO¢n ¢. Therefore, the ALCIT says

p = A

Thus, p® = A¢. It follows that if p© as ideal of O¢» ¢ has generators fi,..., f,, then these generators
cut out V' (from C") in a Z-neighborhood of ¢ (¢ is nonsingular).

Suppose £ is nonsingular and V is affine, irreducible and look at the diagram

Ocnvf = (C[Zl _517 .- 'aZﬂ _gn]J(ﬁ) —s C[[Zl - 517 .- '7Zn _gn]] = (/9\(:"75

| |

Ove = AVl © Ove.

By the LCIT, V is cut out by fi,..., fr, where dfi,...,df, cut out Ty ¢ from C", i.e., dfi,...,df, are

linearly independent forms on T¢n ¢ =2 C™. Thus, rk ( g é)
J

= r is maximal. By the FIFT, we have

Ove=Cl[Z1— &1,y Zn = I/ (f1s s fr) 2 Cl[Zrg1 = Ergs - s Zn — Enl]-

By the same theorem, if we pick y1,...,yq (d = n — r) in mg, with images 7; linearly independent
in m¢/m? (75 = dy;), then we know that @V,E > Cl[y1,---,yd]]- Therefore, at &, as point of C", the
differentials df,...,dfr, dy1,...,dyq are linearly independent on Tgn ¢, i.e., they are a basis. So, by
the FIF'T, again,

(C[[Zl _517'-'7271 _gn]] g(c[[flw'"7fray17"'7yd]]'

We conclude

(a) For all f e @V,g, there is a unique power series in y1, ..., yq equal to f (Taylor series).

(b) Near £ (in the Z-topology), by Remark 1, C™ has a “splitting” into coordinates locally on V' and
coordinates locally transverse to V. Therefore, Ty, as n ranges over a Z-open neighborhood of
the nonsingular point ¢ is locally constant, i.e., just given by dyi, ..., dyqs in this neighborhood.

For the complex analytic case, we have:
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Theorem 1.21 Let V' be an irreducible complex algebraic variety of dimension d and let £ € V' be a nonsin-
gular point. If locally in the Zariski topology near &, the variety V- may be embedded in C™, then there exist
d of the coordinates (of C"), say Zyy1,...,Zn (r =n —d) so that

(a) dZy11,...,dZ, are linearly independent forms on Ty e,

(b) there exists some ¢ > 0 and we have r converging power series g1(Zr41 — Ert1y--+r Zn — &n), ---
gT(Z’r‘+1 - €T+1a LERE Zn - 571); s0 that

(Zl,...,Zn)EPD(f,E)ﬂV ’Lﬁ Zi_gi:gi(ZrJrl_§r+17---7Zn_€n); izl,...,T.

(c) Any choice of d of the coordinates Z1,. .., Zy, so that the corresponding dZ;’s are linearly independent
on Ty, will serve, and the map
VNPD(e) — PD(0,¢€)

given by
(Zlu---uZn) = (Zr-l-l _€T+17"'7Z7l _§n)

is an analytic isomorphism. Hence, if we take (V —Sing V)2, it has the natural structure of a complex
analytic manifold. Furthermore, V3 is a compler analytic manifold if and only if V is a nonsingular
variety.

Proof . Since ¢ is nonsingular, by the local complete intersection theorem (Theorem 1.18), we can cut out V
locally (in the Zariski topology) by fi,..., fr and then we know that

rk (gg (§)> =7

is maximal. By the convergent implicit function theorem (Theorem 1.10), there is some € > 0 and there are
some power series g1, .. ., g, so that on PD(E, €), we have

filZy,...,Zy) =0 it Z; —& =9i(Zrs1 — &1y Dn—&n) fori=1,...,r (%)
The lefthand side says exactly that
(Z1,...,Z,) € VNPD(E e).
We get a map by projection on the last d coordinates
VNPD(E e) — PD(0,¢),

whose inverse is given by the righthand side of equation (x); and thus, the map is an analytic isomorphism.
By the formal implicit function theorem (Theorem 1.7),

CllZy,- -, Zall/(fr - 1) 2 CllZpgas -, Zal.

Hence, dZ,41,...,dZ, are linearly independent on Ty ¢. If conversely, the last d coordinates have linearly
independent differentials dZ, 41, ...,dZ,, then

dim Ty < d.

But ¢ is nonsingular, and thus, dZ,11,...,dZ, form a basis of Ty,¢. Now, Tg» ¢ is cut out by dfi,...,df,,
dZ,41,...,dZ,, where f1,...,f. cut out V locally (in the Zariski topology) at &, by the local complete
intersection theorem. It follows that of

K i

' <3Zj (5))




36 CHAPTER 1. COMPLEX ALGEBRAIC VARIETIES; ELEMENTARY THEORY

is maximal (that is, r = n—d) and we can repeat our previous arguments. The last statement of the theorem
is just a recap of what has already been proved. []

Remark: In the nonsingular case, the differential geometric definition of Ty ¢ and ours then agree and the
notions of dimension also agree. Consider a morphism, ¢: V' — W, of varieties and let ¢ be a point of V
(perhaps singular). We know that we have the local morphism (¢*)¢: Ow, ey — Ove and my ey — me.
Thus, we have a linear map M) /Mm% ¢ — mg/mZ, but Tp o) = my(e)/m7 . and T, = mg/mZ. If we
dualize, we get a linear map Ty ¢ — Ty, (¢), as expected.

To go further and understand the local structure of an irreducible variety near a nonsingular point on it,
we need the following famous theorem first proved by Zariski (1947) in the case at hand [13]. However, the
theorem is more general and holds for an arbitrary regular local ring as was proved by M. Auslander and D.
Buchsbaum, and independently Jean-Pierre Serre (all in 1959).

Theorem 1.22 Let V' be an irreducible complex algebraic variety and let £ be a nonsingular point of V', then
Ovﬁg is a UFD.

In order to prove Theorem 1.22, we need and will prove the following algebraic theorem:

Theorem 1.23 If A is a local noetherian ring and if its completion Aisa UFD, then, A itself is a UFD.

Proof of Theorem 1.22. Assume Theorem 1.23, then, Oy ¢ is a noetherian local ring and as £ is nonsingular,
Ove =C[[Z,. .., Z4]),

for some d, by the LCIT and implicit function theorem. However, the latter ring is a UFD, by elementary
algebra. Therefore, Theorem 1.23 implies Theorem 1.22. []

Observe that we also obtain the fact that C{Zy,...,Z4} is a UFD.
Proof of Theorem 1.23. The proof proceeds in three steps.
Step 1. I claim that for every ideal 2 C A we have
A=ANAA.
Clearly, A C AN AA. We need to prove that

ANAA C 2.
Pick f € ANAA, then, f € A and
f= zt: Qiag,
1=1
and «; € A and a; € A. Write

o = Oé,gn) + O(I/ﬁn-‘rl),

(n

) ¢ A, and m is the maximal ideal of A. Then,

f= Z aa; + Z O(m"a,,

where «

and ), al(-")ai € A. So,
feA+Am™ T = A + Am" T A,



1.3. LOCAL STRUCTURE OF COMPLEX VARIETIES, 11 37

and this is true for all n. The piece of f in Am" 14 lies in A, and thus, in m"+1. We find that f € % +mn+1
for all n, and we have

feN@A+mmth) =2,

n>0
by Krull’s intersection theorem.

Step 2. 1 claim that N
Frac(A)NA = A.

This means that given f/g € Frac(A) and f/g € ,Z, then f/g € A. Equivalently, this means that if g divides
fin A, then g divides f in A. Look at
A = gA.

If f/g e A\, then f € gA\, and since f € A, we have
feAngA.
But g/Al = QL/T, and by Step 1, we find that
gA == ANAA,
so, f € gA, as claimed.

We now come to the heart of the proof.

Step 3. Let f,g € A with f irreducible. I claim that either f divides g in A or (f,¢g) =1 in A (where
(f,g) denotes the ged of f and g).

Assuming this has been established, here is how we prove Theorem 1.23: Firstly, since A is noetherian,
factorization into irreducible factors exists (but not necessarily uniquely). By elementary algebra, one knows
that to prove uniqueness, it suffices to prove that if f is irreducible then f is prime. That is, if f is irreducible
and f divides gh, then we must prove either f divides g or f divides h.

If f divides g, then we are done. Otherwise, (f,g) =1 in /Al, by Step 3. Now, f divides gh in A and A is
a UFD, so that as (f,¢g) =1 in A we find that f divides h in A. By Step 12, we get that f divides h in A,
as desired.

Proof of Step 3. Let f,g € A and let d be the ged of f and ¢ in A. Thus,
f=dF, and g=dG,

where d, F, G € ,Z, and R
(F,G)=1 in A.
Let ordg F = ng (that is, ng is characterized by the fact that F' € m™ but F' ¢ m™*1). Either F is a unit
or a nonunit in A. If F is a unit in A then ng = 0, and f = dF implies that F~!f = d; then,
F7fG =y,
which implies that f divides ¢ in A By Step 2, we get that f divides g in A.
We now have to deal with the case where ord(F) = ng > 0. We have

F=lim F,, and G = lim G,,
fiadeel

n—oo
in the m-adic topology, with F,, and G,, € A, and F — F,, and G — G,, € m"+!. Look at

_ Gu _ gFu— fGa
G |

g
[ [F,
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Now,
an_fGn = g(Fn_F>+gF_fGn
— g(Fy— F) +dGF — fGy
= gl —F)+ fG-fG,
= g(Fn_F)+f(G_Gn)

The righthand side belongs to (f, g)m™*!, which means that it belongs to (f, g)m""’lg. However, the lefthand
side is in A, and thus, the righthand side belongs to

AN (f,gym™ A

Letting A = (f, g)m™!, we can apply Step 1, and thus, the lefthand side belongs to (f, g)m™*!. This means
that there are some o, 7, € m"T! C A so that

an_fGn:fUn""ng;

It follows that
9(Fn —7n) = f(Gn + 0n);

so, if we let
an:Gn+Un and Bn:Fn_Tna

we have the following properties:
(1) gBn = fom, with an, B, € A,
(2) ap =G, (mod m™1) and B, = F,, (mod m"™+1),
(3) Gn = G (mod m"*1'4) and F,, = F (mod m"+1 4).

Choose n = ng. Since ord(F') = ng > 0, we have ord(F,,) = ng, and thus, ord(8,,) = ng. Look at (1):

gﬁ’ﬂo = fan()u

SO
dG B, = dF oy,

and, because A is an integral domain,
GBny = Fauy,.

However, (F,G) = 1 in A and F divides GBp,. Hence, F' divides f,,, so that there is some H € A with
Bno, = FH and
ord(fBy,) = ord(F) 4 ord(H).

But ord(F) = ng, and consequently, ord(H) = 0, and H is a unit. Since 8,, = FH, we see that (3,, divides
F', and thus,
F=p5,0

for some § € A. Again, ord(d) = 0, and we conclude that § is a unit. Then,
Bnodd =dF = f,

so that 3,, divides f in A. By step 2, By, divides f in A. But f is irreducible and 3,, is not a unit, and so
Bnou = f where u is a unit. Thus, 0d = u is a unit, and since ¢ is a unit, so is d, as desired. ]

The unique factorization theorem just proved has important consequences for the local structure of a
variety near a nonsingular point:
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Theorem 1.24 Say V is an irreducible complex variety and let £ be a point in V. Let f € Oy,¢ be a locally
defined holomorphic function at & and assume that f £ 0 on V and f(§) = 0. Then, the locally defined
subvariety, W = {x € V| f(z) = 0}, given by f is a subvariety of codimension 1 in V. If £ is nonsingular
and f is irreducible, then W is irreducible. More generally, if £ is nonsingular then the irreducible components
of W through & correspond bijectively to the irreducible factors of f in Ove. Conversely, suppose £ is
nonsingular and W is a locally defined pure codimension 1 subvariety of V' through &, then, there is some
irreducible f € Oy.¢ so that near enough &, we have

W = {33 eV | f(fﬂ) = 0} and S(W)Ovyg = f@vyg.

Proof. Let £ be a point in V and let f be in Oy, with f irreducible. As the question is local on V' we may
assume that V is affine. Also,
OV,E = 11&11 Agv
9¢3(©)

with A = A[V]. Thus, we may assume that f = F/G, with G(§) # 0 and with F,G € A. Upon replacing V
by Vi (where Vi is an open such that £ € V), we may assume that f is the image of some F' € A = A[V].
The variety V is irreducible and V' = V (p), where p is some prime ideal. Near ¢ (i.e., on some open affine
subset Uy with & € Uy), let

A={geC[Z,....2Z,) | lge p+(f), where I(§)#0}, (%)
and let m be the ideal of £ on V. This means that m = {g € A[V] | g(§) = 0}. We have
pCACm.

Reading the above in A, we get 2 C m, and in Oy, we find from (x) that Ae = JOve. Thus, A¢ is a
prime ideal, because f is irreducible and Ov ¢ is a UFD. Then, 2 is prime and W = V() is a variety locally
defined by f = 0, and is irreducible. We have W ¢ V' since f =0 on W but not on V, and we find that

dim(W) < dim(V) — 1.

We will prove equality by a tangent space argument.

Claim. There is some affine open U C W, with £ € U so that for all w € U: Ty, , is cut out from Ty,
by the equation df = 0, where W, is some irreducible component of W through &.

Let g1,...,g: be generators for A. Thus, dg; = --- = dg: = 0 cut out Tyy,, near &, i.e., in some suitable
open set Uy with € € Uy. By (x), on Uy, there exist l1,...,I; so that

ligi=pi+ A,
where p; € p, and the \;’s are polynomials. Let I = [];, and take
U=Uon{n | In) #0}.
The set U is open and affine. By differentiating, we get
lidgi + (dl;)g; = dp; + (dX) f + A\idf. (1)

On U CW CV, we have

(1) f=0(in W).

(2) pi =0 (in V).

(3) g: =0 (in W).
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(4) I; #0.
(5) dp; =0, as we are in Ty, with u € U.

In view of (1), we get

Li(u)dgi(u) = N (u)df (u).
Assume that df (u) = 0. Since l;(u) # 0, we get dg;(u) = 0, which implies that the equation df (u) = 0 cuts
out a subspace of Tyy,,. Then, Ty, contains the hyperplane df = 0 of Ty, which implies that

dim(Tw,,,) > dim(Ty,,) — 1.

Now, Z-open are dense in irreducible; consequently on some irreducible component W, of W, U N W, is
open, dense and some u in U N W, is nonsingular, so

dim W > dim W, = dim(Tw,,,) > dim(Tv,,) — 1 > dim V — 1.

Thus, (by previous work),
dim(W) = dim(V) — 1.

Conversely, assume that W is locally defined near £, and is of codimension 1. Replacing V' by this affine
neighborhood, we may assume that W C V| is globally defined, and of codimension 1. Also recall that £ is
assumed to be nonsingular. We have the ideal J(W)Oy¢ in Oy ¢, and we can write

IJW)Ov,e =p1N---Npy,

where the p;’s are minimal primes of Oy ¢, each of height 1. Since Oy ¢ is a UFD, every p; is principal, i.e.,
p; = fiOv¢, where f; is irreducible. As

plﬂ...ﬂpt:pl...pt,

we get
JW)Ov,e = fOvp,

where f = fi--- f;. The above argument implies that (W) = (F') in some Ag, where A = A[V]; G(§) # 0;
G € A. Thus, 3(W) is locally principal. Observe also that if W is irreducible, then J(W) is prime; so, f = f;
for some 7, i.e., f is irreducible.

Now, consider f € Oy ¢, where £ is not necessarily nonsingular, and look at the local variety through ¢
defined by f = 0 (remember, f(£) = 0). The radical ideal 2 = J(W) (in A = C[Z1, ..., Z,]/p) defining W
has a decomposition

A=pi1N---Npy,

and since A = /2, the p;’s are the minimal primes containing 2 (the isolated primes of ). Let g1, ..., g+ be
generators of A. The image of g; in Oy ¢ has the form \; f (remember, W is locally principal by hypothesis).
Since
Ove= lim Ag,
GgI(©)

take G' enough for g¢1,..., g¢, and then the open Vg so that g; = X;F, where J(W) in Ag is just (F), and
F/G = f in OV,E- Thus,

A=3(W) = () n,
j=1

where in the above intersection, we find only the primes surviving in Oy, i.e., those with p; C m, where
m = J(¢). By Krull’s principal ideal theorem (Zariski and Samuel [14], Theorem 29, Chapter IV, Section
14), these p;’s are minimal ideals, and thus, the components of W have codimension 1.



1.3. LOCAL STRUCTURE OF COMPLEX VARIETIES, 11 41

If ¢ is actually nonsingular, then these surviving p;’s are minimal in the UFD Oy¢. Hence, locally
enough, each p; is principal; say p; = (f;). Then,
(N =2A=()0--n(fs) =(fr-- [
so that
f=ufi-fs
where u is a unit. The irreducible branches of W through £ are the irreducible factors of the local equation

f =0 defining W locally. []

Nomenclature: If V is a complex variety, then a Cartier divisor on V is a subvariety, W C V', so that for
all &£ € W, there is Ug open in V, with £ € U¢ and there is some function f¢ locally defined on U so that

WnUe={n| fe(n) = 0}.
Then, the translation of Theorem 1.24 is:

Corollary 1.25 IfV is a complex variety, then every Cartier divisor is a pure codimension one subvariety
of V.. If £ is nonsingular, then a pure codimension one subvariety of V' through & is a Cartier divisor near &.

Corollary 1.26 (Hypersurface Intersection Theorem) Say V is a complex variety and f is a global function
(f£0)onV. Let W = {v e V| f(v) = 0} (e.g., V C CV is affine, H = a hyperplane in CN given by
H={xecCVN|F(lx)=0}and W=VNH, withVZ Hand VOH#).) If f Z0 and f is not a unit,

then each irreducible component of W has codimension 1.

Corollary 1.27 (Intersection Dimension Theorem) Say V,W, Z are irreducible complex varieties and
V,W C Z. Pick £ e VW and assume & is a nonsingular point of Z. Then, VW = (I, Ta) U Q, where

(1) The T, are irreducible components of VNW through &.
(2) Q = the rest of VNW.
(8) dim T, > dim V + dim W — dim Z, for all a.

Proof. (1) and (2) simply set up the notation and we just have to prove (3). We may assume that V, W, Z are
affine (by density of a Z-open in an irreducible), say Z C C¥. As ¢ is nonsingular, if dim Z = n, there exist
functions ¢1,...,g, on Z with dgi, ..., dg, a basis for ng (by the Local Complete Intersection Theorem).
Observe that

Vaw =V ][W)nAg,

where Az C Z ][ Z is the diagonal. Consider the functions f1,..., f, on Z[] Z given (near £) by

filz1, ooy znswiy o wn) = gi(21, oy 20) — gi(we, .. wy), i=1,...,n.

Clearly, f; | Az =0 (near (£,€)) and dfy,...,df, are Li. at (£,€) on the tangent space. By the LCIT, we
must have
C(flu"'afn) :AZURu

where R = the union of the irreducible components of V(fi,..., f,) through (£,£). Therefore, near &, we

have
VW =VVnWw)nV(fi)n---NV(f.).

By Corollary 1.26, dim T,, > dim(V [[W) — n. However, dim(V [[W) = dim V + dim W, so

dimT, > dimV 4+ dim W — dim Z. [l
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@ If V and W are contained in some affine variety Z not C?, the intersection dimension theorem may be
false at a singular point. Indeed, consider the following example.

Example 1.2 Let Z be the quadric cone in C* given by
T1T9 — x32x4 = 0.
The cone Z has dimension 3 (it is a hypersurface). Let V' be the plane
1 =3 =0,
and W the plane
To = x4 = 0.

Observe that V,WW C Z. Since V and W have dimension 2 and V N W # (), the intersection dimension
theorem would yield dim(V N W) > 242 —3 = 1. However VN W = {(0,0,0,0)}, the origin, whose
dimension is zero!

What is the problem? The answer is that near 0, A N Z is not the locus of three equations, but rather
of four equations.

Corollary 1.28 (Intersection Dimension Theorem in CN and PV )

(1) Say V,W are complex affine varieties V,W C CN. Then, every irreducible component of V.0 W has
dimension at least dimV +dim W — N.

(2) Say V,W are complex varieties V,W C PN with dim V +dim W > N. Then, VW # () and every
irreducible component of V. N'W has dimension at least dim V 4+ dim W — N.

Proof. (1) As each point of CV is nonsingular, we can apply Corollary 1.28.

(2) Write C(V),C(W) for the cones over V and W in CVN*1 i.e., the affine varieties given by the same
homogeneous equations regarded in affine space CV*!. We have dim C(V) = dim V + 1 and
dim C(W) =dim W + 1. As 0 € C(V) N C(W), by part (1), every irreducible component of C(V) N C(W)
through 0 has dimension at least dim V +1+dim W +1 — (N + 1), i.e., (dim V +dim W — N) + 1. But,
each such irreducible component is the cone over the corresponding irreducible component of V N W and,
asdim V +dim W > N, we deduce that these irreducible affine cones have dimension at least 1, so that the
corresponding irreducible components in PV are nonempty. The rest is clear. []

1.4 Elementary Global Theory of Varieties

We begin by observing that the category of complex varieties has fibred products. The set-up is the following:
V and W are two given varieties and we have two morphisms p: V — Z and q¢: W — Z, where W is another
complex variety. We seek a variety, P, together with two morphisms, pri: P — V and pry: P — W, so that
the diagram below commutes

P W
pri l \Lq
v Z

and so that for every test variety, T', and morphisms, ¢: T'— V and ¢: T — W, so that the diagram

pr

e ——
P

T—w>W
V——7

p



1.4. ELEMENTARY GLOBAL THEORY OF VARIETIES 43

commutes, there is a unique morphism, (p,¢): T — P, with

p=prio(p,9) and Y =pryo(p,v).

Such a variety, P, always exists and is unique up to (unique) isomorphism (use glueing, DX). This variety
is called the fibred product of V. and W over Z and is denoted V' [ W.
Z
Say we have a morphism p: V' — Z, and let z € Z be any point in Z. Then {2z} C Z is Z-closed, i.e.,

the inclusion map, q: {z} — Z is a morphism. Consequently, we can make the fibred product V' [] {z}, a
Z

variety. Set theoretically, it is the fibre p~1(2).

Theorem 1.29 (Fibre Dimension Theorem) If p: V. — Z is a surjective morphism of complex, irreducible
varieties, then

(1) For every z € Z,
dim ¢~ !(2) > dim V — dim Z.
(2) There is a Z-open, U C Z, so that, for every u € U,

dim ¢! (u) = dim V — dim Z.

Proof. You check (DX), we may assume Z is affine, say Z C CV.

(1) Pick £ € Z, € # z. There is a hyperplane H C CV such that z € H and ¢ ¢ H. Thus, Z is not
contained in H. [In fact, if L = 0 is a linear form defining H, L? (d > 1) is a form of degree d defining a
hypersurface of degree d, call it H'; Z is not contained in H’, but z € H'.] By the hypersurface intersection
theorem (Corollary 1.26), the dimension of any irreducible component of ZN H is dim(Z) —1. Pick, &1,...&
in each of the components of Z N H. Then, there is a hyperplane H so that & ¢ H for all j, 1 <j<s, but

z€H. Then, by Corollary 1.26 again, the dimension of any component of Z N H N H is dim(Z) — 2. Using
this process, we get some hyperplanes H = Hy, Hs, ..., Hy, such that

m
A ﬂ Hj,
j=1

and if we write
Zj = Zj_l n Hj,
with Z; = Z N Hy, we get a chain
Z D71 D4y D+ DLy with m=dim Z.

Here, z € Z,,, and
dim(Z;) = dim(Z) — j.

Thus, the linear forms Ly, ..., L,, associated with the H;’s define Z,, in Z and
dim(Z,,) = 0.
Consequently, Z,, is a finite set of points:
Zm ={2=121,22,..., 2}

Let
UO ZZ—{ZQ,...,Zt},
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it is a Z-open dense subset of Z. We can replace Z by Uy, and thus, we may assume that Z,, = {z}. We
have the morphism ¢: V' — Z, and so, each ¢*(L;) is a global function on V' (where ¢*: ¢*Oz — Oy). But
then, p~1(z) is the locus in V cut out by ©*(L1),...,9*(Lm); so, by the intersection dimension theorem,
we get

dim ¢! (2) > dim(V) — m = dim(V) — dim Z.

(2) We need to prove that there is a Z-open, U C Z, so that dim ¢~ (u) = dim V —dim Z, for all u € U.
As this statement is local on the base, we may assume that Z is affine. Assume at first that V' is affine as well.
By hypothesis, ¢: V — Z is onto (¢(V') Z-dense in Z is enough), so the corresponding map A[Z] — A[V]
is an injection (DX). If we let m = dim Z and n = dim V, as tr.dc A[Z] = m and tr.dc A[V] = n, we have

tr.dapz A[V] =n—m.

Now, we have V — CV, with A[V] = C[vy,...,vn] and Z — CM | with A[Z] = C|z1,...,2u], for some
M,N. We can choose and reorder the v;’s so that v1,...,v,_p form a transcendence basis of A[V] over
A[Z]. Then, each v; (j =n—m+1,...,N) is algebraic over A[Z][v1,...,Vn_m], and there are polynomials

Gj(Th,...,Tnem,T) (coefficients in A[Z]) so that
Gj(’l)l, ey Un—m, ’Uj) =0.

Pick g;(Th,...,Th—m) as the coefficient of highest degree of G; in T. The set
(€2 gi(z) =0} = 2,

is a Z-closed subset of Z. Let N

U=7- U Z;.

j=n—m-+1

The Z-open U is nonempty, since Z is irreducible. On U, the polynomial G; is not identically zero as a
polynomial in Ty, ..., T, T, yet
Gj(vl, ey Un—m, Uj) = O

Thus, v; is algebraically dependent on w1, ..., vn_sm, over A[U]. Letting v; denote the restriction of v; to
¢ !(2) (i.e., the image of v; in A[V]®4(z C), where z € U, we see that v; is also algebraically dependent
on vi, ..., Un—m. Now,

Alp™H(2)] = C[01, ..., Tn—m] = A[V] ®4(2 C,

which implies that
dim(¢™1(2)) = tr.dec C[01, ..., Up_m] <1 —m.

However, by (1),
dim(¢~1(2)) > n —m,

and so, dim(¢~!(z)) =n —m on U.

If V' is not affine, cover V' by affine opens, V,; each V,, is Z-dense in V (since V is irred.) Then, for every
z€ Z,wehave p'(2) = U, (Va N~ 1(2)) = U, a1 (2). Here, po: Vo =V -2 Z. Now, pa(Va) is Z-dense
in Z, so the above implies that there exist some opens U, in Z so that dim ¢ 1(2) =n —m if 2 € U,. We
can take U = [, U, (a finite intersection since Z is a variety, and thus, is quasi-compact). []

Corollary 1.30 Assume that we are in the same situation as in the fibre dimension theorem. Let
Zy={we Z | dim(e ' (w)) >1}.
Then, Z; is Z-closed in Z, i.e., the function

w — dim(p ™t (w))
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is upper semi-continuous on Z. Hence, Z possesses a stratification
Z=UyguUUU---UU,,
where U; = Zj — Zj1 = {z € Z | dim ¢~ 1(2) = 1} is locally closed and dim(¢~1(w)) = j for all w € U;.

Proof. The proof is by induction on dim(Z). The case where dim(Z) = 0 is easy. Given Z, Theorem 1.29
part (2) implies that there is some open set U C Z and some Z; (I > 1 and [ minimum) so that

2 CZ=27-U.

Also, Z is closed and we have some irredundant decomposition
N t
z=\] 2,
j=1

where Z; is irreducible and strictly contained in Z. Then, dim(Z;) < dim(Z), and we can apply the induction
hypothesis to the maps ¢;: ¢~ (Z;) — Z;, the details are left as an exercise (DX). []

Observe that given a morphism ¢: V — Z, we can write
V=|]J¢ ().
z2€Z

Each ¢~ !(z) is a complex algebraic variety and these are indexed by an algebraic variety. Therefore, V is
an algebraic family of varieties.

@ Note that the dimension of the fibres may jump, as shown by the following example (which is nothing
but the “blowing-up” at a point in C?).

Example 1.3 Let Z = C2?, and consider C?>[[P!. We use 21,22 as cooordinates on Z, and &;,& as
homogeneous coordinates on Pt. Write Bo(C?) for the subvariety of C2[[P! given by the equation

2’152 = 2’251-

This equation is homogeneous in 1, &>, and it defines a closed subvariety of C2]]P!. We get a morphism
©: Bo(C?) — Z via
p: By(C?) — C* [[P* & Z = .

If 2 = (z1,22) # (0,0), then the fibre over z is {(&1: &2) | 2182 = 2261}
1. If z1 75 O, then 52 = (2’2/2’1)51.
2. If z9 }é O, then 51 = (21/22)52.
In both cases, we get a single point (z1, zo; (1: 22/21)) in case (1) and (21, 2z2; (21/22: 1)) in case (2)) and
the dimension of the fibre ¢ ~!(z) is zero for z € C — {(0,0)}. In fact, observe that
2 1 L
Bo(C”) = pry((0,0)) — € —{(0,0)}.

Therefore, pry is a birational morphism between Bo(C?) and C?. Observe that pra: Bo(C?) — P! is also
surjective and the fibre over every point of P! is a line. It turns out that Bo(C?) is a line bundle over P!.

When z = (0,0), the fibre is the whole P!. Thus, the dimension of the fibre at the origin jumps from 0
to 1.
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In algebraic geometry, we have the analog of the notions of being Hausdorff or compact, but here working
for the Zariski topology.

Definition 1.6 A morphism ¢: V. — W is separated iff Ay V = the diagonal in V' [] V is Z-closed in
w

V I V. A variety, V, is separated when the morphism V' — x is separated, where x is any one-point
w
variety.

Examples of separated varieties.

(1) Any affine variety and any projective variety is separated.
(2) Any closed or open subvariety of a separated variety is separated (DX).

(3) We say that V is quasi-affine (resp. quasi-projective) iff it is open in an affine (resp. open in a
projective) variety. These are separated.

(4) The product of separated varieties is separated.

(5) The variety we get from two copies of P! by glueing the opens C! — {0} by the identity map is not
separated.

Definition 1.7 A morphism, ¢: V — W is proper iff
(a) It is separated and

(b) For every variety, T, the second projection map, pro: V [[ T — T, is a Z-closed morphism.
W
We say that a variety, V, is proper iff it is separated and if property (b) holds (W = {x}).

As we said, the notion of properness of a variety is the algebraic substitute for compactness. An older
terminology is the term complete variety. As an illustration of the similarity of properness and compactness,
we have the following property (well known for continuous maps on compact spaces):

Proposition 1.31 If V is proper and W is separated, then any morphism @: V — W is Z-closed.

Proof. Consider the graph morphism

r,: V- V][[W
given by

Ly (v) = (v,0(v)).

Note that the image of I';, is closed in V [[ W because W is separated. Indeed, consider the morphism

(pid): VI[W >wW]][W

given by
(907 id)(vv w) = (QD(’U), w)'

It is obvious that Im I'y, = (¢,id) "' (Aw ), where Ay is the diagonal in W [[W. But, W is separated, so
Ay is Z-closed in W [[W and consequently, (p,id)"1(Aw ) is Z-closed in V [[W. Since V is proper, by
setting ' = W in condition (b), we see that pro: V[W — W is Z-closed and so, pro(Im I'y,) is Z-closed
in W. However, pro(Im I',) = Im ¢, therefore, Im ¢ is closed. If C is closed in V, then the composition
C — V — x is proper (DX). Replace V by C and apply the above argument to get Im C' is closed. ]
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Theorem 1.32 (Properness of projective varieties) A projective variety, V , is a proper variety. This means
that for every variety W,

proa:V [[W—W
is a Z-closed map.

Proof. (1) We reduce the proof to the case where W is affine. Assume that the theorem holds when W is
affine. Cover W with affine opens W, so that W = |J,_, W,. Check that

1% HWf:vU<V HWQ>.
Let C CV J] W be a closed subvariety. If C,, denotes C N (V' [] W), then,

pro(C) N W, = pra(Cy).

But, pra(Cy) is closed in W, which implies that pro(C) is closed in W.
(2) We reduce the proof to the case where V' = P". Assume that the theorem holds for P*. We have a

closed immersion, V' — P", so
VI [wer J[wW

is also a closed immersion (= embedding) (DX). Hence, we have the commutative diagram

C—=VI[[WC——os P [[W,
W

and this shows that we may assume that V = P™.
(3) Lastly, we reduce the proof to the case: W = C™. Assume that the theorem holds for W = C™. By
(1), we may assume that W is closed in C™, then we have the following commutative diagram:

CC—=P" [[WC— P [[C"

(pr2)w l/ l/ (pr2)em
wWwe— s Ccm

where the arrows in the top line are closed immersions (for the second arrow, this is because W — C™, as
in (2)). So,
(pr2)w (C) = (pr2)em (C) N W,

and, since by hypothesis, (pre)cm (C) is closed, and W is closed, we find (pro)w (C) is also closed.
We are now reduced to the essential case: Which is to prove that pro: P* [] C™ — C™ is a closed map.
Let C be a closed subvariety of P™ [] C™. Then, C is the common solution set of a system of equations of

form

fj(Xo,...,Xn;Yl,...,Ym)ZO, fOl”jzl,...,p, (T)
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where f; is homogeneous in the X;’s and we restrict to solutions for which X; # 0 for some j, with 0 < j < n.
Pick y € C™, and write y = (y1,...,ym); also write (f)(y) for the system (f) in which we have set Y; = y;
forj=1,...,m.

Plan of the proof: We will prove that (pr2(C))¢ (the complement of pra(C)) is open. Observe that

yepr(C) it (3z)((2,y) € O)
iff (3z)(x; # 0 for some j, and (})(y) holds).

Thus,
y € (pro(C))° it (Vz)(f (1)(y) holds, then z; =0, for0 < j <mn).

Let 2(y) be the ideal generated by the polynomials, f;(Xo, ..., Xn,¥1,...,Ym), occurring in (1)(y). Hence,

y € (pro(0))° if (3d > 0)((Xo, .-, Xp)* C A(y)).

Let
Na={yeC™ | (Xo,...,Xn)" CA(y)}.
Then,
(pra(C))° = |J N
d=1

Now,

Na € Naya,
and so,

(ra(C) = | Na

d>>0
where d >> 0 means that d is sufficiently large.

Claim. If d > max{ds,...,d,}, where d; is the homogeneous degree of f;(Xo,...,X,,Y1,...,Y,,) in the
X,’s, then Ny is open in C™. This will finish the proof.

Write Sq(y) for the vector space (over C) of polynomials in k[yi, ..., ym][Xo, ..., Xns] of ezact degree d.
We have a map of vector spaces

Ya(y): Sa—a,(y) ® -+ ® Sa—a,(y) — Sa(y)

given by
P

wd(y)(glw"ugp) = Zf](X07an7y177ym)g]

j=1
If we assume that ¥4(y) is surjective, then all monomials of degree d are in the range of 14(y). Thus, A(y)
will contain all the generators of (Xo, ... ,Xn)d, ie.,
(XOu v 7Xn)d Cc Ql(y)u
and this means

yENd.

Conversely, if y € Ny, then (Xo, ..., X,)? C A(y), and thus, A(y) contains every monomial of degree d. But
then, each monomial of degree d is in the range of 14(y), and since these monomials form a basis of Sg(y),
the map ¥4(y) is surjective.

Therefore, y € Ny iff va(y) is surjective.
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Pick bases for all of the Sq_g4,’s and for S4. Then, 14(Y") is given by a matrix whose entries are polynomials
in the Y;’s. We know that vq(y) is surjective iff rk14(y) = nq4, where ng = dim(Sq)(y). Therefore, ¥q(y) will
be surjective iff some ng x ng minor of our matrix is nonsingular. This holds if and only if the determinant
of this minor is nonzero. However, these determinants for ¢4(y) are polynomials ¢(Y7,...,Y,,). Therefore,
4(y) will be surjective iff y belongs to the Z-open such that some q(y) # 0. This proves that Ny is open,
and finishes the proof. []

Remark: Homogeneity in the X;’s allowed us to control degrees.

Corollary 1.33 Let V' be a proper variety (e.g., by Theorem 1.32, any projective variety). If W is any
quasi-affine variety (i.e., an open in an affine) or any affine variety, then for any morphism ¢: V. — W,
the image, Im @, of ¢ is a finite set of points. If V is Z-connected (e.g, norm connected or Z-connected),
then @ is constant. In particular, every holomorphic function on V' has finitely many values and if V' is
Z-connected, o is constant.

Proof. Since C™ is separated, W is separated. We have
V — W < C",

and thus, we may assume that W = C". Pick j, with 1 < j <n, and look at
vV —cr 2 el

If we knew the result for C', by a simple combinatorial argument, we would have the result for C*. Thus,
we are reduced to the case W = C!. In this case, either Im ¢ = C!, or a finite set of points, since C' is
irreducible. Furthermore, in the latter case, if V' is Z-connected, then Im ¢ consists of a single point. We
need to prove that ¢: V — C! is never surjective. Assume it is. Consider the diagram

v et 2 o e

T2
pr2

Ct
and let
H={(z,y) €eC' xC' | zy=1}.
The map ¢ []id is onto. Therefore, (¢ []id) " (H) is closed and

e[[id: (e[ [i) " (H) —» H

is surjective. Let C' = (¢ []id)"!(H). By the definition of proper, pra(C) is closed. However, by commuta-
tivity of the diagram,
pr2(C) = ma(H),

and yet, m(H) = C! — {0} is Z-open, a contradiction on the properness of C'. []

Corollary 1.34 (Kronecker’s main theorem of elimination) Consider p polynomials
filXo, ., Xn; Y1, Y0), oo fo(Xoy oo, X Y, .00, Y0, with coefficients in C and homogeneous in the
Xi’s (of varying degrees). Consider further the simultaneous system

fiXo,..., Xu;Y1,...,Y) =0, forj=1,...,p. (1)

Then, there exist polynomials g1(Y1,...,Ym), ..., g¢(Y1, ..., Ym) with coefficients in C involving only the Y;’s
so that (T) has a solution in which not all X;’s are 0 iff the system

gj(Yl,...,Yn):O, fOT’jzl,...,t, (TT)

has a solution. (The X;’s have been eliminated).
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Proof. The system (}) defines a closed subvariety C' of P™ [] C™.

Claim. The set pra(C), which, by Theorem 1.32, is closed in C™, gives us the system ({1) by taking the
g;’s as a set of polynomials defining pro(C). To see this, note that C' = § iff pro(C) = 0; note further that
(z,y) € C iff () has a solution with not all X;’s all zero. Consequently, (t) has a solution with not all X;
zero iff (11) has a solution in the Y;’s. []

Theorem 1.35 (Irreducibility criterion) Say ¢: V. — W a surjective morphism with W separated and
assume that

(1) V is proper

(2) W is irreducible.

(3) o~ Y (w) is irreducible for every w € W.

(4) dim(¢~Y(w)) = d, a constant for all w € W.
Then, V is irreducible.

Proof. Let V = U‘;:l V; be an irredundant decomposition of V' into irreducible components. Consider V;.
It is closed in V, and thus, ¢(V;) is closed in W, because V' is proper and W is separated. Since ¢: V — W
is surjective,

W= eV
j=1

But W is irreducible; so, it follows (after renumbering, if needed) that o(V;) = W for j =1,...,s, and ¢(V;)
is strictly contained in W for j = s+ 1,...,q. Thus,

U )

j=s+1

is a Z-closed subset of W strictly contained in W, and

q
W=w- ] o)
Jj=s+1
is a Z-open dense subset of W, as W is irreducible. Let V= gp’l(ﬁ//), write /‘}; =Vn Vj, and let ¢; be the
restriction of ¢ to V;. Note,
pi (Vi) =e(Vi) =W (1<j<s),

because, given any w € W, there exists v € V; with ¢(v) = w. Since p(v) € W, the element v is in V.
Therefore, v € V N Vj; hence, v € Vj, as required. Write

pi = min{dim(gaj_l(w)) | we ﬁ//}

By the fibre dimension theorem (Theorem 1.29), there is some nonempty open subset U; C W so that if
w € Uy, then dim(cpj_l(w)) = ;. Thus, as U = (\j_, U; is a dense Z-open subset of W, we have a nontrivial
Z-dense open, U, so that if w € U, then dim(<pj_1(w)) =pj, for j=1,...,s Pick wo € U. Then

S

o M (wo) = U @; ! (wo).
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However, ¢~ !(wyp) is irreducible, and thus, there is some j such that

o~ (wo) = 5 ' (wo)-

We may assume that j = 1. Since the dimension of the fibres is constant, we get
p1 =d.

By the fibre dimension theorem, dim 7 *(w) > dim @7 (wo) = d, for all w € W. Now,
o (w) = | ¢j ! (w), (%)
j=1

and since dim ¢; *(w) < dim ¢! (w) = d, we must have dim ;' (w) = d for all w € W and (%) together
with the irreducibility of ¢~ (w) imply that ¢~ (w) = ¢ (w), for all w € W. Tt follows that

v=U ¢ lw= U el =n

weW weWw

and since V] is irreducible, so is V. [

@ The conditions of the irreducibilty criterion though sufficient are not necessary. For example, take
7: Bo(C") — C". Outside 0 and 7—1(0) we have an isomorphism and so, Bo(C") is irreducible (it
contains a dense open which is irreducible), yet the fibres don’t have constant dimension.

Generally, given a morphism, ¢: V' — W, of algebraic varieties, the image, ¢(Z), of a closed subset of U
is not closed. Nevertheless, it is natural to ask what kind of set ¢(Z) is. The answer is given by a theorem
of Chevalley and involves sets called constructible.

Definition 1.8 Given a topological space (for example, an affine variety) V, we say that a set Z is locally
closed in V if
Z=UnwW

where U is open and W is closed.

Observe that open and closed sets in a variety are locally closed. Let Z; = U; N W;, i = 1,2. Then,
Z1NZy=UNU2NW1 N Wao,

so that Z; N Zs is locally closed. Thus, any finite intersection of locally closed sets is locally closed.

If Z=UnNW, then Z¢ = U°U W€, where U°€ is closed and W€ is open. It follows that the Boolean
algebra generated by the open and closed sets is just the set of finite unions of locally closed sets, denoted
Constr(V). Finite unions of locally closed sets are called constructible sets. We have the following important
theorem.

Theorem 1.36 (Chevalley) If p: V. — W is a morphism of complex varieties and Z is a constructible set
in V., then o(Z) is constructible in W. If ¢ is dominant (i.e, (V) = W), then there is a nonempty open,
UCW, sothat U C (V) CW.

Proof. Consider the statements

(1) The image of a constructible set in V' is a constructible set in W.
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(2) If (V) is dense in W, there is some nonempty Z-open set U in W so that
UCpV)CW.

We first prove (2). I claim that (2) follows from the case where both V' and W are irreducible. Let V' be

any irreducible component of V. Then, (V") is irreducible in W, and thus, W= ©(V") is again irreducible
and closed in W. Let

t
w=Jw;
j=1

where the W; are the irredundant components of W. Then

and since W is irreducible, there is some j, 1 < j <, such that W=Wwn W;, ie.,
W CW,.
But, if

V:OW
i=1

is an irredundant decomposition of V', we showed that for every i, 1 < i < s, there is some j = j(i) so that
(Vi) € Wi

However,
S

e(V)=¢ (U Vi> = JeW).
=1

i=1

Therefore,
S S

s s t
W=o(V)=ew) =) < UWiey = UWjiy UW; =W,
=1 =1 Jj=1

i=1 =1 3 =

and the inclusions are all equalities. Since the decompositions are irredundant, the Wj(; run over all the
Wj’s and, by denseness, ¢(V;) is dense in Wj(;).

Assume that the theorem (2) holds when V is irreducible (so is W, since W = ¢(V)). Then, for every i,
there is some Z-open subset U; C Wj(i) so that

Ui € o(Vi) € Wiy
If C; = Wj(;) — Ui, then Cj is closed in Wj(;), which implies that C; is closed in W. The image ¢(V') misses
at most s
c=\Ja,
i=1
which is closed. Therefore, U = C° is a nonempty Z-open contained in ¢(V'). Therefore, we may assume

that V and W are irreducible.

I now claim that we may also assume that V' and W are affine. Since W is affine, we have W = Ua W,
for some affine Z-open sets W,,. Let V,, = ¢=(V,,). Note that W, is Z-dense in W and V,, is Z-dense in V.
Thus, if V. is open and Z-dense in V,, then V. is also Z-dense in V. Let V.” be an affine open in V,,, then
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(i) V2 W, are affine.
(i) VO, W, are irreducible.
(ii)) $(V2) = W
Then, there is some open subset U, of W, so that
Ua C (V) C o(Va) C (V) C W,

and U, is open in W (as an open in an open).
We are finally reduced to the basic case: V and W are irreducible, affine and ¢ is dominant.

As (V') is Z-dense in W, we know that A[W] < A[V]is an inclusion. Letting r = tr.d 4y A[V], we pick
some transcendence base &1, ...,&, (§; € A[V]) over A[W], so that A[V] is algebraic over A[W][&1,. .., & ].
Since

AW][&r,. .., &) = AW] @c Clé, .. ., &,
the map

AW] = AW][&r, ..., & — A[V] (%)

is just the map
G AW] = AW] @c Alé, ..., &] — A[V].

Reading the above geometrically, we get the map
p: VW] B w
Since each n € A[V] is algebraic over A[WW [[C"], we have equations

ao(glu"'ug’r)ns+al(§17"'7§7‘)775_1 + "'+a5(§17"'7§7‘) = 07

where the coefficients a;(¢1, ..., &) are functions over W, and thus, depend on w € W, but we omit w for
simplicity of notation. If we multiply by ag(&1,...,&)* "t and let ¢ = ag(&1, ..., & )n, we get

¢ b6 E)CT A () = 0.
Therefore, for every n € A[V], there is some o € A[W [[C"] so that
(=an
is integral over A[W [[C"]. Since A[V] is finitely generated, there exist ,...,n so that
A[V] = A[WHCTHWM s 77775]5

and each 7; comes with its corresponding «; and a;n; is integral over A[W [[C"]. Let
t
b=[las.....&) e AW ],
j=1

Let Uy be the Z-open of W [[C" where b is invertible; it is that affine variety in W [[ C” whose coordinate
ring is A[IW[C"],. We have Uy € W][C", and on Ui, b and all the a;’s are invertible. Let us look
at b = p1(b) € A[V], where Z1: AW [C"] — A[V] is the algebra homomorphism associated with the
morphism ¢7: V — W ]]C". Then, we get

Vi 25U
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Since each «y is invertible, on V5, each 7; is integral over A[U;]. But V5 is generated by the 7;’s; so V5 is
integral over U;. And therefore, the image of the morphism

Vgﬂ>U1 (1)

is closed (DX). Consequently, as V5 — U} has dense image, (}) is a surjection of varieties, and we find

U =p(Vy) Car(V)cW]]C

Even though U; is a nonempty open, we still need to show that there is some nonempty open U C W such
that U C pri(Uy). For then, we will have U C ¢(V). Now, b € A[W []C"] means that b can be expressed

by a formula of the form
b= Z b(B) (w)ﬁ(ﬁ),
8

where (8) denotes the multi-index (8) = (B1,...,8), £ = & ... &P and b, € A[W]. Let

U={weW | 3B). bw) #0}.

The set U is a Z-open set in W. If w € U, since b is a polynomial in the &;’s which is not identically null, there
is some (/) such that bg)(w) # 0. Now, C is infinite, so there are some elements t1,...,t, € C such that
b(w,t1,...,t.) # 0. However, (w,t1,...,t.) € W][][C" and b(w,t1,...,t.) # 0, so that (w,t1,...,t,) € Uy
and pri(w,tq,...,t,) = w. Therefore, U C pri(Uy), which concludes the proof of (2).

(1) Say Z is constructible in V', then
Z=UNWV)U---U(U,NVp),
where each U; C V is open and each V; C V is closed. Since p(Z) = |J_, ¢(U; NUj), we may assume that
Z is locally closed.
Say we know that ¢(Z) is constructible if Z is a variety and further, U open (in a variety) implies ¢(U)
is constructible. Take Z locally closed in V', then
Z=UnVi =V, >V W,
and if we let ¢; be the composition V; — V —5 W, then (1 is a morphism. As Z is open in Vi, by
assumption, ¢1(Z) = ¢(Z) is constructible in W.

Now, assume that (V') is constructible if V' is an affine variety. Take U, any open in V. Since V is
a variety, we can write V = (J, V., where each V,, is affine open. Then, U = |J_ (U NV,) and ¢(U) =
U, (U NV,), where each U NV, is open in an affine. Consequently, we may assume that U is open in an
affine. In this case,
U=Vj U UV,

a union of affine varieties and l
o(U) = [ e(vy),
j=1

a union of constructible as each Vy, is an affine variety. Therefore, we are reduced to the case where Z is an
affine variety and we have to prove that ¢(Z) is constructible.

I claim that we can assume that ¢(V') is Z-dense in W. For, Let W =Tm @. If Im ¢ is constructible in

W, then ~ -
Ime=UnWiU...uUU, NW,,
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where Uj is open in W, and VVJ is closed in W, which implies that VVJ is closed in W. By definition of the
relative topology, there are some open sets U J’ in W so that
wn UJ’- =U;.
Then, we have
Imp = WNU)NWLU---UWNU)NW,

= WnU,nNW,U---uU,NW,)

= U NWLU---UU, NW,,
a constructible set in W. As a consequence, we may assume that W = W, i.e., that Im ¢ is dense in W.

Now, as (V) is dense in W and V is irreducible, it follows that W is also irreducible and we can finish the
proof by induction on dim V.

If dim V = 0, then both V and (V') consist of a single point and (1) holds trivially.

Assume the induction hypothesis holds if dim V' = r — 1 and let dim V' = r. By (2), there is some
nonempty open subset U of W such that U C (V). Let T' = ¢~ !(U). This is a Z-open subset of V and
moreover, (T) =U. Let Z =V —T. The set Z is Z-closed in V, and thus

dim Z < dim V,
and by induction, Chevalley’s result holds for Z. But then,
(V) = 9(Z2)Uep(T) = p(Z2) VU,
and since ¢(Z) is constructible and U is open, ¢(Z) U U is also constructible. []
Corollary 1.37 (of the proof) Say ¢: V — W is a surjective quasi-finite morphism of complex varieties

(i.e., all the fibres are finite). Then, there exist a nonempty Z-open, U C W, so that ¢ | ¢ 2 (U): ¢~ 1(U) —
W is an integral morphism.

In order to prove the topological comparison theorem, we need some material on projections.

Let p € P*, and let H be a hyperplane such that p ¢ H. Consider the collection of lines through p, and
take any ¢ € P™ such that ¢ # p. Then, p and ¢ define a unique line l,4 not contained in H, since otherwise,
we would have p € H. The line l,,, intersects H in a single point, m,(g). This defines a map

mp: P —{p} — H,

called the projection onto H from p. We claim that this map is a morphism. For this, let

7=0
be an equation defining the hyperplane H; let p = (po: ---: pn) and ¢ = (go: - - : ¢n). The line I, has the
parametric equation
(s:t)— (spo+1tqo: - - : Spn + taqn),

where (s: t) € PL. The line [,, intersects H in the point whose coordinates satisfy the equation

n

Z a;(spj +tq;) =0,
=0
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and we get
n n
sZajpj —I—tZajqj =0.
j=0 j=0

However, Z?:o a;p; # 0, since p ¢ H, and thus, we can solve for s in terms of ¢. We find that l,, N H is the
point with homogeneous coordinates

D045 D045
tl-(S—— |po+q: - — | =S—— |t
Ej:o a;jPj Ej:o a;jPj
PR > 04545
& g — [ S p |,
>0 4P; =0 ;jP;

since t # 0, because p ¢ H. These coordinates are linear in the ¢;’s, and thus, the projection map is a
morphism.

and this is,

We may perform a linear change of coordinates so that the equation of the hyperplane H becomes

X, =0.
We get
77;0(‘]05 ceed Qn) = (ll(QOv--an): tel ln(qu"'7Qn): 0)7
where 1;(go, .-+, qn) = —(Pi—1/Pn)qn + gi—1 is a linear form, for ¢ = 1,...,n. Furthermore, these n linear
forms do not vanish simultaneously for any ¢ = (¢o: - : ¢»), unless ¢ = p, which implies that they are

linearly independent.

Conversely, let us take any n linearly independent linear forms I3 (Xo, ..., Xp), - -+, ln(Xo, ..., Xn). These
linear forms define some hyperplanes Hi, ..., H, in P" whose intersection is a point p € P". Then, we have
the map m,: (P" — {p}) — P"~ !, defined by

p(Xo: -0 Xpn) = (1(Xo, -, X)) -2 In(Xo, -, X))

Geometrically, 7, is the projection from p onto the hyperplane X,, = 0. We have the following corollary of
Theorem 1.32:

Corollary 1.38 Let X C P" be a projective variety of dimension r < n and let p € P —X. Then, projection
from p, when restricted to X, is a morphism from X to P"~!. Further, we have the following properties:

(a) If X' = mp(X), then m, | X: X — X' is a morphism.
(b) X' is closed in P"~! and r-dimensional.

c) The fibres of m, | X are finite and there is an open U C 7,(X) so that m, | 7w
P p p P

YUy 7Y (U) = U is

P
an integral morphism.

Proof. The map m, is a morphism outside p, and since p ¢ X, it is a morphism on X. Since X is closed in
P", by Theorem 1.32, X" is closed in P"~*. For (c), pick ¢ € X’. Note that 7, '(¢) corresponds to the line
lpq intersected with X. However, l,; € X, since p ¢ X, and thus, l,; N X # l,,. Then, l,; N X is closed in
lpq, and since [, has dimension 1, it follows that l,, N X is finite. []

Let L be a linear subspace of P"*, which means that C(L), the cone over L, is a linear subspace of A"*1.
Assume that dim(L) = §, and let r = n—§ — 1. Then, we can define a morphism 7 : (P* — L) — P". Indeed,
if L is cut out by n — § = r + 1 hyperplanes defined by linear forms I, . ..[., we let

mr(go: - i qn) = (lo(qoy -, qn): - 1-(Qoy- -y qn))-
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Geometrically, 7y, can described as follows: Let H be a linear subspace of P of dimension n —§ — 1 = r,
disjoint from L. Consider any linear subspace F' of dimension § + 1 = n — r through L. Then,

dim(F) +dim(H) —n=64+14r—n=0.

By the projective version of the intersection dimension theorem, F' N H is nonempty, and F N H consists of
a single point, 7z, (F). Thus, we get a map as follows: For every ¢ ¢ L, if Fj, is the span of ¢ and L, then
dim(F,) = § + 1, and we let

L (q) = Fq NH.
If we take points p1,...,ps+1 spanning L, then we can successively project from the p;’s and we get
Uy
mp: PP — L pret (D2, Ps+1) MEPPNLLY S —psi1 5P

Therefore, 7y, is the composition of m,’s.

We can iterate Proposition 1.38 to prove Noether’s normalization lemma in the projective case.

Theorem 1.39 (Noether’s normalization lemma-projective case) Let X C P™ be an irreducible projective
variety, and assume that dim(X) = r < n. Then, there is a linear subspace, L C P™, so that 7 : X — P"
is surjective and has finite fibres. Moreover, we can choose L and the embedding P — P™ by a linear
change of coordinates so that m, | X: X — P" is a finite morphism, i.e., for the projective coordinate rings
ClTo, ..., Ty] = ClZo, ..., Z,)/3(X), the right hand side is a finitely generated module over the former.

Proof. If L has dimension n — r + 1, then we can choose L so that LN X = (. From the previous discussion,
7z is the composition of 7, ’s. Project from p;. Corollary 1.38 says that 7, (X) = X; C P"~! and that
the fibres are finite. Then, dim(X;) = dim(X) = r, by the fibre dimension theorem. If r # n — 1, repeat the
process. We get a sequence of projections

XX, — ... X' CP.

Since X is irreducible, X’ is also irreducible, and dim(X’) = r = dim(P"). Hence, X' = P", since P" is
irreducible. The fibres of 7 are finite.

In order to prove the second statement of the theorem, we only need to consider a single step, since being
a finite module is a transitive property, and we can finish by induction. Pick p € P" — X. Using a preliminary
linear transformation, we may assume that p = (0: ---: 0: 1) and that the linear forms I; defining p are
lj(Zo,...,Zn) :Zj, fOI‘j :0,...,n— 1. Then,
() = (g0t~ qn-1)-

Our result is a question about the affine cones C'(X) and C(X’), whose rings are
A[C(X)] =ClZo,...,Z,]/3(X) and A[C(X")] = C[Zo, ..., Zn-1]/I(X’), where the map of affine rings

A[C(X")] — A[C(X)]

is given by Z; — Z;, j = 0,...,n — 1. There is some f € J(X) such that f(p) # 0, since p ¢ X. Let
deg(f) = 4.

Claim. The monomial Zz appears in f.

If not, all of the monomials appearing in f are of the form

ZEZ80 . 20

n—1
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where € + a1 + -+ + a1 = 0 and € < §. But then, some a; > 0, and these monomials all vanish at p, a
contradiction. Thus,

f(Zoy.... Z0) =25+ [1(Zoy ..., Zn )20+ + [5(Zo, ..., Zn).

We know that the map
(C[Zo, ey Zn—l] — (C[ZQ, ey Zn]/j(X)

factors through A[C(X')]. We only need to prove that C[Zy, ..., Z,]/J(X) is a finite

C[Zo, ..., Zn—1]-module. This will be the case if C[Zy,...,Z,]/(f) is a finite C[Z, ..., Z,—1]-module. But
ClZo, ..., Z,]/(f) is a free C[Zy, ..., Zn_1]-module on the basis 1, Z,,..., Z5~!, and this proves the second
statement of the theorem. []

Remark: We can use Proposition 1.38 to show that the degree of a curve is well-defined. Let C C P™ be
a complex projective curve. We wish to prove that there is an integer, d > 1, so that for every hyperplane,
H, of P™ the number of intersection points #(C N H) is at most d. The idea is to pick a “good” point, p,
outside C, and to project C' from p onto P*~! in such a way that the hyperplanes through p that cut C in at
most d points are in one-to-one correspondence with the hyperplanes in P*~! that cut the projection, C’, of
C in at most d points. Repeating this procedure, we will ultimately be reduced to the case n = 3. A “good”
point is a point not on the secant variety of C, i.e., a point so that no line through it meets the curve in at
least two distinct points or is tangent to the curve. Since the secant variety has dimension 3, a good point
can always be found provided n > 4. When n = 3, a good point may not exist. However, C only has a finite
number of singular points and the projection C’ of C' in P2 only has finitely more singular points than C.
Then, in the case n = 2, as C is irreducible, C’ is also irreducible and it is given by a single homogeneous
equation of degree d which is the desired number.

In order to prove the projective comparison theorem, we will need a refined version of Noether’s normal-
ization.

Theorem 1.40 Let X C P" be an irreducible projective complex variety of dimension r, let L be a linear
subspace of dimension n —r — 1 so that LN X = 0, and let py be the projection with center L. For any
& € X, there is some linear subspace M of L of dimension n —1r — 2, so that the following properties hold:

(1) If m =pp | X, then
(m) "1 (7 () = {&}-

(2) pr factors as
PL =Pz OT

according to the following commutative diagram, for any x ¢ par(X):

Pl — {2} 225 pr

| A

Proof. We have
pr(§) = L(§) NP,

where L(€) is the join of L and &. Given y, we have

pr(y) =pr(§) iff ye L)
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Thus, y € p;*(pr(€)) iff y € L(€). By the standard version of Noether’s normalization, L(£) N X is a finite
set containing &, i.e.,
L(é) nxX = {577715 B ant}'

Let LY(€) be a hyperplane in L(€) so that & € LO(€) but n; ¢ L(§) for j =1,...,t. Write M = L°(£) N L.
Then, M is a hyperplane in L, since £ ¢ L (recall that LN X =@ and £ € X). Observe that

M(&) = L°(¢).
For any y € X, we have
n(y) =n(&) iff yeMENX iff yeLl’¢)nX.

But L°(¢) N X = {¢}, by construction of L°(€). Thus, y € (7)1 (n(€)) iff y = &, proving (1).
To prove (2) is now very easy. Take x so that « ¢ py/(X) and M (z) = L. The rest is clear. []

Theorem 1.41 (Comparison theorem) Suppose X is a complex variety and'Y is a Z-constructible subset of
X. IfY s Z-dense in X then'Y is norm-dense in X.

Proof . (Mumford and Stolzenberg) Note if U= the Z-closure of U and U = the norm-closure of U (clearly,
UC U), then the assertion of the theorem is that U = U if U is constructible.

First, assume Y is Z-open in X. Write X =, X, where X, is affine, open (and there are only finitely
many c, since X is a variety). Assume the theorem holds for affines. Then, ¥ = X NY = J, Y., where
Yo=Y NX,C X, Weget

::UYQZUK,

and as Y, is open in the affine X, by hypothesis, we have f =Y,. Thus,
V=% ==Y

Therefore, we may assume that X is affine. Then, X — C" is Z-closed and C" — P" is Z-dense. Let X
be the Z-closure of X in P". Then, X is Z-dense in X and Y is Z-dense in X, so Y is Z- -open in X. If we
assume that the theorem holds for projective varieties, we get Y=X=YandYNC"=XNC" =
Then, Y is norm-dense in X (as X is norm-closed in (C"). So, we may assume that X is actually prOJectlve.
Finally, assume that the theorem holds for irreducible projective varieties. Write X = U;'l:1 X, where each
Xj is irreducible. Then, Y =Y N X =J/_, Y N X}, so

“<|

- (ros- g

Therefore, we are reduced to the

~0rm-gros

Minimal Case: X C P™ is projective irreducible and Y is Z-open in X. If so, Y is automatically Z-dense.
Pick £ € X — Y. We’ll show that £ is the limit in the norm topology of a sequence of points in Y. Now,
dim(X) = r, and we can pick M and L as in the refined version of Noether’s normalization theorem with
respect to £ (Theorem 1.40). We also choose x ¢ py/(X). We may choose coordinates so that

(1) Miscutout by Y =--- = X, 1 =0.

(2 £€=(1:0: ---:0).
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(3) Liscut out by Y =-.- = X, and

Look at p, (X —Y) C P". The image is closed, and thus, contained in some hypersurface f = 0, for some
homogeneous polynomial, f(Y;..., X,). Therefore,

{fzeX | flpe(z)) #0} CY,

and we may replace Y by the above open set. By (2) of Theorem 1.40, pp;(X) has dimension r, and
par(X) C P+ which implies that pps(X) is a hypersurface. Thus,

pu(X) ={y = (yo: -~ :yry1) | Fly) =0},
for some homogeneous form, F(Yp,...,Y,1+1) (of degree d). The rest of the argument has three stages:
Stage 1: Approximating in P". Since f # 0, there is some nontrivial (ayg,...,a,) € C™*! such that

f(ag,...,a;) =0 (because C is algebraically closed). Let
§o=pL(§) € P".
By choice, & = (1: 0: ---: 0) € P". Look at points
&o +ta = (1 + tag, tay, . .., tay).

Then, f(& + ta) = f(1 + tag,ta,...,ta,) is a polynomial in t. However, a polynomial in one variable has
finitely many zeros. Thus, there exists a sequence (t;)$2; so that

(1) f(o +ticr) #0.
(2) t; > 0asi— oo.

(3) & + tia — & as i — 0.

Stage 2: Approximating in P"*1. We know that pas(X) is the hypersurface given by F(Y, ..., X,11) = 0,
and x = (0: ---:0:1). Write F as

FY,....Xp1) =X +a (Y, X)X 4+ 4 aa(Y, .. X)), (%)

Claim. There exists a sequence (b;) so that
(1) b; € pm(X).
(2) bi = &o + tiow (under py).
(3) limjyoe by = (1: 0: -+ : 0) = par(§).
In order to satisfy (2), the b; must be of the form
bi = (1+tiag: tiag: -+ tia: BO),
for some 5 yet to be determined. We also need to satisfy (1); that is, we must have

F(l-i—tiaol tiap: -+t B(Z)) =0.
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We know that x ¢ pps(X), which implies that F'(z) # 0, and since x = (0: ---: 0: 1), by (%), we must have
v # 0. The fact that ppr(§) € par(X) implies that F(pa(€)) = 0. Since ppr(§) = (1: 0: ---: 0), from (),
we get aq(&o) = F(par(€)) = 0. Also, by (x), 8 must be a root of

”de + a1 + tiOz)Yd_l + -+ aq(éo + tia) = 0. (%)

Thus, we get (2). To get (3), we need 5 — 0 when i — oco. Now, as i — oo, t; — 0; but the product of
the roots in (xx) is
iad(fo + tia)
Y

and this term tends to 0 as i tends to infinity. Then, some root must tend to 0, and we can pick 5 in such
a manner, so that lim;_,.. 8 = 0. Thus, we get our claim.

)

Stage 3: Lifting back to P™. Lift each b; in any arbitary manner to some n; € X C P”. We know that P"
is compact, since C is locally compact. Thus, the sequence (7;) has a convergent subsequence. By restriction
to this subsequence, we may assume that (7);) converges, and we let n be the limit. Now, n; € X and X is
closed, so that n € X. We have

pa(n) = lim par(n:) = Jim by = par(6),

i—00
since pyps is continuous. Therefore,

1 € Py (par(€)) = {€},
and thus, n = £. Now,

flpr () = f(pe(prr (i) = f(pe(bi)) = f(§o + ticr) # 0,

and thus, 7; € Y. This proves that Y is norm-dense.

Having shown that the theorem holds when Y is Z-open, let Y be Z-constructible. Then, we can write
Y = U?:l Y; N X;, where Y} is open in X and Xj is closed in X. We have

Y = OijXj: OijXj.
j=1 j=1

But, Y; N X; is Z-open in X, where X; is some variety. By the open case, Y; N X; = Y; N X; in X;; since
X is closed in X, we see that Y; N X; is the closure of Y; N X; in X. Therefore, Y; N X; = Y; N X, in X
and Y =Y, as required. []

Now, we can get results comparing the Z-topology and the norm topology.

Theorem 1.42 (Theorem A) Say X is a complex variety (not necessarily separated). Then, X is separated
(in the Z-topology) iff X is Hausdorff (in the norm topology).

Proof. (<). By hypothesis, X is Hausdorff in the norm topology. We know A is closed in X [[ X in the
norm topology (UNV =AY AN (UJ[V))). But, A = A(X) is the image of a morphism; it follows that
A is constructible, by Chevalley’s Theorem. T1 hen, by the comparison theorem (Theorem 1.41), A = A and

since A is norm closed, A = A, which yields A = A, i.e., A is Z-closed. By definition, this means that X is
separated.

(=). Suppose X separated, so A is Z-closed in X [] X. It follows that A is norm closed in X [[ X, which
implies X is Hausdorff. []

To deal with compacteness and properness, we need a comparison theorem between projective varieties
and proper varieties. This is Chow’s lemma:
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Theorem 1.43 (Chow’s Lemma) Say w: X — Y is a proper morphism. Then, there exists a Y -projective
variety, P, i.e., P — PMT]Y as a closed subvariety, and a surjective birational morphism, f: P — X, so
that the diagram

P—>]P’MHY

ft |

commutes. In particular, when Y is a point, then for every X, proper over C, there exists a projective,
complex, variety, P, and a surjective birational morphism, f: P — X. If X is irreducible, we may choose
P rreducible.

Theorem 1.44 (Theorem B) Assume w: X — Y is a morphism of complex (separated) varieties. Then,
7: X — Y is a norm-proper morphism (i.e., for every compact, C CY, the set 1=1(C) is compact in X ) iff
m: X =Y is a Z-proper morphism. In particular, when Y is a point, X is compact (in the norm topology)
iff X is proper (in the Z-topology).

Proof. (=). By hypothesis, 7: X — Y is proper (in the norm topology).

Claim. For every T, a complex variety over Y, the morphism X [][ T P% T is a norm-closed map.
Y

Pick T', pick @ norm-closed in X [] T and let C' = pro(Q). Further, pick a sequence, {{;},>1 C C,
Y

and assume that {{;} converges to § € T. If D = {;};>1 U {&o}, we know that D is compact. If we

know that pry '(D) is compact, then lift & (j # 0) to some 7; € Q. Since {n;} is contained in pry (D),

which is compact, the sequence {n;} has a converging subsequence; so, we may assume that the sequence

{n;} converges and let its limit be o € X [[ T. Now, 1y € Q, as @ is norm-closed. It follows that
Y

&0 = pra(no) € pr2(Q) = C and C is norm-closed. Therefore, we just have to prove that if D is compact,
then X [] D is compact.
Y

Pick a sequence, {n;} € X [[ D, and write &; = pra(n;). We have n; = (z;,&;) € X [[ D, so
Y Y
7(x;) = v(), where v: D — Y. As D is compact, we may assume that that {¢;} converges to some &p.
Then, the v(§;)’s converge to v(&). As n; = (z4,§;), we deduce that z; € wil(UJZl v(€;)Ur(&)). Now, as
Ujs1 (&) Ur(&o) is compact in Y, by hypothesis, w‘l(Uj>1 v(€;) Uv(&o)) is compact, so the z;’s have a
converging subsequence. We deduce that {n;} also has a converging subsequence and X [] D is compact,

Y
as required.

Now, we can show that 7 is Z-proper. Pick T, pick Q Z-closed in X [][ T and let C' = pro(Q). We
Y

know pry is a morphism, so C' is constructible (by Chevalley). But, C is norm-closed, by the above agument.
Consequenly, by the comparison theorem, C = C = C, which shows that C' is Z-closed.

(«<). By hypothesis, 7: X — Y is a proper morphism (in the Z-topology). We need to show that 7=1(C)
is norm-compact whenever C' is norm-compact. By Chow’s Lemma, there is P projective over Y and a
surjective morphism f: P — X so that the diagram

P—1s PM[Y




1.4. ELEMENTARY GLOBAL THEORY OF VARIETIES 63

commutes. Pick a compact, C, in Y. We have prgl(O) = PM ] C, which is compact (both PM and C' are
compact); we also have i~ (pry *(C)) = pry '(C) N P. But, P is closed, so i~ (pry *(C)) is compact. Yet,
Y7 H(0)) =i Y(pry 1(C)) and as f is surjective and continuous, f(f~'(x(C))) = 7~ (C) and 7~ (C) is
compact. []

Proof of Chow’s Lemma (Theorem 1.43). Say the theorem holds when X is irreducible. Then, for any
complex variety, X, we have X = Uzzl Xj, where the X;’s are irreducible. By Chow’s lemma in the
irreducible case, for each Xj, there is a variety, P;, Y-projective, irreducible and a birational surjective
morphism, P; — X;. Let P = ]_[;:1 Pj; I claim P is projective over Y. Since P; is Y-projective if we cover
Y by affines, Y, (coordinate rings A, ), then P; is covered by varieties whose homogeneous coordinate rings
are

AalZ§),. . 201/
and the glueing is by glueing the A,’s. Fix o and look at

1 1 t t
ATV, T TP, T = Ba,

let M = Ny +---4 N; —1 and send Tl( D to Z (of P;) for each j, monomials in a fixed number of variables
to similar monomials and all “mized” products ZI(Z)Z%) to 0. This gives a homogeneous ideal, J, of B,
and we can glue Proj(By/Ja) and Proj(Bg/Js) via glueing on A, and Az. We get a projective variety in
PMJTY. Check (DX), this is P; so, P is projective over Y. As P; — X is surjective, ]_[j P — Uj X is
surjective.

Let U; be a Z-open of X; isomorphic to a Z-open of P; via our birational morphism P; — X ;. Write

U; =U; N (ﬂZ £ ) by irreducibility, U is Z-open and Z-dense in X; and isomorphic to a Z-open of
P;. The Uj are disjoint and so, U;Zl U; is a Z-open of X isomorphic to the corresponding Z-open of P.

Therefore, we may assume that X is irreducible.

Cover Y by open affines, Y,,, then the X, = 7~ !(Y,) cover X. Each X, has an open affine covering
(finite), say X? and for all o, 3, there is a closed immersion X? < C, 4 [1Y. Consequently, there is a locally
closed immersion X2 < PNa [1Y. All the X? are Z-open, Z-dense in X as X is irreducible, so,

U=()XxZ
o,

is Z-open and Z-dense in X and we get a locally closed immersion U — PNd [1Y, for all o, 5. By the Segre
morphism, there is some M > 0 so that

U—=P"]]yY,
11

a locally closed embeddmg We also have locally closed embeddmgs XP s PMITY. If Pﬁ is the Z-closure
of X? in PN [TY, then P = [os PP is Z-closed in PM Y, so P is Y-projective, as are the P?. We have
the diagram

v~ Halﬁﬁfzﬁ

lpr

X —— PP

™

()

and we get the morphisms
(a) U= XP— X

(b) j: U < P (locally closed)



64 CHAPTER 1. COMPLEX ALGEBRAIC VARIETIES; ELEMENTARY THEORY

(c) j2: XP < PP (Y-projective)
(d) P= [as Pf is Y-projective.

The maps (a) and (b) give us a morphism

Y:U—X [[ P
Y

a locally closed immersion (via ¥(€) = (&, (j2(€))). Let P = ¢(U) be the Z-closure of (U) in X ] P.
Y
Note, P is closed in X [[ P and X is proper over Y, so pro(P) is closed in P, thus it is Y-projective. Now,
Y

we have two maps on P:

f:PSx HPP” P X and 0:PSX [[PE3P
Y

and we conclude that 0(P) is Y-projective.
(A) The map f is the morphism we seek.

(A1) T claim f is surjective. As P is projective, it is proper over Y, so f(P) is closed in X. But, the
diagram
U

X5

P

><<—’7:J

|

commutes, so U C f(P); but, U is Z-dense and f(P) is closed in X, which implies X = f(P). Therefore, f
is surjective.

(A2) As the fibred product U [] Pis Z-openin X 11 P, consider the Z-open g~ (U 11 P)=(U 1 P)NP.
Y Y Y

Y
We have f~H(U) = g~ (pri *(U)) = g~ (U 1 P).

Claim: f: f~Y(U) — U.
We have the factorization
v:U-SUJ[P—XT[P
Y Y

and (U [ P)N P is the Z-closure of D(U) in U [] P. Yet, P is separated (Hausdorff), so T'(U) is Z-closed
inU [] 1]/5; this shows that f~(U) is the Z—closu);e of T(U), i.e., f72(U) =T (U). But, pri: I'(U) — U is
an iso}rilorphism and it follows that f: f~}(U) — U is an isomorphism and f is thereby birational.

(B) The map 6 is an immersion. The question is local on P.

(B1) As the X7 cover X, if we set X5 = f~1(X5), we see that the X5 cover P.

(B2) As j2(XP) is open in PP, the set WS = pr_ 5(5(X5)) is Z-open in P. Let X" = 0=Y(W$), Z-open
in P.

Set-theoretically, we have
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(a) AsP=X 1;[ P, any ) € P is of the form n = (y, (ng)), where 772 € ]55 and y € X. As, f(y, (ng)) =y,

we see that
X7 ={ly.(n) e P|ye X}

(b) Since 0(y, (13)) = (n3), we have

X7 = A, ) eP| () e W}
= {(y. ) € P 0 =jiq), g € X5}

Consider f~(U) and the incomplete diagram

1) W
\ l (1)
X []wW§.
Y

We have f~H(U) = T(U) = {(¢, (5(5)) | € € U} and

P(€ (75(9) = (& (15©) e X [T W,
Y
since W/ = {(ng) | 78 = j8(z), € XP}. We have the map w?: Wf — X defined as follows: (ny) = T,
where 7/ = jf(x). Also, let TS be the graph of the morphism w} given by (19) — (z, (n3)), where z € X/
and 12 = j#(x). Therefore, there is a morphism, z2: f~%(U) — W/ rendering ({f) commutative. As

f~Y(U) € ImT8 and X is Hausdorff, we deduce that ImT'? is Z-closed, so the Z-closure of f~1(U) in
X [I W2 is contained in ImI"2. Now, ImT8 = W/ and so, the Z-closure of f~!(U) is contained in a Z-
Y

)

closed set isomorphic to W/, which means that the Z-closure of f~*(U) in X [] W# is PN X?". Therefore,
Y

0(P N XP") is isomorphic to a Z-closed subset of W2, Now, if the X" were to cover P, we would find that
f is an immersion P < P. However, I claim:

(B3) For all a, 3, we have X#' C X8,

As f is surjective, the X gl cover P, so the claim will show that the X g” also cover P; this will imply
that P < P is a closed immersion and we will be done.

Look at f~H(U) = {(&,55(¢)) | £ € U}. The diagram

pr2 =

fFiU)——=r

commutes, for
(£,55(8)) 5 (55(€)) =¥ jB(©)
and '
(€,556) L5 € — j(©).
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Take the closure of f~1(U) in X?'. Now, f~1(U) is Z-dense in X/ as U is Z-dense in X’ so by taking
closures, we get the commutative diagram

xp 2. p

fl LPTQ,B

XQT P53,

Take (z, (ng)) € X7 where z € X7, we have

(z, (n3)) == (1) —

and
(, () 5 2 — jB(a),

and the commutativity of the above diagram implies n° = j5(x). Therefore, the tuple (z, (ng)) we started

(e

from belongs to Xg”, which proves that ij’ C Xgﬁ, as contended. []
Now, we need to prove the connectedness theorem. We need two remarks.

(1) Say U # () is Z-open in X, where X is a complex irreducible variety and suppose U is norm-connected,
then X is norm-connected.

Proof. The set U is Z-open, Z-dense in X and by the comparison theorem, U is norm-dense in X. Yet the
norm-closure of a norm-connected is norm-connected, so we conclude that X is norm-connected. []

(2) Say U # (0 is Z-open in C™. Then, U is norm-connected.

Proof. Take &,n € U and let [ be the line (&, 1) C C™. Since [ € U, we deduce that U°NI is a Z-closed subset
of [ distinct from [. As dim [ = 1, we deduce that U°¢ N[ consists of a finite set of points. As [ is a complex
line, | 2 C, and so, U NIl = C — F, where F is a finite set of points. But, C — F' is arc-connected, which
implies that £ and n are arc-connected. Since £ and 7 are arbitrary, we conclude that U is norm-connected.

O

Theorem 1.45 (Theorem C) A complex algebraic variety, X, is Z-connected iff it is norm-connected.

Proof. («<). This is trivial as the Z-topology is coarser than the norm-topology.

(=). We may assume that X is Z-irreducible. For, suppose we know the theorem when X is irreducible.
Then, for any variety, we can write X = Ule X;, an irredundant decomposition into irreducible components
and let U,V be a disconnection of X, which means that X = UWV, where U and V are norm-open and
norm-dense nonempty disjoint subsets of X. Let U; = X; NU and V; = X; NV, then U;,V; form a norm
disconnection of X;. As X; is norm-connected either U; = X; and V; = 0 or U; = 0 and V; = X;. Write
1eViff V; = X; (lfle QV;) andie U iff U; = X; 1ff(Xl - Ui), then

() ()

and the first part of the union is a subset of U whereas the second is a subset of V. Therefore, the above is
a disjoint union, contradicting the hypothesis that X is Z-connected. Therefore, we may assume that X is
irreducible.

Now, assume that the theorem holds if X is affine irreducible. Take a Z-open affine, U, in X (X
irreducible). As the Z-open U is Z-dense and X is irreducible, U is Z-irreducible. Then, Theorem C applies
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to U and U is norm-connected. But, U is norm-dense by the comparison theorem; we conclude that X = U
and X is norm connected.

We are reduced to the case where X is affine and irreducible. If dim X = n, then by Noether’s normal-
ization theorem there exists a quasi-finite morphism, X — C”. We proved that there is an affine Z-open,
X' C X, so that the morphism 7: X’ — C" is a finite morphism. Therefore, A[X’] is a finitely generated
C|Zy,. .., Zy]-module. Let &,...,& be module generators. We know Mer(X’) is a finite-degree field over
C(Zy,...,Zy), so by Kronecker’s theorem of the primitive element, there is some 6 (a primitive element) so
that

Mer(X') =C(Zy,...,2Z,)[0),

and we may assume 0 € A[X’] (clear denominators). Thus,

and, as usual, for every £ € A[X'], there is some a¢ € C[Z1,...,Z,] so that ae§ € C[Z1,...,2Z,][0]. If we
apply the latter to &1,...,&, we get ag,,...,a¢,; if & = ag, -+ ag,, then

QA[X'] C C[Z1, ..., Z,][f).

We know 6 is the root of an irreducible polynomial, F(T) € C[Z1,. .., Z,][T], of degree m = deg(F'). Let ¢
be the discrimiant of F'; we have § € C[Zy,...,Z,] and the locus where 6 = 0 (in C") is called the branch
locus of the morphism 7: X’ — C™. Off the branch locus, all roots of F' are disjoint. Let v = ad and set
V =C" — V(v). We know V is norm-connected, by Remark (2). Consider U = X — V(7*(7)), a Z-open in
X’. We have a map 7: U — V, it is onto (by choices) because the coordinate ring of U is

AlU] = A[X]7-(y) = A[C],6],

and so U C X' is affine, integral over V', which implies that 7 is onto and every fibre of 7 | U is a set of exactly
m points. The Jacobian of 7 has full rank everywhere on U as 6 # 0 on V. So, by the convergent implicit
function theorem, for every € U, there is an open, Ug 3 &, so that 7 | Ug is a complex analytic isomorphism
to a small open containing 7(§). Therefore, by choosing 71, . .., %, in the fibre over v = 7(n;) and making the
neighborhood small enough, the Us don’t intersect else we have a contradiction on the number of elements,
m, in every fibre. It follows that U is an m-fold cover of V' (in the sense of C*-topology). Now U C X' C X
and U is affine open in X. Consequently, if we prove U is norm-connected, by Remark (1), the variety X
will be norm-connected.

Say U is norm-disconnected and U = X; U X5 is a norm disconnection. The morphism, 7, is both an
open and a closed morphism, so 7(X;) is nonempty, open and closed in V. Thus, each X; is a complex
analytic covering of V' and if the degree is m;, then we have m; + mg = m, with m; < m, for j = 1,2.
Recall that U is integral over V. Take ¢ € A[U] and pick a point, v € V, then in a small neighborhood of

V, say V, we have wj_l(f/) = Ul(j) SRR %) (where m; = 7 | X;), disjoint open sets about each point in

7rj_1(v). The function ¢ | Ui(j )is a holomorphic function on Ui(j ), call it gpl(j ). We know that Ui(j i Ve
by a complex analytic isomorphism. (The map vV — Ui(j ) is holomorphic not algebraic.) Thus, each gpgj )

~ ~ . ) .
is a holomorphic function on V', not necessarily algebraic; namely, V — Ui(J ) 25 C. Let ol(J ) be the I-th
(4) (9) .

symmetric function of @'/, ..., ¢m;; this is a function on V. Thus, al(j) is a root of
T — W;fog)ij_l 4+t (—1)mj7r;-‘0,(£3 =0, j=1,2.

I claim there exist polynomials, Pr(j) € ClZy,...,2Z,], for j =1,2; 1 <r < my; so that Pr(j) i V= a,(aj), for
all r’s and j’s. Then, we get

(pm‘j —ﬂ';Pl(J)QOmJ_l'i_+(_1)m]7T;P7S:ZJ) :Oa (*)
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Now, Pj[T] = T™ — 7t P Tmi =1 4. 4 (~1)mint BY) belongs to A[U][T] and Pj(y) = 0. If we apply this
to our primitive element, we get P;(0) = P»(0) = 0 (the first on X; and the second on X3). Consequently,
(PLP)(0) =0 on U. Yet, PP, € A[U][T] and U is Z-connected, so A[U][T] is domain and it follows that
either P, = 0 or P, = 0. In either case, # satisfies a polynomial of degree m, or ms and both my,ms < m,
a contradiction.

So, it remains to prove our claim and, in fact, it is enough to prove it for 6. If we cover V' by the Vs we
find that the aﬁj ) patch, which implies that they are global holomorphic functions on V. If £ € C™ (not on
V), take a “compact open” neighborhood (i.e, an open whose closure is compact) of £&. Now, 6 is integral
over C[Z1,...,Zy,], so we have an equation

0" + a1 ™ - 4+ 1 a, =0, wherea; € C[Z1,...,Z,). (%)

The functions a; are bounded on this compact neighborhhod and so are therefore the roots of (xx). It follows
that the 0'7(«] ) are also bounded on this neighborhood. So, by Riemann’s classic argument (using the Cauchy
integral form on polydiscs and boundedness) we get an extension of o to all of C (as an entire function);

7=1,2;1<r <m. Now, we show that the aﬁj), so extended, are really polynomials—this is a matter of
how they grow. Write ||z|| = ||(#1,- -, 2n)|| = maxi<i<n |2;|. Then, from (xx), if £ € U, then (DX)

10(E)] < 1+ max{|a;(m())]}-

If d is the maximum degree of the a;’s, then

jag ()] < Cllx(@©)I*  (alll).

Consequently, we can choose C' so that
d
0] < C (I
This works for all the roots 64, ..., 60,, and since U,(«j ) is a polynomial of degree r in these roots, we deduce
that

e w (&) < D= (€)™

Lemma 1.46 Say f(z1,...,2,) is entire on C" and |f(z1,...,20)] < D|z||%. Then, f(z1,...,2,) is a
polynomial of degree at most q.

The proof of the lemma will finish the proof of Theorem C.

Proof. Write the MacLaurin series for f:
f(zla"'7zn):FO+F1(217-'-7277,)+"'+E(Zla"'7zn)+"'7

where Fj(z1,...,2,) is a homogeneous polynomial of degree [ in z1,...,2,. We must show F; =0 if ¢ > q.
Say not, pick the minimal ¢ with ¢ > ¢ where Fy; # 0. As F; # 0, there exist ay,...,a, € C so that
Fi(a1,...,a,) #0. Let ¢ be a complex variable and write z; = a;{. Then,

g(¢Q) = flaa¢,...,an0) — Fo — Fi(a1C,...,anl) — -+ — Fy(anC, ..., anQ)
= F(a(,...,anl) +O(|¢|"Th)
= ('Fiay,...,a) +O(¢[").

If we divide by (9, we get

% = Ct*qFt(Oq, coap) O(|<|t7q+1)7
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where the right hand side is an entire function of {. But, by the growth hypothesis on f, the left hand side
is bounded on C. By Liouville’s theorem, this function is constant. Yet, the right hand side is not constant,
since Fy(aq,...,ay) # 0 and t > ¢, a contradiction. []

Now that the lemma is proved, so is our theorem. []

We now come back to some unfinished business regarding complex algebraic varieties in C". We begin
by proving a fact that was claimed without proof in the remark before Proposition 1.1.

Theorem 1.47 Suppose V and W are affine varieties, with W C C", and ¢: V. — W is a morphism. Then,
there exist Fi,...,F, € A[V] so that

o) = (F1(v),...,F(v), foralveV.

Proof. Since V is a variety it is quasi-compact, so V' is covered by some affine opens, V,,...,V,,. For any
v € Vy,, we have
oy (10 )
git () g (o) )7

for some fl(j), cee ,(Lj),gj € A[V], with g; # 0 on V,,. If v is the maximum of the v;’s, since V. = Vg, we

may assume that v = 1. Thus, on each V,,, we have

(w5 .
w(v)—<gj(v) T gilv) ) )

Since ¢ is well-defined, the local definitions of ¢ must agree on Vy,, NV, =V, .., and we have

) _ 1)
g;(v) 9i(v)

for all v € V4, and all [, 1 <1 < n. As a consequence,

10— 1795 =0 on Vg,
which implies that ‘ .
9= 1 =0 in A[V]gy,.
Therefore, there are some integers n;; so that
(9:97)" (£ g: — f{"g;) =0 in A[V].

Let N = max{n;;;}, where 1 <4,j,<t, 1 <[ <n. We have

(gigj)Nf[(j)gi = (gigj)Nfl(i)gja (%)

for all 4, j,{, with 1 <,5,<t, 1 <1 <n. Now, the V,, cover V. Hence, the g; have no common zero, and
neither do the g™ (since V,n = V;). By the Nullstellensatz,

K2

(g1 g =),

the unit ideal in A[V], and thus, there are some h; € A[V] so that

t
1= Z higlN—H.
i=1
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But, we have

¢
a1 = N (Z hegl “)
r=1
- ZthNJrl
= ZhrglNJrl ) by (xx)
= gzNJrl (Zthr flr ) :

Letting

Z h’Tg'r (T)a

we have F; € A[V], and
g; f(l) =gVt E in A[V], for all i with 1 <i <t.

For any v € V,,, we get

fz(i)(v) — F(v
gi(U) _E( )7
and by (%),
p(v) = (F1(v), ..., Fu(v)). O

Corollary 1.48 Say X is a complez affine variety, then the ring of global holomorphic functions on X, i.e.,
the ring T'(X, Ox), is exactly the coordinate ring, A[X], of X.

Proof. The ring I'(X, Ox) is just Homc_yars(X, C), essentially by definition. By Theorem 1.47, there is
some F € A[X] so that if ¢ € I'(X, Ox), we have ¢(z) = F(z), for all z € X. Therefore, I'(X, Ox) = A[X].
O

Corollary 1.49 The category of affine complex varieties is naturally anti-equivalent to the category of re-
duced (i.e., no nilpotent elements) finitely generated C-algebras.

Proof. Say A is a reduced f.g. C-algebra, we can make a variety—it is denoted Spec A—as follows: The
underlying topological space (in the norm topology), X = Spec A, is

HOmC,alg(A, (C) = Hom(Cfalg((C[Zly ey Zn]/ﬂ, (C)
= {(z1,.-,2n) | filz1,oy2n) = = fp(z1, ..., 2n) = 0},

where 2l = (f1, ..., fp) is aradical ideal. The sheaf is as before, use the opens, X, where g # 0 (with g € A)
and on those, use as functions, h/g, with g, h € A. This gives I'(X,, Ox).

Conversely, given an affine variety, X, make the f.g. reduced C-algebra, A = A[X].

We also need to show how maps of rings transform to morphisms and the other way around. Say A
and B are reduced C-algebras. Then, if 0: A — B, set 0: Spec B — Spec A wvia: Pick x € Spec B, i.e.,
x € Homc_aig(B,C), then 6(z) = x 0 0. Localize 6 at the g’s so that the Yy’s cover Y = Spec B, then
By — A~ is just the locally defined map of sheaves. If X = Spec A and we have a morphism ¥ — X
then we get a map I'(X, Ox) — T'(Y, Oy); but, Corollary 1.48 says this is a ring map from A to B. The
rest of the checking is (DX). []
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Corollary 1.50 A n.a.s.c. that (V,Oy) be a complez affine variety is that the canonical map
Home —vars (T, V') — Homc_a15(I'(V, Oy ), T(T, Or))
is a bijection for every complex variety, T .

Proof. An affine variety, V', does have the above property. For, say V is affine and pick any T. What is
Homg —vars (T, V)? We can cover T by affines, T, and get morphisms T, — V, for all ; clearly, they agree
on the overlaps T, N T3. The T, N T are affine (because V' is separated), in fact, their coordinate rings are

D(To, Or | To) @r(r,0.) DT, Or | Tp).

We get the commutative diagrams

\ﬂ

T, N Tﬁ

/

\%
T
Apply Corollary 1.49, this gives ring morphisms

F(TOH OT )

o

T T

F(V, Ov) T ﬂTB,OT) . (*)

~.

I'(Ts, Or,)
By definition of sheaves, we get a map of sheaves,

Conversely, a map I'(V, Oy) — T'(T, Or) gives by restriction to I'(T,, Or) (resp. I'(Ts, Or)) our commu-
tative diagram (x), and by Corollary 1.49, it gives (f) and this is a morphism T — V.

Now, given V with the _property of the corollary, make V= Spec(T'(V, Oy)); then V is affine. By hypoth-
esis, V has the property, V has it by the previous part of the proof, so the functors T ~ Homg¢_vars(T, V)
and T ~» Homg_yars (7, V) are canonically isomorphic. Yoneda’s Lemma implies V' = V. [l

Corollary 1.51 Say ¢p: X — Y is a morphism of complex affine varieties and ¢: A[Y] — A[X] is the
corresponding algebra map. Then,

(1) The morphism ¢ is a closed immersion iff ¢ is surjective (Ker ¢ defines the image).
(2) The algebra map @ is injective iff Im ¢ is Z-dense in Y.

Proof. (DX).
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Chapter 2

Cohomology of (Mostly) Constant
Sheaves and Hodge Theory

2.1 Real and Complex

Let X be a complex analytic manifold of (complex) dimension n. Viewed as a real manifold, X is a C°-
manifold of dimension 2n. For every x € X, we know Tx , is a C-vector space of complex dimension n, so,
Tx . is a real vector space of dimension 2n. Take local (complex) coordinates z1, ..., 2z, at © € X, then we
get real local coordinates x1,¥y1,...,%n,Yn on X (as an R-manifold), where z; = z; + iy;. (Recall, Tx is a
complex holomorphic vector bundle). If we view Ty , as a real vector space of dimension 2n, then we can
complexify Tx ;, i.e., form

TX,z(C = TX,z QR Ca

a complex vector space of dimension 2n. A basis of T'x , at = (as R-space) is just
o 0 o 0
Oxy Oy1” " Oxn” Oyn

These are a C-basis for T'x ;, too. We can make the change of coordinates to the coordinates z; and Zj,
namely,
zZj =x5; + iyj, Zj =1z — iyj,

and of course,

- 1 -
vj =5z + 7). ¥ =50z = 7).
So, T'x,z has a basis consisting of the 9/0z;,0/0%;; in fact, for f € C*°(open), we have
af _of _of . 9f _9f _.of

(92’]‘ o (r“)SCj Z(Q)yj (i)Zj B axj Zayj.

More abstractly, let V' be a C-vector space of dimension n and view V' as a real vector space of dimension

2n. Ifeq,..., e, is a C-basis for V, then iey, . .., e, make sense. Say e; = f;+1ig; (from C-space to R-space),
then, ie; = if; — g; = —g; +if;. Consequently, the map (e1,...,e,) — (ie1,...,ie,) corresponds to the
map

(f1o90)s s (s 9n)) ~25 (=91, 1), s (=g, f))

where V' is viewed as R-space of dimension 2n. The map J an endomorphism of V' viewed as R-space and

obviously, it satisfies
J? = —id.

73
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If, conversely, we have an R-space, V, of even dimension, 2n and if an endomorphism J € Endg (V) with
J? = —id is given, then we can give V a complex structure as follows:

(a+ib)v = av + bJ(v).

In fact, the different complex structures on the real vector space, V, of dimension 2n are in one-to-one
correspondence with the homogeneous space GL(2n,R)/GL(n,C), via

class A — AJA™L.

Definition 2.1 An almost complex manifold is a real C*°-manifold together with a bundle endomorphism,
J: Tx — T, so that J? = —id.

Proposition 2.1 If (X, Ox) is a complex analytic manifold, then it is almost complez.

Proof. We must construct J on Tx. It suffices to do this locally and check that it is independent of the
coordinate patch. Pick some open, U, where Tx [ U is trivial. By definition of a patch, we have an

isomorphism (U, Ox [ U) = (Bc(0,¢),Op) and we have local coordinates denoted z1, ..., 2, in both cases.
On Tx | U, we have 8/0z1,...,0/0z, and 8/0x1,...,0/0xy,0/0y1,...,0/0yn, as before. The map J is
given by
0 g 0 0 J 0 o 0 0
—y ey — | — | — . — — ., — | .
223} Oxy O Yn o Oyn Ox1 Oz,

We need to show that this does not depend on the local trivialization. Go back for a moment to two complex
manifolds, (X,Ox) and (Y, Oy), of dimension 2n and consider a smooth map f: (X,0x) — (Y,Oy). For
every x € X, we have an induced map on tangent spaces, df: Tx,, — Ty,, where y = f(z) and if, as
R-spaces, we use local coordinates x1,...,Zn,¥1,...,Yn o0 Tx , and local coordinates ui, ..., up,v1,...,0p
on Ty, then df is given by the Jacobian

(52) (5)
0x; y,
Jr(f) = <3zi> <3§i>

Oz Ay,
If f is holomorphic, the Cauchy-Riemann equations imply

Oua _Ova g O _ Ota
dzj — y; dr;  dy;’

Now, this gives
(22) (2
_| \dy; oy; ) | _ (A B
Jr(f) = (_%> <%) =\_p 4)-
dy; dy;
Going back to our problem, if we have different trivializations, on the overlap, the transition functions
are holomorphic, so Jr(f) is as above. Now J in our coordinates is of the form

0, I,
7= (% %)
and we have JJgr(f) = Jr(f)J when f is holomorphic (DX). []

So, an almost complex structure is a bundle invariant.

Question: Does S% possess a complex structure?
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The usual almost complex structure from S7 (= unit Cayley numbers = unit octonions) is not a complex
structure. Borel and Serre proved that the only spheres with an almost complex structure are: S°, $? and
S6.

Say we really have complex coordinates, z1, ..., 2, down in X. Then, on Tx ®g C, we have the basis

0 0 0 0

0z17 " 0z, 0z 07y

and so, in this basis, if we write f = (w1, ..., w,), where wy = uq + 104, we get

o [(5) (5

A REAT
8Zj 8§j

Ow, 0w,
(fﬁj - 6zj

and, again, if f is holomorphic, we get

207

which yields

- [(55) )69

N (8@ 0 A
8Zj

0=(5:)

and call it the holomorphic Jacobian. We get

_ (/) 0 _
(1) Jr(f) = ( 0 m), 0, R-rank Jg(f) = 2C-rank J(f).
(2) We have det(Jr(f)) = |det(J(f))|> > 0, and det(Jr(f)) > 0 if f is a holomorphic isomorphism (in
this case, m = n = the common dimension of X,Y).

Write

Hence, we get the first statement of

Proposition 2.2 Holomorphic maps preserve the orientation of a complex manifold and each complex man-
ifold possesses an orientation.

Proof. We just proved the first statement. To prove the second statement, as orientations are preserved
by holomorphic maps we need only give an orientation locally. But, locally, a patch is biholomorphic to a
ball in C". Therefore, it is enough to give C™ an orientation, i.e., to give C an orientation. However, C is
oriented as (z,ix) gives the orientation. []

Say we have a real vector space, V', of dimension 2n and look at V ®g C. Say V also has a complex

structure, J. Then, the extension of J to V ®g C has two eigenvalues, +i. On V ®g C, we have the two

eigenspaces, (V ®g C)10 = the i-eigenspace and (V ®g C)%! = the —i-eigenspace. Of course,

(V ®@r C)%' = (V ®@g C)10.
Now, look at A/(V ®g C). We can examine

p,0 p 0,9 q

AV @ C) E AV erC)M] and AV @:C) € AV @rC)%],
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and also
D,q p,0

0,9
AV @rC) & AV e:C) e \(VerC).

Note that we have

!
AV@RC H /\V®R(C

p+g=l

Now, say X is an almost complex manifold and apply the above to V = Tx,T%; we get bundle decom-
positions for Tx ®g C and T)? ®r C. Thus,

/.\TX®R(C ]_[ 11 /\TX®R<C

=1 p+q=l

Note that J on A”? is multiplication by (—1)%?*9. Therefore, J does not act by scalar multiplication in
general on \'(V @g C).

Say X is now a complex manifold and f: X — Y is a C°°-map to another complex manifold, Y. Then,
for every z € X, we have the linear map

Df:Tx o, ®r C— Ty, () ®r C.

The map f won’t in general preserve the decomposition Tx , ®r C = T)l(’g 11 T)O(’%T.

However, f is holomorphic iff for every x € X, we have D f: T)lg(; — T;,’(f)(m).
Let us now go back to a real manifold, X. We have the usual exterior derivative

I+1
d: /\TX1®R<C—> N TR, ®rC,

namely, if £&1,..., &2, are real coordinates at x, we have

> ardér = Y dap Adér.

1=l |I|=1
here, the ay are C-valued function on X near x and d&; = d§;, A--- A d&;,, with T = {i; < iz <--- < i}

In the almost complex case, we have the p, g¢-decomposition of T)? ®pr C and consequently

P.q _ l I+1
NTR @ C) &8 AN(TR 22 C) -5 ANTRerC) = ][] /\TX®R(C
r+s=I[+1
We let
Pyq p+1,q
0 =A{0p,g =Prpt1,40doipg: /\(T)? ®r C) — /\ (TX @& C)}p.q
and

P59 P,q+1
0 ={0p,q = Prpg+10doipyg: /\(T)? ®r C) — /\ (T ®& C)}pq-
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Note that d = 0 + 0 + other stuff. Let us take a closer look in local coordinates. We can pick &1, ..., &n,
some coordinates for T)l(’o, then £,,...,¢&,, are coordinates for T)O(’1 (say x1,...,x9, are local coordinates in
the base). Then, any w € APY(T2 ®g C) has the form

w= Y a;;dé Ndy,

l|=p
[I1=q
and so 3 3 _
do=Y"da,;Adér A€+ Y ap pd(dé A dEp) = 0w + Ow + stuff.
[1]=p l]=p
|T|=q [T1=q

If we are on a complex manifold, then we can choose the &; so that & = 0/8z; and §; = 9/0%;, constant
over our neigborhood and then,

do = Y da,pdé AdE;

||=p

[I|=q
n 8&1 f 8&1 f

= Z Z( : dszdz,Adz;JrT’dszdz,Adz;)

— 6zj 6zj

[I|=p j=1

[T|=¢

= Ow+0w=(0+ J)w.

Consequently, on a complex manifold, d = 9 + 0.

@ On an almost complex manifold, d> = 0, yet, 8% # 0 and X # 0 in general.
However, suppose we are lucky and d = 9 + 0. Then,
0=d*=0>+00+90+0,
and we deduce that 9% = 52 =00+ 09 = 0, in this case.

Definition 2.2 The almost complex structure on X is infegrable iff near every xz € X, there exist real
coordinates, &, ...,&, in T)l("0 and &;,...,&, in T)O(’l, so that d = 9 + 0.

By what we just did, a complex structure is integrable. A famous theorem of Newlander-Nirenberg (1957)
shows that if X is an almost complex C°°-manifold whose almost complex structure is integrable, then there
exists a unique complex structure (i.e., complex coordinates everywhere) inducing the almost complex one.

Remark: Say V has a complex structure given by J. We have

V=VerR < VerC™H Vo
The vector space V10 also has a complex structure, namely, multiplication by i. So, we have an isomorphism
V = V10 as R-spaces, but also an isomorphism V = V1.9 as C-spaces, where the complex structure on
V is J and the complex structure on V%! is multiplication by i. Therefore, we also have an isomorphism
V =2 V10, where the complex structure on V is —J and the complex structure on V%! is multiplication by
—1.

For tangent spaces, T)lf’O is spanned by 9/0z1,...,0/0zy,, the space T%l is spanned by 9/0%z1,...,0/0%x;
also, T)I() L0 s spanned by dz1,...,dz, and T)]?O’l is spanned by dz1,...,dz,.



78 CHAPTER 2. COHOMOLOGY OF (MOSTLY) CONSTANT SHEAVES AND HODGE THEORY

2.2 Cohomology, de Rham, Dolbeault

Let X be a real 2n-dimensional C*°-manifold and let d be the exterior derivative, then we get the complex
2 2n
2 -5 NTR -5 5 N\ TR,
(d* = 0). The same is true for complex-valued forms, we have the complex
2n

2
TR @x C -5 ANTR@rC -5 - -5 ATR @ C,

(d*> = 0). Here, there is an abuse of notation: T)’? denotes a sheaf, so we should really use a notation such as
’T)? . To alleviate the notation, we stick to T)’? , as the context makes it clear that it is a sheaf. These maps
induce maps on global C*°-sections, so we get the complexes

2 2n
r(x,78) -5 AT(x,12) % - -5 AT(X, TR)

and ) )
N(X, TR ®r C) -5 AT(X, T ©2 C) -5 - -5 AT(X, TR @r C).
Define
l I+1
Zhr(X) = Kerd, where d: \T(X,T%) — /\T(X,T%)
l +1
Zhr(X)e = Kerd, where d: \T(X,T¢ ®rC) — /\T(X,T{ @& C)

-1 1
Bhp(X) = Imd, where d: \TI(X,79¢) — A\T(X,T%)
-1 1
Bhr(X)e = Kerd, where d: \T(X,T¢ ®rC) — AT(X,T¢ ®zC)
H]l:)R(X) = ZIIDR(X)/B]ZDR(X)
HIZDR(X)(C = ZIIDR(X)C/B]ZDR(X)(C'
Note: HER(X)C = HER(X) ®gr C. These are the de Rham cohomology groups. For Dolbeault cohomology,

take X, a complex manifold of dimension n, view it as a real manifold of dimension 2n, consider the
complexified cotangent bundle, T)’? ®r C, and decompose its wedge powers as

l p,q

ATR e C) = [ A\T% @rC).

p+q=l
Since X is a complex manifold, d = d + 0 and so, 8% = 3 =o. Therefore, we get complexes by fixing p or g:

(a) Fix ¢ A\®I(T2 @p C) -1 AMUTL @r C) - - -4 A™(TD &g C).

(b) Fix p: A"%(TR @5 C) 25 AP (TR @ C) 25 .. 24 AP™MTL g C).

The above are the Dolbeault compleres and we have the corresponding cohomology groups Hg’q(X ) and
HPY(X). Actually, the Hg’q(X ) are usually called the Dolbeault cohomology groups. The reason for that is
if f: X — Y is holomorphic, then df and (df)” respect the p, -decomposition. Consequently,

p.q p.q

@) NI ®r C) — A\(TX, @=C)
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for all z € X and B _
(df)P o By = dx o (df)”
imply that (df)? induces maps HENY) — HEY(X).

The main local fact is the Poincaré lemma.

Lemma 2.3 (Poincaré Lemma) If X is a real C*°-manifold and is actually a star-shaped manifold (or
particularly, a ball in R™), then
HPL(X)=(0), forall p>1.

If X is a complex analytic manifold and is a polydisc (PD(0,r)), then
(a) Hg’q(X) = (0), for allp >0 and all ¢ > 1.
(b) HyY(X) = (0), for all ¢ >0 and all p > 1.

Proof. Given any form w € AP"?(PD(0,r)) with dw = 0, we need to show that there is some
ne NP9 (PD(0,r)) so that @y = w. There are three steps to the proof.

Step I. Reduction to the case p = 0.
Say the lemma holds is w € A”?(PD(0,7)). Then, our w is of the form

w = Z G/LJdZ]/\dEJ.

[I|=p
[J]=q
Write
0,9
wy = Z ar,j dzy € /\(PD(O,T‘))
[T|=q
Claim: dwy = 0.

We have w = lelzp dz; A wr and
0=0w= Z g(d?j[ /\wl) = Z +dz; /\5&}1.
|I|=p [I|=p
These terms are in the span of
dZil /\-"/\dzip/\d?j/\dfj1 /\"'/\d?jq

and by linear independence of these various wedges, we must have Owy = 0, for all I. Then, by the
assumption, there is some n; € A" (PD(0,r)), so that n; = wy. It follows that

w = Z dzr N Onyp = Z +0(dzr Anp) = O Z +dz; Anr),
[|=p ||=p ll=p
with >° 71—, £dzr Anr € A1 (PD(0, 7)), which concludes the proof of Step L.
Step II: Interior part of the proof.
We will prove that for every e > 0, there is some n € A”?""(PD(0,7)) so that 8y = w in PD(0,r — €).

Let us say that 1 depends on dz1,...,dzs if the terms a;dz; in n where J € {1, ..., s} are all zero, i.e.,
in 7, only terms a;dz; appear for J C {1,...,s}.
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Claim: If w depends on dzy,...,dZs, then there is some 1 € /\O’q_l(PD(O,r)) so that w — dn depends

only on dz1,...,dzs—1 in PD(0,r — ¢).

Clearly, if the claim is proved, the interior part is done by a trivial induction. In w, isolate the terms
depending on dzi,...,dZs—1, call these we and w; the rest. Now, wy = 6 A dZs, so w = 0 A dZs + wo and we

get
0=0w =090 Adzs) + Ows.

Examine the terms
——dzZs Ndzy, where [ > s.

Linear independence and () imply

8CLJ

o =0 if JC{1,2,...,s—1} and [>s.

If s € J, write J = J — {s}. Look at the function
1 dg A dg
Ni(Z1,. .y 2n) = =— ag(21y s 25-1,&, 2541y - oy Zn) ——.
( ) 2mi €| <r—e ( * ) §—2s
We have the basic complex analysis lemma:
Lemma 2.4 Say g(&) € C(A,) (where A, is the open disc of radius r), then the function

! ¢ A dE
10 =5 [ 0O

0
is in C°(A") and 8—£ =g on A, _..
By this lemma, we have
_ g
0Zs

ay(z1y. .y 2n) on A,_(2’s)

and if I > s,

ons _ 1 day dENdE _

(92[ - 211 €| <r—e (92[ 5— Zs

by the above. So, if we set n =" ;nsdz7, then w — dn depends only on dz1, . ..,dZ,—1 in PD(0,r — €).

Step I11: Exhaustion.

(%)

Pick a sequence, {e;}, with &, monotonically decreasing to 0 and examine PD(0,r —€;). Write 1 = r — e,

then the sequence {r;} monotonically increases to 7.
Claim. We can find a sequence, 1, € A" (PD(0,r)), such that
(1) n: has compact support in PD(0,7¢41).
(2) e =mne—1 on PD(0,r¢_1).
(3) Oy = w on PD(0, 7).

We proceed by induction on ¢, here is the induction step. Pick a sequence of cutoff C'*°-functions, ¢, so

that
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(i) 7 has compact support in PD(0,7¢4+1).
(ii) v =1 on PD(0,r).

Having chosen 7, we will find 7;1. First, by the interior part of the proof, there is some
Mgl € /\O’qfl(PD(O, r)) with 041 = w in PD(0,741). Examine 7,41 — n; on PD(0, ), then

(M1 — ) = 01 — Oy = w —w = 0.
By the induction hypothesis, there is some 8 € A”? *(PD(0,r)) with
0B =Tut1—m on PD(0,ry).
Let 41 = Yer1(Ter1 — 0B) = i1 We have
(1) met1 € Cgo(/\quil(PD(OthH)))-
(3) As 41 =1 0on PD(0,7¢41), we have 1,11 = 741 — O and so, 941 = Onp1 = w on PD(0,7441).
(2) Mey1 — M = g1 — OB — e = 0 on PD(0, 7).

Now, for any compact subset, K, in PD(0,r), there is some ¢ so that K C PD(0,r;). It follows that the
7;’s stabilize on K and our sequence converges uniformly on compacta. Therefore,

n= limn, =0n and Jn= lim Oy = w.
t— o0 t— o0

Finally, we have to deal with the case ¢ = 1. Let w € /\0’1(PD(O, 7)), with dw = 0. Again, we need to
find some functions, n;, with compact support on PD(0,r¢11), so that

() Ony = w on PD(0,ry).

(B) m¢ converges uniformly on compacta to n, with 9n = w. Here, n;,n € C*(PD(0,7)).

Say we found n; with
1
116 = -1l oo PDE@ ) < ot—1°

Pick 741 € C®(PD(0,7)), with 0741 = w on PD(0,7441). Then, on PD(0,7;), we have
5(77t+1 - 77t) = 57A7'ze+1 - 57715 =w-—w=0.

So, 7jz+1 — N is holomorphic in PD(0,r;). Take the MacLaurin series for it and truncate it to the polynomial
6 so that on the compact PD(0,r:_1), we have

- 1
7e1 =1 = Oll o D7y < 5

Take i1 = Y41 (41 — 0). Now, 1,41 has compact support on PD(0,r¢42) and on PD(0,r¢11), we have
~¢+1 = 1. This implies that n¢41 = 41 — 6, so

1
7641 — nth)m = ot

and
57’],5+1 = gﬁtJrl + 39 = gﬁtJrl =w on PD(O, Tt+1),

as 0 is a polynomial. Therefore, the 7;’s converge uniformly on compacta and if n = limy o0 17:, We get
577 =w.



82 CHAPTER 2. COHOMOLOGY OF (MOSTLY) CONSTANT SHEAVES AND HODGE THEORY

Corollary 2.5 (90 Poincaré) Say w € NP (U), where U C X is an open subset of a complex manifold, X,
and assume dw = 0. Then, for all x € U, there is a neighborhood, V > x, so that w = d0n on V, for some

ne NPTV,

Proof. The statement is local on X, therefore we may assume X = C™. By ordinary d-Poincaré, for every
z € X, there is some open, Vi 3 z, and some ¢ € A’T97' (1), so that w = d¢. Now,

p+q—1

A =TI /\(vg,

r+s=p+q—1

50, C = (Cr,s)a where Cr,s S /\ns(‘/l). We have

w = dC = ngr,s = Z(a + E)CES'

T8

Observe that if (r,s) # (p — 1,q) or (r,s) # (p,q — 1), then the (. ’s have d(. s ¢ A”?(V1). Tt follows that
(r,s = 0 and we can delete these terms from (; we get ( = (p—1,¢ + (p,q—1 With d{ = 0. We also have

W= dC = (8 + 5)( = an*Lq + 3(104171 + 3Qo*l,q + 8@)41*1 =w+ 5Cjofl-,q + ‘%pyq*l’

that is, 0Cp—1.4 +0Cpq—1 = 0. Yet, 5{,,__17(1 and 0¢p q—1 belong to different bigraded components, so
0Cp—1,g = 0Cp,q—1 = 0. We now use the J and 9-Poincaré lemma to get a polydisc, V C V; and some forms
m and 7 in AP"V9H(V), so that (1.4 = O and ¢y g1 = Ona. We get

65(7’]1) = 8Cp_1,q and 65(772) = —58(772) = —5<p7q_1

and so, _ _
90(m —n2) = 0Cp—1,g + 0p,g—1 = w,
which concludes the proof. []

Remark: Take C* = the sheaf of germs of real-valued C'*°-functions on X, then
1,1
H = Ker (aé; C® — /\(X))

is called the sheaf of germs of pluri-harmonic functions.

Corollary 2.6 With X as in Corollary 2.5, the sequences

and
1,1 2,1 1,2
0—H=cXx ZAX S AX[[AX S

. . ~4q .
are resolutions (i.e., exact sequences of sheaves) of Q% Qx, H, respectively.



2.2. COHOMOLOGY, DE RHAM, DOLBEAULT 83

Proof. These are immediate consequences of 9, 9, 99 and d-Poincaré. []

In Corollary 2.6, the sheaf Q% is the sheaf of holomorphic p-forms (locally, w = >~ ; ardzr, where the ay

are holomorphic functions), ﬁg( is the sheaf of anti-holomorphic q-forms (w = Y ; ardz;, where the a are
anti-holomorphic functions) and H is the sheaf of pluri-harmonic functions.

If F is a sheaf of abelian groups, by cohomology, we mean derived functor cohomology, i.e., we have
' 7= F7(X)=T(X,F),
a left-exact functor and
H?(X,F) = (RPT)(F) € Ab.

We know that this cohomology can be computed using flasque (= flabby) resolutions
0—F —=G —G1——Gy — -,

where the G;’s are flasque, i.e., for every open, U C X, for every section o € G(U), there is a global section,
7€ G(X), so that o = 7 | U. If we apply I', we get a complex of (abelian) groups

0 —TI'(X,F) —T(X,G) —I'X,6) — - —T(X,G,) — -, (*)

and then HP(X, F) = the pth cohomology group of (x).

Unfortunately, the sheaves arising naturally (from forms, etc.) are not flasque; they satisfy a weaker
condition. In order to describe this condition, given a sheaf, 7, we need to make sense of F(S), where
S C X is a closed subset. Now, remember (see Appendix A on sheaves, Section A4) that for any subspace,
Y of X, if j: Y — X is the inclusion map, then for any sheaf, F, on X, the sheaf j*F = F | Y is the
restriction of F to Y. For every z € Y, the stalk of F [ Y at x is equal to F,. Consequently, if S is any
subset of X, we have o € F(S) iff there is an open cover, {U,}, of S and a family of sections, o, € F(Uy),
so that for every «, we have

ol SNU, =04 [ SNU,.

Remark: (Inserted by J.G.) If X is paracompact, then for any closed subset, S C X, we have
F(S) = lim F(U),
U2Ss

where U ranges over all open subsets of S (see Godement[5] , Chapter 3, Section 3.3, Corollary 1). [Recall
that for any cover, {Uy}a, of X, we say that that {U,} is locally finite iff for every x € X, there is some
open subset, U, 3 z, so that U, meets only finitely many U,. A topological space, X, is paracompact iff it
is Hausdorff and if every open cover possesses a locally finite refinement.]

Now, we want to consider sheaves, F, such that for every closed subset, .S, the restriction map
F(X) — F(S) is onto.

Definition 2.3 Let X be a paracompact topological space. A sheaf, F, is soft (mou) iff for every closed
subset, S C X, the restriction map F(X) — F | S(S) is onto. A sheaf, F, is fine iff for all locally finite
open covers, {U, — X}, there exists a family, {n,}, with n, € End(F), so that

(1) no [ Fx =0, for all  in some neighborhood of U¢, i.e., supp(na) C U,.
(2) Za Na = id.

We say that the family {74} is a sheaf partition of unity subordinate to the given cover {U, — X} for F.
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Remark: The following sheaves are fine on any complex or real C**°-manifold:

(1) €=
2) A"
(3) A"
(4) Any locally-free C*°-bundle (= C*-vector bundle).

For, any open cover of our manifold has a locally finite refinement, so we may assume that our open cover is
locally finite (recall, a manifold is locally compact and second-countable, which implies paracompactness).
Then, take a C'*°-partition of unity subordinate to our cover, {U, — X}, i.e., a family of C'*°-functions,
Va, SO that

(1) ¢a = 0.
(2) supp(yp) << U, (this means supp(y) is compact and contained in Uy).

(3) Zoc Po = 1.

Then, for 7,, use multiplication by @,

Remark: If we know a sheaf of rings, A, on X is fine, then every A-module is also fine and the same with
soft.

Proposition 2.7 Let X be a paracompact space. Every fine sheaf is soft. Say
0—F S F2 F"—0
is an exact sequence of sheaves and F' is soft. Then,
0— F(X)— F(X)— F'(X) — 0 is exact.
Again, if
0—F HF 5 F o0
s an exact sequence of sheaves and if F' and F are soft, so is F". Every soft sheaf is cohomologically trivial
(H?(X, F) = (0) if p>0).

Proof. Take F fine, S closed and 7 € F(S). There is an open cover of S and sections, 7, € F(Uy), so that
Ta [UaNS=7]U,NS. Let Uy = X — S, an open, so that Uy and the U, cover X. By paracompactness,
we may asume that the cover is locally finite. Take the 1, € Aut(F) guaranteed as F is fine. Now, we have
Na(Ta) = 0 near the boundary of Uy, s0 1, (7a) extends to all of X (as section) by zero, call it o,. We have
0q € F(X) and

o= Z oo exists (by local finiteness).

[0}

As o, [Us NS =74 [ Uy NS, we get
0o =Na(Ta) =Na(r) onU,NS

and we deduce that

o= Zaa = Zna(Ta) = Zna(T) = (Z’I]a)(T) =7; onS.
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Therefore, o is a lift of 7 to X from S.

Exactness of the sequence
0—F HF L F 0

implies that for every o € F”(X), there is an open cover, {U, — X}, and a family of sections, 7, € F(U,),
so that u(7.) = o | U,. By paracompactness, we may replace the U,’s by a locally finite family of closed
sets, S,. Consider the set

S=1(r8) (1) S =S, for some of our S,
BN (2) T € F(S), 7| Sq = 7o, for each S, asin (1).

The set S is, as usual, partially ordered and it is inductive (DX). By Zorn’s lemma, S possesses a maximal
element, (7,5). I claim that X = S.

If S # X, then there is some Sz with Sg € S. On SN Sg, we have
(it —78) =0 —0=0,
where p(7) = o, by (2), and u(73) = o, by definition. By exactness, there is some ¢ € F'(S N Sg) so that
M) =1 —713 0on 5N Sz Now, as F' is soft, ¢ extends to a global section of F', say, z. Define w by
I on S
T 173+ A(z) on Ss.

On SN S, we have w =7 =73 + A(2) = 78 + A({) = 7, so w and 7 agree. But then, (w,S U Sg) € S and
(w,SUSg) > (r,5), a contradiction. Therefore, the sequence

0—F HF L F 0

has globally exact sections.

Now, assume that 7’ and F are soft and take 7 € F”, with S closed. Apply the above to X = S; as F’
is soft, we deduce that F(S) — F”(S) is onto. As F and F’ are soft, the commutative diagram

implies that F”(X) — F"(S) is surjective.

For the last part, we use induction. The induction hypothesis is: If F is soft, then HP(X,F) = (0), for
0 <p<n. When n =1, we can embed F in a flasque sheaf, @, and we have the exact sequence

0 — F — Q — cok — 0. (1)
If we apply cohomology we get
0— Hl(Xv]:) - Hl(XaQ) = (0)7

since @ is flasque, so H'(X, F) = (0).
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For the induction step, use () and note that cok is soft because Fand @ are soft (@ is flasque and flasque
sheaves are soft over a paracompact space, see Homework). When we apply cohomology, we get

(0) = H(X,Q) — H’(X,cok) — HITY(X,F) — H*Y(X,Q)=(0), (j>1)

so H7(X,cok) = HItY(X, F). As cok is soft, by the induction hypothesis, H’(X, cok) = (0), so
HIHHX,F) = (0). O

Corollary 2.8 FEach of the resolutions (p > 0)
(for p =0, a resolution of Ox ),

and
R A QA d
O—>C—>/\X:C°°—>/\X—>---,
is an acyclic resolution (i.e., the cohomology of N"'* X, AP X wvanishes).
Proof. The sheaves A\”'? X, AP X are fine, therefore soft, by Proposition 2.7. []
Recall the spectral sequence of Cech cohomology (SS):
ESY = HP(X, H!(F)) = H*(X,F),
where
(1) F is a sheaf of abelian groups on X
(2) HI(F) is the presheaf defined by U ~ H9(U, F).
Now, we have the following vanishing theorem (see Godement [5]):

Theorem 2.9 (Vanishing Theorem) Say X is paracompact and F is a presheaf on X so that F*(= associated
sheaf to F) is zero. Then, )
HP(X,F)=(0), allp>0.

Putting the vanishing theorem together with the spectral sequence (SS), we get:

Theorem 2.10 (Isomorphism Theorem) If X is a paracompact space, then for all sheaves, F, the natural
map

HP(X,F) — HP(X,F)

is an isomorphism for all p > 0.

Proof. The natural map H?(X,F) — HP(X,F) is just the edge homomorphism from (SS). By the
handout on cohomology,
HI(F) = (0), all ¢>1.

Thus, the vanishing says 3
EP? = HP(X,HU(F))=(0), all p>0,q=1,

which implies that the spectral sequence (S’VS) degenerates and we get our isomorphism. []
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Comments: How to get around the spectral sequence (SS).

3 (1) Look at the presheaf F and the sheaf F*. There is a map of presheaves, F — F*¥, so we get a map,
HP(X,F) — HP(X,F*). Let K = Ker (F — F*) and C' = Coker (F — F*). We have the short exact
sequences of presheaves

0—K-—F—Im—0 and 0—Im — F* — C —0,

where Im is the presheaf image F — F¥. The long exact sequence of Cech cohomology for presheaves gives
.. — HP(X,K) — HP(X,F) — HP(X,Im) — HP*Y(X,K) — ---

e <o — HP7Y(X,0) — HP(X,Im) — HP(X,F*) — HP(X,0) — - - -,
and as K* = C* = (0), by the vanishing theorem, we get
HP(X,F) = HP(X,Im) = HP (X, F*).
Therefore, on a paracompact space, H?(X, F) = HP(X, F*).
(2) Cech cohomology is a d-functor on the category of sheaves for paracompact X.

Say
0—F —F—F —0

is exact as sheaves. Then, if we write Im for Im(F — F"') as presheaves, we have the short exact sequence
of presheaves
0—F —F—Im—0

and Im* = F”. Then, for presheaves, we have
<o — HY(X,F) — HP(X,Im) — HPY(X, F') — ---

and by (1), HP(X,F) = HP(X,F*), so we get (2).

(3) One knows, for soft F on a paracompact space, X, we have HP(X,F) = (0), for all p > 1. Each
F embeds in a flasque sheaf; flasque sheaves are soft, so {H*} is an effaceable d-functor on the category of
sheaves and it follows that {H®} is universal. By homological algebra, we get the isomorphism theorem,
again.

In fact, instead of (3), one can prove the following proposition:

Proposition 2.11 Say X is paracompact and F is a fine sheaf. Then, for a locally finite cover, {U, — X},
we have

H'({Uy — X}, F)=(0), ifp>1.

Proof. Take {14}, the sheaf partition of unity of F subordinate to our cover, {U, — X }. Pick
T € ZP({Us — X}, F), with p > 1. So, we have 7 = 7(Uq, N---NU,,). Write

w=> na(r([Us NUsy N-+-NUa,)).
B
Observe that w exists as section over Uy, N+ N Uy, as 7 is zero near the boundary of Ug; so w can be
extended from Ug NUqy, N---NUq, to Uy, N---N Uy, by zero. You check (usual computation): dw = 7. []
Corollary 2.12 If F is fine (over a paracompact, X ), then

HP(X,F)=(0), forallp>1.
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Figure 2.1: A triangulated manifold

Theorem 2.13 (P. Dolbeault) If X is a complex manifold, then we have the isomorphisms
HI(X, Q%) = HP(X) = HI(X, Q).
Proof. The middle cohomology is computed from the resolution of sheaves
p,0 _ pl _ P2 _
0— % — AX-SAX-DAX D
Moreover, the A"? X are acyclic for H*(X,—) and for H*(X,—). Yet, by homological algebra, we can
compute H?(X, Q%) and HY(X, Q%) by any acyclic resolution (they are é-functors), []

To prove de Rham’s theorem, we need to look at singular cohomology.

Proposition 2.14 If X is a real or complex manifold and F is a constant sheaf (sheaf associated with a
constant presheaf), then there is a natural isomorphism

HY(X,F) = HE (X, F),

sing
provided F is torsion-free.

Proof. The space, X, is triangulable, so we get a singular simplicial complex, K (see Figure 2.1). Pick a
vertex, v, of I and set

St(v) = J{oe K [vea},

the open star of v (i.e., the union of the interiors of the simplices having v as a vertex). If vp,...,v, are
vertices, consider
St(vo) N--- N St(vy) = Uy,....0,-

We have
1] if vo, ..., vp are not the vertices of a p-simplex

Uvo,.oorvp = { a connected set if v, ..., v, are the vertices of a p-simplex.
Observe that {U, — X }yevert(k) is an open cover of X and as F is a constant sheaf, we get

. 0 if(UO,'--7UP)¢IC
]:(UUO,...,’UP) - {]: 1f (’UO7 e 7Up) S IC

Let 7 be a Cech p-cochain, then T(Uv,...,v,) € F and let
6(7-)((”05"'51111)) :T(Uvo ..... vp),

where (vg,...,v,) € K. Note that ©(7) is a p-simplicial cochain and the map 7 — O(7) is an isomorphism

C*{U, — X}, F)=Ct (X,F)

sing
that commutes with the coboundary operators on both sides. So, we get the isomorphism

H?({U, — X}, F) = H?_ (X, F).

sing
We can subdivide K simplicially and we get refinements of our cover and those are arbitrarily fine. Subdivision
does not change the right hand side and if we take right limits we get

HP(X,F) = H: (X,F).

sing

As a consequence, we obtain
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Theorem 2.15 (de Rham) On a real or complex manifold, we have the isomorphisms

R . R R R
HP [ X ~ [P (X ~ fgP X ~HP [ X
(rg) = (xc) = (x.0) =0 (3.

Proof. The isomorphism of singular cohomology with Cech cohomology follows from Proposition 2.14. The
isomorphism of derived functor cohomology with Cech cohomology follows since X is paracompact. Also de
Rham cohomology is the cohomology of the resolution

1 2

R o d d d

0—>C—>C —>/\X—>/\X—>---,

and the latter is an acyclic resolution, so it computes H? or H?. []
Explicit Connection: de Rham ~» Singular.

Take a singular p-chain, >, a;A;, where A; = f;(A); f; € C(A); A = the usual p-simplex (a; € Z, or
a; € R, or a; € C, ... .) We say that this p-chain is piecewise smooth, for short, ps, iff the f;’s actually
are C'*°-functions on a small neighborhood around A. By the usual C'*°-approximation (using convolution),
each singular p-chain is approximated by a ps p-chain in such a way that cocycles are approximated by ps
cocycles and coboundaries, too. In fact, the inclusion

Cy(X,R) = CJ"8(X,R)
is a chain map and induces an isomorphism
HY*(X,R) — H"8(X,R).

Say w € A" X, a de Rham p-cochain, i.e., a p-form. If o € CH(X,R), say 0 = Zj a; f;(A) (with a; € R),
then define ®(w) via:

b)) = [ ijaj/fj(mw def Zj:aj/Af;*weR-

The map ®(w) is clearly a linear map on CP*(X,R), so we have ®(w) € CE(X,R). Also, observe that

O (dw)(r) = /w :/(9 w (by Stokes) = ®(w)(97),

from which we conclude that ®(dw)(7) = (0®)(w)(7), and thus, ®(dw) = dP(w). This means that

P
/ - A(X,R) — CP,(X,R)
is a cochain map and so, we get our map

HP L (X, R) — HE

sing

(X,R).

2.3 Hodge I, Analytic Preliminaries

Let X be a complex analytic manifold. An Hermitian metric on X is a C°°-section of the vector bundle
(T)l(’O ®T)1(’O)D , which is Hermitian symmetric and positive definite. This means that for each z € X, we have
amap (—,—)z: T)l("_g ® T)l("_g — C which is linear in its first argument, Hermitian symmetric and positive
definite, that is:
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(1) (v,u). = (u,v). (Hermitian symmetric)

(2) (u1 +u2,v); = (u1,v), + (u2,v), and (u,v1 +v2), = (u,v1) + (u, v2).
(3) O\, v)s = A, ). and (u, p). = Fi(u, v)..

(4) (u,u), >0, for all u, and (u,u), =0iff u =0 (positive definite).

(5) z— h(z) = (—,—), is a C°°-function.

Remark: Note that (2) and (3) is equivalent to saying that we have a C-linear map, T1 0 L ® T;lz — C.
In local coordinates, since (Ty%)P = A TR and Ty = TY" and since {dz;},{dz,} are bases for
AY? T . and A”! TR ., we get
Z hi(2)dzx @ dzi,

for some matrix (hy) € M, (C). Now, (—,—), is an Hermitian inner product, so locally on a trivializing
cover for T;(’O, ngl, by Gram-Schmidt, we can find (1, 0)-forms, ¢1, ..., ¢n, so that

_5_Z_Z<p] ®<PJ

The collection @1, ..., p, is called a coframe for (—,—) (on the respective open of the trivializing cover).
Using a partition of unity subordinate to a trivializing cover, we find all these data exist on any complex
manifold.

Consider R(—, —), and I(—, —),. For A e R, (1), (2), (3), (4), imply that R(—, —) is a positive definite

bilinear form, C°° as a function of z, i.e, as T'x . real tangent space =T/ 0 , we see that R(—, —), is a C°°-
Riemannian metric on X. Hence, we have concepts such as length, area, Volume, curvature, etc., associated
to an Hermitian metric, namely, those concepts for the real part of (—, —)z, i.e., the associated Riemannian
metric.

If we look at (—, —),, then (1), (2), (3) and (5) imply that for A € R, we have an alternating real
bilinear nondegenerate form on T)l(’g, C* in z. That is, we get an element of (T)l(’g /\T)l(’g)D - /\Q(T}Z ,®C).

In fact, this is a (1, 1)-form. Look at (—, —), in a local coframe. Say ¢ = ay + ik, where ag, By € T2 ..
We have '
Z or(2) @ orl(2) = Y (an(2) +iBk(2) ® (an(2) — iBk(2))
k
= > (an(z) @ akl(z) + Bi(2) @ Br(2)) +1 Y (Br(2) ® an(2) — ax(2) ® Bk (2)).
k k

Now, a symmetric bilinear form yields a linear form on S*T , = ST )1(2, consequently, the real part of the

Hermitian inner product is R(—, =), = >, (ax(2)? + Br(2)?). We usually write ds? for Y, pr ® Py, and

R(ds?) is the associated Riemannian metric. For 3(ds?), we have a form in A\*(Ty°)P:

We let
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and call it the associated (1,1)-form to the Hermitian ds®. If we write o = ay + i3k, we have

n n n
Z(pk/\ﬂzz Ozk—l—lﬂk Ozk—iﬂk):—QiZOzk/\ﬂk.
k=1 k=1

k=1

Therefore,
w:Zak/\Bkz 3 Zsok/\s%a
k=1 k=1
which shows that w is a (1, 1)-form.

Remark: The expession for w in terms of 3(ds?) given above depends on the definition of A. In these notes,

alAf= 1(a®ﬂ B®a),

but in some books, one finds
w=—3(ds?).

Conversely, suppose we are given a real (1, 1)-form. This means, w is a (1, 1)-form and for all &,

w(€) =w(&) (reality condition).

Define an “inner product” via
Hv,w) =w(v Aiw).

We have

H(w,v) = w(wAiv)
= —w(vAw)
= w(ivAw)

w(iv A W)

w(v A iw)

H(v,w).

(Note we could also set H(v,w) = —w(v Aiw).) Consequently, H(v,w) will be an inner product provided
H(v,v) >0 iff v # 0. So, we need w(v AiT) = —iw(v AT) > 0, for all v # 0. Therefore, we say w is positive
definite iff

—iw(v AT) >0, forall v#0.

Thus, w = —(1/2)S3(ds?) recaptures all of ds®. You check (DX) that w is positive definite iff in local
coordinates

7
5 Z hkl dzk AN dzy,

where (hy) is a Hermitian positive definite matrix.
Example 1. Let X = C", with ds? = 22:1 dzp ® dZj. As usual, if zx = xx + iyg, we have
(a) R(ds?) = > p_,(dxi + dy}), the ordinary Euclidean metric.

(b) w=—(1/2)S(ds?) = (i/2) >_p_, dz A dZy, a positive definite (1,1)-form.
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Remark: Assume that f: Y — X is a complex analytic map and that we have an Hermitian metric on X.
Then, Df: Ty — Tx maps Txl,’g to T)l(’(}.(y), for all y € Y. We define an “inner product” on Y wia

o 0 0 0
22 —(prZ.prZ) .
(3% 5yz)y < fayk 5yz)f(y)

We get a Hermitian symmetric form on Y. If we assume that Df is everywhere an injection, then our
Hermitian metric, ds?, on X induces one on Y; in particular, this holds if ¥ — X.

Assume Df is injective everywhere. We have the dual map, f*: T2 — T2, ie., f*: /\1"0X — /\1"0 Y.
Pick U small enough in Y so that

(1) Ty | U is trivial
(2) Tx | f(U) is trivial.

(3) We have a local coframe, ¢1,...,¢0n, on Tx [ f(U) and f*(om+1) = -+ = [*(vn) =0, where
m = dim(Y) and n = dim(X).

Then,
) NERS ) i
frox =f (§Z<pk/\s%>=52f (or) A [ (PR) = wy
k=1 k=1

Hence, the (1, 1)-form of the induced metric on Y (from X) is the pullback of the (1, 1)-form of the metric
on X.

Consequently (Example 1), on an affine variety, we get an induced metric and an induced form computable
from the embedding in some CV

Example 2: Fubini-Study Metric on P". Let m be the canonical projection, w: C**! — {0} — P", let
20, .-, 2n be coordinates on C"*1 and let (Zp: ---: Z,) be homogeneous coordinates on P". For a small
open , U, pick some holomorphic section, F: U — C*"*1 — {0}, of 7 (so that 7 o F = idy). For any p € U,
consider

2
IF®)I” =Y Fi(p)F;(p) #0.
Pick U small enough so that log ||F||” is defined. Now, set
wp = L ddlog || F|*.
2m

We need to show that this definition does not depend on the choice of the holomorphic section, F. So, let
S be another holomorphic section of 7 over U. As mo S =m0 F =id on U, we have

(So(p): -+ : Sn(p)) = (Fo(p): -+ : Fu(p)), forallpeU,
so, there is a holomorphic function, A, on U, so that
A(p)S(p) = F(p), forallpeU.

We have _ B
|F||* = FF = AXSS = AX||S|1%,

so we get _
log || F||* = log A + log X + log | F'||*.
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Consequently, _
wp = 2i 20(log A + log \) + ws = wg,

0
since A is holomorphic, X is anti-holomorphic, d(holo) = 0, 99 = —dd and d(anti-holo) = 0. Clearly, our
wr are (1,1)-forms. Now, cover P by opens, as above; pick any section on each such open, use a partition
of unity and get a global (1,1)-form on P which is C°°. We still need to check positivity, but since the
unitary group, U(n + 1), acts transitively on C" ™! we see that PU(n) acts transitively on P" and our form

is invariant. Therefore, it is enough to check positivity at one point, say (1: 0: ---: 0). This point lies in
the open Zgy # 0. Lift Z to C"*! — {0} via

F:(Zo: -+ :Zy)— (1,21,...,2,), where z; =—=.
Thus, |F|* =1+ > oh_ zkZk, and we get
— - _ ZZ, 2, dZ
aalog(1 n zkzk) — | k=l 2ROk
; 1 + Zk:l ZEZk
(2221 dzi N\ d?k) (1 + 22:1 Z;g?k) — (Zzzl Ekdzk) N (27:1 Zldfl)
5 .
(1 + 22:1 Zkfk)

When we evaluate the above at (1: 0: ---: 0), we get > ;_, dzj A dz) and so
i _
wp(l:0: ---:0)= o ;dzk/\dzk,

which is positive. Therefore, we get a Hermitian metric on P™, this is the Fubini-Study metric. As a
consequence, every projective manifold inherits an Hermitian metric from the Fubini-Study metric.

From now on, assume that X is compact manifold (or each object has compact support). Look at the
bundles A”? and choose once and for all an Hermitian metric on X and let w be the associated positive
(1,1)-form. So, locally in a coframe,

. n
? J—
w=75 ) ek ATk
k=1
At each z, a basis for AV? is just {¢; AP}, where I = {iy <--- <ip}, J ={j1 < < jq} and
gﬁl/\a‘]:wil/\.../\(pip/\ajl/\.../\ajq_

We can define an orthonormal basis of A7 if we decree that the ¢; A, are pairwise orthogonal, and we
set

— 2 _ _
lor A" = (o1 NPy, 01 NBy) = 2PF2

This gives A?? a C*-varying Hermitian inner product. To understand where 2777 comes from, look at C.
Then, near z, we have ¢ = dz, P = dz, so

dz N dz = (dz + idy) A (dz — idy) = —i(dz A dy + dz A dy) = —2i dx A dy.

Therefore, ||dz A dz|| = 2 and ||dz A dz||> = 4 = 21+ (here, p=1 and ¢ = 1).
Let us write A”?(X) for the set of global C*°-sections, I'ce (X, A”'?). Locally, on an open, U, we have

..on 1,1
w:;;%we/\w
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and so, we deduce that .
wh = (%) n!(—l)(;)<ﬂl/\"'/\Sﬁn/\@/\"'/\%-

We call ®(z) = w™(z)/n! = Cp, o1 A+ - Apn ABTA- - - APy, the volume form and C,, = (%)"(—1)(3) the twisting
constant. We can check that ® is a real, positive form, so we can integrate w.r.t. to it. For £, € A" (X),
set

€= [ En.aeec.
This makes A\”?(X) a complex (infinite-dimensional) inner-product space. We have
pq—1 P\q

. N\ (x)= AX)

and say (as in the finite dimensional case) 0 is a closed operator (i.e., B is closed in A\P?(X)). Pick some
§ € 22 ie., with 9(€) = 0. All the cocyles representing the class of ¢ (an element of H2?) form the
translates € + B'? C A"?(X). This translate is a closed and convex subset of A"?(X).

Does there exist a smallest (in the norm we’ve just defined) cocycle in this cohomology class—if so, how
to find it?

Now, we can ask if & has an adjoint. If so, call it @ and then, 9 : A”?(X) — A”?!(X) and

—*

(9 (&),m) = (€,9(n)), for all &,n.
Then, Hodge observed the

Proposition 2.16 The cocycle, &, is of smallest norm in its cohomology class iff 9 (&) =0.

Proof .

(«<). Compute B B B B
1€ +Onl* = (€ + n, & + D) = [|€1” + [Inll* + 2R(¢, Dn).

But, (&,0n) = (0 (€),n) = 0, by hypothesis, so
&+ Dnll* = l1€ll” + llnll*
which shows the minimality of ||| in £ + BZ* and the unigneness of such a &.
(=). We know that [|€ + |2 > ||¢]]%, for all our 7’s. Make
F(t) = (€ +1tDn, € + tOn).

The function f(t) has a global minimum at ¢t = 0 and by calculus, f'(t) [=o= 0. We get

((37775 +t0n) + (£ + tgnﬁn)) =0,

t=0
that is, R(¢,dn) = 0. But, in is another element of AP~ X. So, let
g(t) = (€ +itdn, & + itdn).

Repeating the above argument, we get 3(&,0n) = 0. Consequently, we have (£,0n) = 0, for all 5. Since
(

*

(@ (€),m) = (£,9(n)), we conclude that (8" (€),n) = 0, for all 5, so & (£) = 0, as required. ]

If the reasoning can be justified, then
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(1) In each cohomology class of Hg’q, there is a unique (minimal) representative.
(2)
P, =
06=0
HZ(X) = {ge AX E“) 9 }

We know from previous work that HZ/(X) = H(X, Q%).

Making 9. First, we make the Hodge * operator:
p.q n—p,n—gq
% /\X — /\ X
by pure algebra. We want
(£(2),n(2))= ®(2) = &(z) Axn(z) for all €.

We need to define * on basis elements, £ = o7 AP ;. We want

(901/\¢J,Z77K,L90K/\¢L)Cn<ﬁ1/\"'/\sﬂn/\ﬁ/\"'/\WZW NPy A Z aM,N PM N PN
K,L |M|=n—p
[N|=n—q
where |I| = |K| =p and |J| = |L| = ¢. The left hand side is equal to
2p+qﬁ[7‘]Cn</)1/\"'/\@n/\%/\"'/\%

and the right hand side is equal to

> amn@r APy Aom ABy = agp o o1 ABy A @ ABo,
|M|=n—p
IN|=n—q

95

where I = {1,...,n} — I and J° = {1,...,n} — J. The right hand side has @1 A=A, ABTA--- AP, in

scrambled order. Consider the permutation

0

) ~ . .o~ ~ 0 0 0
(1,2, ,m5 1,200 ,m) = (s 5 8py 0155 Jgs 815+ o5 ey J15 - - -

a.j'n,fq)'
If we write sgn; ; for the sign of this permutation, we get

n

apo,jo = 2P+ in(—l)(2) Nr,75807 j-

Therefore,
1) = * Z Lo Ny = 20T i (—1)(3) Z Selg, 1 Nk, PKO N Pro-
KL | K |=n—p
IL%|=n—q
Now, set
0 =—%00o0x,

where @ A\PIX 5 \"TPTIX 9, NPTyt APy

I claim that — % 0 0 o  is the formal adjoint, 5*, we seek. Consider

(@.m) = /X (@)D (z) = /X 3¢ A s,
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where € € AP?71(X) and n € APY(X). Now, (€ A *n) = OE A s+ (—=1)PT9€ A B(*n), so we get
[t ns = @+ <1yt [ endien.

Also, € Asn e APTHX)ANPTUX), de, EAxp e NV"THX). But, d =8+ 9, so
d(€ N ) = (& A #) + O(E A ) = D(§ A ),

/Xg(ﬁA*n)—/Xd(éA*n)—/axéA*n—O,

if either X is compact (in which case X = ), or the forms have compact support (and hence, vanish on
0X). So, we have

and we deduce that

@) = (-1 [ € Bl
b
Check (DX): For n € A"Y(X), we have
wx 1 = (=1)PTap.

As #n e \"7P"TI(X), we have 9(xn) € /\nff’nqu(X), and so,
wx 0(xn) = (—1)2n"P=9t19(xn) = (—=1)PT9719(xn). We conclude that

@n) = — [ &nsdm)
= /5/\*—*8*())
= (&—%0%(n)).
Therefore, 9 =—x%0 *, as contended.

Now, we define the Hodge Laplacian, or Laplace-Beltrami operator, [], by:

Py Py
O=9 9+00 : \(X)— A\X)
You check (DX) that [] is formally self-adjoint.
Claim: () = 0 iff both 9o = 0 and 8 ¢ = 0.
First, assume [J(¢) = 0 and compute (¢,[(y)). We get
(. 0(p)) = (9,9 D) + (,09 )
= (0 0p,9)+ (@ 0,0 )
= (D¢, (D9) + 0 o|I?
19¢]1 + 110" |-

Therefore, if [J(¢) = 0, then d¢ = 0 and @ ¢ = 0. The converse is obvious by definition of [J(¢).

Consequently, our minimality is equivalent to [J(¢) = 0, where [] is a second-order differential operator.

To understand better what the operator [] does, consider the special case where X = C™ (use compactly
supported “gadgets”), with the standard inner product, and /\O’O(X) = C§°. Pick f € C§°, then again,
[I(f) € C5° and on those f, we have @ f = 0. Consequently,

O(f) =9 3f = a( ‘9fdz>
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We also have

{i%d@) = 21—%‘"(—1)(2)
g=1""

( of ) dzi N -+ Ndzp N dZ (g0 sgng 15y
_ 21—nin(_1)(2) 0

gn@7{j} dz1 A+ Ndzy ANdZ g0,

Taking O of the above expression, we get

- s8N (4} dzg NdzZ; Ndzy A=+ Ndzg AN dZ 0
J

n n 827

Taking —x* of the above, we get

—2 2" Z 82382J - Z (?zjazj

But,
40°f O f  9*f
02;0%; 83: 8y

and this implies that on A”°(X), O(f) up to a constant (—1/2) is just the usual Laplacian.
Write HP4(X) for the kernel of [Jon A”?(X), the space of harmonic forms. Here is Hodge’s theorem.
Theorem 2.17 (Hodge, (1941)) Let X be a complex manifold and assume that X is compact. Then,
(1) The space HP1(X) is finite-dimensional.

(2) There exist a projection, #: N\ (X) — HP9(X), so that we have the orthogonal decomposition
(Hodge decomposition)

P>q P,q—1 L p,q+1
A =00 118 A 0117 A (0
(8) There exists a parametrix (= pseudo-inverse), G, (Green’s operator) for [, and it is is uniquely

determined by

(a) id=wn+0G =n+ G, and
(b) GB=08G, Gd =9 G and G | H"I(X) = 0.

Remarks: (1) If a decomposition “a la Hodge” exists, it must be an orthogonal decomposition. Say
E€cON " (X)and e d APT(X), then

(55 77) = (35073*770) = (35507770) = Oa
and so, AP (X) L8 AP?T(X). Observe that we can write the Hodge decomposition as

p.q

1
A =#0 [ O

p.q
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For, if £ € QA”(X), then £ = (0 &) + 8 (9&), and this implies

p,q—1 p,q+1

OAX) S A ()48 A ().

However, the right hand side is an orthogonal decomposition and it follows that

D, p,q—1 p,g+1 p,q

1
HX)+OAX) =H(X)+0 A O[]0 A\ X)=AX).
For perpendicularity, as [] is self-adjoint, for £ € HP*9(X), we have

(&,00m) = @A), n) = 0,
since [J(§) = 0.
(2) We can give a n.a.s.c. that []J(§) = n has a solution, given 1. Namely, by (3a),
n = #x(n) +0G(n)-

If #(n) = 0, then n = [J(G(n)) and we can take £ = G(n). Conversely, orhogonality implies that if n = (),
then #(n) = 0. Therefore, #(n) is the obstruction to solving [1(§) = 7.

How many solutions does [1(§) = n have?

The solutions of [J(§) = n are in one-to-one correspondence with & + HP9(X), where &, is a solution
and if we take & € Ker #, then & is unique, given by G(7).

(3) Previous arguments, once made correct, give us the isomorphisms
HP(X) = Hp' = HY(X, Q).

Therefore, H9(X, Q%) is a finite-dimensional vector space, for X a compact, complex manifold.

For the proof of Hodge’s theorem, we need some of the theory of distributions. At first, restrict to C§°(U)
(smooth functions of compact support) on some open, U C C". One wants to understand the dual space,
(Cs°(U))P. Consider g € L2(U), then for any ¢ € C5°(U), we set

Ag(p) = /U ©gdp.

(Here, p is the Lebesgue measure on C".) So, we have A, € Cg°(U)”. Say A\,(¢) = 0, for all . Take
E, a measurable subset of U of finite measure with E compact. Then, as xg is L2, the function g is
L2-approximable by C§°(U)-functions. So, there is some ¢ € C§°(U) so that

le —xell, <e

As xg = xE — ¢+ ¢, we get

/ gdu = / Xegdp = / (xz — ©)gdp + / pgdp = / (xz — »)gdp
E U U U U
(by hypothesis, A;(¢) = 0). Therefore,

' /E ?du‘ < Iz = ¢l 13l < lgllye.
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which implies that g = 0 almost everywhere. It follows that L?(U) < (C$°(U))P. The same argument
applies for g € C(U) and uniform approximations by C§°-functions, showing that C(U) — (C5°(U))P.

Notation. Set

_lo _ 9

70X, 09X,
where Xi,...,X,, are real coordinates in C", and if &« = (a1,...,y), with o; € Z and «; > 0, set
D* = D' D3?--- Do and |a| = Y7 aj. Also, for any n-tuple £ = (&1,...,&,) € C", we let £ =
e €8 and €)Y = €1 -+ - |€n| ™. The reason for the factor 1/4 is this: Say v is a function and look at
Dj(ﬁ) = —i(%/@Xj. But,

v 0D _

Dj;(v) = —zan = zan =—D;().

Therefore,
D;(uv) = (Dju)v + uD;v = (Dju)v — uD,v.
Consider u,v € C3°(U); then,

(Dju,u):/U(Dju)a:/UDj(um/UuDj(u).

The first term on the right hand side is zero as u and v have compact support, so we get

(Djuvv) = / U'Dj(v) = (uijU)v
U
which says that the D;’s are formally self-adjoint. Repeated application of the above gives
(D%u,v) = (u, D)

/U(Do‘u)ﬁ:/Uu(Do‘v).

Definition 2.4 Let D(U) = C5°(U)™&P be the set of (complex-valued) linear functionals on C§°(U). Now
define, D(U), the space of distributions on U, so that A € D(U) iff A € C$°(U)*# P and \ is “continuous”,
i.e., there is some k > 0 and some Cl, so that for all ¢ € C§°(U),

M@ < COn max [0l (+

and also

As an example of a distribution, if g € Co(U), so ¢ is bounded (all we need is boundedness and intergra-
bility), then

Ag(p) = /U ©gdp.

Then, we have
IAg(0)] < llellos lglly

so we can take C, = [|g||; and we get a distribution. The intuition in (x) is that the bigger k is, the “worse”
A is as a distribution (k indicates how many derivatives we need to control).

We can differentiate distributions: Take g € C!, we have

Ag(p) = / ©gdpu
U
and so,
Ap,g(p) = /U @D, gdp = /U (D;@)gdp = Ag(Djep).

This gives the reason behind the
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Definition 2.5 If A\ € D(U), let D*\ € D(U), defined by
(D*A) (@) = AM(D%p).

Claim: If X € D(U), then D*X\ € D(U).

Indeed, we have

[(DN)(@)] = IMDY)| < Cx max [|[D*P(p)l|loo < Cx max [|DV()] oo
|BI<k v <k-+lal

Therefore, D)\ is again a distribution. Given a multi-index, a, write
n
(@) = o] + H +1.

This is the Sobolev number of a (n = dimension of the underlying space). Now, we can define the Sobolev
norm and the Sobolev spaces, H; (s € Z,s > 0). If ¢ € C°(U), set

lellZ = > 1D%¢lle.

laf<s

This is the Sobolev s-norm. It comes from an inner product

(@7¢)s = Z (Davaaw).

lal<s
If we complete C§°(U) in this norm, we get a Hilbert space, the Sobolev space, Hj.
Say s > r, then for all p € C§°(U), we have
lell? < llell2.

Hence, if {¢;} is a Cauchy sequence in the s-norm, it is also a Cauchy sequence in the r-norm and we get a
continuous embedding
H, CH, if s>r.

Let Hoo = ﬂszo H,.
Theorem 2.18 (Sobolev Inequality and Embedding Theorem) For all ¢ € C§°(U), for all o, we have

[D%plloe < Ka”SDHU(Oc) and Hs(U) C Cm(U)a

provided U has finite measure, m > 0 and o(m) < s. Furthermore, Hy(U) C L+ (U) if n > 2s.
(We have o(m) < s iff m < s— [2].)

Theorem 2.19 (Rellich Lemma) The continuous embedding, p-: Hy — H,, (for s > r) is a compact
operator. That is, for any bounded set, B, the image p}(B) has a compact closure. Alternatively, if {¢;} is
a bounded sequence in Hy, then {p}(p;)} possesses a converging subsequence in H,.

To connect with distributions, we use the Fourier Transform. If ¢ € Co(U), we set

60~ (5) [ etore @
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where (z,0) =377, z;0;. (Recall that over R, we are in R?".) The purpose of the fudge factor in front of
the integral is to insure that Fourier transform of the Gaussian

is itself. As

/n e~ Hz’z’”2 dxr = (\/%)n,

we determine that the “fudge factor” is (2w)~™. It is also interesting to see what Ej\cp(ﬁ) is. We have

Dro0) = [ (D)) @ do = [ o@D

Now

0

e’L Emkek — Z'gkel Emkek
an

and 9
Djeizzkek =4 eizmkek :gkeiszGk'
al'j

It follows that

—

Djp(0) = 0;5(0),

that is, D; turns into multiplication by 6; by the Fourier transform. We also get

Theorem 2.20 (Plancherel) If ¢ € C§°, then

lell L2 = Il 22

As a consequence, we can compute the Sobolev norm using the Fourier transform:

2 —
1Bl = > 1D¢llz

laf<s

and

> IBlE = Y [ e Ema

la|<s la|<s
SN REORT
cr || <s
< [ asipyiEoPas
< Const / 162 |3(6)[2 d = Const || 2.
C’n.

(Using Plancherel in the last step.) Therefore, the norm

1815 = /C (1+101%)" 1&(0)[* do

satisfies
2 ~ 2
lelly < 1212 < Const [l ,
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that is, these norms are equivalent and we can measure ¢ by the Sobolev norm on the Fourier transform.

Observe that we can define H_, (s > 0) via the completion of C§° in the norm [, (1+16|%)~*|3(0)|? d6.
Clearly, we get the chain of inclusions

“DH ,2H ,412---2H 1 DHy=L*2>H,---2H, 12 H, 2 - He.

This suggests defining H_, by

H_o = U H,.

neZ

The Sobolev embedding lemma implies Ho, € C>(U) and C5°(U) € Hy. Now, H_ ¢ defines linear functionals
on Hy;say v € H_; and ¢ € H,. Consider

blp) = /W d9—/\/1+|9l2<p Do

V(+ |9|2)
By Cauchy-Schwarz,

[Y(o)l = (e, 1/1)|—/( $)(0)do < lell, [l -

Therefore, we have a map H_4 — HP and it follows that H_; =2 HP up to conjugation.

Remark: If ¢ € C5°(U) and A € D(U), then

M) < Cx masx [ D%l for some k.

By Sobolev’s inequality,
(Al < CaKallgllo(a),

for some suitable « so that || < k. Thus, if A € D(U), then there exist some « such that A is a continuous
functional on C§°(U) in the o(«)-norm. But then, A extends to an element of HO_ (by completion) and we

conclude that D(U) = H_

Proof of Theorem 2.19 (Rellich Lemma). Given a bounded sequence, {¢x}72 ;, there is some C' > 0 so that,
for every k,
[ aieprigaoras < c

Thus, for every 6, the sequence of (1 + [0]?)*|5x(0)|? is a bounded sequence of complex numbers. Therefore,
for every 6, we have a Cauchy subsequence in C. As there exists a countable dense subset of #’s in R”, the
Ny-diagonalization procedure yields a subsequence of the ¢4’s so that this subsequence is Cauchy at every 6
(i.e., (1 +0]*)%|@k(0)|? is Cauchy at every ) and, of course, we replace the ¢y’s by this subsequence. Now,
pick € > 0, and write Uy for the set of all 8’s such that

1
- >
(L +1[0]2)s— —

€.

Look at

lex — 1| L+ 10P)|(B — @) (6) 26

/ L Y 1@~ @R+ [ (0PI~ 2O
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But, as {(1 + |0]?)%|3x(0)|*} is Cauchy, there is some large N so that for all k,l > N,

L +10)" 18k = @O < (1 +101°)°1(Bx — 21)(0)]* < e/ (Vo)
for all 8. Then, the first integral is at most €. In the second integral,

|2 _ (1 + |9|2)S

= AR |(Pr — @)(6‘)|2 < enumerator.

(1+101*)"[(Bx — 21)(0)

But then,
/ A+ 10" 1(@r — @1)(0)*do < e/ numerator < Cle.
n U0

n

Therefore, {¢x} is Cauchy in H,, and since H, is complete, the sequence {¢} converges in H,. []

Proof of Theorem 2.18 (Sobolev’s Theorem). Pick ¢ € C3°(U) and take s = 1. Then, for every j, as

v < | " |Djo(@))da;,

o0

we get )
o)™ < [T </Oo°° |nga(:17)|d3:j) .

Thus, we have

()| D) < 1_1 ( / h >|dxj)1/(n_1). ()

We will use the generalized Holder inequality: If

1 1
__|_..._|__:1
p1 Pm

and if p; € LPi, for j =1,...,m, then ¢1 -+ ¢, € L' and

o1 @mllps < llerllpon -~ lomll om -

Assume that n > 2 and set p; =n—1, for 1 < j <n — 1. Integrate (x) w.r.t. x1, 2, ..., Ty, but in between
integration, use the Holder inequality:

0o [e%) [e’e] 1/("*1) n [e'e] 1/("*1)
[ e < [ [/ |D1<<p>|dx1} H[/ |Dj<<p>|dxj} dy

Jj=2
_ — 1/(n-1)
[/ |D1(90)|d$1} H/ / v)|dxzjdzs

If we repeat this procedure, we get

A

IN

1/(n-1)

/ @V < ] / 1D, ()| dx
U 1Ju
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Raising the above to the power (n — 1)/n, we get

1/n

n 1 n
el < (1 [ Dst0las | <5 (30 [ iDstde |
j=17U m\j=lu

by the arithmetic-geometric mean inequality. Apply this to ¢7, for some approrpiate choice of 7. For the
rest of this argument, we need n > 2 and we choose v to satisfy

1(25) =20,

2(n—1
FY:L)>05
n—2

We deduce that

as n > 2. We plug ¢” in the above and we get

1
97 < 73 [ D

Il

S o

S
.
7
o
S
ey
8

I
3=
(]
RSN
2
-
h—
N
S
S
H:
M

by Cauchy-Schwarz. The left hand side is equal to

n—1 n—1
( / |son”"1|dx) _ ( / |s02<“>|dw) .
U U

On the right hand side, the term ||¢7~!||;2 is common to the summands, so pull it out. This factor is

1
(/ |<p2(71)|d:v> ’ )
U

When we divide both sides by this factor, we get

e B
- v
(/ 120 1>|d;p> <= IDi ) e
U n &
Jj=1
But,
n 2n
2(y—1) = =
(v ) n—1 n-—2
and
n—1 1 n-2
n 2 2n
We obtain L
2n 2 2(71—1) -
"7 |d <= D, .
([lem]de) ™ < 220 S iy,
Jj=1

Therefore, we get the Sobolev inequality for the case s =1 and n > 2: For every ¢ € C§°(U), we have

lll, 2a, < K(n) [l (%)

2
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_ 2(n=1)
where K(n) = n=2)"

Now, say 1 € Hy, then there is a sequence, {¢4}, converging to 1 in the || ||;-norm, with ¢, € C5°(U).
Consequently, this is a Cauchy sequence in the || ||;-norm and so,

loqg — ¢rll; <€ for all g, sufficiently large

which implies that
llog — @THL% < e for all ¢, r sufficiently large.

Therefore, the ¢, converge to a limit, ¢ € Lit2,
(a) The map ¢ — 1y does not depend on the choice of the Cauchy sequence.
(b) This map is an injection.
As a consequence, we get the Sobolev embedding when s = 1:
Hy— Lv2, ifn>2.
If we pass to the limit in (x), we get: For every ¢ € Hy,

ol 2, < K ) [0 (+)

n—2

Now, we want the Sobolev inequality on ||[D%pl| when s = 1. In this case, o(a) < s implies
la] + 14+ [%] < 1. Thus, n =1 and a = 0. Therefore, we have to prove

lelloe < K ey -

In the present case, U C R and ¢ € C§°(U). Then, we have
o) = [ o,

SO

lp(2)] < /w ' (B)] dt <[]z [|1Dell > <V u(0) lleelly s

— 00

where we used Cauchy Schwarz in the first inequality. If we take sup’s, we get the following Sobolev inequality
for the case s =n = 1:

Iellee < Kl - ()

Next, consider the embedding property. Here, we have 0 < m < s — [%L so m = 0. Take ¥ € H; and, as
before, approximate ¢ by some sequence, {¢,}, where @, € C§°(U). Then, (s*) implies that

”‘Pq - SDTHOO < K”‘Pq - SDTHl'

As the right hand side is smaller than € for all ¢,r > N (for some large N), we deduce that the ¢, converge
uniformly to some g € C°(U). Then, again, the map ¢ ~ vy is well-define and an embedding. Therefore,

Hy(U) € c(U),

which is the Sobolev embedding in the case s =n = 1.

To prove the general case, we use induction on s and iterate the argument. The induction hypothesis is
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(a) If n > 2s, then for all ¢ € C>(U),

el 2, < K@) gl (+)

(a’) There is an embedding, Hs(U) — L7 s0 (x) holds for all ¢ € Hs.
(b) If0<m <s—[2] (¢(m) < s), then
[1D%¢ll o < K lléllog0) < K- ()
(Here, o(a) < s.)

(b') There is an embedding, H(U) < C™(U), i.e., (**) holds for all ¢ € Hy.

(a) Actually, this part does not require induction. As the case s = 1 has been settled, we may assume
s> 1 (and n > 2s). We need to show that for any ¢ € C3°(U),

oIl 2a, < lleells-

We have
el < llells

and as n > 2s > 2, by the s = 1 case,

Il 20, <l

We conclude immediately that
eIl 2a, < leells-

Note that (a’) is a consequence of (a) in the same way as before.

(b) Assume 0 <m < s+1—[2],ie, m—1<s—[2]. Pick p € C{°(U) and look at D;¢ and o(f) < s.

Observe that m — 1 is such a |3|. By (#x),
D" Djgl| . < KIDj¢ll 5, for all j.
But all D%p are of this form, for some 8 with ¢(8) < s. Therefore,

1D, < K |Ds¢ll, ) < K Il s by (1)

which is exactly (*x). By the induction hypothesis, each D;p € C™~1(U) and we conclude that ¢ € C™(U).
O

Notion of a Weak Solution to, say [Jp = v.

Definition 2.6 Given ¢ € D(U) (but, usually, ¢ € C*(U)), we call ¢ € D(U) a weak solution of (Jy = ¢
iff for every n € C5°(U), we have

©(™n) = ¥(n).

Motivation: We know that [J¢ is defined by

Oe)(n) = »@On).

Therefore, [y = ¢ in D(U) when and only when ¢ is a weak solution.
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2.4 Hodge II, Globalization & Proof of Hodge’s Theorem

Let X be a manifold (real, not necessarily complex) and assume that we also have a C°°-complex vector
bundle, V, on X. We are interested in the sets of sections, I'(U, V'), where U is an open in X. The
spaces Tx and T)’? are real vector bundles and we write Tx ¢ and T)l(),«: for their complexification. We
need to differentiate sections of V. For this, we introduce connections. For any open subset, U, of X,
the space of (C*)-sections, I'(U, A" T2 @ V), of the bundle A" T¥ @) V is denoted by A}, (U) (with
AL (U) =T(U,V)). Elements of A%, (U) are called differential p-forms over U with coefficients in V. The
space of (C*)-sections, I'(U, A’ T¥), of the bundle A" T'% is denoted by A% (U) (with A (U) = C>(U)).
For short, we usually write A}, for A}, (X) (global sections).

Definition 2.7 A connection, V, on V over X is a C-linear map
V: AY — AL,
so that for every section s € I'(X, V) and every f € C*(X), the Leibnitz rule holds:

V(fs)=df ® s+ fVs.

From now on, when we write T'x (or T%), it is always understood that we mean Tx ¢ (or T)’ZC). We can
be more general and require Leibnitz in this case: Say £ € A% and n € A{, (Note, the above case corresponds
top=0, ¢ =1). We require

V(A7) =dEAn+ (-1 EA .

Note that we are extending V to a C-linear map A?, — AT

Look locally over an open U where V is trivial. Pick a frame, e1,...,e,, for V over U (this means that
we have n sections, e, ..., e,, over U, such that for every = € U, the vectors ej(x),...,e,(z) form a basis
of the fibre of V over z € U). Then, we can write

n
Vel- = ZGU X €4,
Jj=1

where (0;; is a matrix of 1-forms over U). The matrix (6;;) is called the connection matriz of V w.r.t. the
frame ey, ..., e,. Conversely, if (6;;) is given, we can use Leibnitz to determine V (over U). Say s € I'(U, V),

then,
n
s = E 5i€4,
i=1

with s; € T'(U,C*). We have

i=1

= Z(dsl ®e; + siVei)

i=1

= Zde ® e; —i—ZsiZHij ® e;
=1 i1 =1

= Z(dsj ®e;+ (i siHij) ® ej),
i=1

Jj=1
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which can be written
Vs=ds+s-0.

In the general case where s € A}, we get (DX)
Vs=ds+ (-1’ s A0, wherep=degs.

Given a connection, V, we can differentiate sections. Given v € I'(U, Tx), i.e., a vector field over U, then
for any section, s € I'(U, V), we define V,(s) = covariant derivative w.r.t. v of s (= directional derivative

w.r.t. v) by:

Vi(s) = (Vs)(v),
where Vs € T'(U, T ® V), and we use the pairing, T'(U,T2) @ T(U,Tx) — C*, namely, evaluation (=
contraction).

What happens when we change local frame (gauge transformtaion)? Let €1,...,€, be a new frame, say

n
€; = Z 9ij€;
j=1
which can be written € = g - e, in matrix form (where the g;; are functions). We know
Ve =Y 0 ®F

and

NE

Ve = V(gije;)

<.
Il
—

I
WE

(dgi; ® ej + gi;Vej)

<.
I
—
3

dgzk ®€]€ +Zzgzg Ik X ek
j=1k=1

[
M:

b
Il
—

[
NE

dgik ® ex) + ( gzﬁjk) ®ek |,

.
o
i

Ead
Il
—

which, in matrix form, says
Ve =dge + gbe.
But, e = g7 1€, so
Ve=dgg e+ ghg e,
and finally, we have the change of basis formula (gauge transformation)

1 -1

gzdgg_ + gbg

For the general Leibnitz rule

V(EAD) =dEnn+ (—1)1BEE AV,

(with € € A%, n € A%), note that d§ Anp € A% A AL and €AV € A% A AL so we can concatenate V,
that is, take V again. We have

V(& An) = V(dE An) + (—1)*8EV(EA VD),

?o (V:Q: Y LAR ;4]‘0/+q+2. The operator, V? (really, its part V2: AY, — A}) is the curvature operator of V
a C-linear map).
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Definition 2.8 A connection V is flat iff V vanishes, i.e., V? = 0. That is, the infinite sequence

\% \% \% \%
AV =5 AL — AL S Ay — -

is a complex.

Not only is V2 a C-linear map, it is C*°-linear. This is the lemma

Lemma 2.21 The curvature operator of a connection is C*®-linear. That is, for any f € C>®(U) and
s € (U,V), we have
VA(fs) = [(V3(s)).

Proof. We have
V3(fs) = V(V(fs))

= V(dfAs+ fAVs)
= d(df)ANs—df NVs+df ANVs+ fAV?s
= fAV3s

fV2s,

which proves the lemma. []
Consequently, the curvature, V2, is induced by a bundle map,
2

0:vV— \TZ oV,

and the latter is a global section of

2 2 2
Hom(V,/\T;? V)= /\T)? ® End(V) = /\T)? VP V.

We will need to know how to compute the curvature in a local frame. Say ey, ..., e, is a frame for V over U
and eP, ... el is the dual frame in VP (over U). As the e? ® e; form a frame for VP ® V over U, we see

trrn

that over this frame, © is given by a matrix of 2-forms, also denoted ©. Thus, we can write
n
V2(€i) = Z@ij ® ey,
i=1

where ©;; is a matrix of 2-forms over U, called the curvature matriz w.r.t. local frame, eq,...,e,. Say we
change basis to €1,...,¢,. We have

V@) =Y 6,8,
=1

with & =Y _| Gim €m, .., €= Ge. Then, we get

n

V@) = V2D Gimem) =Y GimV3(em)
m=1

m=1

Gim Gml ® €j

NE

1 1

(zn: GimOmt) © ;.

m=1

<.
Il

M- 2 -

<
Il
—
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The left hand side is © ¢ = GOe, but e = G~1¢, so O¢ = GOGIE, ie.,
0=Goec .

If 0 is the connection matrix of V w.r.t. some local frame for V over U, for any section, s € T'(U, V), we
compute V?(s) as follows: First, we have

V3(s) = V(V(s)) = V(ds + s AB)) = V(ds) + V(s AB).
Now, as ds has degree 1 (since s has degree 0), we have
V(ds) = d(ds) —ds A0

and
V(sng)=dsNf—sAV0.

As 0 has degree 1 (0 is a 1-form),
VO =di—0n0,

so we obtain
V(s) =d(ds) —ds NO+ds N+ sA(d)—0ND),

ie.,

V2(s) =s A (d0 —OAO).

Therefore, we have the Maurer-Cartan’s equation (in matrix form):

O=di—-0n0.

Say X is a complex manifold and V' is a holomorphic vector bundle over X. Then, while V is not unique
on V', we can however uniquely extend 0 to V.

Proposition 2.22 IfV is a holomorphic vector bundle on the C*-manifold, X, and if we define for a local
holomorphic frame, e1, ... e, of V and for s € A},

then O defined this way is independent of the local holomorphic frame. Hence, O is well defined on AL

Proof. Let {€1,...,€,} be another holomorphic frame for V over U. We have

n
€ = § gij€yj,
Jj=1

where the g;; are holomorphic functions on U. Then,

n n n n
i=1 i=1 j=1

= j=1 i=1

n

Now, s (according to the ¢;’s) = Y1 | 0&; ® ¢€;, while
0s (according to the e;’s) = Z?:l 5(2?:1 Cjigij) ® e;j. The second term is equal to

n

> (i@aigij + a)iggij)) ® e;.

j=1 i=1
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But, ggij =0, as the g;; are holomorphic. Thus,

0s (according to the e;’s) = Z?:l (Z?:l Eaigij) ® e; and

0s (according to the €;’s) = >, (5@ @3, gijej) =3 (Z?Zl E@igij) ® ej. These expressions are
identical, which shows that d is well defined. []

As a corollary, the Dolbeault theorem is valid for vector bundles, that is

Theorem 2.23 (Dolbeault) If V' is a holomorphic vector bundle over a complex manifold, X, then there is
an tsomorphism
Hg’q(X, V) — HYX, 0% ® Ox(V)).

Suppose now that X is a complex manifold and V' is a C'°°-bundle which possesses an Hermitian metric.
That is, for all z, we have (§;,n,) € C, for all &, n, € V.. and (&, 7,) varies C*° with z and is an Hermitian
inner product for all x.

Definition 2.9 If V is a connection on a vector bundle, V', as above, then V is a unitary connection (i.e.,
comptable with given metric) iff

d(&es M) = (Ve m) + (§as V).

If instead X is a complex manifold but V' is not holomorphic (yet), then the splitting
TL = 72OV 172 MY yields the splitting

A, 5AL — 1,1 OY e [[rex, e MY e v),
which gives the splitting V = V10 4 Vo1,

Definition 2.10 If V is a connection on a holomorphic vector bundle, V', over a complex manifold, X, then
V is a holomorphic connection (i.e., comptable with the complex structure) iff

Vol =9.

Call a vector bundle, V', on a complex manifold, X, an Hermitian bundle iff it is both holomorphic and
possesses an Hermitian metric.

Theorem 2.24 Given an Hermitian vector bundle, V, on a complex manifold, X, there exists a unique
connection (the uniholo connection, also known as “Chern connection”) which is both holomorphic and
unitary. Denote it by Vy .

Proof. Look locally at a holomorphic frame and take 8, the connection matrix of some connection, V. Then
V(ei) = Zeij X ej.
j=1

The connection V will be holomorphic iff
VO 1U=9 onU,

e, VOI(X  si®e;) = 0s; @ e;. Therefore (as 91 = 0), we must have V%!(e;) = 0, for every e;. So, in
the frame, 6 is a (1,0)-matrix and the converse is clear.

For this V to be unitary, we need

dbij = d(ei,ej) = (Vei,ej) + (ei,Vej).
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On the right hand side, we have

n n

<(kz; Hikek),ej) + (ei, (Tz: t%—rer)) = > Oilere))+ > Ojnleirer)

k=1 r=1

= Z Oikbr; + Zgjrbir
r=1

1

k
—T
— (0B+7 B);

(Here B = (b;;) = (ei,ej).) Now, dB = 0B+ 0B = 0B + 0* B, from which we deduce (by equating the (1,0)
pieces and the (0, 1) pieces) that
OB=0B and 0B =0*B.

(Here, 0* = ?T). The first equation has the unique solution
0 =0B-B"".

A simple calculation shows that it also solves the second equation (DX). By uniqueness, this solution is
independent of the frame and so, it patches to give the uniholo connection. []

Corollary 2.25 (of the proof) For a holomorphic vector bundle, V', over a complex manifold, X, a connec-
tion V is holomorphic iff in every holomorphic local frame its connection matriz is a matriz of (1,0)-forms.

Corollary 2.26 For a vector bundle, V, with Hermitian metric a connection V is unitary iff in each every
unitary local frame its connection matriz is skew-Hermitian.

Proof. By the proof, for a unitary frame, the connection V is unitary iff
0=dl=0I+0"1=0+0".

Therefore, #* = —6, as claimed. []

Say s € A}, (U), t € A}, (U) and V is a unitary bundle with an Hermitian metric. For a local frame over
U, set

{Sa t} = ZS# A tl’ (6#7 6,/),
12214

called the Poisson bracket, where s = 37 s,e, and t =3

n

v—1 tvey. Then, we have

Corollary 2.27 A connection, V, on a unitary bundle is a unitary connection iff for all s,t (as above),
locally
d{s,t} = {Vs,t} + (=1)48° {5 Vt}.

Proof. (DX).

Corollary 2.28 IfV is a unitary connection on the unitary bundle, V', then the local curvature matriz, ©,
n a unitary frame is skew Hermitian.

Proof. We know that © = df — 6 A 6 and 6 is skew Hermitian (DX). ]

Proposition 2.29 Say V and V are unitary and holomorphic vector bundles over a complex manifold, X,
and W is a holomorphic subbundle of V. Write, as usual, Vv ,Vy;, for the uniholo connections on 'V and

V. Then,
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1
(1) W is also an Hermitian vector bundle and if V.= W [[ W+ in the metric decomposition for V, we
have

VW = prw o Vv.
That is, the diagram

v
0 4 1
Ay ——= Ay

incﬂ\llm‘w l;m‘w

0 1
—_—
Ay == Aly
commutes.

2) Ve Vs again an Hermitian bundle in a canonical way. And for this structure,

VV®‘7:V\/®1+1®V‘7.

(3) Write VP for the dual bundle of V. Then, V? is again an Hermitian bundle in a canonical way and
Vo is related to Vy by the following local equation in a local frame:

d(e;, €JD) = (Vye,, GJD) + (e, VVDGJ-D).
Proof. In each case, make a candidate connection satisfying the appropriate formula. Check it is both
holomorphic and unitary and use uniqueness.

(1) Write V = pri o Vy. It is clear that W inherits a metric from V. Check that V is holomorphic.
Pick s € T'(U, V) and embed s in T(U, V). As V! = priy o V', we have

Vols = pTW(V?/’ls) = prw (0s) = s,

by the way 0 is defined (0 does not touch basis vectors) and s = Zle w; ® e;. We need to check that
V = prw o Vy is the uniholo connection. As the metric on W is the restriction of the metric on V', we have

d(s,t)w = d(s,t)y = (Vys,t) + (s,Vys,t)
= (prw o Vys,t) + (pryys o Vys, t) + (s,prw o Vyit) + (s, priyr o Vit).
As W is perpendicular to W+, the second and fourth terms in the right hand side are 0. Therefore, we get

d(s,t)w = (Vs,t) + (s, V).

This shows V is also unitary. By uniqueness, V = V.

(2) Say V and W are hermitian bundles. Metrize V ® V as follows: Consider s ® 5 and ¢ ® 1, for some
sections smt of V and sections 5,5 of V' and define

(s®35,t@t) = (s,1)(5,1)

and extend by complex sesquilinearity. We get a hermitian form on V ® V and (DX), it is positive definite.
The space V ® V is also holomorphic as each is. Let

VZVV®1+1®V‘7.
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In order to check that V is unitary, it suffices to check this on the special inner product (s ® 5,t ® tN) We
have

ds@35tet) = d((st)(51))
= d(s,t) (5,8) + (s,1) d(’f-f?tN)~ - -
[(Vvs,t) 4+ (s, V)] (5,1) + (s,8)[(Vs, t) + (5, V)]
(Vvs, t)(5,8) + (5, Vvt)(3,8) + (5, 1) (V5,1) + (s,8)(5, Vipt)
(Vys®@3,t010) + (s@5, Vit @) + (s@ Vs t @) + (s 3,1 ® Vit)
= (Vv®1+1@Vy)(s®3),t®t) + (s®5, (Vv @1+ 1@ V)t ®1)),

as required. Now, V! VO '91+1® VO ! and the latter two are 9. It follows that

Vil =(0®1+120).

If (e1,...,€n) is a holomorphic frame and s = >/, s;e;, and similarly, 5= Y "I | s;¢; for (é1,...,€,), then
as
3(si3;) = (0si)s; + 5:(0sj) = (0@ 1+ 1®9)(s; ®3;).

Therefore, V is uniholo and so, it is VV®‘~,.

3) For the dual bundle, say (e1,...,e,) is a local unitary frame. Let eP, ... e? be the dual frame and
1 €n

decree it shall be unitary. We get an hermitian form on V' and this is independent of the choice of the
unitary frame. The bundle V' is clearly holomorphic, so V' is hermitian. Check (DX),

(5, VyotP) =d(s,tP) — (Vys,tP)
define the uniholo connection in V2. []

Now, say V is holomorphic and V is a holomorphic connection. So, V%! = 9, but we know a3 =o.
Therefore, V%2 = (V%1)2 = 0. We deduce that

n
0,2, _ 0,2
0=V €; = Z Gij €j
j=1
and by linear independence, ©%2 = (0). If we change frame, ©%2 = BO*2B~1 50 ©%2 = ( in any base. If
V' is hermitian and V is uniholo then we know O is skew hermitian in a unitary frame, i.e.,

0=-0"=-96 .

—T
Consequently, —(020)T = —©02 | which means that ©%° = (0), too! Therefore, © is a (1, 1)-matrix. Now,
w=—wifwisa (1,1)-form, and since © is skew hermitian, we get

Proposition 2.30 For a holomorphic bundle and holomorphic connection, V, the curvature matriz, ©, of
V in any frame has ©%2 = (0). If V is an hermitian bundle and if V = Vy is the uniholo connection, then
in a unitary frame, © is an hermitian matriz of (1,1)-forms.

Now, look at VP, for V hermitian. Say  is the connection matrix for Vy in a unitary frame and 67 the
connection matrix for Vi, p in the dual frame. We have

Vv ZGZ]eJ and Vyo(ep) ZG,W e;.

j=1
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Now, (e;,eP) = §;x, which implies d(e;,e?) = 0,, for all i, k. It follows that

0 = dlesef) = (Vvei,er) + (e, Vynep)
= D bilesel)+ > 0D (eiel)
J r
= O +0p.
Therefore, 05, = —0;y,, i.e., 0 = —07.

Proposition 2.31 If V is a hermitian bundle, V7, its dual, and Vv and Vo their uniholo connections,
in a unitary frame (and coframe) for V. (and VP ), the connection matrices satisfy 6P = —07.

Back to the Sobolev theorem and Rellich lemma. Instead of 9/9X; locally on a real manifold, X, use n

independent vector fields, vy, ..., v,. If fis a C°°-function on X, locally on some open, U, for all z € U, we
have .
=3 53
i 99X,
j=1 J

for some C*° functions, agl), and so,

- z) af
Do

Note that in general, v;vr(f) # vevi(f). Indeed, we have

vivk(f) = Za(k) af

_n n f
—Zlaaxz ax,

n (k)
= Z az) (,k)yif_k Z ag)‘%‘_jﬁ

“ 0X,0X; 0X, 0X;’
r,g=1 rj=1
Interchanging k and ¢, we have
= S g0 w9 | of
wilf) = 3 o aX aX N Z 9X, DX,
r,g=1

We conclude that [v;,v;](f) = vivr(f) — vevi(f) = a sum involving only the ax s, i.e., it is a first-order
differential operator = Oy (9, 9).

If V is a vector bundle on X and V is a connection, vi,...,v, are n independent vector fields and

vP, ..., v are their duals, then in a local frame, ey, ..., e, for V over U, for any section, s € I'(U, V), if

rrn
S = E S5€5,
Jj=1

then, by definition,

V(s) = (Vu, ()0 @e;

.3
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defines the covariant derivative of s. Write V; for V,,. But, we have

t
V(Z Sjej)
=1
t t
= Zde ®e;+ Zsjvej
= st] ®ej+ Z 5;0;r @ ey,

j,r=1

V(s)

where the 6;, are 1-forms involving the v”. Furthermore,

ds; :Z 0s; X = zn: 68] b vD Zuu si)v

k:l k,pu= 1
and
ds; ®e; =Y vi(s;)vf ®ej,

k
so, we get

t n t

V(s) = Z(V( zv ® e :szl sj)vP ®ej + Z $;0jr ® €.
gl j=11=1 jor=1

This shows that (V;(s)); and v;(s;) differ at most by Og(9,9) and (V;(s)); involves the v; operating on s; +
a term using the connection matrix.
We can repeat this process with I'(U, V ® T2) and get V;(V;) and V;(V;) and from before, we find that

Vi(V;) = V;(V;) = 01(0,9).
This can be extended to multi-indices. For o = (a1, ..., a,), define

VU =Va (Var (- (Van ) ---))-

The above term is well define and is independent of the order taken, up to O\ (0,0).

Say V has a(n hermitian) metric and V is a unitary connection and assume X is compact. For any
feC>®(X,V), we have ||[Vf| L2, so we can define

2= S Ive sz = Y /wa 2)P(x),

|| <s la|<s

where ®(x) is the volume form on X. This is the Sobolev s-norm on C*(X, V). Locally, where V is trivial,
the above computations show that this norm is equivalent to the Sobolev s-norm defined before using the
D%’s. When we complete C*°(X, V) w.r.t. the (global) s-Sobolev norm we get H(X,V)s, a Hilbert space.
Then, cover our compact space, X, by a finite number of opens where V is trivial, take a partition of unity
subordinate to our cover, {U, }, use the sup of the finitely many constants relating global s-norm restricted
to U, and local s-norm on U,, and we get

Lemma 2.32 (Global Sobolev Embedding Lemma) If X is a compact (real or complex) manifold and
m € Zxo, V is a vector bundle with metric and unitary connection, V, then

H(X, V)U(m) — Cm(X, V).
In particular, (, H(X,V)s = C>®(X,V).
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We also get

Lemma 2.33 (Global Rellich Lemma) For X compact, V' a vector bundle with metric and unitary connec-
tion, if s > r, then the embedding
H(X,V)s = H(X,V),

18 a compact operator.

Now, we are going to apply the above theorem to T2 and A”?(X). Consider the spaces A\"?(X) =

(X, A\"?T2) and suppose X is metrized (and compact), i.e., Tx (hence T2) are bundles with a metric. If

we have a local unitary frame for T over U, say e, ...,e,, and dual coframe eP, ... eP for T)’?, then we

know AP?(X) is a pre-Hilbert space. Recall that if |[I| = p and |J| = ¢, then o
{e? NeF}ra
is a basis for A”'?(U) and decree that the e? A2% are mutally orthogonal with size
lef neF|* =2+,
We found that for &, € AP4(X),
€)= [ ).

where ®(z) is the volume form. If w € A”?(X), we can form (as usual), V®w, for V a unitary connection
on T¥, and thus, we have |V°w||%,, where

Vw32 =/(v%,v%)mq>(x).
X
Then, AP”?(X) has the s-Sobolev norm:
ol = 32 19l = 3 [ (90w, Vo))
la|<s laf<s 7 X

where w € AP?(X). Complete A”?(X) w.r.t. the s-Sobolev norm and get the Sobolev space, H (X )£:.

We even have another norm on (p, ¢)-forms in the complex, compact, case, the Dirichlet norm. Say
&mne AP(X), and set

(&m)p = (&m)r2 + (96, 9n) 2 + (96,9 )2
(Here, 0" is the formal adjoint of 9.) The Dirichlet norm is given by

I€l1B = (&:€)p-
We can motivate the definition of the Dirichlet norm as follows: Observe that
(9€,0n) = (£,0°9n) and (9°€0 n) = (£90 n),

from which we conclude that

(5577)D = (5777)112 + (§7|:|77)L2-

Therefore,

&mp = (&I +0)m)c. (1)

The connection between the Dirichlet norm and the Sobolev 1-norm on A”%(X) is
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Theorem 2.34 (Garding Inequality) If X is a compact, complex and Hermitian metrized, with its uniholo
connection, then for all w € A\"?(X), we have

[wl < Cllwllp,

where C > 0 is independent of w. In fact, || |1 and || |p are equivalent norms on \"?(X).

Using the Garding inequality we can prove

Lemma 2.35 (Weyl’s Regularity Lemma (1940)) Say & € H(X )P4 andn € H(X)5? (actually, n € H(X)"]
will do fort > 0), so that n is a weak solution of [(qn = & (i.e., for all ¢ € A\P"?(X), we have (£,¢) = (n,[1<).)
Then, n is actually in H(X)DH, (resp. n € H(X)P9, ).

Applications of the Weyl Lemma:
Say n € H(X)§? is a (p, q)-eigenform (eigenvalue, A € C) for []:
Cn = An.

Now, n € H(X)§? implies A\p € H(X)H9. By Weyl’s Regularity Lemma, n € H(X)5?. By repeating this
process, we see that n € H(X)%?. Therefore

Corollary 2.36 Every L? weak (p, q)-form for [] is actually C* and is an honest (p, q)-eigenform.

In particular, in the case A = 0, which means [Jn = 0, we get

Corollary 2.37 Every L? weak harmonic (p, q)-form, n, is automatically C* and is a (p, q)-harmonic form
(n € HP1(X)) in the standard sense.

Now, [ is self-adjoint (on A”*?(X)), which implies that all eigenvalues are real. Let w € A”"?(X) be an
eigenform, with A the corresponding eigenvalue. Then, we have

(w,dw) = Mw,w)

= (Ow,0w) + (0 w,d w) > 0.
Corollary 2.38 All the eigenvalues of [] are non-negative.
Corollary 2.39 The operator I +[] has zero kernel.

Proof. If (I +[1)(w) =0, then [Jw = —w. Yet, the eigenvalues of [] are non-negative, so w = 0. []

We now have all the necessary analytic tools to prove Hodge’s theorem. Recall the statement of Hodge’s
Theorem:

Theorem 2.17 (W.V.D. Hodge, 1941) Let X be a complex manifold and assume that X is compact.
Then, for all p,q > 0,

(1) The space Hg’q = HP9(X) is finite-dimensional.

(2) There exists a projection, #: NP"Y(X) — HPY(X) (= Ker[d on AP%(X)), so that we have the
orthogonal decomposition (Hodge decomposition

N—

p.q

1 1 ,
AX) =#1x)[To A [0 A ).
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(3) There exists a parametrix (= pseudo-inverse), G, for [, and it is is uniquely determined by
(o) id=n+0G =1+ G, and
(b) GB=08G, Gd =9 G and G | HPI(X) = 0.
Proof. All the statements of the theorem about orthogonal decomposition have been shown to be conse-
quences of the finite dimensionality of the harmonic space HP?(X) and the fact that
(a) id=#+1G =+ G[], and
(b) GO =9G, GI" =8 G and G | HP9(X) = 0.
Break up the rest of the proof into three steps.
Step I. (Main analytic step). I claim:
For every ¢ € H(X)h? = L?-(p, q)-forms, there is a unique 1 € H(X)}'?, so that, for all n € A"?(X),
(%, (L +0) ()1 = (s m)o

and the map ¢ — S(¢) = 1 is a bounded linear transformation H(X)5? — H(X)P1.

Consider (I+0) AP(X) € A"%(X). As I +[Jis a monomorphism, there is only one n giving (I +[J)(n).
Look at the conjugate linear functional, [, on (I +[J) A”?(X) given by

I +O)™) = (v, m)o-

We have
[+ = [(p.mol < llello [l -

(By Cauchy-Schwarz.) Thus,

L +TD )] < Nl Inlle < llello 1 +DD)I

and by Garding inequality, the D-norm is equivalent to the Sobolev 1-norm. Therefore, [ is indeed a
bounded linear functional on (I +[J) A”?(X) < H(X)"?. By the Hahn-Banach Theorem, [ extends to a
linear functional, with the same bound, on all of H(X)"?. But, H(X)}? is a Hilbert space, so, by Riesz
Theorem, there is some ¢ € H(X)}? so that

I +D) ) = (&, (I +DT) ()1
Check that 1 is unique (DX). Then, we have

(¥, (T +0O) )1 = (¢, n)o

for every n € \P?(X). Write 9p = S(¢); then, formally, S is self-adjoint as I + [ is itself self-adjoint. For
boundedness of S, compute
2 2
[S¢lly < ClISeln < C(Sp, (I +T)Sp)o;

by Garding inequality, but [].S = 0, so
C(Se, (I +)Sp)o < C(Se, o < [ISellg llelly -

(By Cauchy-Schwarz.) Now, S inverts I + [] and therefore is an integral operator on L2-(p,q)-forms.
Therefore, there is some K > 0 so that

||S<PH0 <K HS"HOa
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and we conclude that
2 2
[Selly < CK llellgllello = CK llelly

which shows that S is indeed a bounded operator from H (X){? to H(X).
Step II. (Application of spectral theory).

Consider
H(X)B? 25 H(X)P? — H(X)D,

where the last map is a compact embedding. Apply Rellich’s lemma and find that our operator

H(X)y? — H(X)5? is a compact self-adjoint endomorphism. In this case, the spectral theorem says that
H(X){? splits into a countable orthogonal coproduct of eigenspaces for S, each of finite dimension, write
S(Am) for the A,,-eigenspace of the operator S (i.e., S(A) = {p | S(p) = /\m<p})

p,q H S

m>0

Now, Sy = 0 implies 0 = (S¢, (I +)(n)) = (¢, n)o, for all n € AP?(X), so we deduce ¢ = 0, by denseness
of AV%(X) C H(X)B?. Therefore, A, # 0, for all m. Look at ¢ € S(An), so S(p) = Amep. Then,

(I+D)S@ =Y = (I+D)()‘m</7) = /\m@+ Am(D‘P)a

(0520) -0

As we can reverse the argument, we conclude that there is an isomorphism between S(A,,) and [] (w)
— (1=2m)
- >\’V7'L

from which we get

Set i , so the p,, are the eigenvalues of [], and we know that they are real and positive. Arrange
the g, in ascending order
o < pp < pg <o < fip <

W and we see that p, 1 oo and A, | 0 and [J(pm) = S(Am). We

As oy, = we have \,,

conclude

(a)

_ 1
T (I+pm)

1
P;q D HP;Q
R £

m>0

and each is a finite dimensional space, so HP9(X) is finite dimensional. Further

(b) Each subspace, [1(tm ), consists of C*° (p, ¢)-forms (by Weyl’s lemma).

Step III. (The Green’s operator).
On (HP9)*, we have

Ly :D(i <Pn) = il:l@n = iﬂn@na
n=1 n=1

n=1

SO

o0 o0
2 2 2 2
I8l =Y 2 llenlly = 13>~ llenlly = 62 el -
n=1 n=1

Therefore,
2
IT¢ls > #illel,
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on HP9(X), which implies that if we construct a parametrix, G, it is automatically bounded above, i.e.,
continuous.

Set G =0 on HP4(X) (by definition) and on [(gm ), set
Glp)=—¢
()=
Then, this G is compact (as H(X)5? is an orthogonal coproduct of its eigenspaces and they are finite
dimensional, its bound is < u_11)’
06 =G,
as this holds on each piece. Consider ¢ € H(X)5? and look at ¢ — #(p). We have

GO — u(p)) =0OG(p — #1(p)) = ¢ — 1(p).
As[OG(p) =0(Gy) =0OG(¢ — #(p)) = ¢ — #u(p), We get
¢ =n(p) +OGy
e, I =#+[1G. I
We get a raft of corollaries.

Theorem 2.40 (Hodge—Dolbeault Isomorphism and Finiteness Theorem) If X is a complex and compact
manifold, then the spaces H1(X, Q%) are finite dimensional for all p,q > 0 and we have the isomorphisms

HPI(X) = HPY(X) = HI(X, 0% ) = HI(X, Q).

(Recall that [Ty = 0, ie., ¢ € HPY(X), iff dp = ' = 0iff ¢ is O-closed and ||| is an absolute
minimum in its d-cohomology class.)

Corollary 2.41 (Riemann’s Theorem on Meromorphic Functions) Say X is a compact Riemann surface (1-
dimensional complex, compact, manifold). Given (1,...,¢;, distinct points in X and integers ai,...,a; >0,
if 22:1 aj > g+ 1, where g = dim H'(X, Ox), then there exists a non-constant meromorphic function, f,
on X having poles only at (1,...,( and for all v, 1 < i <t, the order of the pole of f at (; is at most a;.

Proof. Note that dim H!(X,Ox) is finite by Hodge-Dolbeault (case p = 0, ¢ = 1). At each (;, pick a small
open neighborhood, U;, and an analytic isomorphism, ¢;: U; — A(0,1), where A(0,1) = {z € C | |z] < 1}
and ©;(¢;) = 0. Choose the U; small enouh so that U; NU; = () whenever ¢ # j. Let V=X — {G,...,{}-
Then, {Uy,...,U;, V} is an open cover of X. We know

H'({U;,V — X},0x) — H'(X,0x) = H'(X,Ox).

Therefore, dim H'({U;,V — X}, 0x) < g. Consider the 1-cocycles

, 1\%
() — <—> on U;NV,
Pi

where 1 <1i¢ <t;1 <k < a;. Consider k; then, we have a1 + - - - + a; cocycles, which implies that there are
at least g + 1 cocycles. But, the dimension of H!({U;,V — X}, Ox) is at most g, so these cocycles yield
linearly dependent cohomology classes and we deduce that there exist some c¢;; € C so that the sum

F= Y cikty)

1<i<t
1<k<Za;
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is a coboundary. Therefore, F' = g; — gv on U; NV, where g; € T'(U;,Ox) and gy € T'(V,Ox), for all i.
Now, set

f_{sz 1Czk'¢/1k —aq onU;NV
gv onV.

Observe that f is meromorphic and the local definitions agree on the overlaps, U; NV, by choice, so f is
indeed globally defined. The poles of w,(;) are only (; with order < a;, which concludes the proof. []

What is going on?

Say X is a complex manifold and let M x be the sheaf of germs of meromorphic functions. We have the
exact sequence

0— Ox — Mx — Px — 0, (*)

where Px is the sheaf cokernel of the sheaf map Ox — M x. Pick an open, U, and look at I'(U, Px). By
definition, o € T'(U, Px) iff there is an open cover, {U, — U}, so that 0, = o | U,. Lift each o, to a
meromorphic function, f, € I'(Uy, Mx). On overlaps, f, — fa goes to zero on passing to I'(Uy N Ug, Px).
It follows that fo — fg € I'(Ua NUg, Ox). Therefore, I'(U, Px) is the set of pairs

{{Ua — U}, fa € T(U, Mx)) | fa = f3 € T(Ua N Us, Ox)}-

This set is called Cousin data of type 1 for the open U.

Cousin Type 1 Problem: Given Cousin data of type 1 on U, does there exist a meromorphic function, f,
where f € I'(U, Mx), so that f [ Uy = fo?

Write down the cohomology sequence for (x) over U:
0 — (U, Ox) — (U, Mx) — T(U, Px) - H'(U, Ox).
Consequentely, Cousin 1 is solvable iff H*(U, Ox) = (0).
Example 1. Take U = C!, then the Mittag-Leffler theorem holds iff H!(C!, O¢1) = (0).
Example 2. U = C". Again, OK.

Corollary 2.42 (Caset = 1) Say X is a compact Riemann surface and ( € X. Write g = dim H*(X, Ox).
Then, there exists a mnon-constant meromorphic function, f, on X having a pole only at { and the order of
the pole is at most g + 1.

Consider a compact, complex, manifold, X, with a metric, so we have * and look at *[] (on (p, ¢)-forms):

«[01 = %00 +080)
= #0(—*0%) +*(—x9%)0
= —(x0%)0* +(-1)PTIT19 %9
= 9 0x+0x0(—1)prtat!
T
= [*.

Say £ € HP9(X), then []¢ = 0 implies *[](¢) = 0, and from the above, [](x£) = 0. Therefore, £ €
H"Pn—4(X) and we get an isomorphism

x: HP9(X) —» H"PT(X).
@ This isomorphism depends on the metric.
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Is there a canonical choice? Answer: No.
Is there a duality? Answer: Yes.

Take p = ¢ = 0, then we have
w: HOO(X) — HM™(X).

But, X is compact and connected, so H%?(X) = C. As 1 = & (the volume form) in H™"(X), we deduce
that
HP(X)=C-d.

Now, we have the pairing
08 @ Q% — Q8P where £@n— AN

The above induces the cup-product on cohomology:
H(X,08) ® H*(X, Q%) — H*F*(X, 87,
By Dolbeault, Hg’q(X) ~ H(X, Q% ). But, we have the pairing on the groups in the Dolbeault complex:

’

D.q p'.q p+p’,q+q

AX)e ANx)— A\ (X), where £@n—EAn.

Moreover, (& An) = 06 An+ (—1)38E ¢ A 9, an this implies (DX, elementary homological algebra) that
we get the pairing

H2(X) @ HY Y (X) — HEPP 9V (X)

and the diagram

H2(X) @ HY ' (X) —— HEPP9T9(X)
H(X,0%) @ HY (X, Q8) — Hatd (X, Q%)
commutes up to sign. This will give us the theorem

Theorem 2.43 (Serre Duality—First Case) Let X be a compact, complex manifold of complex dimension n,
then

(1) There exists a canonical isomorphism (trace map)

tr

H"(X,0%) =C,
and
(2) The cup-product pairings
HIY(X, Q%) @ H (X, Q% ") — H*(X,Q%) = C
are perfect dualities of finite dimensional vector spaces.

Proof . Define tr: H"(X, Q%) — C as follows: Take ¢ € H"(X, Q%) and represent it by a C* (n,n)-form,
n€ N""(X). Define
tr(¢) = / .
X
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Another lift is  + 9¢, where £ € A™" ' (X). We have

/X(n+3£):/xn+/x5£-

But, d¢ = 9¢ + ¢ and 9¢ = 0 (since £ € A" (X)), so we deduce d¢ = 9¢. Consequently,

since X has no boundary (by Stokes). Therefore, the trace map exists canonically. Pick a metric on X, then
Hodge implies

Hz (X)=2H""(X)=C- o,
and we conclude that

tr(®) = /X ® = Vol(X) > 0.

Therefore, tr(®) # 0 and tr is a nonzero linear map between two 1-dimensional spaces, so it must be an
isomorphism.

(2) We already have our pairing:
EQn— / ENAT.
X
Put a metric on X, then Hodge says our pairing is the same pairing but considered on
HPUX)QH P YX) — HV(X).
Now, given &, take £, then
g0 s [ ense= el >0
X

(on (p, g)-forms). Since £ # 0 implies that there is some 7 so that [ + §An # 0, our pairing is nondegenerate.
O

Corollary 2.44 If X is the Riemann sphere, S* =P}, then the genus of X is 0.

Proof. We must prove H'(X,Ox) = (0). By Serre duality, this means H°(X, Q%) = (0), i.e., the sphere
carries no nonzero global holomorphic 1-forms. Cover IP’(%: by its two patches, parameters z and w (opens,
UVandon UNV, w=1/z). If w is a global holomorphic 1-form, then

f1U=f(2)dz, f entire on C

and
f 1V =gw)dw, g entireon C.

OnUNV,asw=1/z, we have dw = —(1/2%)dz, so

i.e.

If we let z go to oo (i.e., 1/z — 0), the right hand side goes to 0, as g is entire. Therefore, f is bounded
and entire and similarly, g is bounded and entire. By Liouville, both f and g are constant. But,

fzg(—%) onUNV
z

only if f=¢=0.[]
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Corollary 2.45 On S? = ]P’(%:, for each (, there exists a non-constant meromorphic function, f, having
exactly a pole of order 1 at ¢ and no other pole. The function f may be replaced by af + B, for a,f € C
and no other replacements are possible.

Proof. By Riemann, as g = 0, there is a meromorphic function, f, with a pole of order at most 1 at ¢ and
no other poles. Consequently, this pole must be of order 1 at . Say g is another function with the same
property. Near ¢, we have

b
flz)= —% | holo. function and g(z) = ¢ + holo. function,
z— z—

with a,b # 0. Then, g — %f has no pole at ( and no other poles, which means that it must be constant.
Therefore, g = %f + B, as claimed. ]

Corollary 2.46 If X is a compact, complex manifold, then we have
(1) K™ =1, where n = dim¢ X.
(2) W1 < oo, for all p,q > 0.
(3) hn-pna = ppa,

where h?4 = dime H1(X, Q%) (the gp-th Hodge number of X ).

The same kind of argument as we’ve used shows the pairing
Hpgr(X,C)® HiR"(X,C) — C, where s®t|—>/ SNt (1)
X

is (for X compact) non-degenerate. Simply take, given s, the form ¢ = xs, where x is computed mutatis
mutandis for d just as for 9. We’ll show (just below) these de Rham groups are finite dimensional vector
spaces over C. We deduce

Theorem 2.47 If X is a compact, complex manifold and n = dimc X, then the pairing (f) is an exact
duality of finite dimensional vector spaces.

We know from topology the Kiinneth formula for cohomology of a product

Hx[[v) = [[ HX)eH(Y).
r4s=I
This actually holds for forms in the compact, complex case. Pick, XY, compact, complex, then we have
maps
HY(X or Y, Q% or OF) — HI(X [[Y. 0% 1y),

by pri, or pri. This gives a map
[T #x.0%) a7 (v.0F) — H'(X []Y. Q% ). ()
pt+p'=a

q+q'=b

Theorem 2.48 (Kiinneth for forms (or 0-cohomology)) If X,Y are compact, complex manifolds, then ()
is an isomorphism (for all p,p', q,¢', a,b).
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Proof. Pick Hermitian metrics for X and Y and give X [[Y the product metric. Then, Hodge’s theorem
reduces (*) to the statement:

[T #rox)omn s (v) — ut(x [[v).
ptp'=a
q+q'=b

Step 1. (Enough forms). Notation: z’s and w’s for coordinates in X, resp. Y. If £ is a (p, ¢)-form on X
and n is a (p', ¢’)-form on Y, then

i

p.q p'.q p+p’,q+q

/\(X)® /\(Y)—> /\ (XHY) via €®@n— &(2's) An(w's).

Call the forms in A**(X []Y) of the right hand side decomposable or pure forms. I claim the decomposable
forms are L2-dense. Namely, choose ¢ € /\a’b(X [1Y) and say

/ C(z,w) A x(&(2) Anp(w)) =0, forall £ n.
XY

if ¢(20,wo) # 0, by multiplication by €%, for some 6, we get R(((z0,wo)) > 0. So, there is some neighborhood
of (29, wo) where R(¢) > 0 and we can even assume that this neighborhoodis U [[V, with zp € U and wg € V.
Pick forms, &, 1 with compact support in U, resp. V, and arrange (use another €‘#) so that

R(¢ (20, wo) A #(£(20) Am(wo))) >0

and cut by a bump function so that the form ¢ A *(§ A n) = 0 outside U’ [[ V', with U’ C U, V' C V and
R(form) > 0 on U'[[V'. Then,

o= [ rsern= [ crserm>o

a contradiction.

Step 2. (Ox17v). We know that we have the uniholo connections on X, Y and X []Y, so that
Oxqry = 0x + 9y (1)
A unitary coframe for X [[Y (locally) has the form

(<P1(Z)7 sy <Pl(z)a 1/}1(10)7 s ﬂ/fm(IU)),

where the ¢;’s and 1);’s are unitary coframes on the factors. The Hodge * on X [[Y is computed separatly
from * on X and * on Y. Since 5; = — % Ox* and 5; = —* Jy*, we get

(a) 5§<1‘[Y =0y + Oy;

(b) Oxdy + Iy dy = 0;

(c) By dx + dxdy = 0.
The last two hold because dx 0y + dydx = 0. Then (f1) and (a), (b), (c) imply
Uxpy = g;nygxny +5XHY5;(HY =[x + Oy,

i.e.

Oxyv€®n) = 0OxE) @n+E@ [Ovn).
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So, if (x (&) = A€ and [y (n) = un, we deduce
OxmvE®n) =AE@n) +uE@n) = A+ p)(E@n).

As decomposable forms are dense, the equation [Jx ny =0Ox+Cy (on decomposables) determines [y My-
The decomposable eigenforms for [Jx 7y being dense by Step 1 and the density of the separate eigenforms
for X and Y show that

(i) The eigenvalues of [x [y are exactly A; + pj, 0 <4, 7.

(ii) The decomposable eigenforms are an L?-basis on X [JY.

Step 3. (Harmonicity). Take ¢, an harmonic X []Y-form, say ¢ = £ ® . We have

0=0xpv(Q)=A+pE®n =A+pd
But, we know that A\, > 0 and A + p = 0 implies A = p = 0. Therefore, £ and 7 are also harmonic. []

Proposition 2.49 If XY are compact, complexr manifolds, then

WX T[Y)™ = Y WX)PRy )P
+p'=a

Now, we have a double complex, for a complex manifold, X, (not necessarily compact)
p.q p.q
AX) =T ATR),

with (partial) differentials 0,0 and total differential d = 9 + d. Make the associated total complex, K*®,

where
pyq

K'= ] AX).

p+q=l

It has differential d. We know that the cohomology of K*® is exactly the de Rham cohomology of X (with
coefficients in C):
H"(K*®) = Hpr(X,C).

A double complex always comes with a filtration (actually two)

P'.q
K' oK' = [T A
p'>p
p'+q=l

(Locally, a form is in FPK' iff it has degre [ and at least p of the dzy,...,dz,). Check, FPK®* C K*® is a
subcomplex (under d). So, we get maps

H"(FPK®*) —s H"(K*) = Hii (X, C).

By definition, the image of H"(FPK*®) is FPH[ (X, C) and this gives a decreasing filtration of Hjj (X, C),
for each r > 0. This is the Hodge filtration on (de Rham) cohomology.

The double complex gives a spectral sequence from our Hodge filtration: The ending is

ELt = gr, (Hpg(X,C) = FPHER! (X, C)/FP T HER (X, C).
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It begins at the cohomology H*(gr(K*®)) taken with respect to 0. Recall

p,q P;q
p>s p>s+1
ptaq=l p+q=l

with s + ¢ = [. Therefore, gr,(K*) = A>* °(X) and we take the cohomology w.r.t. . Therefore, we have
EP = Hg)q(X)v
the Dolbeault cohomology. We deduce the

Theorem 2.50 (Frohlicher) There exists for a complex manifold, X, a spectral sequence (the Hodge to de
Rham, S.S., notation HDRSS)
H2(X) = BEp! = HEL(X,C).

Remarks:

(1) Assume that E{*? = H29(X) is finite-dimensional for all p,q > 0, which holds if X is compact. We
know that E5? comes from E}'? by using 9 on E*:

EPY = ZP9/Brt;  where BP9 C ZP9 C EP,
Therefore, dime EYY; < dime EP9, for all 7 > 1 and all p, ¢ > 0.
(2) dime EYY) = dime E29, for all p,q > 0, iff d, = 0.

(3) We have dimcE®? < hP4, for all p, q.

Let us look at the spaces EZ:?, where p 4+ ¢ = 1. We have
F'Hpp(X,C) = B} and F'"'Hpg(X,C)/F'Hpg(X,C) = EGM, -

We know b = dim Hhy (X, C) = I-th Betti number of X and so,

ZdlmEJl i< Z hP,

p+aq=l

So, we get: HDRSS degenerates at r = 1 iff for every [, with 0 <[ < 2dim¢ X, b; = Ep+q:l h?? and then,
(non-canonically, perhaps)

Hhp(X,C) &= [ HEY(X) & ][] HUX,9%).
ptg=l p+q=l

We know for a complex, the Euler characteristic, if defined, is equal to the Euler characteristic using the
cohomology. As each F,. is the cohomology of the previous E,_1, we get

2dimce X
X(X,C) = > (~D)'b=) (-1)PHanre.
=0 p.q

Further, the inequality b; < Zp 4q=1 "7 implies in the compact case that all the de Rham cohomology
groups are finite dimensional. We summarize all this as:
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Theorem 2.51 (Frohlicher) There exists a spectral sequence, the HDRSS,
HJ(X) = B = HEL(X,C).
When X is compact we find that
(a) dim E2:2 < hP4 for all p,q > 0.
() by <3, = "9 (Frohlicher inequality)

(c) x(X,C) = l2ii0ch(_1)lbl =2, o(=)PTRPa (Fréhlicher relation)

In the compact case, a n.a.s.c. that the HDRSS degenerates at r = 1 is that the inequalities in (b) are equal-
ities for all 1 (0 <1 < 2dimcX ) and in this case, we have the (perhaps non-canonical) Hodge decomposition

Hpr(X,C) & [[ HUX.9%).
ptq=l

Remarks and Applications.

(A) Let X be a Riemann surface. Here, dimc = 1, so we only have h%° =1, R0 h1:0 and A1 = 1. We
know if X is compact, by = 1, by > 1 (there is a volume form), but by < h''!, by Fréhlicher, so by = 1. By
Serre duality, h%! = h1? = dim H'(X, Ox) = g, the geometric genus of X. By Frohlicher (c), we have

bo — by 4 by = BO0 — (RO 4 p1O) £ pLL

ie.,
2—b =2—2g,

So, we conclude by = 2¢g. Topologically, X is a sphere with m handles, therefore we get:
Corollary 2.52 For a compact Riemann surface, X, the three numbers
(a) g=dim H'(X,Ox) = geometric genus;

(b) dim H(X, QL) = analytic genus (number of linearly independent holomorphic 1-forms (Riemann),
and

(¢) The topological genus = number of handles describing X
are the same and we have the Hodge decomposition

Hpp(X,C) & [ Ho(x,9%).
ptq=l

(B) X = a complex, compact surface, X: dimcX = 2. We have by = h%% = 1 and by < h?? = 1; but,
by > 1 (there is a volume form), so by = h*2 = 1 (this is also true in dimension n). We have

bl S hl,O 4 hO,l
by < AP0 nbt4p%?
b3 S h2,1 +h1’2.

Poincaré duality says by = bz and Serre duality says h'0 + A0 = p21 + h12. Again, Serre duality says
h?0% = h%2 and further

X(X,(C) = byg—by+by— b3+ by
= 2—2b; + by
= 22" + %) 42020 4 pbL

Hence, we have equivalent conditions for complex surfaces:
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(i) by = A0 + K01,
(i)
(iii) b3 = h?! 4+ b2
(iv) HDRSS degenerates at » = 1 and Hodge decomposition for de Rham cohomology.
The following nomenclature is customary:
1. p, =dim H*(X,Ox) = h%2 = geometric genus of X;
2. ¢ =dim H'(X,Ox) = h%1, the irreqularity of X;

3. pg — q = pa = arirthmetic genus = x(X,O0x) — 1.

(C) Some compact, complex surfaces. Look at A € R, with 0 < A < 1 and C? — {0}. Let I' @ Z, i.e.,
I ={\" | n € Z}. WemakeI' act on C* — {0} and we get I'\(C* — {0}) = X, a complex surface. Now
— {0} @2 RT ] 53, and X operates on the RT-factor. Therefore,
Xy = S S

a compact suface. We can compute cohomology by Kiinneth:

H]%R(Xa (C) = (C;

HllDR(ch) = H HgR(Slvc)®H€)R(S35C) %C’
p+q=1

H3z(X,C) = C; (Poincaré duality)

Hip(X,C) =[] HBr(S',C)® Hpg(5%,C) = (0).
p+q=2

We know 1 = by < hO1 4+ h10 (at least one > 1), 0 < 2h%0 + h1:1. Now, x(X, C) = 0. Therefore,

2(h0.,1 + hLO) + 2h2,0 + hl,l =0

We can generalize X as follows: Take complex A1, Ao, with 0 < || < |A2| < 1 and make the abelian
group I'
Z1 /\71"2“1, 29 )\72122

The group I' acts on C? — {0} and we get the complex surface X, », = I'\(C? — {0}).
Slight variation, choose A € C, with 0 < |A\| < 1; k € N and act on C? — {0} by

21 > Az, 22>—>)\22+2f.

We get a surface X . These are the Hopf surfaces, X, x, and X j.

(D) If X; is a family of compact, complex n-manifolds, all are diffeomorphic and metrically equivalent,
they may have different holomorphic (= complex) structures e.g., the Legendre family of elliptic curves

Y2 =X(X-1)(X —1).

All the de Rahm cohomology is the same, but the Hodge filtrations change, giving variations of the Hodge
structure.
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We can make from d and the metric, d* and similarly, we can make from 0 and the metric, 9%, and we
can make from 0 and the metric, 0 . So, we get []q4, [Jo and (] = [J. In general, there are no relations
among the three.

Even for the same manifold and the same 0, the wedge of two harmonic forms may be (in general is) not
harmonic. Now, say Y < X (with X,Y compact), where Y is a complex submanifold, X metrized and Y’
has the induced structure, still a harmonic form on X when restricted to Y need not be harmonic. Such
bad behavior does not happen with Kéahler manifolds, the object of study of the next section.

2.5 Hodge III, The Kahler Case

Assume X is a hermitian manifold (= metrized and holomorphic). Both Ty and T¥ are metrized bundles
on X. We have the unique uniholo connection, V on Tx and V on T)? :

VP D(X,02(X)) — T(X, T¢ o TR) 2 DX, T o T ) [ T (X, 72 0 T,
Compare VP with d:
d: T(X, T — DX, 1) [[T(X 180 0 T,
As VPOl = 9 we get the same image on the second factor.

Write ds? = > i hijdz @ dzZj =37, 1 @ Py, for the metric.

Claim. Everywhere locally, there exists a unique (given by the coordinates, z;) matrix of 1-forms, v;,
so that

doi =Y iy Noj
j

and the 1);; are computable in terms of the Gram-Schmidt matrix taking the dz;’s to the ¢z ’s.

Since the ¢; form a basis, existence and uniqueness is clear. Let o be the Gram-Schmidt matrix given

by
pi =Y ayjdz;.
J
We get
5% = Zgaij A\ de.
J
But,
dzj = Z aj_kl Ok
k
so we get
5901» = Zgaij A a;klcpk = Z(Z gaij a;kl) N Q.
Jik k J
Therefore,

h=0a-a L.
Make a skew-hermitian matrix from 1, call it ¥, via:
POt = U0= 9T and W=w" 4 g0

Clearly, U = —4 T + 4 and it follows that

Vi=(—0T+9) =P+ =-@F -0 =-(w-vT)=-T.
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This show that W is indeed skew-hermitian. We also have

dpi = Opi+0pi =00+ Y W) Ay,
J

1,0
= 3%—2\1117- /\<pj+z\11ij/\<pj
J J

= Ti—l—z\l/ij/\gaj.
J

where 7; = 9p; — >, \113]10 Agj is a (2,0)-form.

The vector 7 = (71,...,T,) is the torsion of the metric and its compoenents are the torsion components.
Hence, the torsion of the metric vanishes iff

1,0
dp; = Z Wi Ay
J

and we always have

Dpi = Z VLA ;.
J

Let 0 (resp. 6P) be the connection matrix for V (resp. V?) in a unitary frame and its dual, ¢;. We know

(3) ¢ = T’ (by construction);

Now, VP01 = i and, locally in the coframe, the left hand side is wedge with 62 %1 and the right hand
side is wedge with %! and both are skew-hermitian. Therefore, ° = ¥, i.e., § = —UT. Hence we proved:

Proposition 2.53 If X is a hermitian manifold with metric ds® and if in local coordinates z1,...,2z,, we
have ds? = > i hijdzi @ dzj and p1,... pn form a unitary coframe for ds?® with ¢ = > aijdz; (where
o = Gram-Schmidt matriz), then for the uniholo connections ¥V and VP on Tx and T with connection
matrices 0 and 0P in the unitary frame and coframe, we have:

(1) The matriz ¥ = _w_‘r + 1), where 1 = Do - ™! is skew-hermitian and

(2) Op; = > \I/?jl N pj while Op; =3, \113]10 AN@;+ T and T is a (2,0)-form;

(3) do; = Zj Vi Noj + 75

(4) 6 =—-YT and P = U;

(5) h=a' - -a.

Moreover, T =0 iff dp; = 3, TLOA ;.

)
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Proof. Only statement (5) remains to be proved. We know

ds* = Zhijdzi@)d?j ZZQOIC @ Py,
— :

(’; onis) 5 (St

= Z Akl Olkm de R dZm
kol
= Z al—lz Qg dz; @ dZpy,
k.l
T

= (a' @) dz; @ dZp,.

Therefore, h = o' -@. []

Example. Let X be a Riemann surface, not necessarily compact. There is a single local coordinate, z,
and ¢ = adz, where we may assume « > 0 after multiplication by some suitable complex number of the
form e*?. Thus,

ds’ = p® % = o’ dz ® dz,

and h = o2. We also have

Y =0a-a ' =9(loga).
It follows that ¢ T = d(log @), so

U =(0-0)(loga) and 6= (0—9)(loga).

Since the curvature form, ©, is given by

©=di—0An0
and ) )
_ Ologar ,~ Ologa
0= 0z dz 0z 9z,
we deduce that 6 A @ = 0. Therefore, © = df, i.e., © = (9 + 9)(0 — 9)(log a) and we get
_ 9% log a
O = —-200(log) = —2 = dz A dz.
But, dz A dz = —2idx A dy, so
9% log
=4 dz N d
O =i g dehdy
and 2]
oga
A(l =4
loga) =47 o7

so we obtain
O = iA(log ) dz A dy.

Recall that the (1, 1)-form, w, associated with ds? is given by
w= %gﬁ/\@: %oﬂdz/\di:oﬂdx/\dy,

S0
i® = —A(loga)dx AN dy = Kw,
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where

the Gaussian curvature. As dim¢X = 1, we get 7 = 0, for any Riemann surface.

Pick any hermitian metric, ds2, on the complex manifold, X, and let
i _ ] _

(in a unitary coframe, ¢;) be the corresponding (1,1)-form (determining ds?).

Definition 2.11 The metric ds? = >, jhijdzi N dz; is Kdhler iff w is a closed form (i.e, dw = 0). The
complex hermitian manifold, X, is a Kahler manifold iff it possesses at least one Kéhler metric.

Examples. Not every (even compact) complex manifold is Kéhler, there are topological restrictions in the
Kéhler case. Say X is compact, Kihler and look at w and w*, with 0 < k < n. As each w” is closed we get

a de Rham cohomology class in HZ% (X, C). Now, %w", the volume form, is given by

i
—w"= A 5 42 A dz; det(hig) = det(hij)dwy Adyy A+ A dwy A dyn > 0.

1<j<n
So,
1
/ —'w" = Vol(X) € HEL(X,C)=C, with Vol(X) > 0.
It follows that [y w® Aw™ ¥ £ 0, so w* defines a nonzero class in H% (X, C). We get

Proposition 2.54 If X is a compact, complex, Kdhler manifold, then for every k, 0 < k < n, we have
HER(X,C) #(0).

The Hodge surface, Xy, is compact, yet it is not Kéhler, because Hi (X, C) = Hiz (X, R) ®r C = (0).

Remarks:
(1) Every Riemann surface is Kéhler. For, w is a 2-form and dimgX = 2, so dw = 0 (it is a 3-form).

2) Pg is Kahler, for every n > 1. We know that the Fubini-Study metric has an w given by
C
U= 2
w = —03a0log ||F
5 og || F'l|I”,

where F is a holomorphic section: U C P¢ — C™"*! — {0}. We have

dw = (0+D)(0D( )) = D0D( ) = 000 ) =

(3) If X is Kédhler and Y is a complex submanifold of X, then Y is Kéhler in the induced metric. Because
the (1, 1)-form of the induced metric is the pullback of the (1, 1)-form of the parent metric, Y is Kéhler
and (2) & (3) imply (4):

4) Every (compact) complex manifold embeddable in P, in particular, each projective algebraic variety,
C
is Kahler.

(5) If X is Kéahler and Y is Kéhler then so is X [[Y in the product metric.
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Theorem 2.55 If X is a complex manifold and ds? is a metric on it with associated (1,1)-form w, then the
following are equivalent:

(1) dw =0, i.e., ds?® is Kdhler.

(2) Locally everywhere, there exists a C™®-function, a, so that w = 99(a). The function « is called a
Kadhler potential.

(8) The torsion of the metric, T, vanishes.
(4) The metric ds® is tangent everywhere up to order 2 to the local Euclidean metric. That is, near zo,
Z hijdz; @ dz; = 2(5” + gij) dz; ® dzj,
i,j 2%
where g;; vanishes up to (not including) order 2 terms in the Taylor series at 2.
Before giving the proof, observe: ds? is Kahler iff dw = 0 iff Ow = 0. Indeed, we know ds? is Kihler iff

dw = 0 iff (94 d)w = 0, i.e., dw +dw = 0. As the first is a (2, 1)-form and the second is a (1,2)-form, dw = 0
iff Ow and Ow both vanish. But, w is real, so

ie., Ow = 0iff Ow = 0.
Now, recall that .
i
w = EZhZJdZZ/\dEJ,

4,J
so we get
) 8hij
ow = 3 Z o1 dzi, Ndz; N dZz;.
i,7,k
Therefore, dw = 0 iff dw = 0 iff
8hij 8hkj ..
= ——, forall k.

Proof of Theorem 2.55. (1) <= (2). The metric ds? is Kahler iff dw = 0. Apply 00-Poincaré, to get dw = 0
iff w = 99(«), locally everywhere.

(1) < (3). Write .
? _
W= B Z wi NY;,
J

in a unitary coframe, ;. We know

dpj = Z\I/jk N Qg + T;.
k

i _ _
dw:g(zdsﬁjij—Zsﬁmd%),
j l

But then,

so we deduce

2 _ _ _ _
;dw:;ijAkawj+ZTjij—;szwlkAwk—;szTl.
Js J s
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Now, ¥y, = —Uy;, so we deduce
Y A ATEABL =D A AT AP ==Y Ui Api APy,
1k Lk 1k

from which we get
2 _ _
Edw:ZTj /\QDj —ZQD]‘ NTj.
J J
By type, dw = 0 iff both

> 7iA%; =0 and Y @ AT;=0.
j j

As the @; are everywhere locally linearly independent, we get 7, = 0 (and 7; = 0) for all j, ie., 7 =0.
(4) = (1). Say
4,

where g;; = 0 at zp up to and including first derivatives. Then,

7
dw = §Zd9ij Ndz; /\dfj
0.
and dw(zp) = right hand side at zp, which vanishes, so (1) holds.
(1) = (4). We have _
i
w = §Zhijdzi/\dzj
0.
and we can always pick local coordinates so that h;;(z0) = d;; (by Gram-Schmidt at zp). Find a change of
coordinates and by Taylor and our condition, we are reduced to seeking a change of the form

1
zj = wj + 3 Z CjrsWrWs, (*)
r,8
and we may assume c;,s = ¢;sr. Write (Taylor for h;;)

hij = 6;; + Z(aijkzk + bijkzk) + 0(2) (%)
k

Since h;; is hermitian, h;; = hj;, so
QijkZr + bijr 2k = ajinzr + bjikZr,
and we conclude that
bijk = Qjik,
i.e., the a’s determine the b’s.

Since (1) holds, i.e., dw = 0, we have

%Zdhij Ndz; /\dfj =0,
i,j

that is,

(Z aiji dzi A dz; A\ dZ; + similar terms with b’s 4 O(2)> =0.

1,5,k

DO | =
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We conclude that
QAijk = Qkji-
We now use (x) and (*x*) in w:

' 1 1
tw =" (8 +aizn + bigiZe) (dwi +5 > irs(wedw, + wrdws)) A (dmj +35 > Cjrn (W dDy, + mmdwn)

2 “
1,5,k T8 m,n
+0(2).
Thus, we get
{ _ _ _
gwW = 2(6@‘ + aijezk + bijkZk) (dwi A dw; + dw; N Z CimnWmdWy, — dw; N Z cmwrdws) +0(2)
75 m,n 7,8
ie.,
7 _ _ —
Ew = Z 5waz A dmj + Z aijkwkdwi A\ dmj + Z ijnwmd’LUj A dwy,
N i,k jmmn
+ 3 ejrawpdws AdT; + Y bijprdw; A diw; + O(2).
J,rys 1,5,k

It suffices to take
Cjki = —Q4jk
and then, since b;j; = @ik, the other two terms also cancel out. So, (4) is achieved. []

The main use of the above is in the corollary below:

Corollary 2.56 If X is a complex manifold and ds? is an hermitian metric on X, then the metric is Kihler
iff for all zg, there is an open, U, with zyo € U and we can choose a unitary coframe, ¢1,...,¢n, so that

dpj(z0) =0, for j=1,...,n.

Remark: As )
i
w:§ Ej wj NP,

we have )
i
do = £ (Y de A7 =Y 05 A7)
J J

consequently, dw(z9) = 0 iff dp;(z0) = 0, for j = 1,...,n (by linear independence of the coframe and
decomposition into types).

Say we know (what we’re about to prove): If X is compact and Kéhler, then HDRSS degenerates at E;.
Then, B} = ERY = (p, q)th graded piece of the Hodge filtration of H55?(X,C). We know that E}'? = EL4
implies that

BV = HEY(X).

Also, FPHRR? /FPHIHE Y = EP4. This implies this is an inclusion
EL — HEp'(X,C).

In the Kéahler case, we get
HY(X, Q%) = EP? = ER0 s HEEY(X,C).
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Corollary 2.57 If X is compact, Kahler, then every global holomorphic p-form is d-closed and never ezact
(unless = 0).

Interesting (DX): Prove this directly from the Kahler condition.
To prove degeneration of the HSRSS, we prove the Hodge identities. First introduce (& la Hodge)

e Lig_
d°=—(@-0).

Asd =0+ 0, we get

= @

dd* = (9 +9) (0 - ) = é(amaé) = %33,

o
wrs = dd°(log | F||*)
(where wpg is the (1,1)-form associated with the Fubini-Study metric) and

d°d = %(5 —9)(0+0) = ﬁ(é@ + 00) = %5@ = —dd°.
Therefore,
d°d = —dd°.
Both d and d¢ are real operators (i.e., they are equal to their conjugate).
Now, for any metric, ds?, introduce (& la Lefschetz) the operators L and A:
Psq p+1l,q+1
L: A(X)— A\ (X), LEO=wAg,

where w is the (1,1)-form associated with ds? and

p,q p—1l,q—1

A A\X)— A (X), with A=L* the adjoint of L.

The main necessary fact is this:
Proposition 2.58 (Basic Hodge Identities) If X is Kdhler, then

(1) [N d] = —4m(d)";

(2) [L,d*] = 4nd®;

(3) [A, 0] = —i0*;

(4) (A0 =D ;
and (1)-(4) are mutually equivalent.
Proof . First, we prove the equivalence of (1)—(4). We have

[A,d)=[A0+8] =[A0]+ A0

and _ :
v = Loy = -
Consequently, (1) iff [A, 8] + [A, 0] = i(@ — 9%). By types, (1) iff both (3) and (4).

9 —9Y).
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(3) < (4). We have L{ = £ Aw and w is real, so L is real and A = L* is real as well. It follows that

A, 9] = [X,9] = [A, 0]

Consequently, (3) iff [A, 8] = —id* iff [A, 0] =0 iff [A,0] =0 , i.e., (4).
We conclude that (1)—(3) are all equivalent. As
[A,d]* = (Ad —dAN)* =d*AN* — A*d* = —[L,d"],

we see that (1) and (2) are equivalent. Therefore, (1)—(4) are all equivalent.

Next, we prove (4) for C™ and the standard w, i.e.,
)
j

where z1,...,2, are global coordinates on C™. Since every form on C" is uniformly approximable (on
compact sets) up to any preassigned number of derivatives by forms with compact support, we may assume
all forms to be delt with below to have compact support. Break up all into components on /\g’q(X ) and
define operators, ex, €k, fi, fi as follows:

ex(dzr Ndzy) = dzi Ndzp ANdZy
er(dzr Ndzy) = dzp ANdzpNdzZy
fr = e
T = @

Observe, ey, €k, [k, [ are C*-linear. I claim
(A) frer + epfr =2, for all k;
(B) frej +ejfr =0, for all j # k;
(C) Fien+enf; =0, for all j # k.
Observe that trivially (by definition),
ejex +exe; =0 and  fifi + fif; =0, forall j,k

and similarly for e, f,. To prove (A)—(C), by C*°-linearity, it is enough to check them on a basis dz; Adz .
First, let us compute fi(dz; Adz;). Say k ¢ I, then

(fu(dzr Ndzy),dzg N dZs) = (dz; AdZg, ex(dzg A dZs)) = (dzr AdZy,dz, Adzg A dZs) =0,
by our definition of the inner product. Therefore, as R and .S are arbitrary,
fk(dZ] /\dEJ) =0 ifk ¢ I.

Similarly,

fk(dZ]/\dZ]) =0 ifk §é J.

The case k € I is taken care of as follows. First, assume dz; = dzx A dzy/, then

(fr(dzg Ndzp NdZy),dzr NdZs) = (dzi ANdzp NdZy,dz ANdzg ANdZs) = 2(dzp ANdZg,dzg N dZs)
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so we get

ifI'##RorJ#S

_ . _Jo
(f]g(de /\dZI/ A\ dEJ)7dZR /\dZS) = {Q(dZ]/ A dEJ,dZ]/ A df]) ifI'’'=Rand J=S.

It follows that
fk(dzk ANdzp A df]) =2dzp Ndzy kel
and so,
fren(dzr Adzg) = fr(dzx Adzr AdZg) = { (Q)dzf Ndzg g Z i §

We also have

b :
dor Adz ) = 4 (G erfuldzi Ndzp ANdzy) itk el
erildzr A dzg) {0 ithel.
But

)

exfrldzr Ndzy) = (=1)%epfu(dzi Adzp AdZj)
2(—1)lex(dzp N dzy)
2(=1)dz, Adzp A dZy

= 2dzyNdzy,

if kK € I, and we conclude that frer + er fr = 2, for all k.
(B) Take j # k. If k ¢ I, then

frei(dzr ANdzZy) = fr(dzj Adzp A dZzg) = 0.
It k € I, then

fkej(dZ]/\dEJ) = (
=
2

bfr(dz; Adzy Adzp A dZy)
PHL f(dzy Adzj Adzp A dZ )

(—1)b+1d2’j Ndzp NdZ .

~1)
~1)

We also have "
. _fo if k¢l
ejfilder Ndzy) = { 2(—1)bdz; Adzp NdZy it k€T,
and we conclude that fre; +e;fr = 0.
(C) The proof is similar.

Now, we have

L(¢) = gszéz:gAdzj/\dzj
J
= %Zdzj/\dzj/\g
J
= %Z(eﬁj)(ﬁ),
J

that is L = %E] ej€;, so we get A = —%ij_jfj = %E] fifi-
Iff = ZLJ(p[JdZI ANdzZy, set
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and

This is now the part where we need compact support. Namely, I claim:
(D) 8;: = —gk and 9f = —8k.
Using integration by parts, we have

(0r(§),9dzr NdZs) = (§,0k(gdzr A dZs))

0
= (prsdzr NdZs, 29 dzg NdZsg)
82%

D
. 2\R\+|S|/ s 20
Cn 8Zk

o
- Q\R\+|S|/ ons oL
cn Zk

_ _orl+is| [ 9¥Rs _
Ccn 0Zy,

_ (_ O¢Rrs
0zy,
= (=0k(§), gdzr N dZs).

dzr A dZs, gdzr A dzs)

The second identity follows by taking complex conjugates.

What are 8 and 0 in these terms? We have

(&) = 5(2 wrydzr A d?J) = Z 8(;0;5 dzp Ndzp Ndzy = Zakek(f) = Zekak(f)-
I.J k k

1,J

Therefore,
From this, we deduce that

and

o* = Za;e;; = —ngfk = _Zf,ﬁk
k k k

as well as

0 == 0hfr=—>_ Frk
k k
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Finally, we have

A, 9] AD — OA

- %(Z fifOner — Zakekfjfj)

3.k gk
- %(Z Ok fi fen — Zakekfﬁj)

3.k 3.k
- _% (Z Of;fien + Z 3k7j6kfj)

gk Jik
- _% (Z Ol (fiew +enfs) + ) 0;F;(fies + e_jf_j))
=k

ik
= —iy 0;f;=i0,
J

by (A) and (B), as claimed. This proves the identity for C™.
in the general case (Kéhler case, not necessarily compact), we have to show
[A,0](20) = iD (z0), for every z € X.

At zp, pick a local unitary coframe, 1, ..., @y, so that, near zp,
i _
w = B Z wi NY;,
J
and, as X is Kahler, a previous Corollary shows that we can choose ¢1, .. ., 5 so that dy;(z0) = dg;(z0) = 0.

J
As before, we set . .
i _ i -
LZE;GJEJ‘ and AZ?;fJfJ

(Here, e, = ¢; AE). We make the same computations as before (A)—(D) and we get the same results on
commutativity, except for extra terms involving the differentials of the ¢;’s. However, at 2o, these differentials
vanish and we get (A)—(D) as the error term, dy;(2¢) is 0 for all j. Therefore, (1)—(4) are correct at zo. But,
zo is arbitrary, so the theorem is proved. []

Corollary 2.59 If X is Kdhler (not necessarily compact) then (g = dd* + d*d (d-Laplacian) commutes
with L and A.

Proof. Write [] for []y and observe that
O A" = [A"0O = [2,0,

so [, A] = 0 iff [L,[J] = 0 and it suffices to prove [A,[J] = 0. Let us check that [L,d] = 0. Pick any &, then

(L, d)(¢)

(Ld — dL)(&)

L(d§) — d(L&)
dENw—d(ENw)

= dNw—diNwtEANdw =0,

since dw = 0 and so, [L,d] = 0. by adjointness, [A, d*] = 0. Then, we have
A, = AO0—OA = Add* + Ad*d — dd*A — d*dA.
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Use [A, d*] =0 in the middle terms to get
[A,0 = Add*—dAd*+ d*Ad—d*dA
= [A,d)d" +d*[A,d] (by Basic Hodge)
= —And“*d* — 4nd*d**
= —Ax(d®d* + d*d°").
But, dd¢ = —dd; by applying *, we have d°*d* + d*d°* = 0, and the proof is complete. []

Corollary 2.60 If X is Kdhler (not necessarily compact) then

O = 2L = 215
Proof . It will be enough to show [Js = [J5. To see this compute [Jy = dd* + d*d. We have
[ = @+9)(0 +3)+ (@ +3)(0+9)

= 09" +00"+99 +00 +90+ID+D0+D D
= o+ +00" +9+09 +0 0.
I claim that 89" +9 8 = 0. If so, its conjugate is also zero, i.e., 0 0* + 9*0 = 0, and we deduce that
e =Co +O5-
By Basic Hodge (4), we have [A,d] = 0, ie., —i[A, 0] = 0. Then,
00 +9°0 = —i(0[A, 8] + [A, 8]0) = —i(OAD — DOA + ADD — OAD) = 0.
Therefore, [y = (o + [y If we prove that [y = [, we are done. We have
O, = 99°+9°9
—i(9[A, 9] + [A, 0]9) (by Basic Hodge)
— (30— DO + AGD — 0AD).
Now, by Basic Hodge (3), [A, ] = —i0* (and recall 99 = —09), so
[ = —i(0Ad—ADI+ 00N — OAND)
= —i(i0*0 +i00")
= 0%0+ 909" =y,
and this concludes the proof of the corollary. []

Corollary 2.61 If X is Kdhler (not necessarily compact), then any and all of Ca, Tla, (Iy commute with
all of %, 9, 0*, 0, 9, L and A.
Proof. (DX) [

Corollary 2.62 If X is Kdhler (not necessarily compact), then the de Rham Laplacian, [14, preserves
bidegree. That is, the diagram

AX) —— AX)

AP = API(X)

commutes.
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Proof. We have []y = 217 and [I5 preserves bidegree. []

Theorem 2.63 (Hodge Decomposition, Kahler Case) Assume X is a complex, compact Kdihler manifold.
Then, there is a canonical isomorphism

[1 H(X,9%) = Hpgr(X,C).
ptg=r

Moreover, we have
Hq(Xv Q?{) = HP(X, Q%{)v

s0 hP9 = h9P,
Proof. Pick a Kahler metric, d, on X and make [] = [Ty (using the metric) and set
p.q
Hy! ={¢ e \(X) |0 =0}
and i,
Hy={¢e \(X) 1 0O(E) = 0}
Both of these groups depend on the metric. Pick £ € A"(X) and write

Jr=J

£=> ¢, where &e N (X).
J

Then, [(§) = >2;(&)- But, [I(E;) € N7 77(X), by Corollary 2.62. Therefore, [J(€) = >-; (&) is the
type decomposition of [](§). Hence, [1(§) = 0 iff [J(§;) = 0, for every j. Hence,

Hy= [ Hy°

p+q=r
But, [0 = 2[J5 (Corollary 2.60), so HY? = 7{%‘1. By the 9-Hodge Theorem (X is compact), we know
H%’q = Hg’q ~ HI(X,0%).
In the same way, by Hodge’s Theorem for d (on the compact, X), we get

and for some isomorphism,
I1 #x,9%) = Hpr(X,0).
ptq=r
Let

KP4 = z89/d(\(X) N Z59).

Note, KP*4 = all cohomological (de Rham) classes having a (p, ¢)-representative. The set K¢ depends only
on the complex structure (hence, the topology—independent of any metric). When X is Kéhler and we

choose a metric, then
P4 C P

and we know H?(X, Q%) = HP4. Pick £ € KP7 and write &, again, for a ZP:9-representative. The d-Hodge
Theorem yields
§ = () +d(d"G(S)) + d"(dG(S))-
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But, [] commutes with d, so G commutes with d, and as d¢ = 0, we get

§ = n(&) + d(d"G(E))-

But, G preserves (p, q)-type, so £ as element of KP7 is 1(£). As 1(€) € HP?, we see that KP7 C HP9, from
which we conclude that
KP4 — Pa,

For the conjugation, pick £ € HI(X, Q%) and represent it by #(§) € HY? (the unique harmonic represen-

tative). Take n = #(§) and observe that as [Jy is real, [J(n) = [J(7). Therefore, 7 is harmonic (i.e., &
is harmonic iff £ is harmonic). But, ¢ € APY(X) iff £ € ATP(X), and our map £ — € is a sesquilinear
isomorphism

HY(X, Q%) — HP(X,Q%),

which concludes the proof. []

Corollary 2.64 If X is a compact, Kdahler manifold, in particular if X is a nonsingular complex projective
variety, then the odd-degree Betti numbers of X are even integers.

Proof. We have

2r+1 ~ ~
P x o = [[aex. k)2 [ Buxopon [ HUG9%)
p+q 0<p<r r+1<p<2r+1
p+r=2r+1 p+r=2r+1
and each term has an isomorphic term in the other sum, so
bor41 =2 Z hP4
0<p<r
p+r=2r+4+1

which is even. []

Code all the informatin in the Hodge diamond (shown in Figure 2.2). At height r, you insert h?:¢ at
position (p, q) where p+q =r.

(0,0)

Figure 2.2: The Hodge Diamond

(a) The sum of the row numbers at height r is b, (the rth Betti number).
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(b) hP?7 = h?P which means that the diamond is the same on either side of the vertical (as a mirror).
(c) * (Serre duality) says there is symmetry about the central point.

(d) If X is Calabi-Yau and Y is its mirror, then the Hodge diamond of Y is that for X reflected (as a
mirror) in the line (V).

Corollary 2.65 If X =P¢, then "9 =0 if p# q and h"P =1, if 0 <p < n.
Proof. Remember that P{. = C U {pt}, P& = C2 UPL = C? UC! UC? and generally,
r=CruCttu--.uctuc®.

By elementary topology,
n _J(0) ifrisoddorr>2n
Hy( C’Z)_{Z if r < 2n is even.
Then,
0) ifrisoddorr>2n
H’I" " Z — ( =
(Pe, Z) {Z if r < 2n is even
and this implies
if ris odd or r > 2n
if r < 2n is even.

We deduce
b2T+1 (Pg) = O, bgr(]P)E) = 1, 0 S T S n.
But, b, = Eerq:T hP4  so hP? =0 if p + ¢ is odd. We also have
[ Z RP — pTT Z BP2r—p + Z BP2r—p T +2 Z BP2r P

pta=2r 0<p<r—1 r41<p<2r 0<p<r—1
But, by, = 1, which implies A™" =1 and hP?2" P =0, for 0 < p<r—1. ]

Corollary 2.66 On a Kahler manifold, for any Kdhler metric, a global holomorphic p-form is always har-
monic.

Proof. For any ¢ € HO(X,Q%), by Dolbeault, HO(X, Q%) < AP’(X) and in fact, £ is given by 8¢ = 0.
Now, 9" =0on /\0’0. Therefore, ¢ = 5*5 = 0, which means that ¢ is harmonic. []

Say Y C X C P¥, with X,Y some analytic (= algebraic) smooth varieties. Say Y is codimension ¢ in
X and dime X = n. So, dimg Y =n — . The inclusion, i: ¥ < X, yields the map, i*: (Ty")P — (Ty°)",
ie., i*: Q% — Q.. Therefore, we get a map

n—t n—t
Aok =oxt —apt= \al,

so we get a map
H*(X, Q7Y — H*(X, Q007 = H* (Y, Q0.

By Serre duality, we get
tr
H 'YX, Q%" — H (Y, Q) = C.

Therefore, Y gives an element, ly € H" (X, Q’}(_t)D . By Serre duality, the latter group is

H'(X, Q%) = H' (X).
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Hence, each Y of codimension ¢ in X gives a cohomology class, ly € Hgt(X ), called its cohomology class.
Alternatively: Since dimg Y = 2(n — t), the variety Y is a 2(n — t)-chain in X and in fact, it is a cycle.

Thus, it gives an element of Hy(,,—4)(X). We get a linear form on H?>=Y(X) and, by Poincaré duality,

H>"=D(X)P = H?(X). So, Y gives Ay € H*(X). In fact, Ay = Iy in Hy'(X).

Hodge Conjecture: If X — PY, then H?'(X,Q) N Hgt(X) is generated by the cohomology classes Iy as
Y ranges over codimension ¢ smooth subvarieties of X.

2.6 Hodge IV: Lefschetz Decomposition & the Hard Lefschetz
Theorem

Proposition 2.67 (Basic Fact) Say X is a Kdihler manifold, then on N\P%(X), the operator [L,A] is just
multiplication by p + q — n, where n = dimcX. Therefore, [L,A] on A\*(X) is a diagonal operator, its
eigenspaces are the \"(X) and the eigenvalue on this eigenspace is r — n.

Proof. Both L and A are algebraic operators so don’t involve either 0 or 9. By the Kihler principle, we may
assume X = C" with the standard Kahler metric and prove it there. Revert to the component decomposition:

L= %Zeﬁj’ A= %ijfja
j i

SO

[L,A] = LA — AL = i (Z ¢j€j fifr = kakejéj)-

4.k
Recall our commutation relations:
(A) frex + erfr =2, for all k;
(B) frej +ejfi =0, for all j # k;
(C) fier+exf; =0, for all j # k.
For j # k, we have
i€ fifr — Frfuei®; = ejeifife —eififie;

€€ fpfr — €€ frfu =0.

Consequently,

[L,A] = i(z e f;fi _7jfjej€j)'
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AS fjej =2 ejfj, we get

LA = Zegejf fi = Treitses — 27;%)
Zeje]f fi = Fieieifi — 27;@‘)

(
(
(Zejejf fi— e]f €fj — 2f; e])
(2

N N N Y N

ejéj?jfj - €j§j7jfj +2e;f; — 27jéj)
= Z( S(fies +7,2))

J
= n- EZUJ% + 7e))-

J

Now, take ¢ € AP?(X) and compute [L, A](¢). We may assume £ = dz; A dz;, with |I| = p and |J| = ¢. As

fo ifjel
fieildzr Ndzs) = {2d21 Ndzy ifj T

and
= _ —~_JO ifjed
fieﬂ(deAdZJ)_{2dz,/\dzJ ity ¢J

we get

> (fies + FiE)der Adzy) =Y 2dzr AdZy + Y 2dzr Adzy = (2(n — p) + 2(n — q))dzr AdZ.
j i¢T i¢J
We deduce that .
—3 > (fiej+f&)=p+qg—2n on API(X),
j
and so,
[L,Al=n+p+q—2n=p+q—n on A\"(X),

finishing the argument. []

Set
ﬁ:[A7L]7 %:[ﬁvL]v @Z[YLA]

For any £ € \"(X), observe that $ on A"(X) is just (n —r)I (by Lefschetz). Futhermore, as
X)) =®L-9L)(&)
we have L(€) € A" (X), so
X(§) = (n— (r+2))L(&) — (n —7)L(§) = —2L().

Therefore,
[9,L] = —2L.

Taking adjoints, we get
[A, 9% = —2A
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and as $H* = ), we deduce

[$,A] = 2A.
In summary, we have the identities
9, L] = 2L
[9,A] = 2A
ALl = 9.

This means that we should look at the Lie algebra s[(2,C) (of 2 x 2 complex matrices with zero trace). Its

generators are
(0 1 (0 0 h— 1 0
Zloo) YT\ o) "Tlo —1)

[,y] =h, [h,z] =22, [hy]=—2y.

So, send h +— $, x — A and y — L, then we get a representation of sl(2,C) on A°*(X), i.e., a Lie algebra
map

We check that

51(2,C) — Ende= (/\ (X))

Now, [Jg commutes with A and L, so our representation gives a representation on harmonic forms. By

Hodge, we get a representation
5((2,C) — H*(X).

(Recall, if X is compact, then H®(X) is a finite-dimentional vector space over C.)

Remark: On Endce(/A\*(X)), we could use the “graded commutator”
[A,B] = AB — (—1)"BA,
where a = deg A and b = deg B. But, L, A, [L, A] have even degree, so everything is the same.

Say we have a representation of s[(2,C) on V (some finite-dimensional C-linear space), i.e., a Lie algebra
map

5((2,C) — End¢ (V).
Since SL(2,C) is connected and simply-connected, we get a map of Lie groups
SL(2,C) — GL(2,C).

This is a representation of SL(2, C). Conversely, given a representation, SL(2,C) — GL(2, C), the tangent
map at the identity yields a Lie algebra representation

5((2,C) — End¢ (V).
Therefore, there is a one-to-one correspondence between group representations of SL(2, C) and Lie algebra
representations of sl(2, C).

Say G is a compact Lie group and V is a finite-dimensional C-space and put a hermitian metric, h, on
V. Write do for the Haar measure on G and define (after Weyl)

ho(v,w)z/Gh(Uv,ow)da.

Check: hg is a left-invariant hermitian metric on V.

Say W C V is a G-submodule (a subrepresentation of V'), then we can form W+ (w.r.t. hg), it is a
subrepresentation as hg is G-invariant. Therefore,

V=wHnwt in G-mod.
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Lemma 2.68 (Weyl-Hurwitz) For any compact Lie group G, every finite-dimensional representation is a
coproduct of G-irreducible representations.

Now, SU(2, C) is compact and its complexification is SL(2, C). Therefore, Lemma 2.68 holds for SL(2, C)
and thus, for sl(2, C).

Corollary 2.69 Every finite-dimensional complex representation of SL(2,C) is a finite coproduct of finite-
dimensional irreducible representations of SL(2,C).

Now, we study the finite-dimensional irreducible s[(2, C)-modules, say V. The crucial idea is to examine
the eigenspaces of h on V. Let V) be the eigenspace where h(v) = Av. If v is an eigenvector of h, then
x(v) € Vayo and y(v) € Vi_2. Indeed,

h(z(v)) = [h,z](v) + zh(v) = 22(v) + Az(v) = (A + 2)z(v),
and similarly for y(v). We get
ha"(v) = (A+2r)z"(v) and hy"(v) = (A —2r)y"(v).
But, V is finite-dimensional, so both x and y are nilpotent on the eigenvectors of h in V.

Definition 2.12 (Lefschetz) An element, v, of the finite-dimensional representation space, V, for s[(2,C) is
primitive iff it is an eigenvector for h and z(v) = 0.

As V is a finite-dimensional C-space, a primitive element must exist. Indeed, h has at least some
eigenvalue, A, and if v € Vy, then z"(v) € Vo, for all r. Since Vyjar N Vigas = (0), for r # s and V is
finite-dimensional, there is a smallest 7 so that 2" (v) # 0 and 2" 7!(v) = 0. The vector x"(v) is a primitive
element.

Proposition 2.70 Say V is a finite-dimensional irreducible representation space for sl(2,C). Pick any
primitive vector, v, in V. Then, the vectors
v,y(0),y* V), .y (v),
where y*+1(v) = 0, form a basis for V.. Hence,
(1) dim¢ V =t + 1 = index of nilpotence of Y on V.
(2) Any two primitive v’s give the same index of nilpotence.

Proof. Consider
W = span(v, y(v), y*(v), ..., y' (v)).
If we show that h,z,y take W to itself, irreducibility of V' implies W = V. Clearly, y(W) C W. As
By (v) = (A= 20y (v), i h(v) = Ao,

we also have h(W) C W. For x, we prove by induction on [ that zy!(v) € W. When [ = 0, we get z(v) = 0,
and the claim holds trivially. Assume the claim holds for [ — 1. We have

zy'(v) = ayy''(v)
= (h+ya)(y'™(v))
= (A =20 -1))y" Hv) +ylay' ™ (v)),
and xy'~!(v) € W, by the induction hypothesis. So, both terms on the right hand side are in W and the

induction step is done. Now, v,y(v), y?(v),...,y*(v) are eigenvectors with distinct eigenvalues, so they must
be linearly independent. Therefore, they form a basis of V. The rest is obvious. []

Call an eigenspace for h on any (finite-dimensional) representation space a weight space and the weight
is just the eigenvalue. We get
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Corollary 2.71 Every irreducible finite-dimensional representation, V', of sl(2,C) is a finite coproduct of
one-dimensional weight spaces, Vy,
vV =]]w.
A

The “highest weight space” consists of 0 and all the primitive vectors (each a multiple of the other).

Proposition 2.72 Say V is a finite-dimensional sI(2, C)-module, then every eigenvalue of V' is an integer.
If V is irreducible, these are
—t,—t+2,...,t— 2.1

where dime V' =t + 1 = index of nilpotence of Y on V. Therefore, the irreducible sl(2,C)-modules are in
one-to-one correspondence with the non-negative integers, t, via

teo V)= [T VeIl T Vien
0<2;5<t 0<2;5<t

with dimcV =t + 1.

Proof. As V is finite-dimensional, there is a primitive element, v, and let X be its weight (eigenvalue). Look

at zy'(v). 1 claim:
zy'(v) = (A =1 = 1)y' " (v).

This is shown by induction on I. For I = 0, this is trivial (0 = 0). Assume the claim hols for {. We have

zyttv) = ayly'(v))
= hy'(v) +ya(y'(v)
(A =20y (v) + y(IX =11 = 1)y (v)
= A=20+IN=1+1Dy'(v)
(L+ DA =+ DDy (v),
proving the induction hypothesis. Now, we know that there is some ¢ > 0 so that y’(v) # 0 and y**!(v) = 0,

solet l=t+1. We get
0=y (v) = ((t+ DA~ (t+ D)y’ (v),
that is,
t+DA=(t+1)t=0,
which means that A = ¢, an integer. Now, say V is irreducible and ¢ is the maximum weight in V. If V

has weight ¢, then x(v) has weight ¢ + 2, a contradiction, unless x(v) = 0. Therefore, v is primitive. Now,
Proposition 2.70 implies that V' is as claimed. []

A useful alternate description of V (t) is: V(t) = Sym‘(C?), with the natural action. For, a basis of
Sym‘(C?) is
gont 51 t—1 . é-t,r]O'

Also,
YY) = (i— gy
z(€if) = gitlyil
y(&n?)y = &yt

Now, say we look at Vj, (the k weight space for some s[(2, C)-module, V). Observe that

yk: Vk—>V_k, xk: V_k—>Vk,
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and each is an isomorphism.

Suppose V is some finite-dimensional sl(2, C)-module (not necessarily irreducible). Define PV = the
primitive part of V' by
PV = Ker z.

V=prv][yPV][v’PV]] .

the Lefschetz decomposition of V. We also have

We get

(Ker 2) N Vj, = Ker (3" 12 Vi — V_j o).

We can apply the above to X, a compact Kahler manifold and

V=HpX,0)= [[ H'(X),

0<r<2n

where n = dim¢ X. The maps
h— AL, z—A, y—1L

give a representation of s[(2,C) on Hi(X,C). Now, H"(X) is a weight space and the weight is n — 7, so
H'(X) = Vj_,.

Then,
L" " H(X) = V,_, = H" " (X)

and if we let
P F(X) = (Ker A) N H" *(X) = Ker (L*!: H"%(X) — H"T*2(X)),
then the Lefschetz decomposition says
H'(X) =P (X)[[LP2X)[]---[] L' P Bl (x).
As a consequence, we get
Theorem 2.73 (Hard Lefschetz Theorem) If X is a compact, Kdhler manifold, then
(1) Lk: H"k(X) — H"*(X) is an isomorphism, 0 < k < n.

(2) The cohomology has the Lefschetz decomposition

H'(X) =P (X)[[LP 2] - [P ]] -,
where P"F(X) = (Ker A) N H" #(X) = Ker (LFt!: H"F(X) — H"PF2(X)).
(8) The primitive cohomology commutes with the (p, q)-decomposition, that is: If PP = P" N HP9, then
rr= [ P,
ptg=n

and a cohomology class is primitive iff each (p, q)-piece is primitive.
(Recall, P"(X) = H"(X)NKer A = H"(X) NKer L™*7".)
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Proof. We already proved (1) and (2). But, (3) is clear as L and A commute with bidegree ((1,1) and
(=1,-1)). O

Interpretation a la Lefschetz

Say X < P¥ is a closed complex submanifold of PY equipped with the Fubini-Study metric, w and let
n = dim¢ X. Recall that w is given locally by

w= -0 log||F|,
2

where F': U C PY — C"*! — {0} is any holomorphic local lifting. We know that w is a real (1, 1)-form and
it is d-closed but not d-exact. Let [w] be the cohomology class of w in Hg (X,R).
By the duality between homology and cohomology,

HAR(X,R)P = Hy(X,R) = H*(X,Z) @z R

where the pairing is: Given [a] € H3y(X,R) and [n] € Ha(X,R),

()l) = [ack
n
We also know that Hfg (X, R) and HZ% *(X,R) are Poincaré dual and this is given by
()18 = [ ans
X

By duality, we get the a pairing
Hi(X,R) ® Hop—p(X,R) — R,

a nondegenerate pairing and, geometrically, this is the intersection pairing

([od, [B]) = [ B].

Poincaré duality shows [w] s a homology class in Hay_2(PY,R). But, a generator for the latter group is the
class of H, where H is a hyperplane. Consequently, there is some A € R so that [w] = A[H]. Take a complex
line, I, then we have the pairing

([1], [H]) € Ho(PY,R),

namely (as above), this number is #([H N!]) = 1. Therefore,

(W], [1]) = A
But, (Jw], [I]) is computable. We can take [ to be the line
29 =23 ="+--=2, =0.

So, 1 is given by (z9: z1: 0---: 0) and [ is covered by Uy Nl and U; Ni. Now | = (Uy N 1)U {pt}, so

/w:/ “
l UpNl

F((1: 2: 0: ---:0)) =(1,2,0,---,0).

and a lifting on Uy N1 is just

Consequently, [|F||> =1+ |22 = 1 + 2z. We get

— — dz
dlog || F||* = Dlog(l + 27) = ——

1427’
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and
(1+22)dz NdZ —Zdz Nzdz  dzNdZ

(14 22)? (14222
As dz = dz + idy and dz = dx — idy, we get dz A dzZ = —2idx A dy. Now, INUy = C, so

/ i / —2idz N\ dy
w=— | ———— 2
INUo 21 Jo 1+ 2% +y?)?

If we use polar coordinates, then the right hand side is just

/2”/00 2rdrdf 7/°° 2rdr 7/°° du [ 1717
a+r2)2 Jy Q+r22 ), w2 ul,

Therefore, A = 1, and [w] = [H] € Hay—2(PY,Z). Of course w = w | X = [H N X]. Therefore,

00 log ||F|* =

L*: A% (X,C) = H"*k(X,C)

becomes in homology,
() with PN=%: H, 1 (X,C) = H, (X, C).

This is the geometric interpretation of Hard Lefschetz.
How about primitive cohomology (or homology)?

By definition, the sequence

0 — PPR(X) — HPF(X) 25 HrHE2(X) s exact.

When we dualize, we get

A PN —(k+1)
Hypyp2(X) Hyj(X) ——= Py (X) —=0
Hn+k (X)

Therefore, a cycle of dimension n — k is primitive iff it does not cut the “hyperplane at infinity”, i.e., if it
arise from H,,_;(X — X N H) in the map

Hy (X = XN H) — H,y_1(X).

(These are the “finite cycles”)

We now consider the “Hodge-Riemann bilinear relations”. Given X, compact, Kahler, we have the

Poincaré duality
H" *(X,R)® H"™(X,R) — H?"(X,R) =R,

])|—>/on/\ﬂ.

By the hard Lefschetz Theorem, 3 = L*(v), for some unique v € H" *(X), so we can define a bilinear
pairing on H"*(X) via

where dimc X = n, given by

Qn—k(avv):/ a/\/y/\wk'
X

The following properties hold:
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(1) If n — k is even, then @Q,,— is symmetric. Indeed,
Qn—k(/y?a) = / WAO‘Awk
b'e
= (o1)der(o)dex() / oAy AW
X
= ank(a; ’Y)
(2) If n — k is odd, then Q,,_ is alternating.

(3) Qn— is a real form. This is because

Oi@d) = /ammﬂf
X

/ any AWk
X

= ank(av 7)

(Recall, w is real.)

By Hodge,
HMXx,c)= [] H".
pt+g=n—k

Claim. For all & € HP? and all 8 € H?4', we have Q(av, 8) = 0 unless p = ¢’ and p’' = ¢.

We have p+q=p'+¢ =n —k and
Q(a,ﬁ)z/ aABAF
X

with a A B AWk € HPte' thatd +k - Ag the only 2n form on X is an (n,n)-form, Q(a, 3) # 0 implies
p+p +k=n=q+q¢ +k, ie,p+p =q+¢. Hence (together with p+ ¢ = p' + ¢') we deduce
(4) Q(«,B) # 0 implies p = ¢’ and p' = q.

(1)-(4) suggest we consider _
Wi (@, ) = i" Qi (e, B).

(5) Wy is an Hermitian form on H"~*(X,C).
Now, when n — k is even, we have
ank(ﬂa Oé) = inianfk(ﬂ; a) = inianfk(a; ﬂ)a

and so,

ank(ﬂv O[) = inianfk(aa /8) = (_l)n_kin_anfk(avﬁ) = in_anfk(avﬁ) = W(O&, /8)5

as n — k is even. A similar argument applies when n — k is odd, and W,,_ is an Hermitian form. We will
need the following lemma:

Lemma 2.74 If X is a compact, Kihler manifold of dimension dim¢ X = n and n € N\P(X) C /\k(X)
(with p + q = k) with n primitive, then

1
(n—k)!

k+1

777 = (-1)(" e Ly,
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Proof. A usual computation either to be supplied or for Homework. Let us check that, at least, both sides
are of the same type. Indeed, the left hand side belongs to A" "7 9X = A"~ """ X. Moreover,

p+n—k,qg+n—~k
Ly e A X.
If we put p + ¢ =k, then p — k = —q and ¢ — k = —p, so we have L"Fn e \""?"P X.
Ll

Theorem 2.75 (Hodge-Riemann Bilinear Relations) Let X be compact, Kdhler, with dim¢ X = n, and
ezamine H" *(X,C) (0 <k <n).

(1) The form W, _; makes both the Lefschetz and Hodge decomposition orthogonal coproducts.
(2) On PP4 C H"%(X,C), the form

n—k

(~1) ("2 e Ry,

is positive definite. That is,
n—k

(~1)(")#9Q, 4(a,@) > 0
whenever a € P" (X)) and o # 0.
(3) When W,,_y, is restricted to L'P"~F=2L it becomes (—1)'W,,_j_2.
Proof. (1) The Hodge components are orthogonal as W («, 8) = Q(a, B) and use (4) above.
Observe that W,.(¢,7n) = ¢Q..(£,7), so we can replace W,. by Q,. Then, we get
Qr(§7 77) = Qr—2(§/7 77')7
where £ = L& and n = Ly. Nogv assume & = ng’,mn = L%, with &, 7/ primitive and m # t. We may
assume m < t. We have ¢ € A" ""(X) and ' € A" ~"(X) and as ¢’ is primitive, L"T1="+2m¢ = (. Then,
Q(&n) _ Q(ng/thn/) _ / 5/ A 77/ /\wnfrerth'
X
Now, as m < t, we have 2m <m+1t,s02m+1 < m+t and
5/ A 7,I/ /\wnfrerth — Lnfrerthgl /\77/
andn—r4+m-+t>n—r+2m+1; As LT T2m¢" — 0, we also have L "tmHig A/ = 0.
(2) (Bilinear Relations). Pick £ € PP+? and compute: By Lemma 2.74 (for k),
1

k+1

E = (_1)( 2 )Z.piqunikgv
so we get
*g _ (_1)(k;1) (_1)[)*(17;207qu71ka,
and k+1
Ln—kz _ (_1)( 2 )(_1)p—qiq—17(n _ k)l * 5

If we replace k by n — k, as € € /\"_k(X), we get

n—k+1

LFE = (1)) (—1)paia gl ke
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n—k+1 n—=k
()= (1) e

n—k+1

() (1 = () - = (-,

But

)

(sincen —k =p+q), so

which means that ok
L¥€ = ()" i rpt e,
As _
ank(av B) = inianfk(o‘a ﬂ)v
we have

n—k

(~)Dirma-=b (e ) = (-1 Dirmig(e,§)
_ (_1)(";")>¢p—q/ngng
_ (_1)(";’“)>¢p—q/X§ALkg
- (_1)(";")>Z~p—q(_1)(";")>Z~q—pk!/XgA*5
= K€]7. >0, as&A0.

(3) We have

We(&n) = i"Qr(&7)
iT.Q""*m(g/vW)
= Wi_a

Gr—21 r ’ /)

5/
= (_1)ZWT*21(€/7W)7

3

which proves (3). []

Remarks:

157

(1) For all p > 0, we have H?"* = PP0 and H*? = P%P_ Tt is enough to prove it for one of the two
equations. Take ¢ € HP®, Then, ¢ is primitive iff L*¢ = 0, where  + p = n + 1. We deduce

z =n+1—p and then,
n+1l,n+1—p

Lre=L""ree [\ (X)=(0),
as dime X =n.
(2) Lefschetz says
HPY — H Lrpr—ka—k
o<k<(i]

a coproduct of lower primitive cohomologies. But, HP~14~ ! itself is the coproduct of its lowr primitives,

which are strictluy lower primitives of HP'4. Therefore, we conclude that
HP4 = ppra ] gp~la-1

(with p 4+ ¢ < n). Therefore, we have
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(a) hP9 = dim PP9 + hP~1a71 (p+ g <n)
(b) HP4 > pp=1a=1 for p+q < n.
We have our pairing
Qn-r: H" " @ H" ¥ —» H" * = C,
given by
Qn—r(&:m) = / EAN AW,
X

When n — k is even, our pairing is symmetric and when n — k is odd, it is alternating. The most important
case is when k£ = 0, in which case,

Q=Q,H'"®H" - C
is given by
Q(ﬁ,n):/ §Am,
b'e
the intersection pairing (in homology).

Corollary 2.76 If X is compact, Kdihler, the forms Q, on H"(X,C) are always nondegenerate.

Proof. We have
H" = H LkPT72k,
0<k<[3]

a @-orthogonal decomposition. We need only look at the cofactors. On the cofactors, @ is Qiower and this
is (up to a constant) positive or negative, so each Qower is nondegenerate. []

For n = 2r and dim¢ X = n = 2r (so, dimg X =0 (4)) our form @ on H" is symmetric, nondegenerate
and real. By Sylvester’s inertia theorem, @ is known if we know its signature (= sgn(Q)).

The index of X, denoted I(X) is by definition the signature, sgn(Q), where @ is the intersection form
on the middle cohomology, H"(X,C), when n is even. So, I(X) makes sense if dimg X =0 (4).

Theorem 2.77 (Hodge Index Theorem) If X is an even (complex) dimensional, compact, Kdihler manifold,
say dimec X = n = 2r, then

1(X) =S (—1pnea = S (<1,

p,q p+q even

Proof. From the Lefschetz decomposition for H" (X, C), we have

H'(X,C)= [] r*P"*X).
0<k<2

Since this is a @ (and also a W) orthogonal decomposition, we have

1) =sgn(@ = Y sen(@ [ P"% = 3 sgu(W) [ Pk,

0<k<?2 0<k<?2

Again, the (p, ¢)-decomposition is orthogonal, so

I(X)= > Y sen(W)|Pro.

0<k<% ptq=n—2k
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But, we know that dim PP:4 = hP4 — hP~14=1 by Remark (2) and W on PP is definite, with sign

p+aq

(1) ("2 pa,

As iP~1 = (=1)*z", we have

SO

as p+q =n — 2k and n is even. Thus,

I(X) = > (~1)dimPre

p+q even
pF+q<n

= Z (—1)P(hP? — pp=La—1)
p+q even
p+q<n

= Z (—1)PhP9 — Z (=1)PRP~ a1 4 Z (—1)PhPe — Z (—1)Php~ a1l 4 ...

ptg=n pt+g=n p+g=n—2 pHq=n—2
— E (_1)php7q+2 E' (_1)php,q_
ptg=n p+q even
p+g<n

But, as n is even and by duality,
(=1)" PRI = (Z)PR PTG = (—1)PRP,

so the right hand side above is

Z (—=1)PhP7 4 Z (=1)PhPa,

prq=n p+q even
ptq#n
so we get
I(X)= Y (-1rhre.
p+q even
Now, we show that
> (=1)PRrt =0,
p+q odd

Since X is Kahler, we know that h?*9 = h%P. Therefore,
(—1)PhP9 = (—1)PR9P = —(—1)9h%P,

since —1 = (=1)PT = (=1)P(=1)%, as p + ¢ is odd. But,

Z (—=1)PhPd = Z (=1)2pP = — Z (—1)PhP.

p+q odd p+q odd p+q odd
S0, > piq 0aa(—1)PAPT =0, as claimed. [J
Example: The case of a complex, Kahler surface. In this case, n = dim¢ X = 2, so

1(X) = Z (—1)PRPT = JO0 4 p20 _ pLL 4 02 4 2.2

p+q even

159
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i.e.

I(X) =2+2hn%% — hb'
We know that h*? = dim¢ H*(X,Ox) = p, = geometric genus. So,

I(X) =2+2p, — A"
The number ¢ = dim¢ H'(X, Ox) = 4b; is called the irreqularity of X. By Lefschetz, we also have
pbl— pbl 41

where p™*® = dim¢ P™°.

Let’s look at @ restricted to HY1(X). Now,

1L 1L
L1 = pll ]’_‘[ LPY%0 — pll ]’_‘[ LHO.
So, sgn(Q) | HY! = sgn(Q) | P*! +sgn(Q) | H*°. We know that on P!, the form (—1)(3)2'1_16,2(04,3) is
positive. Thus, @ is negative on P11, On H%? (up by L in H'!), we have Q > 0. Therefore,
sgn(Q) I HY =1 — dime PH!

and the one positive eigenvector (i.e., corresponding to the positive eigenvalue) is [w] = [H N X], where H is
a hyperplane of ]P’g . Therefore, we get

Corollary 2.78 (Hodge Index for Holomorphic Cycles on a Surface) If X is a Kdhler, compact, surface
then in HY! we can choose a basis so that:

(a) The first basis vector is a multiple of [w] = [H N X].
(b) the matrics of Q on HY' is diag(1,—1,—1,---,—1).

Let’s examine @ on H'? and H%!, this is Riemann’s case: We know P10 = H10; P01 = 01 Now,
1
QI HY= (—1)(2)2'1_062 > 0, which means that

iQ(€,€) >0 if £isa (1,0) form.
We also have Q | HO! = (—1)(;)2'0’162 > 0, which means that
—iQ(&,€) >0 if ¢isa (0,1) form.
Say X is a Kéhler, complex, compact manifold. We have the exact sequence of sheaves
0—Z— O0x ZB 0% — 0,
where exp(f) = e?™f. If we apply cohomology, we get

0 Z C (o

)
L_> HY(X,Z) — HY(X,0x) —= HY(X,0%)
5 ) X

D,

C

<—> H?*(X,7Z) —— H?*(X,0x)
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We get the exact sequence
0 — HY(X,Z) — HY(X,0x) — HY(X,0%) = H*(X,7).

The group H'(X, O%) is called the (analytic) Picard group of X; notation: Pic(X).
I claim: The group H'(X,Z) is a lattice in H' (X, Ox) = C?, where b1(X) = 2q.

To see this, look at the inclusions
Z—R—C—= Ox

and examine first H'(X,Z) < H'(X,R). We compute these groups by Cech cohomology and all takes place
for finite covers and opens that are diffeomorphic to convex opens. It follows (DX) that H(X,Z) is a lattice
in H'(X,R). Examine the commutative diagram

1 d 2 d

/\0 d

|

o
o

|

0 Ox /\0,0 ] /\0,1 ] /\0,2 a

)
D O S —

where the vertical maps between the first two rows are complexification and the maps between the second
and the third row are projection on (0, —). This implies that our maps come from de Rham and Dolbeault.
But,

HY(X,C)=HY(X,R): 1 H(X,R)Z

and H'(X,C) — H'(X,Ox) is the map
HY(X,R)z1T H'(X,R)Z — H'(X,R)Z,

so, the composite map
H'(X,R)— H'(X,C) — H'(X,0Ox)
is an isomorphism over R. Therefore, the claim is proved.

Since rk H(X,Z) = 2q (where ¢ = dimg H'(X,R)), we deduce that
HY(X,0x)/H (X,7) = C1/7*.

Therefore, H'(X,Ox)/H"(X,Z) is a g-dimensional complex torus. This torus, denoted Pic’(X), is called
the Picard manifold of X. The image of ¢ into H?(X,Z) is called the Néron-Severi group of X; it is
denoted NS(X). Observe that NS(X) — H?(X,Z) = a finitely generated abelian group, as X is compact.
Consequently, NS(X) is a finitely generated abelian group. Moreover, the sequence

0 — Pic’(X) — Pic(X) — NS(X) — 0 is exact.
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2.7 Extensions of Results to Vector Bundles

Say X is a complex manifold and F is a holomorphic vector bundle on X. Put hermitian metrics on X and
E. We know (A" T%). gets an inner product and E, has one too; so, (/\p"q T}?) ® E has an inner product.
We have a pairing

E® EP —— &ndo, (E)

Ox

a nondegenerate bilinear form. We also have a nondegenerate pairing
n—p,n—

7<T§’ ® 7\ qT}Q —>7<T}2%(C (%)
(A12) = ( )

(The isomorphism A™" T2 = C is given by the volume form.) Using the metric, we have an isomorphism

p.a D pa
((/\T;g) ®E> = (\1R) 2 E.
From (%), we have the pairing

((XT}(’) ®E> ® ((nqu;?) ®ED> . (XT}Q) ©0x = Oy,

so, we have the isomorphism

b,q D n—p,n—q

((/\T}{) ®E> o ( A T)?) ® EP.

The composite isomorphism
p.q p.q D n—
(\TR) e B = ((/\T}?) ®E> ~( N\ TR)eE”,
is the Hodge * in the case of a v.b.:
p.q n—p,n—q

s (NTR) 2B — ( N\ TR) @ EP.

If X is compact, as

(&,1)z(vol. form), = &, A #ny,
by definition, we set

€= [ ensm= [ €mutwol form..

This gives Teoe (X, (APYTE) ® E) an inner product. let Vg be the uniholo connection on E. Then,
—xp oV ox*p is the formal adjoint of Vg, denoted V. We have as well VIE’O, V%’l = 0 and V*El’o = 5};.
We define [g; [llE’O; Ij%’l; via:

O = VEV*E + V*EVE

DJIE:O _ V}E’OVE Lo V*EI’OV};’O

DgE,l _ v%lvEO,l I v}o’lv%’l.
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Theorem 2.79 (Dolbeault’s Theorem, V.B. Case) If X is a complex manifold and E is a holomorphic vector
bundle, then
HY(X, 0% @ F) = Hg’f{l(X, E).
E

(Here, Q% = T(X, \"°TR).)

Theorem 2.80 (Hodge’s Theorem, compact manifold, V.B. Case) If X is a complex, compact manifold and
E is a holomorphic vector bundle on X, both X and E having hermitian metrics, then

p,q

€L 1
Few (X, (ATR) @ B) =72 [T 03! [ tm V3!
where this is an orthogonal coproduct and
HP? = Ker D%’l

and HP-? s finite dimensional, for all p,q.

We also have

Theorem 2.81 (Serre Duality, V.B. Case) If X is a complex, compact manifold of dimension n = dim¢ X
and FE is a holomorphic vector bundle on X, then the pairing

(&m) — / EAn
X
is a nondegenerate pairing of finite dimensional vector spaces
HP9(X,0x(E)) @ H" ?""9(X,0x(EP)) — C,
where H?1(X,0x (E)) = H1(X, Q% ® E). That is, we have the isomorphism

H" (X, Q% %@ EP) = (HY(X,0% @ E))P.

When p =0, set wx = Q%, then
H" (X, wx ® EP) = (HY(X,E))".

Theorem 2.82 (Hodge’s Theorem, Kdahler and V.B. Case) If X is a complex, compact, Kdhler manifold
(of dimension n = dimc X ) and E is a holomorphic vector bundle on X with a flat connection (i.e., the
curvature of the connection is identically zero), then there is a canonical isomorphism

[1 HP(X, 0x(E)) = H*(X, Ox(E))
p+q=k

and moreover, there are isomorphisms
(a) HEd(X,0x(E)) = HM(X, Ox(E))
(where, HEA(X, Ox(E)) = (Ker Vi on APU(X,E))/(Im V5" V%" from AP~ "1 (X, E)).)

(b) HEd (X, Ox (B)) = H*" (X, Ox (E7)).
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The proof is the same as before.

A nice example of the Hodge Index theorem

Let X be a compact, Kéahler surface (so, dim¢ X = 2). Then, we already saw that
I(X) =24 2h%0 — pbL,

Let
2 2
Xtop(X) = Euler-Poincaré(X) = Y "(=1)'b; = »_ (—=1)PT9hP9 =2 — 4p%1 — 2102 4 p11.
i=0 p,q=0
Observe that
I(X) + Xtop(X) = 4—4n%! 4 4p02

= =4(dim H°(X,O0x) — dim H*(X, Ox) + dim H*(X, Ox))
= 4(1—q+py)

= 4(1+p.) = 4x(X, Ox).
(Recall p, = pg — ¢.) Now, the Hirzebruch-Riemann-Roch Theorem (HRR) for X is equivalent with

1
X(X,0x) = 75(c3 + e2),

where c1, co are the Chern classes of T)l(’o, with ¢; € H¥(X,Z) and one shows that xop(X) = c2. In fact,
for any compact, complex manifold, X, of complex dimension n, the top Chern class of T)l(’o, namely, ¢4 (the
Euler class) is equal to x4op(X). Therefore,

1
I(X)4c = g(cf + c2),
iff HRR holds. Consequently,

1
I(X) = g(cf —2¢2) iff HRR holds.

This last statement is the Hirzebruch signature theorem for a complex, compact surface and the Hirzebruch
signature theorem is equivalent to HRR.

Case of a Compact Riemann Surface
Compute c¢; = the highest Chern class of T)I(’O. We have
€1 = Xtop(X)
= bo—b1+b2
= 2-b
= 2(1-hr""
= 2((dim H°(X,0x) — (dim H'(X, Ox))
= 2x(X,Ox).

We get a form of the Riemann-Roch theorem:
1
x(X,0x) = 501

Since x(X,Ox) =1 — g (by definition, g = dim H!(X, Ox)), we get

c =2-—2g.



Chapter 3

The Hirzebruch-Riemann-Roch
Theorem

3.1 Line Bundles, Vector Bundles, Divisors
From now on, X will be a complex, irreducible, algebraic variety (not necessarily smooth). We have

(I) X with the Zariski topology and Ox = germs of algebraic functions. We will write X or Xza;.

(II) X with the complex topology and Ox = germs of algebraic functions. We will write X¢ for this.
(IIT) X with the complex topology and Ox = germs of holomorphic functions. We will write X?" for this.

(IV) X with the complex topology and Ox = germs of C*°-functions. We will write X¢oo or Xqmooth in this
case.

Vector bundles come in four types: Locally trivial in the Z-topology (I); Locally trivial in the C-topology
(I1, III, IV).

Recall that a rank r vector bundle over X is a space, F, together with a surjective map, p: £ — X, so
that the following properties hold:

(1) There is some open covering, {U, — X}, of X and isomorphisms
Ya: D (Ua) = Uy H(CT (local triviality)
We also denote p~1(Uy,) by E | U,.

(2) For every «, the following diagram commutes:

pil(Ua) - Ua HCT
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(3) Consider the diagram

pil(Ua) = Uas[IC"

Pa

P HUaNUs) —2% (U, NUg)[ICT

o

‘ ]

P UsNU.) —25 (Us NUL)ICT

—~

p~"(Up)

where g8 = g0 p 1 | p~1(Us NUp). Then,

UsgllC"

ga TUaNUs=1id and g | C" € GL.(F(Us N Ug, Ox))

and the functions g2 in the glueing give type II, III, IV.

On triple overlaps, we have
ghogs =93 and g§=(g7)".

This means that the {g2} form a 1-cocycle in Z'({U, — X},GL,). Here, we denote by GL,(X), or simply
GL,, the sheaf defined such that, for every open, U C X,

I(U,GL,(X)) = GL,(T'(U, Ox)),

the group of invertible linear maps of the free module I'(U, Ox)"” = T'(U, O% ). When r = 1, we also denote
the sheaf GL;(X) by G, or O%.

Say {1} is another trivialization. We may assume (by refining the covers) that {¢,} and {1} use the
same cover. Then, we have an isomorphism, ,: Uy [[C" = U, [[C":

UaTIC

UaTIC

We see that {04} is a O-cochain in C°({U, — X},GL,). Let {h2} be the glueing data from {t,}. Then,

we have

Y8 = ghoga
1/)5 = hgo1/}a
"/Ja = 0aq9%®%a-

From this, we deduce that og 0 g =g = hg 004 O @y, and then

s = (05" 0y ©04a) © Pa,
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SO
B

9o = 0’6_1 ohg 0 Tg.
This gives an equivalence relation, ~, on Z'({U, — X}, GL,). Set
H'{Uy, — X},GL,) =Z'/ ~ .

This is a pointed set. If we pass to the right limit over covers by refinement and call the pointed set from
the limit H!'(X,GL,), we get

Theorem 3.1 If X is an algebraic variety of one of the types T = I, II, III, IV, then the set of isomorphism
classes of rank r vector bundles, Vectr . (X), is in one-to-one correspondence with H*(X,GL,.).

Remarks:

(1) If F is some “object” and Aut(F') = is the group of automorphisms of F' (in some catgeory), then an
X -torsor for F is just an “object, E, over X7, locally (on X) of the form U[]F and glued by the
pairs (id, g), where g € Maps(U NV, Aut(F)) on U NV. The theorem says: H(X, Aut(F)) classifies
the X-torsors for F.

Say F' =P, we'll show that in the types I, II, ITI, Aut(F) = PGL,, where

0 — G,, — GL,;; — PGL, — 0 is exact.

(2) Say 1 — G — G — G” — 1 is an exact sequence of sheaves of (not necessarily commutative)
groups. Check that
1 G'(X) G(X) G'(X)
do >

<_> AY(X,G) — H'(X,G) — H'(X,G")

is an exact sequence of pointed sets. To compute dp(0) where o € G”(X), proceed as follows: Cover
X by suitable U, and pick s, € G(U,) mapping to o [ U, in G"(U,). Set

do(o) = saslgl on U, NUg/ ~.

We find that do(c0) € H'(X,G"). When G’ C Z(G), we get the exact sequence

1 & (X) G(x) a"(X)
do >

<_> HY(X,G') —= H(X,G) — H'(X,G")

g
<—> H?*(X,@")

(3) Apply the above to the sequence

0 —G,, — GL,+; — PGL, — 1.
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If X is a projective variety, we get
0 —I'(X,0%) — GL,11(I'(X,0x)) — PGL,(I'(X, Ox)) — 0,
because I'(X, 0% ) = C* and I'(X, Ox) = C. Consequently, we also have
0— HY(X,0%) — H'(X,GL,41) — H'(X,PGL,) — H*(X,0%) = Br(X),

where the last group, Br(X), is the cohomological Brauer group of X of type T'. By our theorem,
HY(X,0%) = Pic(X) classifies type T line bundles, HY(X,GL,41) classifies type T rank r + 1 vector
bundles and H'(X,PGL,) classifies type T fibre bundles with fibre P (all on X).

Let X and Y be two topological spaces and let 7: Y — X be a surjective continuous map. Say we have
sheaves of rings Ox on X and Oy on Y; we have a homomorphism of sheaves of rings, Ox — 7.Oy. Then,
each Oy-module (or Oy-algebra), F, gives us the Ox-module (or algebra), 7. on X (and more generally,
Rim, F) as follows: For any open subset, U C X,

LU, 7.F) =T(x"1(U),F).

So, (7= Y(U), Oy) acts on T'(x~1(U), F) and commutes to restriction to smaller opens. Consequently, ., JF
is a m.Oy-module (or algebra) and then Ox acts on it via Ox — m.Oy. Recall also, that Rim,.F is the
sheaf on X generated by the presheaf

(U, R, F) = Hi (=~ *(U), F).

If F is an algebra (not commutative), then only 7, and R'm, are so-far defined.

Let’s look at F and I'(Y, F) = I'(n~}(X), F) = I'(X, m.F). Observe that
DY, ) = (X, ) om,.

So, if 7, maps an injective resolution to an exact sequence, then the usual homological algebra gives the
spectral sequence of composed functors (Leray spectral sequence)

EY? = HY(X,Rim, F) = H*(Y, F).
We get the exact sequence of terms of low degree (also called edge sequence)

1—>H1(X,7T*]'—) —>H1(Y,]:) —>HO(X,R17T*]:)
do )

<—> H2(X, 1. F) — H2(Y,F) ————
In the non-commutative case, we get only

1 —— HY (X, 7. F) ——= HYY,F) — H°(X, R'7.F).

Application: Let X be an algebraic variety with the Zariski topology, let Ox be the sheaf of germs of
algebraic functions and let Y = X¢ also with Oy = the sheaf of germs of algebraic functions. The map
m:Y — X is just the identity, which is continuous since the Zariski topology is coarser than the C-topology.
Take F = (possibly noncommutative) GL,..

Claim: R'id,GL, = (0), for all r > 1.
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Proof . 1t suffices to prove that the stalks are zero. But these are the stalks of the corresponding presheaf

lim He (U, GLy)
Usz

where U runs over Z-opens and H! is taken in the C-topology. Pick z € X and some ¢ € HL(U,GL,) for
some Z-open, U 3 z. So, ¢ consists of a vector bundle on U, locally trivial in the C-topology. There is some
open in the C-topology, call it Uy, with « € Uy and Uy C U where £ | Uy is trivial iff there exists some
sections, o01,...,0,, of & over Uy, and o1,...,0, are linearly independent everywhere on Uy. The o; are
algebraic functions on Uy to C". Moreover, they are l.i. on Uy iff o3 A --- A 0, is everywhere nonzero on Uy.
But, o1 A -+ Ao, is an algebraic function and its zero set is a Z-closed subset in X. So, its complement, V,
is Z-open and z € Uy C V NU. It follows that £ [ V N U is trivial (since the o; are Li. everywhere); so, &
indeed becomes trivial on a Z-open, as required. []

Apply our exact sequence and get
Theorem 3.2 (Comparison Theorem) If X is an algebraic variety, then the canonical map
Vecty, (X) =2 H'(Xza:, GL,) — H'(Xc,GL,) = Vect{:(X)

is an isomorphism for all v > 1 (i.e., a bijection of pointed sets).

Thus, to give a rank r algebraic vector bundle in the C-topology is the same as giving a rank r algebraic
vector bundle in the Zariski topology.

@ If we use Ox = holomorphic (analytic) functions, then for many X, we get only an injection
Vecty,, (X) < Vecte(X).

Connection with the geometry inside X:

First, assume X is smooth and irreducible (thus, connected). Let V be an irreducible subvariety of
codimension 1. We know from Chapter 1 that locally on some open, U, there is some f € T'(U,Ox) = Oy
such that f = 0 cuts out V in U. Furthermore, f is analytic if V' is, algebraic if V is. Form the free abelian
group on the V’s (we can also look at “locally finite” Z-combinations in the analytic case); call these objects
Weil divisors (W-divisors), and denote the corresponding group, WDiv(X).

A divisor D € WDiv(X) is effective if D = )" aqVa, with aq > 0 for all a. This gives a cone inside
WDiv(X) and partially orders WDiv(X).

Say g is a holomorphic (or algebraic) function near z. If V passes through z, in Ox ,—which is a UFD
(by Zariski) we can write

g= f%, where (g,f)=1.

(The equation f = 0 defines V near z so f is a prime of Ox ,.) Notice that if p = (f) in T'(U, Ox) = Oy,
then g = f°g iff g € p® and g ¢ p**' iff g € p*(Ov), and g ¢ p**1(Ov)p. The ring (Op), is a local ring
of dimension 1 and is regular as X is a manifold (can be regular even if X is singular). Therefore, a is
independent of z. The number a is by definition the order of vanishing of g along V', denoted ordy (g). If ¢
is a meromorphic function near x, we write g = g1/g2 locally in (Oy),, with (g1, g92) =1 and set

ordy (g) = ordy (g1) — ordy (g2).

We say that g has a zero of order a along V iff ordy (g) = a > 0 and a pole of order a iff ordy (g) = —a < 0.
If g € T(X, Mer(X)*), set
(@)= Y. ordv(g)-V.

VEWDiv(X)

Claim. The above sum is finite, under suitable conditions:
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(a) We use algebraic functions.

(b) We use holomorphic functions and restrict X (DX).

Look at g, then 1/g vanishes on a Z-closed, Wy. Look at X — Wy. Now, X — W, is Z-open so it is a
variety and g [ X — Wy is holomorphic. Look at V' C X and ordy(g) = a # 0, i.e., VNU # (. Thus,
(9) = p* in (Ov)p, which yields (g) € p and then V N (X — Wp) = V(p) C V((g)). But, V(g) is a union of
irreducible components (algebraic case) and V is codimension 1, so V' is equal to one of these components.
Therefore, there are only finitely many V'’s arising from X — Wj.

The function 1/g vanishes on Wy, so write Wy as a union of irreducible components. Again, there are only
finitely many V arising from Wy. So, altogether, there are only finitely many V’s associated with g where g
has a zero or a pole. We call (g) € WDiv(X) a principal divisor. Given any two divisors D, E € WDiv(X),
we define linear (or rational) equivalence by

D~FE iff (3g € Mer(X))(D—E = (g)).
The equivalence classes of divisors modulo ~ is the Weil class group, WCI(X).

Remark: All goes through for any X (of our sort) for which, for all primes, p, of height 1, the ring (Oy ), is
a regular local ring (of dimension 1, i.e., a P.I.D.) This is, in general, hard to check (but, OK if X is normal).

Cartier had the idea to use a general X but consider only the V’s given locally as f = 0. For every open,
U C X, consider Ay =T'(U,Ox). Let Sy be the set of all non-zero divisors of Ay, a multiplicative set. We
get a presheaf of rings, U — S’ElAU, and the corresponding sheaf, Mer(X), is the total fraction sheaf of
Ox. We have an embedding Ox — Mer(X) and we let Mer(X)* be the sheaf of invertible elements of
Mer(X). Then, we have the exact sequence

0 — 0% — Mer(X)" — Dx — 0,

where Dy is the sheaf cokernel.

We claim that if we define Dx = Coker (0% — Mer(X)*) in the C-topology, then it is also the kernel
in the Z-topology.

Take o € I'(U, Dx) and replace X by U, so that we may assume that U = X. Then, as o is liftable locally
in the C-topology, there exist a C-open cover, U, and some o, € T'(U, Mer(X)*) so that o4 — o | U,.
Make the U, small enough so that oo = fo/ga, Wwhere f4, go are holomorphic. It follows that o, is defined
on a Z-open, ﬁa D U,. Look at ﬁa N [7/3 D Uy NUg. We know 0,/0g is invertible holomorphic on U, N Ug
and so,

Ja 98 4 on U, NUg.

03 Oq
It follows that o, /03 is invertible on Uy N [75 and then, restricting slightly further we get a Z-open cover
and o,’s on it lifting o. []

Definition 3.1 A Cartier divisor (for short, C-divisor) on X is a global section of Dx. Two Cartier divisors,
o, T are rationally equivalent, denoted o ~ 7, iff o/7 € T'(X, Mer(X)*). Of course, this means there is a C or
Z-open cover, Uy, of X and some 04, 7o € I'(Uy, Mer(X)*) with o, /7, invertible holomorphic on U, N Ug.
The group of Cartier divisors is denoted by CDiv(X) and the corresponding group of equivalence classes
modulo rational equivalence by C1(X) (the class group).

The idea is that if {(U,,04)}a defines a C-divisor, then we look on U, at

1
2 — 05’ = (locus o4 = 0) — (locus — = 0).

Oa

g
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When we have the situation where WDiv(X) exists, then the map
{Ua,00)}a = {Ug -0’}
takes C-divisors to Weil divisors. Say o, and o/, are both liftings of the same o, then on U, we have
ol = 0aga where g, € T'(X,O%).

Therefore,
0 " o0 0 oo

Oq =04 =0q 04y

and the Weil divisors are the same (provided they make sense). If 0,7 € CDiv(X) and o ~ 7, then there is
a global meromorphic function, f, with ¢ = fr. Consequently

oo —oa = ()" = (H*+70 -1,
which shows that the corresponding Weil divisors are linearly equivalent. We get

Proposition 3.3 If X is an algebraic variety, the sheaf Dx is the same in either the Zariski or C-topology
and if X allows Weil divisors (non-singular in codimension 1), then the map CDiv(X) — WDiv(X) given
by o+ 00 — 0% is well-defined and we get a commutative diagram with injective rows

CDiv(X) &= WDiv(X)

| l

Cl(X) —— WCI(X).
If X is a manifold then our rows are isomorphisms.

Proof. We only need to prove the last statement. Pick D = }°_ naV,, a Weil divisor, where each V, is
irreducible of codimension 1. As X is manifold, each V,, is given by f, = 0 on a small enough open, U; take
for o | U, the product [],, f2 and this gives our C-divisor.

We can use the following in some computations.

Proposition 3.4 Assume X is an algebraic variety and Y — X is a subvariety. Write U = X — Y, then
the maps
o0 € CDiv(X) — o [ U € CDiv(U),

resp.

> naVa € WDIV(X) = Y 1 (Vo NU) € WDiv(U)

are surjections from CDiv(X) or WDiv(X) to the corresponding object in U. If codimx(Y) > 2, then our
maps are isomorphisms. If codimx (Y) =1 and Y is irreducible and locally principal, then the sequences

Z — CDiv(X) — CDiv(U) — 0 and Z — WDiv(X) — WDiv(U) — 0
are exact (where the left hand map is n+— nY ).

Proof. The maps clearly exist. Given an object in U, take its closure in X, then restriction to U gives back
the object. For Y of codimension at least 2, all procedures are insensitive to such Y, so we don’t change
anything by removing Y. A divisor £ € CDiv(X) (or WDiv(X)) goes to zero iff its “support” is contained
in Y. But, Y is irreducible and so are the components of £. Therefore, £ = nY’, for some n. []
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Recall that line bundles on X are in one-to-one correspondence with invertible sheaves, that is, rank 1,
locally free Ox-modules. If L is a line bundle, we associate to it, Ox (L), the sheaf of sections (algebraic,
holomorphic, C*°) of L.

In the other direction, if £ is a rank 1 locally free Ox-module, first make £P and the Ox-algebra,
Syme (LP), where

Syme, (£7) = [T (£7)®"/(a@b—b&a).
n>0

On a small enough open, U,
Symg, (£P) U = Oy[T],

so we form Spec(Syme (£P) | U) = UJ]C', and glue using the data for £Z. We get the line bundle,
Spec(Sym,  (LP)).

Given a Cartier divisor, D = {(U,, fa)}, we make the submodule, Ox (D), of Mer(X) given on U, by
Ox(D) | Uy = fiox | Uy € Mer(X) | Ua.

If {(Uq,9a)} also defines D (we may assume the covers are the same by refining the covers if necessary),
then there exist h, € I'(Uy, Mer(X)*), with

foch/a = Ja-
1

Then, the map & — hL ¢ takes fi to gi; S0, 7o and gL generate the same submodule of Mer(X) | U,. On
U, NUg, we have

f—a e (U, NUg, O%),
Is
and as
fo 1 1
fs fa f5
we get

700, 1UaUs =+ Ou, | Ua U,
B

o

Consequently, our modules agree on the overlaps and so, Ox (D) is a rank 1, locally free subsheaf of Mer(X).

Say D and E are Cartier divisors and D ~ E. So, there is a global meromorphic function,
feT(X, Mer(X)*) and on U,,
faf = YGa-

Then, the map & — %5 is an Ox-isomorphism
Ox(D) = Ox(E)
Therefore, we get a map from Cl(X) to the invertible submodules of Mer(X).

Given an invertible submodule, £, of Mer(X), locally, on U, we have £ | U = fLU Oy € Mer(X) 1 U.
Thus, {(U, fu)} gives a C-divisor describing £. Suppose £ and M are two invertible submodules of Mer(X)
and £ = M; say p: L — M is an Ox-isomorphism. Locally (possibly after refining covers), on Uy, we have

ﬁfUaginUa and MrUagiOUa.
% ga

So, ¢: L[ Uy - M | U, is given by some 7, such that

R
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Consequently, ¢, [ U, is multiplication by 7, and g [ Ug is multiplication by 73. Yet ¢, | Uy and g | Ug
agree on U, NUg, so 7, = 73 on U, N Ug. This shows that the 7, patch and define a global 7 such that

1 1
"1 Ua =70 =gap(+) and 71Us=15=gs0( )
fa fﬁ
on overlaps. Therefore, we can define a global ® via
1
o= gago(f—> € Mer(X),

and we find £ — é & gives the desired isomorphism.

Theorem 3.5 If X is an algebraic variety (or holomorphic or C* wvariety) then there is a canonical map,
CDiv(X) — rank 1, locally free submodules of Mer(X). It is surjective. Two Cartier divisors D and E are
rationally equivalent iff the corresponding invertible sheaves Ox (D) and Ox(E) are (abstractly) isomorphic.
Hence, there is an injection of the class group, C1(X) into the group of rank 1, locally free Ox -submodules
of Mer(X) modulo isomorphism. If X is an algebraic variety and we use algebraic functions and if X is
irreducible, then every rank 1, locally free Ox-module is an Ox (D). The map D — Ox(D) is just the
connecting homomorphism in the cohomology sequence,

H(X,Dx) 2 H'(X,0%).
Proof. Only the last statement needs proof. We have the exact sequence
0— Oy — Mer(X)* — Dx — 0.
Apply cohomology (we may use the Z-topology, by the comparison theorem): We get
I'(X, Mer(X)*) — CDiv(X) — Pic(X) — H' (X, Mer(X)*).

But, X is irreducible and in the Z-topology Mer(X) is a constant sheaf. As constant sheaves are flasque,
Mer(X) is flasque, which implies that H' (X, Mer(X)*) = (0). Note that this shows that there is a surjection
CDiv(X) — Pic(X).

How is § defined? Given D € HY(X,Dx) = CDiv(X), if {(Ua, fo)} is a local lifting of D, the map §

associates the cohomology class [f3/fa], where fg/fs is viewed as a 1-cocycle on O%. On the other hand,
when we go through the construction of Ox (D), we have the isomorphisms

1
Ox(D) [ Uy = — OUa = OUa D OUa N OUﬁ (mult. by fa)

[e3

and
1

— 0
fs

and we see that the transition function, gg, on Oy, N Oy, is nonother that multiplication by fz /fo. But
then, both Ox (D) and §(D) are line bundles defined by the same transition functions (multiplication by

fo/fa) and §(D) = Ox (D). [0

Say D = {(Ua, fo)} is a Cartier divisor on X. Then, the intuition is that the geometric object associated
to D is

Ox(D) [ U = vs 2 Ouy 2 0y, NOpy,  (mult. by fz)

(zeros of f, — poles of f,) on U,.

This leads to saying that the Cartier divisor D is an effective divisor iff each f, is holomorphic on U,. In this
case, fo, = 0 gives on U, a locally principal, codimension 1 subvariety and conversely. Now each subvariety,
V', has a corresponding sheaf of ideals, Jy. If V is locally principal, given by the f,’s, then Jy [ U, =
faOx [ Uy. But, foOx | U, is exactly Ox(—D) on Uy, if D = {(U,, fo)}. Hence, Ix = Ox(—D). We get
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Proposition 3.6 If X is an algebraic variety, then the effective Cartier divisors on X are in one-to-one
correspondence with the locally principal codimension 1 subvarieties of X. If V' is one of the latter and if D
corresponds to V', then the ideal cutting out V is exactly Ox(—D). Hence

0 — Ox(—D) — Ox — Oy — 0 s ezact.

What are the global sections of Ox(D)?

Such sections are holomorphic maps o: X — Ox (D) such that 7 oo = id (where m: Ox (D) — X is the
canonical projection associated with the bundle Ox (D)). If D is given by {(Ua, fa)}, the diagram

fa
Ox(D) | Uy =——— faOx | Uy — Ox | U,
Ox(D) T Ua NUg Ox [ Ua MU
H -
Ox(D) [UﬁﬁUa Ox fUﬁﬁUa
X fg
Ox (D) | Us === [f30x | Ug Ox [ Ug

implies that
O'a:faUZUa—>OX fUa and UIQZfBU:UB—>OX fUlg.

However, we need
05 = gava,

which means that a global section, o, is a family of local holomorphic functions, o4, so that o = ggaa.But,
as g2 = fz/fa, we get

0o 0B

—=-—= onU,NUs.

fa fﬁ ’
Therefore, the meromorphic functions, o,/ f«, patch and give a global meromorphic function, F,. We have

fa(Fa f Ua) =0
a holomorphic function. Therefore, (f, [ Un) + (F5 [ Us) > 0, for all a and as the pieces patch, we get
D+ (F,)>0.

Conversely, say F' € I'(X, Mer(X)) and D+ (F) > 0. Locally on U,, we have D = {(Uq, fo)} and (fo F) > 0.
If we set 0, = foF', we get a holomorphic function on U,. But,

J
ggaa = _5faF = fpl' = 93,

so the o, ’s give a global section of Ox (D).
Proposition 3.7 If X is an algebraic variety, then
HY(X,0x(D)) = {0} U{F € D(X, Mer(X)) | (F) + D > 0}.

in particular,
|ID| = P(H°(X,0x(D))={FE|E>0 and E ~ D},

the complete linear system of D, is naturally a projective space and H°(X,Ox (D)) # (0) iff there is some
Cartier divisor, E >0, and E ~ D.
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Recall that an Ox-module, F, is a Z-QC (resp. C-QC, here QC = quasi-coherent) iff everywhere locally,
i.e., for small (Z, resp. C) open, U, there exist sets I(U) and J(U) and some exact sequence

(Ox [ 2% (0x 1U)YV) — F1U — 0.

Since Ox is coherent (usual fact that the rings I'(U,, Ox) = A,, for U, open affine, are noetherian) or
Oka’s theorem in the analytic case, a sheaf, F, is coherent iff it is QC and finitely generated iff it is finitely
presented, i.e., everywhere locally,

(Ox U 2% (Ox [U)? — F U — 0 is exact. (1)
(Here, p, q are functions of U and finite).

In the case of the Zariski topology, F is QC iff for every affine open, U, the sheaf F | U has the form ]T/f,
for some T'(U, Ox)-module, M. The sheaf M is defined so that, for every open W C U,

(1) o(§) € M
DOV AT) = { o W — | M| (2) (%€ € W)(EV (open) € W; 3f € M, 3 € TV, 0x))(g £0 on V)
EEW 3) (VyeV) (o(y) = image (%) in My) .

Proposition 3.8 Say X is an algebraic variety and F is an Ox-module. Then, F is Z-coherent iff F is
C-coherent.

Proof. Say F is Z-coherent, then locally Z, the sheaf F satisfies (f). But, every Z-open is also C-open, so F
is C-coherent.

Now, assume F is C-coherent, then locally C, we have (}), where U is C-open. The map ¢y is given by
a p X ¢ matrix of holomorphic functions on U. Each is algebraically defined on a Z-open containing U. The
intersection of these finitely many Z-opens is a Z-open, U and U O U. So, we get a sheaf

F [ U = Coker (Ox | U)? — (Ox [ U)P).
The sheaves F [ U patch (easy—DX) and we get a sheaf, F. On U, the sheaf Fis equal to F, so F=r.0O
We have the continuous map Xc¢ ad, Xz and we get (see Homework)

Theorem 3.9 (Comparison Theorem for cohomology of coherent sheaves) If X is an algebraic variety and
F is a coherent Ox-module, then the canonical map

HYXzar, F) — HY(Xc, F)

is an isomorphism for all ¢ > 0.

Say V is a closed subvariety of X = P¢. Then, V is given by a coherent sheaf of ideals of Ox, say Jv
and we have the exact sequence
0—Jy — Ox — Oy — 0,

where Oy is the sheaf of germs of holomorphic functions on V' and has support on V. If V' is a hypersurface,
then V is given by f = 0, where f is a form of degree d. If D is a Cartier divisor of f, then Jy = Ox(—D).
Similarly another hypersurface, W, is given by g = 0 and if deg(f) = deg(g), then f/g is a global meromorphic
function on P". Therefore, (f/g) = V — W, which implies V ~ W. In particular, g = (linear form)¢ and
so, V ~ dH, where H is a hyperplane. Therefore the set of effective Cartier disisors of P™ is in one-to-one
correspondence with forms of varying degrees d > 0 and

Cl(P") = Z,
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namely, V + deg(V) = 6(V) (our old notation) = (deg(f)) - H € H*(P",Z). We deduce,

Pic’(P") = (0) and Pic(P") = CI(P") = Z.

Say V is a closed subvariety of P¢, then we have the exact sequence
0— Jy — Opn — Oy — 0.

Twist with Opn(d), i.e., tensor with Opn(d) (Recall that by definition, Opn(d) = Opn(dH), where H is a
hyperplane). We get the exact sequence

0 — Jy(d) — Opn(d) — Oy (d) — 0
(with Jy (d) = Ty @ Opn(d) and Oy (d) = Oy ® Opn(d)) and we can apply cohomology, to get
0 — H(P™, 3y (d)) — H°(P", Opn(d)) — H°(V,0v(d)) is exact,
as Oy (d) has support V. Now,
HO(P", Opn(d)) = {0} U{E >0, E ~dH}.

If B =3"5aqQ, where dim(Q) = n — 1 and aq > 0, we set deg(E) = > aqdeg(Q). If E > 0, then
deg(F) > 0, from which we deduce

{m) ifd<0

HO(P", Opn(d)) = n
( en(d)) c("i) i.e., all forms of degree d in Xg,...,X,, if d > 0.

We deduce,
HY(P", 3y (d)) = {all forms of degree d vanishing on V'} U {0},
that is, all hypersurfaces, Z C P*, with V' C Z (and 0).
Consequently, to give & € HO(P™,Jy (d)) is to give a hypersurface of P containing V. Therefore,

H°(P", 3y (d)) = (0) iff no hypersurface of degree d contains V.

(In particular, V is nondegenerate iff HY(P", 3y (d)) = (0).)

We now compute the groups H?(P", Opn(d)), for all n,q,d. First, consider d > 0 and use induction on
n. For P°, we have
ifg>0

H(P°, Opo(d)) = {fé” if ¢ = 0.

Next, P'. The sequence
0— Op1(—1) — Op1 — Opo —> 0 is exact.

By tensoring with Op1(d), we get
0— Op:(d—1) — Op1(d) — Opo(d) — 0 is exact

by taking cohomology, we get

0 —— HO(P!, Op: (d — 1)) - HO(P!, Op1 (d)) ——> HO(P®, Opo (d)) i

<——enH1@“,Opdd—»D)———>£ﬂ(PHC@4d» 0
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since H(P?, Opo(d)) = (0), by hypothesis. Now, if we pick coordinates, the embedding P < P! corresponds
to zg = 0. Consequently, the map « is multiplication by z¢ and the map 3 is xg — 0. Therefore,

HY(P', Opi(d — 1)) = HY(P', Op1(d)), for all d > 0,

and we deduce
Hl(Plv O]Pl (d)) = Hl(]P)la O]P’l) = Cg = (0)7

and H'(P!, Op1(—1)) = (0), too. We know that
HO(P', Op1(d)) = C4L d >0,

and we just proved that
HY(P', Opi(d)) = (0); d>—1.

In order to understand the induction pattern, let us do the case of P2. We have the exact sequence
0— Opz(d — 1) i> O[p2(d) i> Opl(d) — 0

and by taking cohomology, we get

0 ——> HOP2, Op (d — 1)) 2> HO(P2, Ops(d)) —> HO(P, O (d))

<—> HY(P2, Op2(d — 1)) — H'(P?, Op2(d)) —= H'(P", Op: (d))

—
—

<—> H?(P?,Op2(d — 1)) — H*(P?, Op2(d)) ———0
By the induction hypothesis, H(P*, Opi(d)) = (0) if d > —1, so

HY (P2, Op2(d — 1)) = H'(P?, Op2(d)), for all d > —1.

Therefore,
H'(P?, Op2(d)) = H (P?, Op2), for all d > —2.

But, the dimension of the right hand side is h%! = 0 (the irregularity, h%!, of P? is zero). We conclude that
H'(P?, Op2(d)) = (0) for all d > —2.
A similar reasoning applied to H? shows
H?(P?, Op2(d)) = H*(P?,Op2), for all d > —2.
The dimension of the right hand side group is H%? = p,(P?) = 0, so we deduce
H?(P?, Op2(d)) = (0) for all d > —2.

By induction, we get

ntdy |
(e, Onn(d) = { ) 1020
(0) ifd<0
and
HYP", Opn(d)) = (0) if d > —n, for all ¢ > 0.
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For the rest of the cases, we use Serre duality and the Euler sequence. Serre duality says
HY(P", Opn(d))P = H"9(P", Opn (—d) @ Q).

From the Euler sequence
0 — Opn — H Opn (1) — TI;;P — 0,
n+1 times

by taking the highest wedge, we get

n+1

/\ (H OIP’"(l)) = /n\TlrlO ® Opn,

n+1

from which we conclude
n+1

Q)P = A\ (H O[Pn(l)) =~ Opn(n +1).

n+1
Therefore
wpn = an = O[pm(—(n —+ 1)) = O[pm (K[pm),

where Kpn is the canonical divisor on P™, by definition. Therefore, we have
HY(P", Opn(d)) = H" 9(P", Opn(—d — n — 1))P.

If1<g¢g<mn-—1andd> —n, then we know that the left hand side is zero. As 1 <n —q < n — 1, it follows
that

HYP", Opn(—d—n—1)) = (0) when d > —n.
Therefore,

HY(P",Opn(d)) = (0) for alld and all ¢ with 1 < ¢ <n—1.

We also have

H™(P", Opn(d))P = H'(P", Opn(—d — n — 1)),
and the right hand side is (0) if —d — (n +1) < 0, i.e., d > —n. Thus, if d < —(n + 1), then we have
d=—-d—(n+1)>0,so

H™(P", Opn (d) = HOP", Opn (6))P = C("3"),  where § = —(d +n + 1).
The pairing is given by
1 f / dxo N\ -+ ANdxy,
J— e H -
I mowy--xy n Ty Ty

where deg(f) = —d, with d < —n — 1. Summarizing all this, we get

)

Theorem 3.10 The cohomology of line bundles on P™ satisfies
HY(P", Opn(d)) = (0) for all n,d and all g with1 < qg<n—1.
Furthermore,
n+d
HO®",0pn(d)) =C"4), ifd >0, else (0),

and )

H"™(P", Opn(d)) = c("s , whered=—(d+n+1) and d < —n—1, else (0).

We also proved that
wpn = Opn(—(n 4+ 1)) = Opn (Kpn).
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3.2 Chern Classes and Segre Classes

The most important spaces (for us) are the Kéhler manifolds and unless we explicitly mention otherwise, X
will be Kéhler. But, we can make Chern classes if X is worse.

Remark: The material in this Section is also covered in Hirzebruch [8] and under other forms in Chern [4],
Milnor and Stasheff [11], Bott and Tu [3], Madsen and Tornehave [9] and Griffith and Harris [6].

Let X be admissible iff
(1) X is o-compact, i.e.,

(a) X is locally compact and

(b) X is a countable union of compacts.

(2) The combinatorial dimension of X is finite.

Note that (1) implies that X is paracompact. Consequently, everthing we did on sheaves goes through.

Say X is an algebraic variety and F is a QC Ox-module. Then, H°(X, F) encodes the most important
geometric information contained in F. For example, F = a line bundle or a vector bundle, then

HY(X, F) = space of global sections of given type.
If 7 =3y(d), where V' C P", then
HY(X,F) = hypersurfaces containing V.
This leads to the Riemann-Roch (RR) problem.
Given X and a QC Ox-module, F,
(a) Determine when H°(X,F) has finite dimension and

(b) If so, compute the dimension, dim¢ HY(X, F).

Some answers:

(a) Finiteness Theorem: If X is a compact, complex, analytic manifold and F is a coherent Ox-module,
then H?(X, F) has finite dimension for every ¢ > 0.

(b) It was noticed in the fifties (Kodaira and Spencer) that if {X;};cs is a reasonable family of compact
algebraic varieties (C-analytic manifolds), (S is just a R-differentiable smooth manifold and the X; are
a proper flat family), then

dim X,

X(X1,0x,) = > (=1)'dim(H'(X;, Ox,))
i=0

was independent of ¢.

The Riemann-Roch problem goes back to Riemann and the finiteness theorem goes back to Oka, Cartan-
Serre, Serre, Grauert, Grothendieck, ... .

Examples. (1) Riemann (1850’s): If X is a compact Riemann surface, then

X(X,0x)=1-g
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where g is the number of holes of X (as a real surface).

(2) Max Noether (1880’s): If X is a compact, complex surface, then
1
x(X,0x) = E(K% + top Euler char.(X)).

(Here, K% = Ox(Kx)UOx(Kx) in the cohomology ring, an element of H*(X,Z).)
(3) Severi, Eger-Todd (1920, 1937) conjectured:

X(X, Ox) = some polynomial in the Euler-Todd class of X,

for X a general compact algebraic, complex manifold.

(4) In the fourties and fifties (3) was reformulated as a statement about Chern classes—no proof before
Hirzebruch.

(5) September 29, 1952: Serre (letter to Kodaira and Spencer) conjectured: If F is a rank r vector bundle
over the compact, complex algebraic manifold, X, then

X(X,F) = polynomial in the Chern classes of X and those of F.
Serre’s conjecture (5) was proved by Hirzebruch a few months later.
To see this makes sense, we’ll prove

Theorem 3.11 (Riemann-Roch for a compact Riemann Surface and for a line bundle) If X is a compact
Riemann surface and if L is a complex analytic line bundle on X, then there is an integer, deg(L), it is

deg(D) where L = Ox (D), where D is a Cartier divisor on X, and
dime H(X, £) — dime H*(X,wx @ £LP) =deg(L) +1—g
where g = dim H°(X,wyx) = dim H' (X, Ox) is the genus of X.

Proof . First, we know X is an algebraic variety (a curve), by Riemann’s theorem (see Homework). From
another Homework (from Fall 2003), X is embeddable in PY, for some N, and by GAGA (yet to come!), £
is an algebraic line bundle. It follows that £ = Ox (D), for some Cartier divisor, D. Now, if f € Mer(X),
we showed (again, see Homework) that f: X — PL = S? is a branched covering map and this implies that

#(f(00)) = #(f~(0)) = degree of the map,

so deg(f) = #(f71(0)) — #(f*(c0)) = 0. As a consequence, if E ~ D, then deg(F) = deg(D) and the first
statement is proved. Serre duality says

H(X,wx ® LP) = H'(X, £)P.

Thus, the left hand side of the Riemann-Roch formula is just x (X, Ox (D)), where £ = Ox (D). Observe that
X(X,Ox (D)) is an Euler function in the bundle sense (this is always true of Euler-Poincaré characteristics).
Look at any point , P, on X, we have the exact sequence

0 — Ox(—P) — Ox — kp — 0,
where kp is the skyscraper sheaf at P, i.e.,

0) ifx#P
A
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If we tensor with Ox (D), we get the exact sequence
0— Ox(D—-P)— Ox(D) — kp® Ox(D) — 0.
When we apply cohomology, we get
X(X,kp ® Ox (D)) + x(X,Ox(D = P)) = x(X,O0x(D)).

There are three cases.
(a) D = 0. The Riemann-Roch formula is a tautology, by definition of g and the fact that H°(X,Ox) = C.

(b) D > 0. Pick any P appearing in D. Then, deg(D — P) = deg(D) — 1 and we can use induction. The
base case holds, by (a). Using the induction hypothesis, we get

1 +deg(D — P)+1—g=x(X,0x(D)),

which says

proving the induction step when D > 0.
(c) D is arbitrary. In this case, write D = DT — D~ with DT, D~ > 0; then
0— Ox — Ox(D7) — kp- —> 0 is exact

and
deg(kp-) = deg(D™) = x(X,0x(D7)).

If we tensor the above exact sequence with Ox (D), we get
0— Ox(D) — Ox(D+ D7) — kp- — 0 is exact.
When we apply cohomology, we get
X(X,0x(D)) 4 deg(D™) = x(X,O0x(D + D7)) = x(X, Ox(DF)).
However, by (b), we have x(X,Ox(D%)) = deg(D%) + 1 — g, so we deduce
X(X,0x(D)) = deg(D") — deg(D™) + 1 — g = deg(D) + 1 — g,
which finishes the proof. []
We will show:

(a) L possesses a class, ¢1(£) € H*(X,Z).

(b) If X is a Riemann surface and [X] € Hy(X,Z) = Z is its fundamental class, then deg(L) = ¢(£)[X] € Z.
Then, the Riemann-Roch formula becomes

X(X,£) = all)X][+1-g
= [a(0)+ 52~ 2)]1x]
_ [c1(£)+%c1(T;50)} X,

This is Hirzebruch’s form of the Riemann-Roch theorem for Riemann surfaces and line bundles.

What about vector bundles?
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Theorem 3.12 (Atiyah-Serre on vector bundles) Let X be either a compact, complex C*-manifold or an
algebraic variety. If E is a rank r vector bundle on X, of class C*° in case X is just C*°, algebraic if X is
algebraic, in the latter case assume E is generated by its global sections (that is, the map, Tag(X, Ox (E)) —
E., given by o — o(x), is surjective for all ), then, there is a trivial bundle of rank r—d (where d = dim¢ X )
denoted I"=%, and a bundle exact sequence

0—I""%—F-—E —0
and the rank of the bundle E" is at most d.

Proof. Observe that if r < d, there is nothing to prove and rk(E"”) = rk(E) and also if r = d take (0) for
the left hand side. So, we may assume r > d. In the C*°-case, we always have E generated by its global
C*>-sections (partition of unity argument).

Pick z, note dim E, = r, so there is a finite dimensional subspace of I'(X, Ox (F)) surjecting onto E,.
By continuity (or algebraicity), this holds C-near (resp. Z-near) z. Cover by these opens and so

(a) In the C°-case, finitely many of these opens cover X (recall, X is compact).

(b) In the algebraic case, again, finitely many of these opens cover X, as X is quasi-compact in the
Z-topology.

Therefore, there exists a finite dimensional space, W C I'(X, Ox (F)), and the map W — E, given by
o+ o(x) is surjective for all x € X. Let

ker(z) = Ker (W — E,).

Consider the projective space P(ker(z)) — P = P(W). Observe that dim ker(z) = dim W — r is independent
of . Now, look at |, y P(ker(x)) and let Z be its Z-closure. We have

dmZ =dimX +dimW —r—1=dmW +d—r —1,
so, codim(Z < P) = r — d. Thus, there is some projective subspace, T', of P with dimT = r —d — 1, so that
TnZ=0.
Then, T = P(S), for some subspace, S, of W (dim S = r — d). Look at
X[[s=x]Jc¢=1r"

Send 1"~ to E wia (z,5) — s(z) € E. As TNZ = (), the value s(z) is never zero. Therefore, for any € X,
Im(I"~% < E) has full rank; set E” = E/Im((I"~? < E) = a vector bundle of rank d, then

0—I"?% S E—E"—0 isexact

as a bundle sequence. []

Remarks:

(a) If 0 — F' — E — E” — 0 is bundle exact, then

c1 (E) =cC1 (E/) =+ Cl(EH).

(b) If E is the trivial bundle, I", then ¢;(E) =0, for j =1,...,r.
(c) If rk(E) =, then ¢1(E) = c1 (A" E).
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In view of (a)—(c), Atiyah-Serre can be reformulated as
rk E rk E”
a(E) = cl(/\ E) =c(B") = 01( /\ E”),
We now use the Atiyah-Serre theorem to prove a version of Riemann-Roch first shown by Weil.

Theorem 3.13 (Riemann-Roch on a Riemann surface for a vector bundle) If X is a compact Riemann
surface and E is a complex analytic rank r vector bundle on X, then

dimc H(X, Ox (F)) — dimc H*(X,wx ® Ox(E)P) = x(X, Ox) = c1(E) + tk(E)(1 — g).

Proof. The first equality is just Serre Duality. As before, by Riemann’s theorem X is projective algebraic
and by GAGA, FE is an algebraic vector bundle. Now, as X — PV it turns out (Serre) that for § >> 0, the
“twisted bundle”, F ® Ox(§) (= E® (’)}8;6) is generated by its global holomorphic sections. We can apply
Atiyah-Serre to E ® Ox(d). We get

0—I""'!' = E®0x(0) — E” — 0 is exact,
where tk(E") = 1. If we twist with Ox(—4), we get the exact sequence

0— [] Ox(-6) — E — E"(-5) — 0.

r—1

(Here, E"(—9) = E” ® Ox(—J).) Now, use induction on r. The case r = 1 is ordinary Riemann-Roch for
line bundles. Assume the induction hypothesis for » — 1. As x is an Euler function, we have

XX, Ox(E)) = x(X, B"(=8)) + x(]] Ox (=)
r—1

The first term on the right hand side is
ci(E"(=6) +1—g,

by ordinary Riemann-Roch and the second term on the right hand side is
e ([T 0x(=9) + (= D1 - g).
r—1
by the induction hypothesis. We deduce that

(X, 0x(E)) = ei(B"(=0)) + o1 (]] Ox(=9)) +7(1 = g).
r—1

But, we know that

c1(B) = c1(B"(=8)) + 1 (L[ (’)X(—(S)),

so we conclude that
X(X,0x(E)) = c1(E) + (1 —g),

establishing the induction hypothesis and the theorem. []

Remark: We can write the above as

rk(E)

X(X, Ox(B)) = e1(E) + =

1 (T)léo)’
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which is Hirzebruch’s form of Riemann-Roch.

We will need later some properties of x(X,Ox) and py(X). Recall that py(X) = dim¢ H"(X,0x) =
dime HO(X, Q% ), where Q. = A Tx". (The vector spaces H(X, Q4) were what the Ttalian geometers (in
fact, all geometers) of the nineteenth century understood.)

Proposition 3.14 The functions x(X,Ox) and py(X) are multiplicative on compact, Kihler manifolds,
i.e.,

X(X [Tv.0x ny) = Xx(X,0x)x(Y,Oy)
Py (X H Y) = pg(X)py(Y).
Proof. Remember that
dime HY(X, Ox) = dim¢ HO(X, QY ) = b = p10,
Then,
x(X,0x) Z 1)7dime H(X, %) Z 1)7h0.
Jj=0 j=0
Also recall the Kiinneth formula

[T He(x.0%) @ HY (X, 0%) = Hb(XHY QXHY)

p+p'=a
a+q'=b

Set b =0, then ¢ = ¢’ = 0 and we get
S ROy = ne 0 (XTI Y),
ptp'=a

Then,

r=0 s=0

m—+n

_ Z (_1)r+shr,0(X)hs,0(Y)

r,s=0

X(X, 0x)x(Y,0y) = <Z(—1>’“h“0<X>> (Z(—l)ShS*O(Y)>

m-+n

_ Z Z hrO hsO Y)
k=0 r+s=k

m-+n
= SR TTY) = (X ]V 01y ).
k=0
The second statement is obvious from Kiinneth. []

Next, we introduce Hirzebruch’s axiomatic approach.

Let E be a complex vector bundle on X, where X is one of our spaces (admissible). It will turn out that
E is a unitary bundle (a U(g)-bundle, where ¢ = rk(E)).

Chern classes are cohomology classes, ¢;(E), satisfying the following axioms:
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Axiom (I). (Existence and Chern polynomial). If E is a rank ¢ unitary bundle over X and X is
admissible, then there exist cohomology classes, ¢;(E) € H*(X,Z), the Chern classes of E and we set

(B)(t) =) a(B)i € H*(X,Z)[t],

1=0
with ¢o(E) = 1.

As dime X = d < o0, we get ¢;(E) =0 for I > d, so C(EF)(t) is in fact a polynomial in H*(X,Z)[t] called
the Chern polynomial of E where deg(t) = 2.

Say m: Y — X and FE is a U(g)-bundle over X, then we have two maps
H*(X,2) T H'(Y,Z) and H'(X,U(g)) = H'(Y,U(q)).

Axiom (IT). (Naturality). For every E, a U(g)-bundle on X and map, 7: ¥ — X, (with X, Y admissible),

we have
c(mE)(t) = 7 (c(E))(1),
as elements of H*(Y, Z)[[t]]-
Axiom (IIT). (Whitney coproduct axiom). If E, a U(g)-bundle is a coproduct (in the C or C*°-sense),

rk(E)

E= ] E
j=1

of U(1)-bundles, then

j=1

Axiom (IV). (Normalization). If X = Pg and Ox (1) is the U(1)-bundle corresponding to the hyperplane
divisor, H, on P¢, then
c(Ox(1))(t) =1+ Ht,

where H is considered in H?(X,Z).
Remark: If i: ]P’871 — P¢, then

Z*O]P’n (1) - Opnfl (1)
and i*(H) in H2(PE 1, Z) is Hpn-1. By Axiom (IT) and Axiom (IV)

i*(1+ Hppt) = i*(c(Opn )(t)) = c(i*(Opn ) () = 1 + Hprn1.
Therefore, we can use any n to normalize.

Some Remarks on bundles. First, on P” = Pg: Geometric models of Opn (£1).

Consider the map
crtt — {0} — P

If we blow up 0 in C"™1, we get By(C""!) as follows: In C" ™! []P", look at the subvariety given by

{{(2); () | z:&5 = 2&i, 0 <4, j < n}.
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By definition, this is Bo(C™*!), an algebraic variety over C. We have the two projections

BO ((CnJrl)

pri pr2
(Cn+1 Pn

Look at the fibre, pry*((z)) over z € C**'. There are two cases:
(a) (z) =0, in which case, pr; ' ((z)) = P™.
(b) (z) # 0, so, there is some j with z; #= 0. We get &; = j—;ﬁj, for all 7, which implies:

(a) & #0.
(B) All & are determined by &;.

m E=2

& 7

This implies
(. & . 5n)<20.21. 1. Zn)
B T -0 R e . E O IUCol
© <€j & & Zj  Zj Zj

Therefore, pr; ' ((z)) = ({z); (2)), a single point.

Let us now look ar pry'(€), for (¢) € P™. Since (¢) € P", there is some j such that &; # 0. A point
{{z); (€)) above (&) is given by all (zp: z1: ---: z,) so that

i
2 = 2.
J
Let z; = t, then the fibre above ¢ is the complex line
50 51 §n
= —t, 21 = — =t
TR &

We get a line family over P*. Thus, pro: Bo(C"t!) — P" is a line family.

20 t,"',Zj:t,"',Zn

(A) What kinds of maps, o: P* — Bo(C"*1), exist with ¢ holomorphic and pry o o = id?

If o exists, then pri o o: P* — C"*! is holomorphic; this implies that pr; o o is a constant map. But,
o(§) belongs to a line through (&) = (§o: -+ : &), for all (€), yet pr1 o 0 = const, so this point must lie on
all line. This can only happen if ¢(£) = 0 in the line through &.

(B) T claim Bo(C™*!) is locally trivial, i.e., a line bundle. If so, (A) says Bo(C"*!) has no global
holomorphic sections and we will know that Bo(C"*!) = Opn(—q), for some g > 0.

To show that Bo(C"*1) is locally trivial over P", consider the usual cover, Up,...,U,, of P" (recall,
U; ={(&) e P | & #0}). If v € Bo(C™) | Uy, then v = ((2); (x)), with & # 0. Define ¢, as the map

v (i) e Us []C
and the backwards map

<(§);t>€UJ—HCl—><<z>;(§)>, where zi—g—;t, i=0,...,n.
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The reader should check that the point of C" ™ [JP™ so constructed is in Bo(C™*!) and that the maps are
inverses of one another.

We can make a section, o, of Bo(C""1) | U;, via

(@) = (2o 81 2 )00

and we see that ¢(0((§))) = (((§); 1) € U; [[C, which shows that o is a holomorphic section which is never
zero. The transition function, g, renders the diagram

By | U, —~— U, TIC

BofUiﬁUj g7

=

By | U, —Z = U, T[C
commutative. It follows that
;(v) = gl (@i(v) = g/ (((&); 1)) = ((€); 25)

and we conclude that gf (2;) = zj, which means that gf is multiplication by z;/z; = &;/&:.

We now make another bundle on P, which will turn out to be Opn(1). Embed P in P"*! by viewing
P" as the hyperplane defined by z,,1 =0 and let P = (0: ---: : 1) € P**1. Clearly, P ¢ P". We have the
projection, w: (P"*! — {P}) — P", from P onto P", where

w(zo: <+t Znt Zng1) = (200 < 0 1 Zn).

We get a line family over P", where the fibre over @ € P™ is just the line [pg (since P ¢ P", this line is
always well defined). The parametric equations of this line are

(u: t) = (uzo: -+ uzy: t),

where (u:t) € Pt and Q = (20: ---: 2z,). When t = 0, we get Q and hen u = 0, we get P. Next, we prove
that P" T — { P} is locally trivial. Make a section, o, of 7 over U; C P" by setting

a;((§)) = (& &)-

This points corresponds to the point (1: &) on lpg and &; # 0, so it is well-defined. As @ is the point of
Ipg for which ¢ = 0, we have 0;((£)) # Q. We make an isomorphism, ¢;: (P"™! — {P}) | U; — U; ] C, via

. . C . . . .. Pl
(ZO-"'-ijl-zj-ZjJrl-"'-Zn+1)'_> Zos i Zpt > .
J

Observe that
si((©) =vj00((&) =v;(&: &) = & D eU []C

For any (z0: «++: 2np11) € (P —{P}) | U; N Uj, we have z; # 0 and z; # 0; moreover

Vi(zo: <+t Zpg1) = <Zol cee i Zpt Zn+1> and (20t -t Zpg1) = <Zol ceet 2t Zn+1>.

Zq
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This means that the transition function, hg , on U; NUj, is multiplication by z;/z;. These are the inverses of
the transition functions of our previous bundle, Bo(C"*!), which means that the bundle P"*! — { P} is the
dual bundle of By(C™*!). We will use geometry to show that the bundle P** — {P} is in fact Opn(1).

Look at the hyperplanes, H, of P**!. They are given by linear forms,

n+1
H: Y a;Z;=0.
j=0

The hyperplanes through P form a P™, since P € H iff a,41 = 0. The rest of the hyperplanes are in the
affine space, C"*! = P"*! — P". Indeed such hyperplanes, H ), are given by

Hyy: Zoszj +Zpy1 =0, (ag,...,a,) € CL
§=0
Given any hyperplane, H ) (with o € Cn+1), find the intersection, 0(a) (@), of the line Ipg with H(,). Note
that o(,) is a global section of P+l — {P}. The affine line obtained from pg by deleting P is given by

T (200 -t 2p T),

where Q = (z0: -+ : z,). This lines cuts H,) iff

n
E ajz; +1 =0,
=0

so we deduce 7 = — 7" a;z; and

Oa)(z0: <+t 2n) = (zoz etz —Zajzj>,
§=0

which means that o(,) is a holomorphic section. Now, consider a holomorphic section, o: P™* — (Pntl —
{P}) — P! of n: (P**! — {P}) — P". As o is an algebraic map and P” is proper, o(P") is Z-closed,
irreducible and has dimension n in P**!. Therefore, o(P") is a hypersurface. But, our map factors through
Pt — {P}, so o(P") C P**! — {P}. This hypersurface has some degree, d, but all the lines Ipg cut o(P™)
in a single point, which implies that d = 1, i.e., o(P") is a hyperplane not through P. Putting all these facts
together, we have shown that space of global sections I'(P", P"*! —{ P}) is in one-to-one correspondence with
the hyperplanes H(y), i.e., the linear forms Y 7 a;z; (a Cn+1). Therefore, we conclude that P! — { P} is

Opn (1). Since Bo(C"*1) is the dual of P"*! — { P}, we also conclude that Bo(C"*!) = Opn(—1).
In order to prove that Chern classes exist, we need to know more about bundles. The reader may wish to

consult Atiyah [2], Milnor and Stasheff [11], Hirsh [7], May [10] or Morita [12] for a more detailed treatment
of bundles.

Recall that if G is a group, then H'(X,G) classifies the G-torsors over X, e.g., (in our case) the fibre
bundles, fibre F', over X (your favorite topology) with Aut(F) = G. When F = G and G acts by left transla-
tion to make it Aut(F'), the fibre bundle is called a principal bundle. Look at ¢: G’ — G, a homomorphism
of groups. Now, we know that we get a map

HY(X,G'") — HY(X,G).

We would like to see this geometrically and we may take as representations principal bundles. Say
E' € HY(X,G") a principal bundle with fibre G’ and group G’. Consider G [] E’ and make an equivalence
relation ~ wvia: For all 0 € G', all g € G, all ¢’ € E’

(gp(0),€') ~ (g,€'c™1).
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Set By = @« (E') =G E'/ ~.
Let us check that the fibre over € X is G. Since E’ is locally trivial, we have E' | U 2 U[] &', for
some small enough open, U. The action of G’ is such that: For o € G' and (u,7) e U] &,

o(u,7) = (u,o1).

Over U, we have (G][F') | U = GI[UJIG’, so our ¢, (E’) is still locally trivial and the action is on the
left on G, its fibre. It follows that

E' — . (E")
is our map HY(X,G") — HY(X,G).

Next, say 0: Y — X is a map (of spaces), then we get a map
HY(X,G) LS HY(Y,G).
Given E € H!(X, G), we have the commutative diagram

EJ][Y——E

|,

y —% o x,

so we get a space, 0*(E) = FE [] Y, over Y. Over a “small” open, U, of X, we have F [ U 2 G][U and
X

0 (E) 10 (U) =G (),

and this gives
HY(X,q) % BY,G).

Say G is a (Lie) group and we have a linear representation, ¢: G — GL(r,C). By the above, we get a
map
Ew Eq_qLirc) = ox(E)
from principal G-bundles over X to principal GL(r, C)-bundles over X. But if V' is a fixed vector space of
dimension r, the construction above gives a rank r vector bundle GL(r,C) [[V/ ~. If V is a rank r vector
bundle over C, then look at the sheaf, Zsom(I", V), whose fibre at x is the space Isom(C",V,). This sheaf
defines a GL(r, C)-bundle.

Say G’ C G is a closed subgroup of the topological group, G.

@ If G is a real Lie group and G’ is a closed subgroup, then G’ is also a real Lie group (E. Cartan). But,
if G is a complex Lie group and G’ is a closed subgroup, then G’ need not be a complex Lie group. For
example, look at G = C* = GL(1,C) and G’ =U(1) = {z € C | |z| = 1}.

Convention: If G is a complex Lie group, when we say G’ is a closed subgroup we mean a complex Lie
group, closed in G.

Say G is a topological group and G’ is a closed subgroup of G. Look at the space G/G’ and at the
continuous map, 7: G — G/G'. We say m has a local section iff there is some some V C G/G’ with
lg -G’ € V and a continuous map

s:V — G, suchthat mos=idy.

When we untwist this definition we find that it means s(v) € v, where v is viewed as a coset. Generally, one
must assume the existence of a local section—this is not true in general.



190 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

Theorem 3.15 If G and G’ are topological groups and G' is a closed subgroup of G, assume a local section
exists. Then

(1) The map G — G/G’ makes G a continuous principal bundle with fibre and group G’ and base G/G'.

(2) If G is a real Lie group and G’ is a closed subgroup, then a local smooth section always exists and G
is a smooth principal bundle over G/G', with fibre (and group) G'.

(3) If G is a complex Lie group and G’ is a closed complex Lie subgroup, then a complex analytic local
section always exists and makes G is a complex holomorphic principal bundle over G/G’, with fibre
(and group) G'.

Proof. The proof of (1) is deferred to the next theorem.

(2) & (3). Use local coordinates, choosing coordinates trasnverse to G’ after choosing coordinates in G’
near lg/. The rest is (DX)- because we get a local section and we repeat the proof for (1) to prove the
bundle assertion. []

Now, say F is a fibre bundle, with group G over X (and fibre F') and say G’ is a closed subgroup of G.
Then, we have a new bundle, F/G’. The bundle E/G’ is obtrained from FE by identifying in each fibre the
elements x and xo, where o € G’. Then, the group of E/G’ is still G and the fibre is F//G’. In particular,
if E is principal, then the group of E/G’ is G and its fibre is G/G’. We have a map £ — E/G’ and a
diagram

E

E/G
A /
X

Theorem 3.16 If G — G/G’ possesses a local section, then for a principal G-bundle E over X
(1) E/G' is a fibre bundle over X, with fibre G/G'.

(2) E— E/G isin a natural way a principal bundle (over E/G') with group and fibre G'. If
€ HY(X,G) represents E, write £gi for the element of HY(E/G',G") whose bundle is just
£ p J
E— E/G.

(8) From the diagram of bundles

E TE—E/G' E/G/
E
X

77\\ Ac/

we get the commutative diagram

H'(X,G") — = HY(X,G) > ¢

”E/c’l l”*E/G’

T

¢ € HY(E/G', G “—= HY(E/G',G)

(Here i: G' < G s the inclusion map) and i.({cr) = 7y c/(§), that is, when E is pulled back to the
new base E/G', it arises from a bundle whose structure group is G'.
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Figure 3.1: The fibre bundle E over E/G’

Proof. (1) is already proved (there is no need for our hypothesis on local sections).

(2) Pick a cover {U,}, of C where E | U, is trivial so that
EU.=Us ]G

Now, consider G — G/G" and the local section s: V(C G/G") — G (with 1g/¢ € V). We know s(v) € v
(as a coset) and look at 7=1(V). If z € 7= 1(V), set

0(z) = (z7 s(n(z)), m(x)) € G'HV.

This gives an isomorphism (in the appropriate category), 7=1(V) = G’ [[ V. If we translate V around G/,
we get G as a fibre bundle over G/G’ and group G’ giving (1) of the previous theorem. But, U, [[V and
the U, [[(translate of V') give a cover of E/G’ and we have

ElUs2Us[[= V) =U][V]] &,

giving F as fibre bundle over E/G’ with group and fibre G’. Here, the diagrams are obvious and the picture
of Figure 3.1 finishes the proof. Both sides of the last formula are “push into the board” (by definition for
i» and by elementary computation in 77}, /G,(S)). O

Definition 3.2 If F is a bundle over X with group G and if G’ is a closed subgroup of G so that the
cohomology representative of G, say ¢ actually arises as i.(n) for some n € H'(X,G"), then E can have its
structure group reduced to G'.

If we restate (3) of the previous theorem in this language, we get

Corollary 3.17 Every bundle E over X with group G when pulled back to E/G’ has its structure group
reduced to G'.

Theorem 3.18 Let E be a bundle over X, with group G and let G' be a closed subgroup of G. Then, E as
a bundle over X can have its structure group reduced to G’ iff the bundle E/G' admits a global section over
X. In this case if s: X — E/G' is the global section of E/G', then s*(E) where E is considered as bundle
over E/G" with group G’ is the element n € HY(X,G') which gives the structure group reduction. In terms
of cocycles, E admits a reduction to group G’ iff there exists an open cover {Us} of X so that the transition
functions

92U, NU; =G

map Uo,NUpg into the subgroup G'. The section of E/G' is given in the cover by maps sqo: Uy — Uy [[G/G',
where sq(u) = (u,1g/c). The cocycle g represents s*(E) when its values are considered to be in G' and
represents E when its values are considered to be in G.

Proof. Consider the picture of Figure 3.1 above. Suppose E can have structure group reduced to G’, then
there is a principal bundle, F, for G’ and its transition functions give F too. This F' can be embedded in
E, the fibres are G'. Apply 75, g/ to F, we get get a space over X whose points lie in the bundle E/G’,
one point for each point of X. Thus, the map s: X — point of 75__, g/ (F') over z, is our section of £/G’
over X.

Conversely, given a section, s: X — E/G’, we have E as principal bundle over E/G’, with fibre and group
G’'. So, s*(E) gives a bundle, F, principal for G’, lying over X. Note, F is the bundle given by s*(¢¢/),
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where ¢ represents E. This shows the F' constructed reduces to the group G’. The rest (with cocycles) is

standard. []

Look at C? and GL(g, C). Write CY for the span of eq, . .., e, (the first r canonical basis vectors) = Ker .,
where 7, is projection on the last ¢ — r basis vectors, e,41,...,e4. Let Grass(r,¢;C) denote the complex
Grassmannian of r-dimensional linear subspaces in C?. There is a natural action of GL(g, C) on Grass(r, ¢; C)
and it is clearly transitive. Let us look for the stabilizer of C4. It is the subgroup, GL(r, ¢—r; C), of GL(g, C),
consisting of all matrices of the form

A B
(@ o)

where A is r x r. It follows that, as a homogeneous space,
GL(q, C)/GL(r,q — r;C) = Grass(r, q; C).

If we restrict the action to U(g), the above matrices must be of the form
A 0
0 C

U(q)/U(r) [ U(g — ) = Grass(r, ¢; C).

where A € U(r) and C € U(g —r), so

Remark: Note, in the real case we obtain
GL(¢,R)/GL(r,q — r;R) = O(q)/O(r) [ [ Olq — r) = Grass(r,¢; R).
If one looks at oriented planes, then this becomes
GL*(¢,R)/GL™(r,q — r;R) 22 SO(q)/SO(r) H SO(q —r) = Grass™ (r,q; R).

Theorem 3.19 (Theorem A) If X is paracompact, [ and g are two maps X — Y and E is a bundle over
Y, then when f is homotopic to g and not for holomorphic bundles, we have f*E = g*E.

Theorem 3.20 (Theorem B) Suppose X is paracompact and E is a bundle over X whose fibre is a cell. If
Z is any closed subset of X (even empty) then any section (continuous, smooth, but not holomorphic) of E
over Z admits an extension to a global section (continuous or smooth) of E. That is, the sheaf Ox(E) is a
soft sheaf. (Note this holds when E is a vector bundle and it is Tietze’s Extension Theorem).

Theorem 3.21 (Theorem C) Say G’ is a closed subgroup of G and X is paracompact. If G/G' is a cell,
then the natural map

1
Htop

(Xv G/) — Htlop(Xa G) or Héiff(Xv G/) — H(]le(X, G)

is a bijection. That is, every principal G-bundle can have its structure group reduced to G' and comes from
a unique principal G'-bundle.

Proof. Suppose E is a principal G-bundle and look at E/G’ over X. The fibre of E/G’ over X is G/G’, a
cell. Over a small closed set, say Z, the bundle E/G’ has a section; so, by Theorem B our section extends
to a global section (G/G’ is a cell). Then, by Theorem 3.18, the bundle E comes from H!(X,G’) and
surjectivity is proved.
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Now, say E and F are principal G’-bundles and that they become isomorphic as G-bundles. Take
a common covering {U,}, where E and F are trivialized. Then g?(E), ¢?(F), their transition functions
become cohomologous in the G-bundle theory. This means that there exist maps, hy: Uy — G so that

ga(F) = hg'ga(E)hg".
Consider X []I where I = [0,1] and cover X [] I by the opens
Ul =Ua]I0,1) and U} =U]](0,1].
Make a principal bundle on X [ I using the following transition functions:
gl UdNU) — G
via go(2,t) = 98(E) (@)
gg} UL N Uﬁl — G

via gh(x.t) = g5 (F)(x);

gho: UeNUs — G
via ggé(:c,t) = hg(x)gl (F)(z) = g2 (E)(x)ha(z). Call this new bundle (E, F) and let

Z=X[[{oyux][{1 = x]]I

a closed subset. Note that (F, F') over Z is a G’-bundle. Thus, Theorem 3.18 says (F, F)/G’ has a global
section over Z. But, its fibre is G/G’, a cell. Therefore, by Theorem B, the bundle (E, F)/G’ has a global

section over all of X. By Theorem 3.18, again, the bundle (E, F') comes from a G’-bundle, (F, F). Write
fo: X = X[ for the function given by

fo(x) = (2,0)
and f1: X — X [] I for the function given by

fi(x) = (2,1).
If (B, F) | X[[{0} = (B, F),, then fi((E,F),) = E, i.e., f;(E,F) = E and similarly, f;(E, F) = F; and
fo is homotopic to f1. By Theorem A, we get £ = F as G’-bundles. []

There is a theorem of Steenrod stating: If X is a differentiable manifold and F is a fibre bundle over X,
then every continuous section of E may be approximated (with arbitrary €) on compact subsets of X by a
smooth section. When F is a vector bundle, this is easy to prove by an argument involving a partition of
unity and approximation techniques using convolution. This proves

Theorem 3.22 (Theorem D) If X is a differentiable manifold and G is a Lie group, then the map

Hyig(X, G) — H

cont

(X, @)

is a bijection.

We get the
Corollary 3.23 If X is a differentiable manifold, then in the diagram below, for the following pairs (G', Q)
(@) G'=U(q), G = GL(q,C).
(B) G'=U(r)[[U(g—r), G=GL(r,q —r;C) or G = GL(r,C)[] GL(qg — r,C).
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(v) G =T4 =8 x ... x St (the real q-torus), G = A(q,C) or G = G, [+ [[Gm = C*[][--- ]I C*
(= GL(L,CO)[]---TIGL(1,C)) (the complex q-torus)

all the maps are bijective

Hclont(X7 GI) - Hclont(X7 G)

T T

HéiH(X’ G/) HéiH(X’ G)

Here,
q

A(Qv(c) = m GL(T‘,q - T;C)

r=1

the upper triangular matrices.

Proof. Observe that G/G" is a cell in all cases and that A(q,C) NU(q) = T?. [
Suppose £ corresponds to a GL(g)-bundle which has group reduced to GL(r,q — r; C). Then, the maps

A B A B
M:(O C>'—>A and M:(O C>|—>C

give surjections GL(r,q — r;C) — GL(r,C) and GL(r,q — r;C) — GL(¢ — r,C), so £ comes from 5 and
€ gives rise to ¢ and & which are GL(r,C) and GL(q — r,C)-bundles, respectively. In this case one says:
the GL(q, C)-bundle £ admits a reduction to a (rank r) subbundle & and a (rank q —r) quotient bundle &".
When we use A(g,C) and GL(g, C) then we get ¢ maps, ¢;: A(g, C) — C*, namely

a;  * * *
0 ao * *

pit | : e ar
0 0 - ag1 =
0 0 -~ 0 a

So, ifgis our A(g, C)-bundle, we get ¢ line bundles &, ..., &, from gand one says & has &1,...,&, as diagonal
line bundles.

Set
F, = GL(¢; C)/A(g; C) = GL(¢; C)/ () GL(r,q — 15 C),

r=1

the flag manifold, i.e., the set of all flags
[0CViCVaC e CV, =V [ dim(Vy) = j.

Since F, = GL(¢; C)/ N?_, GL(r,q — r; C), we see that F, is embedded in Hi:l Grass(r,q; C). Thus, as the
above is a closed immersion, F, is an algebraic variety, even a projective variety (by Segre). If V' is a rank ¢
vector bundle over X, say F(V) (= Isom(C%,V)) is the associated principal bundle, then write

[r]V = E(V)/GL(r,q — r; C),
a bundle over X whose fibres are Grass(r, ¢; C) and
[A]V = E(V)/A(g; €)

a bundle over X whose fibres are the F(gq)’s. We have maps p,: [r]V — X and pa: [A]V — X. Now we
apply our theorems to the pairs
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Ulg), G = GL(q,C).

U(r)[[U(g —r) and G = GL(r,q — r,C) or G = GL(r,C) [] GL(¢q — r, C).
=T?and G=U(q) or G=C*[]---[[C* = (Gn)".

A(q,C) and G = GL(q,C)

(a) G
(b) G
(c) G
(d) G

and then we get, (for example) every rank r vector bundle over X is “actually” a rank r unitary bundle over
X and we also have

Theorem 3.24 If X is paracompact or a differentiable manifold or a complex analytic manifold or an
algebraic variety and V' is a rank q vector bundle of the appropriate category on X, then

(1) V reduces to a rank r subbundle, V', and rank ¢ —r quotient bundle, V", over X iff [r]V possesses an
appropriate global section over X.

(2) V reduces to diagonal bundles over X iff [A]V possesses an appropriate global section over X.

(8) For the maps p, in case (1), resp. pa in case (2), the bundle ptV reduces to a rank r subbundle and
rank g — r quotient bundle over [r|V (resp. reduces to diagonal bundles over [A]V ).

Remark: The sub, quotient, diagonal bundles are continuous, differentiable, analytic, algebraic, respec-
tively.

Say s: X — [r]V is a global section. For every x € X, we have sz € Grass(r,q;Vy); i.e., s(x) is an
r-plane in V,, and so, | J,¢ y s() gives an “honest” rank 7 subbundle or V. It is isomorphic to the subbundle,
V', of the reduction. Similarly, |,y Vz/s(x) is an “honest” rank ¢ — r quotient bundle of V7 it is just V.

Hence, we get
Corollary 3.25 If the hypotheses of the previous theorem hold, then
(1) [r]V has a section iff there is an exact sequence
0—V —V—=V"—0
of vector bundles on X.
(2) [A]V] has a section iff there exist exact sequences

0—L —V—V'—0
0— Lo —V/'— V) —0

" "
0— L —>VJ —>Vj+1—>0

Ly=V,],
where the L;’s are line bundles, in fact, the diagonal bundles.

Theorem 3.26 In the continuous and differentiable categories, when V has an exact sequence as in (1) of
Corollary 3.25 or diagonal bundles as in (2) of Corollary 3.25, then

(1) V=V IV,
(2) VL - 1 L,

The above is false if we need splitting analytically!
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All we need to prove is (1) as (2) follows by induction. We know V' comes from H'(X, GL(r,q—r;C). By
(b) above, V comes from H'(X,U(r) [[ U(g—r)) and by (b) again, V comes from H* (X, GL(r) [ GL(g—r)) =
HY(X,GL(r)) I HY(X,GL(q — 7)) and we get (1). ]

Corollary 3.27 (Splitting Principle) Given V', a continuous, differentiable, analytic, algebraic rank q vector
bundle over X, then piV is in the continuous or differentiable category a coproduct V.= V'IIV" (tk(V') =r,
tk(VYy=q—7r)orpiVisV=L1I0---1I L,

Note that [r]V and [A]V are fibre bundles over X; consequently, there is a relation between H7(X,Z) and
HI([r]V,Z) (resp. HI([A]V,Z). This is the Borel spectral sequence. Under the condition that (E, X, F, G)
is a fibre space over X (admissible), group G, fibre F, total space E, there is a spectral sequence whose
EP9-term is

HP(X, HY(F, 7))

and whose ending is gr(H*(E, Z)),
HY(X, HU(F,2)) = H*(E,Z).
Borel proves that in our situation: The map
p* HY(X,Z) — H*([r]V, Z)
(resp. p*: H*(X,Z) — H*([A]V,Z)) is an injection. From the hand-out, we also get the following: Write

BU(q) = hin> Grass(q, N;C).
N
Note,
BU(1) = 11_10[1>1ED({:V*1 =PX.
N

Theorem 3.28 If X is admissible (locally compact, o-compact, finite dimensional) then Vecty(X) (isomor-
phism classes of rank q vector bundles over X ) in the continuous or differentiable category is in one-to-one
correspondence with homotopy classes of maps X — BU(q). In fact, if X is compact and N > 2dim(X)
then already the homotopy classes of maps X — Grass(q, N;C) classify rank q vector bundles on X (dif-
ferentiably). Moreover, on BU(q), there exists a bundle, the “universal quotient”, Wy, it has rank q over
BU(q) (in fact, it is algebraic) so that the map is

fe[X — BU(Q)]— fW,.
We are now in the position where we can prove the uniqueness of Chern classes.

Uniqueness of Chern Classes:

Assume existence (Axiom (I)) and good behavior (Axioms (II)—(IV)). First, take a line bundle, L, on X.
By the classification theorem there is a map

f: X —BU®1)
so that f*(H) = L (here, H is the universal quotient line bundle). By Axiom (II),
fre(H)(8) = e(f*(H))(#) = e(L)(t)

and the left hand side is f*(1 + Ht), by Axiom (IV) (viewing H as a cohomology class). It follows that the
left hand side is 1 + f*(H)t and so,

a(L) = f*(H), and ¢j(L)=0, forall j>2.



3.2. CHERN CLASSES AND SEGRE CLASSES 197

This is independent of f as homotopic maps agree cohomologically.

Now, let V be a rank g vector bundle on X and make the bundle [A]V whose fibre is F(q). Take p*(V),
where p: [A]V — X. We know

q
j=1
where the L;’s are line bundes and by Axiom (II),
1
(o (V)(1) = [T+ ea(Ly)(8).
j=1

Now, the left hand side is p*(¢(V)(t)), by Axiom (II); then, p* being an injection implies ¢(V')(¢) is uniquely
determined.

Remark: Look at U(g) 2 U(1) [[U(¢ — 1) 2 T9. Then,
U(1) [JUlg = 1)/T? = U(g)/T* = F(q)

and the left hand side is U(q — 1)/T9"! = F(q — 1). So, we have an injection F(q — 1) < F(q) over the base
U(q)/U(1) ] U(g — 1), which is just P4=1. Thus, we can view F(q) as a fibre bundle over P4~! and the fibre
is F(g — 1).

Take a principal U(g)-bundle, E, over X and make E/T?, a fibre space whose fibre is F(gq). Let E; be
E/U(1)J]U(q — 1), a fibre space whose fibre is P¢~1. Then, we have a map

E/T? — Ex,
where the fibre is U(1) [[U(q — 1)/T? =F(q — 1). We get
E/T? = [A|E

fibre F(¢ — 1)

fibre P41

He—— B

If we repeat this process, we get the tower

|

|

Y

E

fibre P91 l
X
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So, to show p* is injective, all we need to show is the same fact when the fibre i P” and the P"-bundle comes
from a vector bundle.

Suggestion: Look in Hartshorne in Chapter III, Section ? on projective fibre bundles and Exercise 77
about

" (Or) () = S'(Ox (E)).
Sup up to tangent bundles and wedges and use Hodge:
top
H*(X,C) = in term of the holomorphic cohomology of /\ T.
We get that p* is injective on H*(X,C), not H*(X,Z).

Existence of Chern Classes:

Start with L, a line bundle over X. Then, there is a map (continuous, diff.), f: X — P¥, for N >> 0
and L = f*(H). Then, set ¢;(L) = f*(H), where H is the cohomology class of the hyperplane bundle in
H2(PN,Z) and ¢j(L) = 0 if j > 2. If another map, g, is used, then f*(H) = L = h*(L) implies that f and
¢ are homotopic, so f* and g* agree on cohomology and ¢; (L) is independent of f. It is also independent of
N, we we already proved. Clearly, Axiom (II) and Axiom (IV) are built in.

Now, let V be a rank ¢ vector bundle over X. Make [A]V and let p be the map p: [A]V — X. Look at
p*V. We know that

q
oV =] L
j=1
where the L;’s are line bundles. By the above,
Cj(Lj)(t) =1+4+¢ (Lj)t =1+ ~;t.

Look at the polynomial
q

[1(+0) € B(AIV, 21,

j=1
If we show this polynomial (whose coefficients are the symmetric functions oy(y1,...,7,)) is in the image of
p*: H*(X,Z)[t] — H*([A]V,Z)[t], then there is a unique polynomial ¢(V)(t) so that

p(c(V)(t) = H(l +75t)-

(Then, ¢;(V) = 01(y1,---,7,)-) Look at the normalizer of T? in U(g). Some a belongs to this normalizer iff
aTla~1 = T9. As the new diagonal matrix, afa~! (where a € TY has the same characteristic polynomial as
9, it follows that afa~"' is just 6, but with its diagonal entries permuted. This gives a map

NU(q) (Tq) — Gq.

What is the kernel of this map? We have a € Ker iff afa=! = 0, i.e., af = fa, for all # € T9. This means
(see the 2 x 2 case) a € T? and thus, we have an injection

NU(Q)(TQ)/Tq — Gq.
The left hand side, by definition, is the Weyl group, W, of U(g). In fact (easy DX), W = &,.
Look at [A]V and write a covering of X trivializing [A]V, call it {U,}. We have

[A]V | Ua = Us [ Ulg) /T



3.2. CHERN CLASSES AND SEGRE CLASSES 199

Make the element a act on the latter via

a(u, £T9) = (u,ET% 1) = (u, a1 TY).

These patch as the transition functions are left translations. This gives an automorphism of [A]V call it @,
determined by each a € W. We get a map

a*: H*([A]V, =) — H*([A]V, —).

Now, as a € W acts on T? by permuting the diagonal elements it acts on H!([A]V,T%) by permuting the
diagonal bundles, say L;, call this action a#. Moreover, p*V comes from a unique element of H!([A]V,T?),
which implies that @ acts on p*V by permuting its cofactors. But, a* also acts on H'([A]V,T?) and one
should check (by a Cech cohomology argument) that

a* = a*.

Now associate to the Lj;’s their Chern classes, «;, and a*(v;) goes over to a#(wj), i.e., permute the
|gamma;s’s. Thus, W acts on the L; and 7; by permuting them. Our polynomial

H(l +5t)

goes to itself via the action of W. But, Borel’s Theorem is that an element of H*([A]V,Z) lies in the image
of p*: H*(X,Z) — H*([A]V,Z) iff W fixes it. So, by the above, our elementary symmetric functions lie in
Im p*; so, Chern classes exist. Furthermore, it is clear that they satisfy Axioms (I), (IT), (IV).

Finally, consider Axiom (III). Suppose V splits over X as

v=]]L

j=1

We need to show that ¢(V)(t) = Hjl.:l(l + c1(Lj)t).

As V splits over X, the fibre bundle p: [A]V — X has a section; call it s. So, s*p* = id and

c(V)(t) = s7p" (c(V)(1) = 5" (" (c(V)(1)))-
By Axiom (II), s*(p*(c(V)(t))) = s*(c(p*(V))(t)). Since p* = [Ij_, p*L; and we know that if we set
vj = c1(p*(Ly;)), then

pr(e(V)(1) = clp™(V)(1) = [ | (1 + ;1)

q

—

But then,

The above plus () yields
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as required. []

Eine kleine Vektorraumbiindel Theorie:

Say V (rank ¢) and W (rank ¢’) have diagonal bundles L1,...,L, and My, ..., My over X. Then, the
following hold:

(1) VP has LP, ..., L as diagonal line bundles;

(2) VIOW has Li1,...,Lq, Mi,..., My as diagonal line bundles;

(3) V@ W has L; ® M; (all 4, j) as diagonal line bundles;

(4) A"V has L;, ® ---® L;,, where 1 < iy < --- < i, < g, as diagonal line bundles;

(4) 8"V has LT @ --- ® Lg"?, where m; > 0 and mj + - -- + m, = r, as diagonal line bundles.

Application to the Chern Classes.

(0) (Splitting Principle) Given a rank g vector bundle, V', make believe V splits as V = ]_[;1.:1 L; (for some
line bundles, L;), write v; = ¢1(L;), the v; are the Chern roots of V. Then,

q

c(V)(t) = [T +t)-

j=1

(1) (VP () = ;1-:1(1 —;t) when ¢(V)(¢t) =19, (1 ++;t). That is, ¢;(VP) = (=1)%¢; (V).

j=1

(2) f0 — V' — V — V" — 0 is exact, then ¢(V)(t) = (V") (#)c(V")(2).

(3) I e(V)(£) = [T°_, (1 +5¢) and (W) (t) = [1%_, (1 + &;t), then e(V @ W)(t) = [1Z0_, (1 + (35 + 81)t)-

(4) If ¢(V)(t) =92, (1 4+ v5t), then

= j=1

c(/\V)(t)z H (T4 (v, + - +7,)t).

1<in < <ir<q

In particular, when r = g, there is just one factor in the polynomial, it has degree 1, it is
L+ (714 -+t By (2). we get

q

cl(/q\V)(t):cl(V) and cl(/\V>(t)=O if 1>2.

(5) If c(V)(t) =192, (1 4+ v;t), then

= j=1

SVt = ] O+ mum+- 4 mergt).

ijO
mi+-+mg=r

(6) If rk(V) < g, then deg(c(V)(¢t)) < ¢ (where deg(c(V)(t) is the degree of ¢(V')(¢) as a polynomial in t).
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(7) Suppose we know ¢(V'), for some vector bundle, V', and L is a line bundle. Write ¢ = ¢;(L). Then, the
Chern classes of V ® L are

Cl(V@L) — O'l(/YI +C772 +Cu' e +C)7
where r = rk(V') and the 7; are the Chern roots of V. This is because the Chern polynomial of V ® L

is
T

c(VerL)t) =[]0+ 0+
i=1
Examples. (1) If rk(V) = 2, then
c(VRL)(t) =14 (m+)t) 1+ (2 +e)t) =14 (71 +92 + 200t + (1172 + c(71 + 72) + 2)t2
SO

a(VeL) = a(V)+2
(VL) = caV)+a(V)e+d

(2) If rk(V') = 3, then
c(VRL)(t)= (14 (y1+)t)(1+ (v2+e)t)(1+ (43 + o))
and so,

(VL)) = 14+ (n+v+9+30)t
+ (02(71,72,73) + 201 (71,72, 73)¢ + 3¢*)¢?
+ (o3(71,72,73) + 01 (71#%73)02 + o2(71,72,73)c + 03)t3
We deduce
Cl(V X L) = (V) + 361 (L)
CQ(V X L) = CQ(V) + 261 (V)Cl( ) + 361( )
es(VeL) = c3(V)+ea(V)er(L) +er(V)er(L)? + er (L)

In the case of P, it is easy to compute the Chern classes. By definition,

c(B")(t) = o(Tp)(b).
We can use the Euler sequence
0— Opn — [[ Opn(H) — T3 — 0
n+1

to deduce that
c(Opn ) (1) (T () = ¢(Opn (H) ()"

It follows that

o(Tp0)(t) = (1 + Ht)" ! (mod #"+) = > (" j 1>Hﬂtﬂ
j=0

and so,
1
i (Ti) = <”+ )HJ € H¥(P", 7).
J
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(Here H = H - ...- H, the cup-product in cohomology). In particular,
e (TE0) = (n+ 1) H = c(/\ T{;O).
0,1D 1,0\?
Now, if wpn is the canonical bundle on P, i.e., wpn = A" Tpw = = (/\" Tph ) , we get,
c1(wpn) = —(n+1)H.

Say a variety X sits inside P¢ and assume X is a manifold. Let J be the ideal sheaf of X. By definition,
J is the kernel in the exact sequence
0—TJ— Opn — Ox — 0.
If X is a hypersurface of degree d, we know
J = Opn(—d) = Opn(—dH).
We also have the exact sequence
0 —Tx — Tpn [ X — Nxeypn — 0,

where Nx<,pn is a rank n — ¢ bundle on X, with ¢ = dim X (the normal bundle). If we write i: X — P",

we get
(/n\TPn) X = ATwe A Moo
and so,
(141 (/n\ T[Pm)t) =(1+a (/n\Tx)t)(l ta (n/i\q/\/xgpn)t),

which yields
1+ Z*((TL + 1)H)t =1+ Cl(Tx)t +c (NX(_)[pm)t.

For the normal bundle, we can compute using J. Look at a small open, then we have the usual case of
C-algebras
C—A—B

where A corresponds to local functions on P™ restricted to X and B to local functions on X and we have
the exact sequence of relative Kéahler differentials

Qe ®a B — Q0 — Qg q — 0.
If A mapping onto B is given, then QlB/A = (0), B = A/ (globally, Ox = Opx/7J), and we get
0 — Ker — Q) ®4 A/A — Q) 19 — 0.
Now, J — QY ®4 A/, via £d€ — ®1 and in fact, T — 0. We conclude that
i*(3) =3/3% — i () — Q% — 0.

Because X is a manifold, the arrow on the left is an injection. To see this we need only look locally at x.
We can take completions and then use either the C'-implicit function theorem or the holomorphic implicit
function theorem or the formal implicit function theorem and get the result (DX). If we dualize, from

0—3/3%=i*(3) — " — Q% — 0
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we get
0—Tx — i*Tpn = Tpn [ X — (3/3)P — 0
Therefore,
Nxeypn = (3/3)P =i*(3)P = (31 X)P.
Thus,
a1 (Nxopn) = —c1(3/7%),
and

(n+1)i*(H) + 1(3/3%) = 1 (Tx).

We obtain a version of the adjunction formula:

ci(wx) = —(n+1)i*(H) — c1(3/73%).
When X is a hypersurface of degree d, then J = Opn(—dH) and

3/3%* =i*(3) = Ox(—d-i*H).
We deduce that —c;(3/3%) = d(i* H) and
ci(wx)=(d—n—1i)i"H,

Say n =2, and dim X = 1, a curve in P2. When X is smooth, we have

c(wx)=(d—n-1)3"(H).

Facts soon to be proved:
(a) i*(H) = H - X, in the sense of intersection theory (that is, deg X points on X).

(b) ¢1(L) on a curve is equal to the degree of the divisor of L.

It follows from above that
deg(wx)=(d—2—1)d =d(d — 3).

However, from Riemann-Roch on a curve, we know deg(wx) = 2¢g — 2, so we conclude that for a smooth
algebraic curve, its genus, g, is given by

g=5d-1)(d~2)

In particular, observe that g = 2 is missed.

We know from the theory that if we know all ¢;’s then we can determine all ¢,’s for all n by the splitting
principle.

There are three general methods for determining cy;
(I) The exponential sequence.
(IT) Curvature.

(IIT) Degree of a divisor.
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Proposition 3.29 Say X is an admissible, or a differentiable manifold, or a complex analytic manifold or
an algebraic manifold. In each case, write Ox for the sheaf of germs of appropriate functions on X. Then,
from the exponential sequence

0 —7Z— Ox - 0% — 0,

where e(f) = exp(2mif), we get in each case the connecting map
HY(X,0%) = H(X,2) (1)

and all obvious diagrams commute
** Steve, what are these obvious diagrams? **
and as the group H'(X,O%) classifies the line bundles of appropriate type, we get 6(L), a cohomology class
in H*(X,Z) and we have
c1(L) = 46(L).
In the continuous and differentiable case, 0 is an isomorphism. Therefore, a continuous or differentiable line
bundle is completely determined by its first Chern class.

Proof. That the diagrams commute is clear. For the isomorphism statement, we have the cohomology
sequence

H'Y(X,0x) — H'(X,0%) -5 H*(X,Z) — H*(X,Ox).
But, in the continuous or C*°-case, Ox is a fine sheaf, so H'(X,Ox) = H*(X,0x) = (0) and we get

HY(X,0%) = H*(X,Z).

First, we show that (f) can be reduced to the case X = PL = S2.
** Steve, in this case, are we assuming that X is projective? **

Take a line bundle, L on X (continuous or C*°), then, for N >> 0, there is a function, f: X — ]P’(]CV, SO
that f*H = L. Now, we have the diagram

HY(PY, 0z ) —>— H2(PY,7Z)

| |

HY(X,0%) H?(X,Z)

0

which commutes by cofunctoriality of cohomology. Consequently, the existence of () on the top line implies
the existence of (1) in general. Now, consider the inclusions

PL—P: ... > PY,
and H on PY pulls back at each stage to H and Chern classes have Axiom (II). Then, one sees that we are
reduced to P{.

Recall how simplicial cohomology is isomorphic (naturaly) to Cech cohomology: Take a triangulation of
X and v, a vertex of a simplex, A. Write

[e]
U, =st(v) = J{o |vea}
the open star of the vertex v. The U, form an open cover and we have:

) if (vg,...,vp) is not a simplex;

Uy -+ VU, = { a connected nonempty set if (vg,...,vp) is a simplex.
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Given a Cech p-cochain, 7, then

{0 if (vo,...,vp) is not a simplex;
T(Uy NNy, ) = { some integer if (vg,...,vp) is a simplex.
Define
T(vo, ..., 0p) = T(Uyy N---NUy,).
Take a simplex, A = (v, ...,v,) and define linear functions 6(7) by

O(1)(vo, ..., vp) = T(vo,...,vp) = T(Uy, N---NUy,)

and extend by linearity. We get a map,

H?(X,Z) = HP,

simp

(X,Z)

via 7+ 0(7T), which is an isomorphism.

We are down to the case of IP’(%: = S? and we take H as the North pole. The Riemann sphere IP’(%: has
coordinates (Zy: Z1), say Z1 = 0 is the north pole (Zy = 0 is the south pole) and let

Z 7
z=— =—.
z T 7
We have the standard opens, Vo = {(Zo: Z1) | Zo # 0} and Vi = {(Zo: Z1) | Z1 # 0}. The local equations
for H are fo =w = 0 and f; = 1. The transitions functions g2 are fz/fa, i.e.,

Now, we triangulate S2 using four triangles whose vertices are: 0 = z; 2 = 1; 2 = 4 and z = —1. Note that
H is represented by a point which is in the middle of a face of the simplex (1,4, —1) We have Uy, Uy, U;, U_1,
the four open stars and Uy C Vi; U; C Vy; U; € Vp; U_1 C Vy. The U-cover refined the V-cover and on

it, g¢ = 1 iff both r,s # 0. Also, g} = w, for all ¢ # 0. To lift back the exponential, Op: exp(2ni=) b1, We

form % log(g2), a one-cochain with values in Op:. Since the intersections U, NU; are all simply-connected,
on each, we can define a single-valued branch of the log. Consistently do this on these opens wvia: Start on
Uy N U; and pick any single-valued branch of the log. Continue analytically to U; N U_1. Then, continue
analytically to U_; N Uy, we get 27i + log on U; N U;. Having defined the log g2, we take the Cech § of the

1-cochain, that is

1

Crst = —[IOg QZ - log gf‘ + log gi] =

. log g; + log g + log g7 ).
271

|
21
If none of r, s,t are 0, then ¢, = 0. So, look at cg _11. We have

1 _ 1 «
co-11= %[loggo ' +loggl, +loggl] = %[logw — “log"w].

As w = 1/z, the second log is —2mi + log w, so we get
co-11 = +1.

For every even permutation o of (0, —1,1), we have ¢, (0),0(—1),0(1) = +1 and for every odd permutation o of
(0,-1,1), we have cy(0),0(-1),0(1) = —1. Yet, the orientation of the simplex (0,—1,1) is positive, so we get
d(H) = the class represented by the cocycle on one simplex (positively oriented) by 1, i.e, ¢1(H). [
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Proposition 3.30 Say X is a complex manifold and L is a C* line bundle on it. Let V be an arbitrary
connection on X and write © for the curvature of A. Then, the 2-form 5-© is real and it represents in
H2x (X, R) the image of c1(L) under the map

H*(X,7) — H*(X,R).

Proof . Pick a trivializing cover for L, say {U,}. Then, V | L on U, comes from its connection matrix, 6,
this is a 1 x 1 matrix (L is a line bundle). We know (gauge transformation)

0o = 9505(95) " +dg§(98) "
where the gg are the transition functions. But, we have scalars here, so
0o = 0p + dlog(gg),
that is
05 — 0o = —dlog(g5)- (1)
By Cartan-Maurer, the curvature, ©, (a 2-form) is given locally by
O=di—0N0=db, =dbg.
We get the de Rham isomorphism in the usual way by splicing exact sequences. We begin with
0—R—C® -4 cok; — 0 (%)

and

1
0 — cok; — /\ 5 coky — 0 (%)

It follows that

c - N - N
\cok / \cok /

NN,

Apply cohomology to () and (xx) and get

1 1
HO(X, \) - H°(X, coks) = HY(X,coki) — HY(X, J\) = (0)
and
HY(X,C®) — H'(X, coky) 2 HA(X,R) — H(X,C™) = (0)
because A" and C™ are fine. We get

1
H'(X,coky) 2 H*(X,R) and H(X,coky)/dH*(X, \) = H' (X, coky).
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Therefore,
§ 0d’: HY(X,coky) — H*(X,R) — 0.

We know from the previous proof that
1 B Yy a
Capy = 5108 9o +10g g5 +log g7]

represents c¢1(L) via the § from the exponential sequence. So,

1 «
Ca,B,y = %[log 95 +log g, + log 95]

and
§'[©] = cohomology class of © = class of cocycle (65 — 0,,).

Now, 51-(03 — 64) can be lifted back to — 5= log gg under §"” and we deduce that

1 1
5"y <%®) = class of — ﬁ[log g8 +log g7 + log gf:] = —class of capy = —c1(L).

** There may be a problem with the sign! **

The next way of looking at ¢;(L) works when L comes from a divisor. Say X is a complex algebraic
manifold and L = Ox (D), where D is a divisor,

D = Z CLjo
J
on X. Then, D gives a cycle in homology, so [D] € Ha,—2(X,Z) (here n = dim¢ X). By Poincaré duality,
our [D] is in H*(X,Z) and it is 5 a;[W;].
Theorem 3.31 If X is a compact, complex algebraic manifold and D is a divisor on X, then
c1(Ox(D)) =[D] in H*(X,Z),
that is, c1(Ox (D)) is carried by the (2n — 2)-cycle, D.

Proof . Recall that Poincaré duality is given by: For £ € H"(X,R) and n € H*(X,R) (where r + s = 2n),

then
(&mn) = /XﬁAn-

The homology/cohomology duality is given by: For w € H*(X,R) and Z € H4(X,R), then

(Zw) = [ w

We know that the cocyle (= 2-form) representing c¢1(L) is [5=0], for any connection on X. We must show
that for every closed, real (2n — 2)-form, w,

L/@/\w:/w.
27T b D

We compute O for a convenient connection, namely, the uniholo connection. Pick a local holomorphic frame,
e(z), for L, then if L has a section, s, we know s(z) = A(z)e(z), locally. For 6, the connection matrix in this
frame, we have
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(a) 0 =6%9 (holomorphic)
(b) d(|s|?) = (Vs,s) +(s,Vs) (unitary)

We have
Vs = Ve = (d\+ 0)\)e.

Thus, the right hand side of (b) is

d(sl?) = ((d\+6Ne re) + (e, (dA + OX)e)
= Xd\(e,e) + 0|\ (e, ) + AdX(e, €) + 0|\ (e, e).

Write h(z) = |e(z)]* = (e,e) > 0; So, the right hand side of (b) is AhdA 4+ AhdX + (6 + 6)|A]*h. Now,
|s|?> = A\h, so B o
d(|s|*) = Mdh + h(AdX + Xd)).
From (b), we deduce dh = (6 + 0)h, and so,
— dh

0+0= - = d(log h) = 0(log h) + d(log h).

Using (a) and the decomposition by type, we get
0 = d(logh) = dlog(lel?).

As© =df — O N0, we get B
O =dh = (0 +0)(dlog(le|*)),
i.e.

© = ddlog(le|?).
Now, recall

i
d¢=—(0—
so that ) )
- -
dd® = —d°d = —00 = ——
5 00 27r88’

™
and 2midd® = 0 0. Consequently,
O = midd®log(|e|?).
This holds for any local frame, e, and has nothing to do with the fact that L comes from a divisor.

Now, L = Ox(D) and assume that the local equations for D are f, = 0 (on U,, some open in the
trivializing cover for L on X). We know the transition functions are

s
fo'
Therefore, the local vectors s, = foeo form a global section, s, of Ox (D). The zero locus of this section is

exactly D. As the bundle L is unitary, g2 € U(1), which implies |f5| = |fa| and so, |fa€q| is well defined.
Thus for small € > 0,

95 =

D(e)={z€ X ||s(2)]* < ¢}
is a tubular neighborhood of D.

Look at X — D(e), then Ox (D) [ X — D(e) is trivial as the section s is never zero there. Therefore, s,
will also do as a local frame for Ox (D) on X — D(e).
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We need to compute fX O Aw. By linearity, we may assume D is one of the W’s. Then, by definition,

/ O Aw =lim 2midd® log |s|? A w
X 0 Jx_D(e)
If we apply Stokes, we find

/ O Aw=—lim 2mid® log |s|? A w

X &0 JaD(e)
that is,

2T . . 9
O ANw=—Ilim d®log|s|* A w. (1)
X v el0 Jop(e)

Now Vol(D(e)) — 0 as € | 0, as we can see by using the Zariski stratification to reduce to the case where
D is non-singular. Also, _
|s1? = | fal?leal® = fafah

where h = |e,|? is positive bounded. We have

log |s|? = log fao + log f,, +logh

and as d° = (0 — 9),

d®log|s|* = f[—@log fo+0logf, + (0 —09)logh.
T
It follows that

2 . _
77Tdclog|s|2 Nw==[-0log fa Nw+dlog f, Aw+ (0 — 9)logh Aw].

N =

In the right hand side of (1), the third term is

1 _
—lim (0 —0)logh Aw.

2 €10 Jap(e)
Now, (9 — 0) log h is bounded (X is compact) and Vol(0D(¢€)) — 0 as € | 0. So, this third term vanishes in
the limit. But, dlog f, = Olog fo and w =, as w is real. Consequently,

Odlog f, Nw = dlog fu A w.

From (}), we get

1 -
/@/\w = —lim —0log fo ANw +0log fo Aw
X 2 €l0 Jap(e)
1 -
= ——lim Olog fo Nw — 0log fa ANw
2 el0 D (e)
= —ilim%/ olog fo Nw.
el0 dD(e)

Now, fo = 0 is the local equation of D and we can compute the integral on the right hand side away
from the singularities of D as the latter have measure 0. The divisor D is compact, so we can cover it by
polydics centered at nonsingular points of D, say (p is a such a point. By the local complete intersection
then, there exist local coordinates for X near (y, of the form

lefou 22y vy Zn,
—_———
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on ANU, (where A is a polydisc). Break up w as

w=g(z1,...,2n)dza A= ANdZa A+ +K,

rest

where k is a form involving dz; and dz; in each summand. Also, as

_ dfe, d
dlog fo = (a+ 6)10gfo¢ =dlog fo = i = ﬁu
fa 21
we get
d dzy Ndz
Olog fo ANw = ﬁg(zl, coyzZn)dza N ANdZg A+ + terms ustuff.
z z
! rest !
Furthermore, dz; A dz, = 2idx A dy = 2irdri1d0 (in polar coordinates), so
dz1 Ndz
LT~ 9dry ||d6y ],
21
and when € | 0, this term goes to 0. Therefore
. dz1 — . dz _
lim —g(z1,...,2n)d(rest)d(rest) = lim —g(z1,...,2,)d(rest)d(rest)
&0 dD(e)NA 1 el0 (|z1]|=Ce) [T rest of polydisc <1
and by Cauchy’s integral formula, this is
lim 2mig(0, 22, . . ., 2 )d(rest)d(rest) = 2m’/ w.
€0 Jrest of polyndD(e) DnA
Adding up the contributions from the finite cover of polydics, we get
S lim alogfa/\w:SQﬂ'i/w:%T/ w,
€0 JapD(e) D D
as w is real. But then,
—1$lim log fa ANw = —2772'/ w
0 Jap(e) X

from which we finally deduce [, © Aw = —2mi [, w, that is,

)
—ONw = / w,
x 27 D
as required. []

Corollary 3.32 Suppose V is a U(q)-bundle on our compact X (so that differentiably, V is generated by
its sections). Or, if V is a holomorphic bundle, assume it is generated by its holomorphic sections. Take a
generic section, s, of V. and say V has rank r. Then, the set s =0 has complex codimension r (in homology)
and is the carrier of ¢, (V).

Proof. The case r =1 is exactly the theorem above. Differentiably,

V=L LTI L

for the diagonal line bundles of V. Holomorphically, this is also OK but over the space [A]V. So, the
transition matrix is a diagonal matrix

diag(g?,...,¢%,) on U, NUg
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and 4 = (S104,--+,Sra)- S0,

diag(g)sa = (91as1as- > 0Fasra) = 55
which shows that each s;j, is a section of L;. Note that s = 0 iff all s; = 0. But, the locus s; = 0
carries ¢1(Lj), by the previous theorem. Therefore, s = 0 corresponds to the intersection in homology of the

carriers of ¢1(L),...,c1(L,). But, intersection in homology is equivalent to product in cohomology, so the
cohomology class for s = 0 is

a(Lr)er(Lz) - ei(Ly) = er(V)
as desired. []

General Principle for Computing ¢,(V), for a rank r vector bundle, V.
(1) Let L be an ample line bundle, then V @ L®™ is generated by its sections for m >> 0.

(2) Pick r generic sections, s1, ..., 5., of V.® L™, Form s1 A---As._qi1, a section of A" (V @ L&™).
Then, the zero locus of s; A -+ A s,_441 carries the Chern class, ¢,(V ® L®™), of V @ L®™.

[ When ¢ = 7, this is the corollary. When g = 1, we have s; A -+ A s,., a section of A"V @ L®™ and
it is generic (as the fibre dimension is 1). We get ¢1(A\"V ® L®™) and we know that it is equal to
(V@ L®™).

(3) Use the relation from the Chern polynomial
(Ve L) (t) = [J(1 + (; + mer(D))t)

to get the elementary symmetric functions of the v;’s, i.e., cq(V).

Remark: if 1 < ¢ < r, our section s; A -+ A s,_g41 is not generic but it works.

Theorem 3.33 Say X is a complex analytic or algebraic, compact, smooth, manifold and 7: W — X is a
smooth, complex, codimension q submanifold. Write N for the normal bundle of W in X; this is rank q
(U(q)) vector bundle on W. The subspace W corresponds to a cohomology class, &, in H?*1(X,Z) (in fact,
in H99(X,C)) and so we get j*¢ € H*4(W,Z). Then, we have

cgWN) =" W.

Proof. We begin with the case ¢ = 1. In this case, W is a divisor and we know N' = Ox (W) | W. By
Corollary 3.32, the Chern class ¢; (AN) is carried by the zero locus of a section, s,of N. Now, W - W in X as
a cycle is just a moving of W by a small amount and then an ordinary intersection of W and the new moved
cycle. We see that W - W = ¢;(N) as cycle on W. But, 7*W is just W - W as cycle (by Poincaré duality).
So, the result holds when ¢ = 1. If ¢ > 1 and if W is a complete intersection in X, then since ¢,(N) is
computed by repeated pullbacks and each pullback gives the correct formula (by the case ¢ = 1), we get the
result. In the general case, we have two classes j*W and ¢, (N). If there exists an open cover, {U,}, of W
so that

JW Uy =cqN) [ U, for all a,

then we are done. But, W is smooth so it is a local complete intersection (LCIT). Therefore, we get the
result by the previous case. []
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Corollary 3.34 If X is a compact, complex analytic manifold and if Tx = holomorphic tangent bundle has
rank q = dim¢ X, then
2q

cg(Tx) = Xtop = Y _(=1)'b;

=0
(Here, b; = dimg H'(X,Z).)

Proof. (Essentially due to Lefschetz). Look at X [[ X and the diagonal embedding, A: X — X [[X. So,
X — X[ X is a smooth codimension ¢ submanifold. An easy argument shows that

Tx 2 Nxoxx =N
and the previous theorem implies
cg(Tx) =cgN)=X-X
in X [[X. Now, look at the map f: X — X given by
pra 0 €0,
where ¢ is small and o is a section of . The fixed points of our map give the cocycle X - X. The Lefschetz
fixed point Theorem says the cycle of fixed points is given by

2q

> (=1)itr f* on HY(X,Z).

i=0

But, for e small, the map f is homotopic to id, so f* =id*. Now, tr id* = dimension of space = b;(X) if we
are on H(X). So the right hand side of the Lefschetz formula is Xtop, @s claimed. []

Segre Classes.

Let V be a vector bundle on X, then we have classes s;(V'), and they are defined by

1
c(V)(t)

14> s (V) =
j=1
As ¢(V)(t) is nilpotent, we have

=1—(a(V)t+c(V)E2+- )+ (a(V)t+e(V)E2 4+ )2+

c(V)(®)

and so,

Sl(V) —Cl(V)
s2(V) = (V) —ca(V),

etc.

Pontrjagin Classes.

Pontrjagin classes are defined for real O(g)-bundles over real manifolds. We have the commutative
diagrams

U(q) —— 0(2q)
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where ((z1,...,2¢) = (T1,Y1,- .., Tq,Yq), With z; = z; + iy; and

0(g) —>— U(g)

GL(¢,R) “—— GL(q, C)

where ¥ (A) is the real matrix now viewed as a complex matrix. Given £, an O(g)-bundle, we have 1(q), a
U(g)-bundle. Define

The Pontrjagin classes, p;(§), are defined by
pi€) = (=1)'e2i((§)) € HY (X, Z).
The generalized Pontrjagin classes, P;(§) and the generalized Pontrjagin polynomial, P(€)(t), are defined by
PE)(t) = c(¥(£))(t), and P;(§) = ¢;(¢(xi)).

(Observe: Py (&) = (=1)Ppi(€).)

Now, & corresponds to map, X — BO(g). Then, for i even, P,;/5(&) is the pullback of something in
H*(BO(q),Z). It is known that for i = 2(4), the cohomology ring H*(BO(q),Z) is 2-torsion, so 2P,q4(£) = 0.
So, with rational coefficients, we get

Poqa(§) =0 and  Poyen(§) = £ Pevens2(§).
We have the following properties:
(0) P(E)(t) = 1+ stuff.
(1) f*P(&)(t) = P(f*E)(t), so f*P;(§) = Pi(f*E).
(2) Suppose &, 7 are bundle of rank ¢, ¢, respectively, then
P(¢n)(t) = P(&)()P(n)(t)
and if we set p(€)(t) = Y% py (€)1, then

p(En)(t) = p(&)(t)p(n)(t), mod elements of order 2 in H*(X,Z).

(3) Suppose c(¥(£))(t) has Chern roots ;. Then, the polynomial Z;’;O(—l)jpj (£)t¥ has roots v2; in fact,
2(—1)jpj (€)% = (Zl: c©F) (Do (=D "em(t™).
j= m
Proposition 3.35 Say £ is a U(q)-bundle and make ((§), an O(2q)-bundle. Then
S WO = (e ) (T ente?n™)
j= -

Proof. Consider the maps U(q) < O(2q) < U(2¢q). By linear algebra, if A € U(q), its image in U(2q) by

this map is
A 0
0 A
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after an automorphism of U(2¢), which automorphism is independent of A. By Skolem-Noether, the auto-
morphism is of the form

H™ (¢¢(A))H,

for some H € GL(2¢,C). For an inner automorphism, the cohomology class of the vector bundle stays the
same. Thus, this cohomology class is the class of

A 0

0 A)°
Now, we know the transition matrix of £ is the transpose inverse of that for £&. But, A is unitary, so

A=A =4"

and we deduce that ¢((A) has as transition matrix

A 0

0 AP)-
Consequently, the right hand side of our equation is

(X ei@t) (D emte™m).
l m

as required. []
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3.3 The L-Genus and the Todd Genus

The material in this section and the next two was first published in Hirzebruch [8].

Let B be a commutative ring with 1, and let Z, aq,...,ap,... be some independent indeterminates, all
of degree 1; make new independent indeterminates

q; = oj(a’s).

(The o; are the symmetric functions in the a’s; for example, ¢1 = a1 + --- + a,.) All computations are
carried out in the ring B = B[[Z;aq,...,an,...]]. We have the subring P = B[[Z;q1,.-.,qn,---,]] and in
P, we have certain units (so-called one-units), namely

1+ b;Z7, whereb; € B.

i>1

If Q(2) is a one-unit, 1+ 3,5, b;Z7, write

Q=)= []1(1+5;2)

—

Il
-

J

and call the 3;’s the “roots” of Q. In the product [],°, Q(a;Z), the coeflicient of Z¥ is independent of the
order of the a’s and is a formal series in the elementary symmetric functions, g;, of the a’s. In fact, this

coefficient has weight k and begins with bqf + - -, call the coefficients K,?(ql, q2,---,qr). We deduce that

1 + ZKIQ(Qluq27 o -an)Zl = HQ(QJZ)
=1

=1

We see that a l-unit, Q(Z) = 1+ > i>1 b;jZ7, yields a sequence of polynomials (in the elementary

symmetric functions ¢i,...,q;) of weights, 1,2,..., say {KlQ}fil, called the multiplicative sequence of the
1-unit.

Conversely, given some sequence of polynomials, {K;}{°,, it defines an operator on l-units to 1l-units,
call it K. Namely,

K1+Y ¢Z2) =1+ Ki(qs)Z".
j>1 =1

So, @ gives the operator K%; namely,

o0

K(1+Y ¢77) =1+ K(gs)2"
=1

i1 1=

Claim. When @ is given, the operator K® is multiplicative:

KU+ 2K+ q)2)) = K1+ d;27) 1+ qf 27)).

Jj=1 Jj=1 Jjz1 Jj=1

Now, to see this, the left hand side is

1+) K (@)21+ Y K2(d"9)2"] = [[ Qe 2) [[ @l 2) = [] Qe 2),
=1 m=1 r=1 s=1 t=1
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where we have chosen some enumeration of the /s and the o'’s, say ay,...,q, ... = af,af,ab,af),. ... But,

H Qe Z) =1+ Z K2(elem. symm. functions in o/s and o’’s)Z",

t= n=1

=

which is the right hand side of the assertion.

If conversely, we have some endomorphism of the 1-units under multiplication, say K, look at
KA1+2Z)=1+> 5, a;jZ9 = Q(Z), some power series. Compute K%. We have

KC(1+) ¢;77) =[] Q2),
=1

Jj=21
where 14375, ¢; 27 = [[;2,(1 + a;Z). So, as K is multiplicative,

o0

K(1+> ¢z =K(J[0+2)) = ﬁ K(1+a;2).

j>1 j=1 j=1
By definition of @, the right hand side of the latter is
[[Q2) =K%+ q;2%)
1=1 §>1
and this proves:

Proposition 3.36 The endomorphisms (under multiplication) of the 1-units are in one-to-one correspon-
dence with the 1-units. The correspondence is

endo K ~ l-unit K(1+ Z),

and
1-unit Q ~» endo K.

We can repeat the above with new variables: X (for Z); ¢; (for ¢;); v; (for «;); and connect with the

above by the relations
Z=X%aq = 712.

This means

Sz = (S ex ) (Se-x)) (+)
i=0 j=0 r=0

and if we set Q(X) = Q(X?2) = Q(Z), then

KlQ(ql, e q) = KéQl(cl, ...,cg) and K§+l(cl, ooy c41) = 0.
For example, () implies that q; = ¢} — 2ca, etc.
Proposition 3.37 If B D Q, then there is one and only one power series, L(Z), so that for all k > 0, the
coefficient of Z* in L(Z)*** is 1. In fact,

VZ e 2
=— =1+ -1)""— B, Z".
tanh v Z Z( ) ! :
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Proof. For k = 0, we see that L(Z) must be a l-unit, L(Z) = 1+ 372, b;Z7. Consider k = 1; then,
L(Z)? = (1+b1Z+ 0(Z%))3, so

(1+b0.2)3+0(Z%) =1+ 301 Z + O(Z?),

which implies b = 1/3. Now, try for ba: We must have

5 5
(1+%Z+b2Z+O(Z3)> = (1+%Z+b2Z> +0(Z%)

1,.\° 1.\*
(1+§Z> +5(1+§Z) boZ + O(Z?)

junk + (1—90 + 5b2> 7?2 +0(2%).

Thus,
10 1
Sho=1— —=—=
2 9 9 )
i.e., b = —1/45. Tt is clear that we can continue by induction and obtain the existence and uniqueness of
the power series.
Now, let
Z
M(Z) = L
tanhv/Z

Then, M(Z)?**! is a power series and the coefficient of Z* is (by Cauchy)

1 (Z)2k+1
— ——dZ.
211 |Z|=e¢ Zk+l
Let ¢ = tanh v/ Z. Then,

dt = sech®>VZ (L> dz,

27
SO
Mz VZNZdt 2dt
Zk+1 2k Zgech®VZ  t2kHlsech?V/Z

However, sech®Z =1 —tanh® Z = 1 — 2, so

M(Z)2k+1 2dt
z + t2k+1(1 _ t2)

When ¢ goes once around the circle |¢| = small(e), Z goes around twice around, so

1 2dt twi hat t
— -5 — twilce what we wan
271 J |y =sman(e) t2FTH(1 —12)

and our answer is

1 dt 1 / t2kqt + oth . )
— = —————— + other zero terms = 1,
2mi [t|=small(e) t2k+1(1 - t2) 2m |t|=small(e) t2k+1(1 - t2)

as required. []
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Recall that

1 1
L(Z)=14+-2 - —277 Z3).
(2) =1+ 32~ 2 2°+0(2%)
Let us find Li(q1) and La(q1,g2). We have
1+L1(Q1)Z+L2(Q1,Q2)Z2+"' = L(OélZ)L(OéQZ)
1 1 1 1
= (1+§alz—goﬁz2+---) (1+§a22—gagz2+--->
1 1. 5 2 1 2 3
= 1+§(a1+a2)Z+— E(a1+a2)+§a1a2 Z°4+0(Z7).
We deduce that .
L1(Q1)=§Q1

and since of + a3 = (a1 + a2)? — 20100 = ¢ — 2q2, we get

1 1
La(q1, q2) = —5(7(12 —qi) = —m(ﬂh —qi)-

Here are some more L-polynomials:

1
Ly = ———(62¢g3—13 2q}
3 33.5.7( qs 7192 + 247)
_ 1 _ 1002 2 _ o4
Ly = 557573814 — Tlgsqr — 1995 + 22241 — 341)
1
Ls = g5 55777011005 — 919qaq1 — 336432 + 2374347 + 127g5q1 — 83q2¢] + 10q7).

Geometric application: Let X be an oriented manifold and let T'x be its tangent bundle. Take a multi-
plicative sequence, {K;}, in the Pontrjagin classes of T'x: p1,pa,. . ..

Definition 3.3 The K-genus (or K -Pontrjagin genus) of X is

0 if dimgX # 0 (mod 4),
K,(p1,...,pn)[X] if dimgX = 4n.

(a 4n rational cohomology class applied to a 4n integral homology class gives a rational number). When
K; = L; (our unique power series, L(Z)), we get the L-genus of X, denoted L[X].

Look at ]P%", of course, we mean its tangent bundle, to compute characteristic classes. Write temporarily
@ - TP%”

a U(2n)-bundle. We make ((©) (remember, ¢: U(2n) — O(4n)), then we know
> nO)(=2) = (3 es(©)x7) (3 enl(©)(= X)),
i j k

with Z = X2. Now, for projective space, ]P’%",
L+ c1(O)t 4+ + con ()" + 27T = (14 ¢)> 1.

Therefore,

2n
Zpi(C(G))(—Xz)i + terms in X4 X4+2 = (1 4 X)L (1 — X)) = (1 — X)L
1=0
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Hence, we get

pi(¢(©)) = <2n.+ )H2 1<i<n.

i

Let K be the multiplicative homomorphism coming from the 1-unit, L. Then
KA1+ Y m-X3) = 3 Lilprs . op) (X2
i J

— KL((l _ X2)2n+1)

_ KL(l _ X2)2n+1

_ L(_X2)2n+1 _ L(—Z)2n+l.
The coefficient of Z™ in the latter is (—1)™ and by the first equation, it is (—1)" L, (p1,...,pn). Therefore,

we have
Ln(plv"'apn) :1, for every n > 1.

Thus, we’ve proved

Proposition 3.38 On the sequence of real 4n-manifolds: P&, n = 1,2, ..., the L-genus of each, namely
Lyn(p1,...,0n), is 1. The L-genus is the unique genus having this property. Alternate form: If we substitute
D = (2";1) in the L-polynomials, we get

() () -

Proposition 3.39 If B D Q, then there is one and only one power series, T(X), having the property: For
all k > 0, the coefficient of X* in T(X)k*1 is 1. In fact this power series defines the holomorphic function

Now, for the Todd genus.

X
1—e X’
Proof . Tt is the usual induction, but we’ll compute the first few terms. We see that k£ = 0 implies that T is
a l-unit, ie.,
T(X)=1+bX+bX?+0(X?).

For k =1, we have
T(X)?=(1+b0X)?+0(X?) =1+20X +0(X?),
so 1
bl - 5
For k = 2, we have

3
T(X)? = <1+%X+b2X2> +O0(X?)

1.\° 1.)\°
= (1 + 5X) +3 (1 + 5X) ba X% 4+ O(X?)
3
= stuff + ZX2 + 3bo X2 + O(X?).

Therefore, we must have

3
—+3b=1
4+ 2 )
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that is,
1
by = o
So,
T(X)—1+1X+iX2+

N 2 12 '
That x

T(X) =

(X) 1—e X

comes from Cauchy’s formula. []

From T'(X), we make the opertor K7, namely,
K'(1+aX +oX?+ ) =14+ Tj(cr,...,c;) X7 = [[T(wX),
j=1 i=0

where
oo

L+ aX +eX?+- =[]0 +%X).
=0
Let’s work out T (c1) ans Ta(cq, c2). From
IT+eaX +eX?=04+11X)1+7X),
we get
14+ T(c1)X 4 Ta(cr, ) X% + - T(yX)T(72X)

1 1 1 1
T4+ X4+ —¥2X%2 4 ) [ 14 =X + —2 X%+ ...
( +2”y1 +12”yl + )( +2”yz +1272 +

1 1 1
= 1+§(71 +72) + <—(712+7§)+17172> X2

12
We get
Ti(c1) = %cl
and 1 1 1 1 1
Tr(cr,c2) = E(”Yf +13) + = E(Cf —20)+ 0= E(Cf + c2).
ie.

1
TQ(Cl, CQ) = E(C% —+ CQ).
From this T, we make for a complex manifold, X, its Todd genus,
To(X) =Tu(c1, .-, cn)[X],

where ¢i,...,¢, = Chern classes of Tx (the holomorphic tangent bundle) and [X] = the fundamental
homology class on Ha, (X, Z). This is a rational number.

Suppose X and Y are two real oriented manifolds of dimensions n and r. Then
Txmy =priTx UprsTy.
So, we have

L+p(X[[V)Z 4+ =pri(L+p(X)Z 4+ )prs(L+pi (V) Z + ). (1)
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Further observe that if £, n are cohomology classes for X, resp. Y, then { ® 1, 1 ® n are pri(§), pr3(n), by
Kiinneth and we have

EonX [TY]=¢xnly]. (ff)

Now, say K is an endomorphism of the 1-units from a given 1-unit, so it gives the K-genera of X [[Y, X,
Y. We have

Ku+p(X[[V)Z+-) = KQ+p(X)Z+-)A+p(Y)Z+-+))
= Kl+p(X)Z+ - )K(Q14+p(Y)Z+---).

Now, evaluate on [X [[Y], find a cycle of X [[Y] in H, (X [[Y,Z). By (1f), we get
Koir(p1y- Pt (X [ Y] = Ky, pn) [XIE (1,0 [Y]

and

Proposition 3.40 If K is an endomorphism of 1-units, then the K -genus is multiplicative, i.e.,

KX][Y)=K&X)K(®Y).

Interpolation among the genera (of interest).

Let y be a new variable (the interpolation variable). Make a new function, with coefficients in B 2 Q[y],

L wm(y+1)
Qlys2) = T— =i — W

(First form of Q(y;x)). We can also write

(y +1)e" D)

Q(%x) = er(y+l) _ | -y
o a(y+ D)(eWtD) —141)
- et — 1 B
_ z(y+1)
= I(y+1)+em(y+1)_1_
_ o zy+1)
= w17
(Second form of Q(y; x)).
Let us compute the first three terms of Q(y; ). As
1))? 1))k
e*x(erl) — 1_x(y+1)+w _|_...+(_1)k(x(yl—:' )) 4o
et (ay + 1)) (ay +1)*
el — SO S IS N G ) A
l1—e =z(y+1) 51 +--+(-1) o +
and so,

ry+1)
1— e*z(yJFl) B
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If we denote this power series by 1+ ajx + az2? + - - -, we can solve for aq, as, etc., by solving the equation

z(y+1 _y(aly + 1)

1=(1+ax+agz®+--) 1_¥+...+(_1)k 1%_#...

This implies

o =t

2
and 1 1 )
= — 1 2_Z 1 2 - = 1 2-
az=(y+1)" -y +1)" =5y +1)
Consequently,
z(y+1 1
Quir) =1+ WD Laay 412 4 0@y +1)7) — o,

i.e.,

Qly;z) =1+ M + 11—2172(y + 124+ 02 (y +1)3).

Make the corresponding endomorphisms, 7,. Recall,

[15Z, Qy; v X)

7;(1+01X+"'+Can+"')_{Z‘?OOTj(y'cl i) X7
J: ) AR | b

where, of course,
o0

l+aX 4+ 4o X"+ = [[A+7X).
j=1

We obtain the 7,-genus. The 1-unit, Q(y;z), satisfies

Proposition 3.41 If B D Qly], then there exists one and only one power series (it is our Q(y; x)) in B[[z]]
(actually, Q[y][[z]]) so that, for all k >0, the coefficient of X* in Q(y;x)**! is Efzo(—l)iyi.

Proof. The usual (by induction). Let us check for k = 1. We have

(1-vy)

- 2
Qy;2)* = (1 + 5 ) +02*) =1+ (1 —y)z+O0(z?).

The coefficient of z is indeed 1 —y = S1_ (=1)%y". O
Look at Q(y;z) for y = 1, —1,0. Start with —1. We have
Q(-l;z)=1+=x.

Now, for y = 0, we get

Finally, consider y = 1. We have
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We proved Q(y; ) is the unique power series in Q[y][[z]] so that the coefficient of z* in Q(y;x)**+! is

Zfzo(—l)iyi. Therefore, we know (once again) that Q(0;z) = Q(z) = the unique power series in Q[z] so
that the coefficient of z* in Q(x)**! is 1. Since, for projective space, ]P’ff:, we have

T+ X+ 4 X5 4 X = (14 x)F!

and since o 1 -
K“(14X)" = Q(X)
K((1+X)M) = { ~
(( ) ) Zl:oTl(Ch"' ,C[)Xl
we get
Tk(clv . 'ack) =1
when the ¢’s come from P and if Ty (y; 1, ..., ) means the corresponding object for Q(y; ), we get

Proposition 3.42 The Todd genus, Ty (c1,...,¢n), and the Ty—genus,_ Tn(y, Cl,...,Cn), are the only genera
so that on all P (n =0,1,2,...) they have values 1, resp. » .~ (—1)"y".

Write T, for the multiplicative operator obtained from Q(y;z), i.e.,

7;(1+01X+...+Cij+-.-):ZTn(y;cl,...,cn)Xn.
n=0

Equivalently, .
T,(l+e X+ Xl +-0) = HQ(y;ijX),
j=1
where N
A+eX 44X+ =[[a+X).
j=1
Now, for all n, the expression T, (y;c1,...,c,) is some polynomial (with coefficients in the ¢’s) of degree at

most n in y. Thus, we can write

T’IS,I) (y7 Cly.ey Cn)yl7

NE

Tn(y;clu' "7Cn) =

Il
=)

and this is new polynomial invariants, the Tr(Ll)(y; Cly- -y Cn)-
We have
Tn(_17 C1, .- ,Cn) =

(7=
3
~
o
s,
o
S
S~—
|
o
3

1
by the fact that Q(—1;2z) = 1 4+ x. Next, when y = 0,

Il
=)

Tn(05¢1,...,¢n) = T,SO)(cl, cosen) =Th(er, ..oy cn).
When y = 1, then

- 0 if n is odd

) - U] _
Ta(Liers-ohen) _IZT" (e1-ovven) = {L%(pl,...,p%) if n is even.
=0

Therefore, we get
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Proposition 3.43 If B D Q[y], then we have
(A) Yo T,S”(cl, sy Cp) = Cp, for all n.
(B) T\ (c1,...,cn) = td(ci,...,cn) (= Talcr, ..., cn)).
(C)

ZTél’(cl,.-.,cn)—{% if n is odd
s n(p1y...,pn) if n is even.

The total Todd class of a vector bundle, &, is

e . 1 1 1
td(€)(t) = > _td;(er,..., )t =1+ Fei(€) + E(Cf(f) + e () + ﬂ(01(€)62(€))t3 e
j=0
Here some more Todd polynomials:
1
T, = ﬁ()(_&l + cze1 + 3¢5 + deac? — )
1
Ty = @(—0401 + c3¢3 4+ 3cier — cac?d)
1
Te = m(206 — 2c5¢1 — 9cqco — 5eact — 5 + 1leseact + Hescs +10¢5 + 11cie? — 12¢0¢] + 265).

Say
0—¢ —¢—¢ —0
is an exact sequence of vector bundles. Now,
L+ttt )L+t + -+ ct? ) =1+ eyt + - + gt

and td is a multiplicative sequence, so
td(§) ()t (€")(t) = td(&) ().

Let us define the K-ring of vector bundles. As a group, this is the free abelian group of isomorphism
classes of vector bundles modulo the equivalence relation

Vi=[VT]+[V"]
iff
00—V —V —V"—0 isexact.
For the product, define
V]-Wl=[VveWw].
The ring K is a graded ring by rank (the rank of the vb).

Say € is a vector bundle and
Ltert+ et + =[] +7t).

Remember,

it
1+td1(61)t+'-'+tdn(01,...,cn)tn+...: HT(’)/jt) = H BF

1 — et
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Now, we define the Chern character of a vector bundle. For

Lot + -+t + - = [J(1+t)
set
ch(§)(t) =D e¥" = cho(§) + chy ()t + -+ + chp (" + -+,
J
where ch;(§) is a polynomial in ¢, ..., ¢; of weight j. Since
gt — (vt)"
e = Z rl
r=0
we have

1
Vit Yt — - T\ g7
St =3 e = (o)
J i T J
which shows that
Ch’r(cla"'a 7‘ T'Z,yj_’l” 717"'77(])'
The sums, s,, can be computed by induction using Newton’s formulae:
8] — 8]-1C1 + Sj_9Cy + -+ + (—1)l_1slcl_1 + (—1)llcl =0.

(Recall, ¢; = 0;(71,...,7).) We have

Chl(Cl) = C

1
cha(ci,c2) = 5(0?—202)

1
Ch3 (Cl, Ca, Cg) 6(0% - 36102 + 363)
L 4 2 2
chy(cy,co,c3,¢4) = ﬂ(cl —4cjca +4eres + 2¢5 — 4ey).

Say
0—¢—¢—¢¢ —0

is an exact sequence of bundles. The Chern roots of £ are the Chern roots of £’ together with those of £”.
The definition implies

ch(&)(t) = ch(&)(t) + ch(§")(t).

If £ and 7 are vector bundles with Chern roots, v1,...,7, and 61,...,d,, then £ ® n has Chern roots ~; + 43,
for all 7, j. By definition,

ch(E@ () = 3023 bt = (310) () = bW (®)

The above facts can be summarized in the following proposition:

Proposition 3.44 The Chern character, ch(€)(t), is a ring homomorphism from K (vector(X)) to
H*(X,Q).
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If ¢ is a U(q)-vector bundle over a complex analytic manifold, X, write

T(X,&)(t) = ch(&)(1)td () (D),

the T'-characteristic of & over X.

Remark: The T,(Ll) satisfy the duality formula
()T P (cr, .o yen) =T D (e en).

To compute them, we can use

l
T (er,- . en) = rn(ch(/\ €7)(B)Ed () (1)),

where ¢y, ..., c, are the Chern classes of the v.b., £, and x,, always means the term of total degree n.
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3.4 Cobordism and the Signature Theorem

Let M be a real oriented manifold. Now, if dim(M) = 0 (4), we have the Pontrjagin classes of M, say
P, ..., Pn (with dim(M) = 4n). Say ji +--- + j» = n (a partition of n) and let P(n) denote all partitions
of n. Write this as (j). Consider pj, - - - pj,, the product of weight ji,..., 7, monomials in the p’s; this is in
H*(M,Z). Apply pj, - - - pj, to [M] = fundamental cycle, we get an integer. Such an integer is a Pontrjagin
number of M, there are #(P(n)) of them.

(~0piz' = (Y ex7) (X al-X)").

the Pontrjagin classes are independent of the orientation. introduce —M , the manifold M with the opposite
orientation. Then,

Since

Pjy - pj [—M] = —pj, - - pj, [M].

Define the sum, M + N, of two manifolds M and N as M II N, their disjoint union, again, oriented. We
have
H*(M + N,Z) = H*(M,Z) [ E*(N, 2)

and consequently, the Pontrjagin numbers of M + N are the sums of the Pontrjagin numbers of M and N.
We also define M [] N, the cartesian product of M and N. By Kiinnneth,
M][N = 1][1 ® N,

so the Pontrjagin numbers of M [[ N are the products of the Pontrjagin numbers of M and N.
The Pontrjagin numbers of manifolds of dimension n Z 0 (4) are all zero.

We make an equivalence relation (Pontrjagin equivalence) on oriented manifolds by saying that
M =N (P)

iff every Pontrjagin number of M is the equal to the corresponding Pontrjagin number of N. Let ﬁn be the
set of equivalence classes of dimension n manifolds, so that €2, = (0) iff n # 0 (4) and

I . =[] @

n>0 r>0
We see that € is a graded abelian torsion-free group. For Q ®z Q, a ring of interest.

Proposition 3.45 For a sequence, { My }72, of manifolds, the following are equivalent:

(1) For every k, sg[Mar] # 0. Here, write 1 + p1X + -+ + p, Z™ as a product Hm>"(1 + B;Z), where
equality means up to terms of degree n if m > n and then

sk =07+ + By (m > k)
a polynomial in p1,...,pk, of weight k, so it makes sense on Myy.
(2) The mapping from multiplicative sequences with coefficients in B (2 Q) to HNO B, via
{K;}520 = (KM, ..o (Kk[Mg], .. .)

is a bijection. That is, given any sequence aq,...,ax,... of elements of B, there is one and only one
multiplicative sequence, {K;} (coeffs in B), so that

Ki(p1, ... pr)[Mar] = ag.
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Proof. (1) = (2). Choose a1, as,... from B. Now, multiplicative sequences with coefficients in B are in
one-to-one correspondence with one-units of B[[z]], say Q(z) is the 1-unit. If

L4pZ 4+ p 28+ =1+ 8;2),
J
then
L+ Ki(p)Z + -+ Ki(1,...,pe) 25 + HQﬁj
We must produce a unique 1-unit 1 + b6 Z + --- = Q(Z), so that ay is equal to the coefficient of Z* applied

to My, in [[; Q(B8;2)bx+ some polynomial in by, ..., bx—1, of weight k. This polynomial has Z-coefficients
and depends on the My,. We need

ap = Sk[M4k] + poly in by,...,bx—1 (]L)

By (1), all s;[Myx] # 0; by induction we can find unique by’s from the ay’s.

(2) = (1). By (2), the equations () have a unique b-solution given the a’s. But then, all sp[Myx] # 0,
else no unique solution or worse, no solution. []

Corollary 3.46 The sequence {P#} satisfies (1) and (2). Such a sequence is called a basis sequence for
the n-manifolds.

Proof. We have
L4+ piZ 4 +ppZF = (1 +n22)%k+1,

where h% € H*(P%,Z) (square of the hyperplane class). But then, 3; = h2, for j =1,...,2k + 1 and

2k+1
k(P2 = Zh%ﬂv =2k+1#0

establishing the corollary. []

Theorem 3.47 Suppose { My} is a basis sequence for O® Q. Then, each o € Q® Q has the unique form
25 PGi)My), where

(1) (]) = (jlv"'va); it tie=k M(j) = M4j1 H...HM4jT'
(2) pgy € Q. Secondly, given any rational numbers, p(jy, there is some o € Q® Q so that
P;)(@) = Pjipss -+ i (@) = p()-
(3) Given any sequence, {Myy}, of manifolds suppose o = Z(J—) pyM, then, for every k > 0, we have
sk(@) = prsip(Mag).

(4) If each a € Q@ Q is a sum Z(j) piyMj), then the {May} are a basis sequence. So, the {Muy} are a
basis sequence iff the monomials My = My, [[--- 1] Maj, (over P(k), all k) form a basis of Q®Q

in the usual sense.

Proof. Note that, as abelian group, Qy has rank #(P(k)) (the number of Pontrjagin numbers of weight &
is #(P(k)))-

(1) Pick indeterminates ¢i, . .., q over Q and choose any integer [ > 0. By the previous proposition, since
{My} is a basis sequence there exists one and only one multiplicative sequence, call it {K,(,i)}f;’:l, so that

KT(fL) [Mym] = Q£n
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We need only check our conclusion for a € (~24k ® Q for fixed k. Now,
dimg Qui, ® Q = #(P(k))
and there exist exactly #(P(k)) elements M;y, so all we need to show is
Zp(j)M(j) =0 implies all PG = 0.
(4
Suppose Z(j) pj)M(;) = 0 and apply the multiplicative sequence {K,(,? o _1- We get
Zp(j)qj»l X ~q§»T =0 foralll>0. (%)
(4
Write qé»l ~-~q§T = qél). The qél) are all pairwise distinct, so by choosing enough [, the equation (x) gives
a system of linear equations (unknowns the p(;)) with a Vandermonde determinant. By linear algebra, all
P =0
(2) This is now clear as the M;y span Qu ® Q for all k.
(3) Look at Q(Z) = 1 + Z* and make the corresponding multiplicative sequence. We have

L+ ki(p)Z + -+ Ki(pr,...,pu) 25 + - = [ (1 + 85 2%).
j>k
Therefore, K;(p1,...,p)) = 0if | < k and Ki(p1,...,pk) = BF + 55 + -+ = sx. Apply this multiplicative

sequence to a, we get si(a) = prsk(Myy), as required.

(4) Suppose each a =3~ ;) p(j) M(;), yet, for some k, si(My) = 0. By (3), we have si(a) = prsp(Mar) =
0. It follows that s;(c) = 0, for all a. Now, let v = PZ*. We get

2k +1=sk(a) =0,
a contradiction. []

Corollary 3.48 The map My — Zy, (and My — Zj, --- Z;, ) gives a Q-algebra isomorphism
Q®Q ~Q[Z1, Zs,...|, where deg(Z;) = 4l. (Here, {Myy} is a basis sequence.)

Corollary 3.49 The Q-algebra maps, (~2®@ — Q, are in one-to-one correspondence with the multiplicative
sequences with coefficients in Q (or, what’s the same, with the 1-units of Q[[Z]]). The map is

aeQeQ— K(a).

Proof. Multiplicative sequences correspond to 1-units 1 4+ b1Z + - - -+ and (f) above shows we know the b’s
iff we know the value of the homomorphism on the My, i.e., on the Z;’s and then, use Corollary 3.48. []

Note that manifolds with boundary also have a notion of orientation.

An oriented n-dimensional manifold, M, bounds iff there is an oriented manifold, V' and an orientation
preserving diffeomorphism, 9V = M.

Definition 3.4 (R. Thom) Two manifolds, M and N are cobordant if M + (—N) bounds.

Introduce cobordism, the equivalence relation
M =N (C) iff M is cobordant to N.
We see immediately that if M = N (C) and M’ = N’ (C), then
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(1) MIIM' = NTIN' (C)
(2) —-M =—-N (C)
(3) MI[M'= N[N’ (C).

Using this equivalence, we have the graded abelian group (under II)
a=JJ.

where €2, is the set of equivalence classes of n-dimensional oriented manifolds under cobordism. We make
Q) into a ring as follows: Given « € (2, and 8 € (Q,,, then

af = class of (« Hﬁ)
and (use homology), af = (—1)™"Ba. We call Q the oriented cobordism ring.

Theorem 3.50 (Pontrjagin) If M bounds (i.e., M =0 (C)) then all its Pontrjagin numbers vanish (i.e.,
M =0 (P)). Hence, there is a surjection @ — Q and hence a surjection Q @ Q — Q® Q.

Proof. We have M = 0V, write i: M < V for the inclusion. Let p1,...,p;,... be the Pontrjagin classes of
Tv; note, as M = 0V,
Ty =Ty 10V =Ty | M =Ty 111,

where I denotes the trivial bundle. Therefore, the Pontrjagin classes of M are i*(those of V). So, for
4k =dim M and j; + -+ j,. = k,
pG)[M] = i*((pj -+~ 3. ) [M]),

where [M] is the 4k-cycle in Hyr(V,Z). But, [M] =0 in Hax(V,Z), as M = 0V . Therefore, the right hand
side is zero. []

We will need a deep theorem of René Thom. The proof uses a lot of homotopy theory and is omitted.

Theorem 3.51 (R. Thom, 1954, Commentari) The groups Q,, of oriented n-manifolds are finite if

n # 0 (mod4) and Qyy, = free abelian group of rank #(P(k)) 11 finite abelian group. Hence, 0, @ Q = (0) if
n %0 (mod 4) and dim(Quy, ® Q) = #(P(k)) = dim(Qur ® Q). We conclude that the surjection

QR0Q — QO® Q is an isomorphism. Therefore,

20 Q X QZ1, - Zny- - .

We will also need another theorem of Thom. First, recall the notion of index of a manifold, from Section
2.6. The index of M, denoted I(M) is by definition the signature, sgn(@), where @ is the intersection form
on the middle cohomology, H™(M,C), when n is even. So, I(M) makes sense if dimg M = 0 (4).

Theorem 3.52 (R. Thom, 1952, Ann. Math. ENS) If the n-dimensional oriented manifold bounds, then
I(M)=0.
In view of these two theorems we can reformulate our algebraic theorem on Hom@-alg(ﬁ ®Q,Q) in terms
of 1 ® Q.
Theorem 3.53 Suppose \ is a function from oriented n-manifolds to Q, M +— A(M), satisfying
(1) A\(IM+ N)=AXM)+ AX(N); M(—M) = =\(M).
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(2) If M bounds, then A\(M) = 0.

(8) If {Myy} is a basis sequence for Q, then when ji + - -+ + jr = k, we have

/\(M4j1 1T HMM;) = M Myj,) -+ - M(Maj,.).
Then, there exists a unique multiplicative sequence, {K;}, so that for every M of dimension n,

ANM) =Kz (p1,...,pz)[M].

We get the fundamental theorem:

Theorem 3.54 (Hirzebruch Signature Theorem) For all real differentiable oriented manifolds, M, we have:
(1) If dimg M # 0 (mod 4), then I(M) = 0.

(2) If dimg M = 4k, then
I(M) = Li(p1, - - -, i) [M].

Proof. Recall, I is a function from manifolds to Z and clearly satisfies (1). By Thom’s second Theorem
(Theorem 3.52), I satisfies (2). Take as basis sequence: My = P#. We have

2k

I(Ma) =Y _(=1)PhP(May),
p=0

by the Hodge Index Theorem (Theorem 2.77). As h?"P = 1 and h?'9 = 0 if p # ¢, we get
I(Myy,) = 1.

Now we further know the Kiinneth formula for the h?'¢ of a product (of two, hence any finite number of
complex manifolds). Apply this and get (DX)

I(P@H---HP@) —1.

Therefore, (3) holds. Then, our previous theorem implies I(M) = K(M) for some K, a multiplicative
sequence. But, K (]P’%k) = 1, there and we know there is one and only one multiplicative sequence = 1 on all
P2F it is L. Therefore, [(M) = L, as claimed. []
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3.5 The Hirzebruch—-Riemann—Roch Theorem (HRR)

We can now state and understand the theorem:

Theorem 3.55 (Hirzebruch—Riemann—Roch) Suppose X is a complex, smooth, projective algebraic variety
of complex dimension n. If E is a rank q complex vector bundle on X, then

X(X, Ox(E)) = rin (ch(E)(£)td(X)(#)) [X].

Here,

n

(X, Ox(B)) = " (~1)'dim H' (X, Ox (E)).
i=0
We need to explicate the theorem.
(a) Write it using the Chern roots

q n
Lt e(B)t+ - +cg(BE3 = [J(+7it), 1TH+e(X)t+-+cg(X)t" = [[ (1 +6;0),
i=1 j=1

and the theorem says
n

X(X,0x(E)) = kn <Ze"”t %)[X]-
i=1 j=1

(b) Better explication: Use
1 1, 9 1 3
td(X)(t) =1+ 501(X)t + E(Cl(X) + o (X))t2 + ﬂCl(X)CQ(X)t

+ %O(_CAL(X) +e3(X)er (X)) +3¢2(X) + dea(X)eA(X) — (X))t + O(t9)

and

h(E)(1) = xK(E) + e1 (B}t + 5 (A(E) ~ 2a(E)E* + 2(c(E) — er(Bes () + Bes(E))e*

L (4(E) = 42(E)es(B) + de1(B)es (E) + 22(E) — dea( B))t + O#).

T

(A) Case n =1, X = Riemann surface = complex curve; E = rank ¢ vector bundle on X. HRR says:

(X0 (E) = (30000 + ea(B) ) (],

Now, ¢1(X) = x(X) = Euler-Poincaré(X) = (highest Chern class) = 2 — 2g (where g is the genus of X).
Also, ¢1(E) = deg(F) (= deg A7 E), so
\(X, 0x(E)) = (1 g)rk(E) + deg E.

Now,
(X, 0x(E)) = dim H*(X, Ox(E)) — dim H (X, Ox (E));

by Serre duality,
dim HY (X, Ox (E)) = dim H*(X, Ox (EP ® wx)),
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so we get
dim H(X, Ox (E)) — dim H*(X, Ox (EP ® wx)) = deg E + (tk(E))(1 — g).

(Note: We proved this before using the Atiyah-Serre Theorem, see Theorem 3.13.)
(i) E = Ox = trivial bundle, then deg E = 0 and tk F = 1. We get

dim H°(X, Ox) —dim H*(X, Q%) =1 —g.
Now, X connected implies dim H(X,Ox) = h%! =1, so

g =dim H (X, 0x) = dim H°(X, Q%) = h*°.

(ii) £ = wx = Q%, rk £ = 1 and HRR says
dim H°(X, Q%) — dim H°(X,Ox) = deg Q% + 1 — g.
The left hand side is g and dim H°(X,0x) =1, so

deg Q% =29 — 2.

(i) E=Tx = Q;D. Then, tk £ =1, deg E = 2 — 2¢g and HRR says
dim H°(X,Tx) —dim H(X,Tx) =2 —2g+1—g.
Assume g > 2, then deg Tx = 2 — 2g < 0. Therefore, H°(X,Tx) = (0) and so,
—dim H'(X,Tx) = 3 — 3g,
so that

dim H'(X,Tx) = 39 — 3.

Remark: The group H!(X, Tx) is the space of infinitesimal analytic deformations of X. Therefore, 3g — 3
is the dimension of the complex space of infinitesimal deformations of X as complex manifold. suppose
we know that there was a “classifying” variety of the genus g Riemann surfaces, say 2t,. Then, if X (our
Riemann surface of genus g) corresponds to a smooth point of Mi,, then

Ton, x = H'(X,Tx).

Therefore, dime M, = 3g — 3 (Riemann’s computation).
(B) The case n = 2, an algebraic surface. Here, HRR says

1

XX, 0x(B) = (150 + a(X)k(E) + 5 (X)ea (B) + 3 (A(E) - 2a(E)) ) X

The left hand side is
dim H°(X, Ox(E)) — dim H (X, Ox(E)) + dim H°(X, Ox(EP @ wx)).

Take E = trivial bundle, tk E = 1, ¢1(F) = c2(E) = 0, and we get

X(X,0x) = T (e (X) + e2(X))[X] = 5 (K% +x(X))[X],
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where x(X) is the Euler-Poincaré characteristic of X. We proved that this holds iff
I(X) = ipi(X) = Li(p1)[X] (see Section 2.6, just after Theorem 2.82). By the Hirzebruch signature
theorem, our formula is OK.

Observe, if we take wx, not Ox, then the left hand side, x(X, Ox), is
dim H°(X,wx) — dim H'(X,wx) + dim H*(X,wx) = dim H*(X, Ox) — dim H*(X, Ox) + dim H°(X,wx)

(by Serre duality) and the left hand side stays the same.
Take E =Tx; 1k E =2, c1(E) = c1(X), c2(F) = c2(X) and the right hand side of HRR is

(A + a0 + 500 + 5B - a0 K] = (3200 - Zea) ) 1)
= (% - 20

The left hand side of HRR is
dim H°(X, Tx) — dim H*(X, Tx) + dim H*(X, T¥ ® wx).

Now,
T2 TR —TE2ANTR =wx

gives by duality

o
1

Hom(T¥,wx)
Hom(T2 ® w®, 0x)
Tx ®wx,

1%

Il

so the left hand side is

dim(global holo vector fields on X) — dim(infinitesimal deformations of X)
+ dim(global section of Ty ® w$?).

Take E = Q% =TE 1k E =2, ¢1(E) = c1(wx) = —c1(Tx) = —c1(X), c2(E) = c2(X). The right hand side
of HRR is 1 1

S(EX) + (X)) - 5EX) + 5E(X) - a(X) = cd(X) - Ze(X).

The left hand side of HRR is

dim H(X, Q%) — dim H'(X, Q%) + dim H?(X, Q%) = 0 — bt 4 a2 = p10 - pbt 4 p10 =) (X)) — nME

It follows that

() = 1 = (K% - 20 ) 1)
() = (2% - 20| ) =i,
Also,

H(X, Q) H*(X,wx ® Tx)?
HY (X, Q%) = H'(X,wx ®Tx)"
H*(X,0%) = H°(X,wx ®@Tx)"
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and we get no new information.

When we know something about X, we can say more. For example, say X is a hypersurface of degree d
in ]P’%. Then, write
H-X=h=1iH,

where 7: X — ]P’%. We know
Nxoyps = Ox(d - h),

SO
0—Tx — Tps | X — Ox(dh) — 0 is exact.
We have
(1 +er(X)t+ (X)) (1 +dht) = (1+ H)* | X = (1+ ht)%,
SO

14 (X))t 4 co(X)t? = (1 + 4ht + 6h%t%)(1 — dht + d*h*t?) = 1 + (4 — d)ht + (6 — 4d + d*)h?t>.
So ¢1(X) = (4 — d)h and c2(X) = (6 — 4d + d*)h?. Now,
RAX]=i"(H-X)i*(H-X)=H-H-X =deg X =d.

Consequently,

1 1 1
X(X, 0x(E)) = Irk(E)((4 = d)*d + (6 — 4d + d*)d) + Ser(E)(4 = d)A[X] + 5 (c1(B) — 2c2(E))[X].
Take eH and set E = line bundle eh = eH - X = eH [ X = Ox(e). In this case, tk(F) = 1, c2(E) = 0 and
c1(E) = eh. We get

[\

1 1
(11— 6d + d*)d + 5e(4 —d)d + §e2d,

| =

X(X,0x(e)) =

X(X,0x(e)) = (%(11 —6d +d*) + %(e2 —ed + 46)) d.

(C) X = abelian variety = projective group variety.

As X is a group, Tx is the trivial bundle, so ¢1(X) = c2(X) = 0. When X is an abelian surface we get
1
X(X, Ox(E)) = 5(ci(B) = 2¢2(E))[X].
When X is an abelian curve = elliptic curve (g = 1), we get
X(X,0x(F)) =c1(E) =degE.

Say the abelian surface is a hypersurface in P%. We know ¢;(X) = 0 and ¢2(X) = (4 — d)h. This implies
d =4, but c2(X) = 6h? # 0, a contradiction! Therefore, no abelian surface in P2 is a hypersurface.

Now, assume X < PY, where N > 3 and X is an abelian surface. Set E = Ox(h) and compute
X(X,Ox(h)), where h = H - X. We have ¢;(Ox(h)) = h and ¢2(Ox (h)) = 0. Then,

AE)X]=hX]=H-H-X =degX

as subvariety of PY. HRR for abelian surfaces embedded in PY with N > 3 yields

1
XX, 0x(1) = 5deg X.
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As the left hand side is an integer, we deduce that deg X must be even.

D) X = P2. From
( C
L4 e (X)t+ -+ cn(X)t" = (1 + Ht)"H!

we deduce
01 =+ =0pt1 = H.

Take
e (X)t+ -+ en (X" = [[(1 +75)

and look at F @ H®" = E(r). We have

X(P", Ox(E(r))) = < eritnt 1_11:1)1{15) )[X]

(2

[
M=

1 e(’lerr VHt
%/c — e~ Ht)n+1 d(H?)

j;/
2 C

where C'is a small circle. Let u =1 — e %, then du = e ?dz = (1 — u)dz, so

l

1

[
M=

~.

1
(vi+r)z
— (),

—e szrl

1

We also have e +7)% = (¢=%)=(n+7) = (1 — 4)~(+7) Consequently, the integral is

Sy —
= 2mi Ju=o (1 — w)ntr+iyntl

where is the path of integration is a segment of the line z = € + ¢u. It turns out that

L 27 du — Bly,n) = n+y+r
27 Jyo (1 —u)mtr+lyntl — h = n

so HRR implies
0 (et
X", Ox(B(r) =3 cQ.

n
=1

But, the right hand side has denominator n! and the left hand side is an integer. We deduce that for all

r € Z, for all n > and all ¢ > 1,
q
Z (7’L+’7l+T) c7.
n
=1
(Here, 1+ c1(E)Ht + - - - + co(E)(Ht)? = [Tj_, (1 4 v; Ht).)

Take r =0,q = 2. We get
(n+71> <n+72) .
n n

2+7)(L+7)+ 2+72)A+2) =0 (2),

For n = 2, we must have
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i.e.
24371+ +24+ 32 +75 =0 (2),

which is equivalent to
3¢ +c2 —2c,=0 (2).

Thus, we need ¢1(3 + ¢1) =0 (2), which always holds.

3+m 342
€z,
5+ (5)

B+71)2+7)A+m)+ B +72)(2+72)(1 +72) =0 (6).

Now, take n = 3. We have

ie.,

This amounts to
(6+57 +79) A +7) + (6+572+135)(1 +72) =0 (6)

which is equivalent to
715+ 7)1 +7) + 7205 +72)(1 +72) =0 (6),

i.e.
1154+ 671 +77) +72(5 + 672 +v3) =0 (6)

which can be written in terms of the Chern classes as
5¢1 + 6(c3 — 2¢2) + ¢§ — 3cica =0 (6),

i.e.,

c1(c? —3ca +5) =0 (6).

Observe that
& +5¢1 =0 (6)

always, so we conclude that cijce must be even.
Say i: P2 — P? is an embedding of PZ into P3.
Question: Does there exist a rank 2 bundle on P, say E, so that i*(E) = Tp2.?
If so, E has Chern classes ¢; and ¢o and
a(Tpz) = i"(c1),  ca(Tpz) = i"(c2).

This implies
crez(Tpz) = i* (crc2(E)),

which is even (case n = 3). But,
C1 (TIP’%) = 3HP2, CQ(T]P(Z:) = 3H[p2,

SO
Clcg(TP%) = 9H2,

which is not even! Therefore, the answer is no.



238 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM



Bibliography

[1]

M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison Wesley, third edition,
1969.

Michael F. Atiyah. K-Theory. Addison Wesley, first edition, 1988.

Raoul Bott and Tu Loring W. Differential Forms in Algebraic Topology. GTM No. 82. Springer Verlag,
first edition, 1986.

Shiing-shen Chern. Complex Manifolds without Potential Theory. Universitext. Springer Verlag, second
edition, 1995.

Roger Godement. Topologie Algébrique et Théorie des Faisceaur. Hermann, first edition, 1958. Second
Printing, 1998.

Phillip Griffiths and Joseph Harris. Principles of Algebraic Geometry. Wiley Interscience, first edition,
1978.

Morris W. Hirsch. Differential Topology. GTM No. 33. Springer Verlag, first edition, 1976.

Friedrich Hirzebruch. Topological Methods in Algebraic Geometry. Springer Classics in Mathematics.
Springer Verlag, second edition, 1978.

Ib Madsen and Jorgen Tornehave. From Calculus to Cohomology. De Rham Cohomology and Charac-
teristic Classes. Cambridge University Press, first edition, 1998.

Peter J. May. A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics. The University
of Chicago Press, first edition, 1999.

John W. Milnor and James D. Stasheff. Characteristic Classes. Annals of Math. Series, No. 76. Princeton
University Press, first edition, 1974.

Shigeyuki Morita. Geometry of Differential Forms. Translations of Mathematical Monographs No 201.
AMS, first edition, 2001.

Oscar Zariski. The concept of a simple point of an abstract algebraic variety. Trans. Amer. Math. Soc.,
62:1-52, 1947.

Oscar Zariski and Pierre Samuel. Commutative Algebra, Vol I. GTM No. 28. Springer Verlag, first
edition, 1975.

Oscar Zariski and Pierre Samuel. Commutative Algebra, Vol II. GTM No. 29. Springer Verlag, first
edition, 1975.

239



