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Abstract

Like natural language, music can be described as being composed
of various parts, which combine together to form a set-theoretic
or logical entity. The conceptualized parts are more basic than
the music seen on a page; they are the musical objects subject to
music-theoretic analysis, and can be described using the language
of functional programming and lambda calculus. This paper intro-
duces the types of musical objects seen in tonal and modern music,
as well as the combinators that allow them to combine to create
other musical objects. We propose a method for automatically gen-
erating melodies by searching for combinations of musical objects
which together produce a valid program corresponding to a melody
or set of melodies.
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music computing;
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1 Introduction

Music theorists have developed rigorous systems for describing
music in ways that go beyond the individual note values. Consider
the beginning of Claude Debussy’s piano prelude “The Girl with the
Flaxen Hair”, shown in figure 1. One can describe the “surface” of
this short phrase of music - the actual notes seen on the page.! How-
ever, one can also discuss properties of the music that contribute to
that surface: The phrase uses a pentatonic scale centered around the
pitch-class D. The beginning contains two nearly repetitive motifs,
with the first note being slightly shortened in the second repetition.
Each of these motifs itself consists of a transposition and inversion

!Here I am borrowing terminology from David Temperley, who distinguishes the
“surface” of the music (what is seen on the page) from its underlying structure. [1]
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Figure 1. An excerpt from “The Girl with the Flaxen Hair”

operator applied to an even shorter snippet of music.” The phrase
contains many [0.5, 0.25, 0.25] rhythmic patterns. Except for the
end, it appears to be metrical.

All of the above properties are assumed to be important to
understanding the piece as it is performed. However, simply listing
the properties of a piece as above can make the properties described
seem arbitrary and disconnected. This is patently not the case, as
they clearly are all derived from the musical surface of the piece
(the actual notes), and thus must all combine in some way to create
those notes. In addition, some properties seem to be dependent on
others - the prominence of the note D is related to the use of the D
pentatonic scale. Unfortunately, without knowing the relationship
between a property and other properties or the musical surface, it
is difficult to understand how and why a given property contributes
to the piece.

In this paper, we propose a formal method for characterizing
musical properties based on the linguistic concept of categorial
grammars. Categorial grammars describe how “objects” (computa-
tional expressions) of various types combine to form larger expres-
sions. After a basic overview of the usage of categorial grammars
in linguistics, we turn to their usage in music, showing that they
can express the relationship between different musical properties,
which can be thought of as computational objects. We show how
larger pieces of music can be built from the interaction of musical
objects with other objects representing shorter pieces of music,
and discuss how this method relates to a model of the process of
musical analysis.

While it is clearly possible to use categorial grammars for the
purpose of musical analysis, this paper will focus on their applica-
tion to music generation. Categorial grammars lend themselves to
automatic generation of music. Combinators can be used to derive
new musical objects, including melodies, from pre-existing musical
objects. There are a set of valid musical objects and functions, and

2Transposition and inversion are two operators applied to musical motifs. Transposi-
tion moves the motif up or down on the musical staff, while inversion reverses the
direction of the motif.
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they can be put together in such a way as to result in an expres-
sion that is a melody. By automatically generating valid lambda
expressions, we generate small musical pieces.

2 Music and Language

For at least 2500 years, music has been described as “sounding
number,” or something inherently mathematical [2]. At the same
time, at least since the Renaissance, music has also been seen as
something akin to language, with syntax and semantics [3]. Re-
cently, developments in the field of linguistics have shown that
analysis of music as natural language and as mathematical system
are not orthogonal to each other, but rather complementary; natural
language can be explored in precise ways by using areas of math
as diverse as category theory and statistics [4] [5]. Therefore, it is
logical that pursuing the “music as language” metaphor could be
useful not only for philosophical purposes, but also for the purpose
of computational analysis and generation of music - assuming that
some of the same formalisms used to describe natural language also
apply to music. In fact, certain linguistic formalisms, particularly
context free grammars, have already been applied to music genera-
tion [6]. Categorial grammars are another linguistic formalism that
have proved useful to the study of music.

3 Categorial Grammars in Language

In 1935, semanticist Kazimierz Ajdukiewicz introduced the concept
of categorial grammars in natural language - a concept which be-
came well-known in the linguistics community after the publishing
of Richard Montague’s paper “Universal Grammar” in 1970 [7]. Cat-
egorial grammars are different than the Chomsky-style generative
grammars more well-known to computer scientists in that they
do not only describe the syntax of a sentence, but also how the
meanings of the individual words combine to create the meaning
of the entire sentence. The meaning of the sentence is assumed to
be a predicate logic statement. This predicate logic statement is
arrived at through reductions of an expression in a typed lambda
calculus. The typed lambda calculus only has two primitive types:
entity (typically used to describe nouns such as a person or an
item), and truth value. A full expression in the typed lambda calcu-
lus corresponding to a sentence, which reduces to a predicate logic
statement, is created by concatenating the computational meanings
of each word in the sentence. Each word has an associated type
(shown here in Haskell notation).

For example, “Kim walked and fed the dog” is composed of the
following words:

Kim = k :: entity
walked = Ax[Walked(x)] :: entity — truth
and = Ax, y, z[x(z) A y(2)] : (entity — truth) — (entity —
truth) — entity — truth
fed = Ax, y[Fed(y, x)] :: entity — entity — truth
the = Ax[x] = entity — entity
dog =d :: entity

Putting it all together, we get

lambda x,y, z[x(z) A y(z)](Ax[Walked(x)])
(Ax, y[Fed(y, x)](Ax[x](d))) (k) = Walked(k) A Fed(k,d)
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Together, these words express a logical premise (that Kim walked
and fed the dog), which can be true or false. Alternatively, one
can interpret the words in the sentence as well as the resulting
expression set-theoretically - it describes a set of situations in which
Kim walked and fed the dog. This model is technically a grammar, as
there are proof mechanisms to show a certain collection of tokens is
a valid sentence [8], one can assign parts of speech according to the
types of the words, and it can be used to show how individual parts
make up a greater whole. However, it is more commonly studied
by semanticists than syntacticians, and is the foundation of much
research in natural language meaning.

4 Categorial Grammars in Music
4.1 Previous Research

In his 2013 thesis, Wilding develops a categorial grammar for mu-
sical harmony [9]. According to Wilding, harmonic progressions
can be described in terms of series of functions. He refers to one
common function, which takes a chord and outputs that chord
connected with the chord transposed up by 7 semitones, as leftonto
(he considers dominant motion as leftward motion). For example,
he shows how a D-G-C harmony can be described as

(Ax.leftonto(x))(Ax.leftonto(x))(0)

where 0 represents the pitch-class C. He goes on to provide a way
of parsing tonal harmonies and describing them as repeated appli-
cations of leftonto and rightonto operations, as well as a few more
basic operations.

4.2 Current Research

In this paper, we suggest a method for using categorial grammars
to describe not just the harmony but also the surface of a piece of
music. This is accomplished by drawing a close analogy between
words and sentences and all types of musical objects and the musical
surface. One could argue that individual measures of music should
be given the same status in the categorial grammar as words, and
the piece as a whole (or a musical phrase within the piece) should
be given the same status as a sentence. However, such an expla-
nation doesn’t allow for the sort of combination of words into a
meaningful whole that we see in Montague’s grammar for natural
language, and thus renders the use of categorial grammars fairly
meaningless. To describe the relationship between two measures
of music computationally (and thus to benefit from the use of cate-
gorial grammars), it is necessary to look beneath the surface of a
piece of music at the musical objects from which it is composed.

5 Musical Objects

There are a rich variety of musical semantic objects, or properties
that contribute to the identity of the music, that may be discussed
when describing a piece of music. Some examples include the fol-
lowing:
o The basic parameters of music: duration (a decimal num-
ber), octave (an integer), pitch class (an integer), and timbre
(which can be simply described as an enum of instruments)
e Product types: Examples include a pitch, which can be de-
scribed as a tuple of (octave, pitch class). For musical analy-
ses where pitch including octave is important, see [10].
o Lists of musical objects, which include
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Figure 2. A Whole-Tone Scale

1. Unordered lists, such as an unordered list of pitch classes
which is then permuted in various ways

2. Ordered lists, such as a rhythm, or ordered list of dura-
tions

3. Lists where every element of the list is unique, such as
a set class

4. Lists where elements can be repeated, such as the pitch
classes in a chord with unison intervals

o Predicates which may be true of musical objects (such as the
predicate is_symmetric_rhythm which is true of a rhythm
whose reverse is the same as itself)

e Functions which transform musical objects, such as a func-
tion that takes a melody and an interval and moves the
melody up or down that interval

e Polymorphic functions, including

1. Higher order functions, such as a function which takes
a list, a function which transforms members of that list,
and a number n, and transforms every n’ h element of
the list

2. Non-higher order functions, such as functions which
change the order or number of times a given element is
seen

All of these objects are often discussed even in non-mathematical
musical analyses. However, the use of some of the musical objects
tends to be localized in music of a certain repertoire - for instance,
set classes (unordered unique lists of pitch classes) are found more
often in atonal music than in tonal music, while scale degrees (inte-
gers corresponding to indices of scales) are not commonly found
in atonal music. Thus, the type of objects being used in an analysis
or in a generation procedure are indicative of the style of the piece
in question.

The musical objects can be part of a categorial grammar in that
they combine together to form set-theoretic entities or characteris-
tic functions. To build a whole-tone scale (a common structure in
Impressionist music), we only need three musical objects: a starting
pitch, a transpose function, which takes a pitch and an interval n
and shifts the pitch up or down by n, repeat Apply that computes

[x, f(x), f(f (). [ (x)]

The lambda-expression below computes a whole-tone scale starting
on the pitch C5, shown in figure 2.

(A, j.repeatApply(i, j, 6)) ((An, x.transpose(x, n)))(2))
(((octave, 5), (pitch class, 0)))

For a more involved example, consider three musical objects:
the rhythm [0.5,0.5,1.0], the starting pitch (5,0) (where 5 is the
octave, and 0 is the pitch class) and a contour [1,3,2] (a contour
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describes the shape of a melody - it consists of a list of numbers
ranging from 1 to n, where n <= the number of notes in the melody,
such that the i*” pitch is lower than the k! h note if the i*" element
of the contour is smaller than the k*# element of the contour, is
equal to the kth note if the i element of the contour is equal to
the k' element of the contour, and is higher than the k' pitch
if the i'" element of the contour is greater than the k‘” element
of the contour).? There is a set of objects in the musical universe

which has all of these properties. Thus the semantics of

Ax,y, z.combine(x, y, z)
(rhythm, [0.5, 0.5, 1.0])(start_pit,(5, 0)),
(contour, [1, 3, 2])

is the set of all musical objects (which in this case have to be
melodies) which possess those properties (some of which are shown
in figure 3).

On first inspection, the above formula doesn’t seem nearly as
interesting as the corresponding categorial descriptions of linguis-
tic phrases. The benefit of linguistic categorial grammars is that
functions and objects fit together in interesting ways to produce a
predicate-logic or set-theoretic entity, and in the above formula it
appears as though the individual musical objects are unrelated to
each other. In fact, this is not quite the case. The combine function
has a specific meaning, which references the properties of the ob-
jects it is combining. In particular, this combine function works as
follows:

1. Take the cartesian power of all possible pitches with n =
(length(contour) — 1).

2. For every member of the cartesian power set, prepend the
pitch start_pitch to that member.

3. Filter out members of the derived set which do not have
the specified contour - that is, members of the derived set
(which are themselves lists) where it is not true for every
n and i that the n'" element of the set is larger than the
ith element of the set if contour[n] > contour[i], the nth
element of the set is smaller than the i** element of the
set if contour[n] < contour[i], and the n* h element of the
set equal to the ith element of the set if contour[n] ==
contour[i].

4. Every member of this derived set is a list. For each of these
lists, pair up the elements of the list with the elements of
the rhythm, such that you achieve a list
[(x[0], rhythm[0]), (x[1], rhythm[1])...(x[n], rhythm[n])] for
every element x of the previously derived set. The result is
the set containing melodies which fit the given constraints,
namely having the correct pitch, contour, and rhythm.

What is interesting about this combine function is that it contains
an implicit description of the semantics of each of the arguments
in terms of their relationship to each other: The start pitch and the
contour are related in that both describe properties of the pitches,
and the rhythm is related in that the list product type of pitches
and rhythm is a melody. If one was starting instead with a set of
start pitches, a set of contours, and a set of rhythms, the same effect
could be achieved by applying the above algorithm to the cartesian

3Thus, the contour [1,3,2] implies a list of 3 pitches such that the first is the lowest,
the second is the highest, and the third is between the first two.
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Figure 3. A subset of the set of melodies with rhythm [0.5,0.5,1.0],
start_pitch (5,0), and contour [1,3,2]

product of all combinations of start pitches, contours, and rhythms
being described.

It may seem tempting to, instead of giving procedures for a
combine function, treat the combine function as simply a logical
AND. In such a case, the combine function would take all possi-
ble melodies, and filter out ones which do not solve each of the
properties - namely, having the given contour, the given starting
pitch, and the given rhythm. In this case, the contour, pitch, and
rhythm variables would have to be fed to functions which returned
logical predicates, which is not a problem, and which in fact may
be more similar to linguistic categorial methods than the previ-
ously proposed approach. The problem with this approach is that
it would require considering all possible melodies and filtering out
only those which satisfy the given conditions. As a thought experi-
ment, consider only melodies made up of 4 beats of sixteenth notes,
which only span the range of an octave. There are an enormous
1216 possible measures that satisfy these constraints. Now consider
all melodies of any reasonable length (which may be conservatively
estimated as 800 beats) of any rhythm, and without the range con-
straint. There are clearly far more possible melodies than there are
atoms in the universe, and so it would not be feasible to produce
an algorithm that operates only by filtering the set of all possible
pieces of music using logical predicates. Whether this problem
seems merely practical or “real” depends on one’s thoughts about
the philosophical implications of complexity theory, but it is safe
to say that if one wants a computationally tractable grammar, one
should use a combinator function that redefines the relationship
between various musical objects in a computationally tractable
way.

As there are many types of musical objects, there are many
times of combinator functions. Not all combinator functions nec-
essarily describe sets of melodies; one can imagine a combinator
which takes a total duration and a number of durations, and returns
the set of all rhythms with the correct total duration and number
of individual durations. In addition, there are combinator functions
which only describe a single musical object, rather than a set of
musical objects. For instance, the combinator that takes a list of
pitches and rhythms, and returns a list of notes, only returns a
single melody.
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Table 1. A Partial List of Combinator Functions

Argument Types Return Type Returns Set of
Characteristic
Values or a Single
Value

Number of Notes Interval Vector ~ Set

Interval Vector Intervals Set

Length Contour Set

Pitch, Duration Note Single

N-tuplets, Length Rhythm Single

Rhythm, Pitch List, Melody Single
Vertical Interval List

Rhythm, Start Pitch, Melody Single
Horizontal Interval

List, Vertical

Intervals List

Harmony, Rhythm Melody Set

6 Describing/Generating Larger Musical
Objects

It is certainly possible to describe a 32-measure piece of music as
consisting of a single contour, rhythm, and starting pitch. How-
ever, it is potentially more useful to describe musical objects which
span large durations as being composed of several smaller objects
that stand in a given relationship to each other. By considering
functional musical objects, it is possible to describe a large musical
object as consisting of various transformations of smaller objects.
One example is the function transpose, which takes a melody and
an interval and returns that melody transposed by that interval.
Thus,

Ax, n.[x, transpose(x, n)](Ax, y, z.combine(x, y, z)
(rhythm, [0.5, 0.5, 1.0])(start_pit, (5, 0)),
(contour, [1, 3, 2]))(3)

results in the set of melodies such that the first half is a member of
the set of melodies with rhythm [0.5,0.5,1.0], starting pitch (5,0), and
contour [1,3,2], and the second half is that first calculated melody
transposed up 2 semitones. One can arbitrarily nest transforms, so

Ax,d.[x,augment(x, d)]
Ax, n.[x, transpose(x, n)](Ax, y, z.combine(x, y, z)
(rhythm, [0.5, 0.5, 1.0])(start_pit, (5, 0)),
(contour, [1,3,2]))(3))(2.0)

returns the set of melodies described above where each element is
then transposed by 3, and the result is augmented in rhythm by a
factor of 2.0. The construction of large musical objects from small
musical objects corresponds more directly to traditional notions of
musical syntax.

7 Equivalent Descriptions and Normal Form

One property of any system which describes the structure of music
as a program involving basic musical objects is that it may allow for
two different descriptions of the same musical object. For example,
one could derive the rhythm [0.25, 0.5, 1.0, 1.0, 0.5, 0.25] by applying
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Figure 4. One element of the set Ax, d.[x, augment(x, d)]
Ax, n.[x, transpose(x, n)](Ax, y, z.combine(x, y, z)
(rhythm, [0.5, 0.5, 1.0]) (start_pit, (5, 0)),

(contour, [1, 3, 2]))(3))(2.0)

the “multiplicatively augment rhythm by 2” operation twice and
then appending the reverse of the result to itself, or by looking at
the list of rhythms which have total duration 3.5, have six notes,
and are symmetric. In some instances this is a good thing; different
musical analyses typically highlight different facets of the piece,
and composers may be paying attention to one particular property
of a musical object while considering whether to use that object.
However, in other instances one can achieve a redundancy of de-
scriptions which obscures the ideas behind the musical objects. For
example, given the function fourOf which returns the subdominant
of a chord and the function fiveOf which returns the dominant
of a chord, the sequence of pitch-classes [[7,11,2], [0,4,7]], [0,4,7],
[5,9,0]] can be generated by either of the following two expressions:

Ax.[x, fourOf(x)](Ay.[y, fourOf(y)]([7, 11, 2]))
Ax.[fiveOf(x), x](Ay.[fiveOf(y), y]([5, 9, 0]))

Similarly, the rhythm [[0.5,0.25], [1.0,0.5]] can be generated by
taking either of the following two expressions:

Ax.[x, augment(x, 2)]([0.5, 0.25])

Ax.[diminish(x, 2), x]([1.0, 0.5])

One way of reducing the number of descriptions like these
is to impose a rule that, when composing objects using an array
of functions, the first function has to be the id function, or Ax.x.
Similarly, one can say that transformation functions are not used
except in list-application scenarios; there is no reason to describe
the chord [0,4,7] as

fiveOf(fiveOf(fiveOf([3, 7, 11])))
unless it is being placed next to another chord.

8 Using Categorial Grammars to Generate
Music

Categorial music analyses are generative in nature; one analyzes a
piece by constructing lambda-expressions that describe that piece
(and perhaps other, related pieces as well). It is natural to extend
the use of categorial grammars to generate original music, as op-
posed to generating music modeled off a pre-existing piece. As
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categorial grammars describe music in terms of programs, generat-
ing music through categorial grammars requires generating valid
programs, whose final output is a melody. In our implementation,
the lambda-expression is treated as a graph corresponding roughly
to an Abstract Syntax Tree, and is generated according to a graph-
expansion process.

It is important to note that, unlike in other program synthe-
sis (automatic generation of programs) tasks where every func-
tion is generated, in this task several basic musical objects were
predefined [12]. Predefined functions included combine functions,
musical transformation functions such as transpose, higher-order
functions such as repeatApply, and musical predicates such as
is_symmetric_rhythm, whose usages are described in more detail
below. Predefining the basic musical objects to be used, as well as
imposing limits on the number of transformations of a given type
that could be performed in a single lambda expression, made the
problem much more restricted and tractable than other program
synthesis problems.

9 Implementation Details

The implementation of this categorial expression generator is done
in Python. While Python is not typically considered a standard
functional language, it does treat functions as first-class citizens,
and includes anonymous functions. To fit Python to the desired
purposes, metaprogramming and function attributes were used.
Functions were enhanced with a publicly visible set of input and
output arguments. Metaprogramming allowed for the following
capabilities:

9.1 Mapping Over Lists

As seen above, the power of the categorial approach is to use func-
tions to generate large objects from small objects, sometimes in a
nested fashion. These hierarchical structures are described using
nested lists. Thus, functions should automatically support mapping
over nested lists of arguments. For instance, the function

f(a_int,b_int) = a_int + b_int,
when applied to

a = [al,a2,a3],b = [b1, b2]

yields

[[al + b1, al + b2], [a2 + b1, a2 + b2], [a3 + b1, a3 + b2]].
Note that the mapped function is not commutative:

f([b1,b2], [al, a2, a3])
yields

[[b1 + al, bl + a2, b1 + a3], [b2 + a1, b2 + a2, b2 + a3]].

In addition, the functions must map over set members. For in-
stance, if the function f received a set (not a list) of three numbers
{al, a2, a3}, it should return the set that contains the results of
f(al,b), f(a2,b) and f(a3,b). Mapping over lists programmati-
cally does require knowing the type of the object, as, for example, a
chord is a list and shouldn’t necessarily be mapped. This is accom-
plished by supplying the name of the argument into the function.
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9.2 Function Currying

Python doesn’t automatically support function currying, but it is
easy to implement with decorators. However, because of the ap-
proach to mapping described above (in particular that the order
of the arguments affects the output), a somewhat unusual form of
currying is needed - currying without regards to the order of the
arguments. Thus, if the function transpose takes arguments melody
and interval, calling

transpose([(melody, x])

should produce a function that is waiting for an interval, while
calling

transpose([ (interval, 3)])

should produce a function that is waiting for a melody.

10 The Type Graph

In order to build valid lambda expressions, the relationships be-
tween musical types must be known. This information can be de-
scribed using a directed graph. In this graph, every musical type
is a node, and edges represent ways of getting from one node to
another. Edges can be broadly broken down into several types -
edges for combine functions, edges for transformation functions,
and edges for lifting single values to list values. When a given node
nl is one of (potentially several) types that are necessary for a com-
bine function to produce type n2, an edge will be drawn from n1 to
n2. Transformation functions, or functions where one of the inputs
is the same type as the output, result in self-loop edges. There is
another type of edge which describes the relationship between a
value, and a list of that value. The graph on the final page of this
paper (which does not show transformation edges or polymorphic
functions) describes much of the type relations that produce the
“form” of music. While there are many definitions of the seman-
tics of music, one such definition could be rooted in the formal
definitions and connections between different types of musical ob-
jects. The edges of such a graph define the style of the music it
generates. Notably absent from this graph are the musical objects
corresponding to Hindustani musical structures such as ragas and
talas, and there is no edge corresponding to a transformation from
first-species to second-species counterpoint. Thus, this system does
not generate Hindustani music or music in the style of Palestrina.
Categorial grammars are defined by the objects and transforma-
tions they permit, and one could imagine having many different
categorial grammars which each produce a different style of music.

11 Building the Lambda Expression

Building the lambda expression requires traversing the type-graph
for multi-paths (called that because they typically involve multiple
source nodes moving towards the same target node) that leads
to a melody. There are certain “base types” which have ranges of
values - for instance, a scale-type is either diatonic, whole-tone,
or octatonic, while a pitch class is any number from 0 to 11. A
valid multi-path starts exclusively on these base types, and moves
through functional edges to “higher” types; for instance, the types
scale_type, and key combine to produce a scale, which in turn can
combine with a sign, degree, and chord_type (all base types) to
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produce a chord, which can in turn be used. Along the way, one
can apply transformations, but these are chosen to be applied only
in the context of the higher-order function applyAllTo, where the
first argument is a list whose first element is the function id and the
following elements are transformations. In addition, a limitation
is set on how many times applyAllTo can be applied to a given
argument, to make the search space smaller. Other polymorphic
functions, which are classified as to whether they can only be used
on list types, can also be applied; polymorphic functions being
considered are ones that act on a list, such as those that apply a
function only to certain elements of a list or those that change the
order of a list, and those that apply a function to an element n times.
The relationship between two types t1 and ¢2 where 1 is a list
of t2’s can be exploited. For instance, a rhythm is a list of durations.
While there are many ways of generating a rhythm, one way is to
repeatedly apply functions to a single duration — for instance,

repeatApply(f = augmentDuration([(augment_by, 2.0)]),
x = (dur, 0.5),n = 4)

will generate the list [0.5, 1.0, 2.0, 4.0] — equal to [0.5, 0.5*2, (0.5*2)*2,
((0.5*2)*2)*2]. However, there are several lists which should not be
compiled in this way; for instance, a scale should not be generated
from a list of pitch classes, but rather exclusively from the appro-
priate combine function.

Filters are also applied to certain expressions which are sets
of possibilities. For instance, an expression which generates a set
of possible interval vectors may be filtered with the is_consonant
predicate (meaning none of the resulting intervals sound harsh).
Filters are common in human-composed music; a composer might
know they want one of many set classes, and select one that is
inversionally symmetric, or whose pitches are all in the same dia-
tonic key. In some cases, the filters return an empty list, meaning
that no elements of the set fit the constraints described. When this
happens, the lambda expression will not yield a result, and another
expression must be generated.

One significant problem with the current approach is that often,
two arguments should be in a certain relationship to each other;
most commonly, that they should be the same length. For example,
melodies are created from durations and pitches by pairing each
duration[i] with the it? pitch, so a list of durations and a list of
pitches being passed to the combine function should both be the
same length. There are several possible ways of dealing with this.
The simplest approach is to modify the combine function to take the
minimum of the number of pitches and durations. This approach is
not very satisfactory, as lambda expressions can have meanings not
obvious from their statement. Another option is to return an empty
set whenever a combinator receives mismatching arguments, so
the expression-generating system is forced to try a new expression.
While this is not too expensive for small expressions, it can be
extremely inefficient for larger expressions.

12 Results

12.1 Example Output

Below is one result of the lambda-expression generator:
mel = ( (lambda i1, j1: i1(j1))

((lambda i2, j2: i2(j2))(

applyAllTo , [id, augDimRepeatMelody,
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addAppogiaturasMelody ,

chromaticInvertMelody] ) ,

(lambda i2, j2: i2(j2))

(combinel@ ,

([("pcs_list", (lambda i4, j4: i4(j4))

(combinell , ([("chord_list",

(lambda i6, j6: i6(j6))

((lambda i7, j7: i7(37))

(applyAllTo ,

[ id , fourOf , fiveOf , 1) ,

(lambda i7, j7: i7(3j7))

(combinel15 , ([("degree", -1 ),

("scale", (lambda i9, j9: i9(3j9))

(combine17 , ([("scale_type", "diatonic"),

("pc", [6,11,51 ), D ) ),

("sign", @ ),

("chord_type",

["triad","ninth", "seventh","eleventh"])
D)D),

("rhythm", (lambda i4, j4: i4(j4))

(combine7 , ([("length", 2.0 ),

("n_length", 3),1))),
("octave",4),1))))[1]

writeScore(mel)

This program does the following: Chords are created by combining
diatonic scales starting on different keys with chord types, namely
triads, ninth, seventh, and eleventh chords. Each chord X is then
made into a sequence of the chords X IV/X V/X (see [13] for a
review of chord functions). The resulting chords are combined with
a rhythmic figure with 3 notes and a total length of 2 beats. The
resulting melody is manipulated in several ways, namely diminu-
tion with repetition, the addition of an appogiatura, and inversion.
The resulting melody is then saved as a midi file. The output is
shown as a musical score in figure 6 (rendered using the Musescore
software). Below is a tree representation of this program’s type
structure. As you can see, the piece is “composed” of several differ-
ent musical objects. As one would expect, the music has a given
register, rhythm, and pitch content; each of these parameters was
determined by other musical objects (in the case of rhythm, by the
length and duration of each phrase; in the case of pitch, by the
chords used, which were in turn determined by scale, scale degree,
and sign).

12.2 Further Examples

For many more example outputs in midi format, please go to
https://github.com/HalleyYoung/CategorialMusic.

13 Future Directions

The implementation presented here is very primitive. Only a few
musical objects and ways of deriving and transforming them are
proposed, and thus the style of the resulting music is rather narrow.
In addition, the generated musical expressions are currently ex-
tremely simple — they can be described in lambda calculus without
any recursive combinators. In the future, more interesting func-
tions will be explored. In addition, programs can be written in a
less cumbersome way than as lambda expressions, using variable
assignment, without losing the clarity of semantics that lambda

FARM’17, September 9, 2017, Oxford, UK

Melody
octave rhythm pes_list
|
n_length length chord_list
chord
scale degree sign
N

scale_type key

Figure 5. A diagram of the different types of the objects instantiated
in the sample generated program; a node’s children represent the
types of all arguments used in the function that generated an object
of the type represented by the node
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Figure 6. A Generated Score

calculus affords. As mentioned above, there is currently no way of
implementing dependencies of arguments upon each other, except
by proceeding through trial and error through search space to find
a good combination. Future versions should include ways of deter-
mining whether two arguments fit each other without repeatedly
recreating entire expressions.

14 Conclusions

There is no universal theory of music; there is no Western equiva-
lent of the Hindustani raga, or an Indian equivalent of functional
harmony. However, using categorial grammars, it’s possible to con-
struct a meta-theory of how musical objects of a given style interact
with each other to produce the surface we hear as a piece of music
or see as a musical score. When dealing with a very restricted set
and usage of musical objects, one can even automatically compose
objects to generate a melody. This is accomplished by treating the
set of musical non-function types as nodes and musical functions
as types in a multi-graph, and traversing the multi-graph down
multiple paths that together arrive at the desired type (a list of lists
of notes).
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