
A Toolkit for List Recovery

Nick Wasylyshyn

A THESIS

in

Mathematics

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Master of Arts

2016

Supervisor of Thesis

Brett Hemenway, Research Scientist

Graduate Group Chairperson

David Harbater, Professor of Mathematics

Thesis Committee:
Brett Hemenway, Professor of Computer and Information Science
Robin Pemantle, Professor of Mathematics

Acknowledgments

I would like to thank my family, friends, and department for their unwavering and

unbelievable support. In multiple senses, I would not be here without them.

ii

ABSTRACT

A Toolkit for List Recovery

Nick Wasylyshyn

Brett Hemenway, Advisor

Error–correcting codes, or codes for short, allow for communication across noisy

channels by adding redundancy in a way that makes reconstruction of corrupted

messages possible. We begin by introducing error–correcting codes as a primer to

the main topic, list recovery. Whereas traditional codes assume that only a few

characters in the message are corrupted and return one codeword, list–recoverable

codes assume tame corruption of every character and return a list of possible code-

words.

After defining and discussing list recovery, we move to the main contribution

of our paper, a large collection of fundamental results about list–recoverable codes.

As list–recoverable codes have not been studied on their own until recently, these

results do not appear in an organized fashion in the existing literature.

iii

Contents

1 Background Material 1

1.1 Error–correcting Codes . 1

1.1.1 Reed–Solomon codes . 5

1.2 List–Recoverable Codes . 6

2 Fundamental Results of List–Recoverable Codes 14

2.1 Basic Results of List–Recoverable Codes 14

2.2 Results Relating List Recovery to Minimum Distance 18

2.3 Results About List Recovery From Erasures 20

2.4 Results Relating List Recovery to Rate 22

2.5 Results About Uniquely Defining Indices 26

3 Further Reading 28

iv

Chapter 1

Background Material

1.1 Error–correcting Codes

The general problem of coding theory is to construct efficient encoding and decoding

algorithms that allow messages to be transmitted accurately across a channel that

may introduce errors. A message consists of k characters (k is called the dimension

of the code) from an alphabet Σ, which is the collection of all possible characters.

In our intuitive examples, we will use as our alphabet the set of lowercase letters

in the Latin alphabet, which we denote A; in practice, an alphabet is often a finite

field Fq. The message space M is a subset of Σk consisting of all possible messages.

A message is encoded into a codeword, which will have n characters from the

alphabet (n is called the block length), via an encoding, which is an injective function

from M → Σn. As we will see, n is often much bigger than k. A code is the collection

1

of all possible codewords.

As an example, suppose our message space M is the set of six–letter English

words, our encoding is the identity map M → A6, and our code is also the set of

six-letter English words. If no errors may be introduced, this code works perfectly.

Of course, perfect communication is not a safe assumption to make. Moreover,

there is no interesting coding theory to be done in this setting; the first code we

think of, the identity map, is in some sense ideal. When even one error is intro-

duced, however, it fails completely. For example, if the message is “mother”, the

received word may be “bother”, which is another codeword. Even worse, a message

such as “cereal”, which is not one letter away from any other codeword, may be

misinterpreted; for instance, the received word may be “cerial”, which is one letter

away from both “cereal” and “serial”.

We might correct for this in the same way that we correct for misunderstandings

in speech: by repeating the message. This is known as a repetition code. Repeating

a message twice does not correct for errors, as the received word “motherbother”

may come from either the message “mother” or the message “bother”; repeating

a word three times can correct one error (because two of the three repetitions will

be untouched) but not two. In general, if we want to correct for e errors, we need

to repeat the message 2e + 1 times. This is, of course, very inefficient: The block

length of our code is three times its dimension. We can quantify its efficiency by

defining the rate of the code.

2

Definition 1.1.1. The rate of a code of dimension k and block length n is k/n.

We want the code to be as robust to noise as possible, and we also want the

rate to be high for efficient transmission of messages. When the message space is

all of Σk, as is usually the case, the rate can be no higher than 1 for any correct

decoding to be possible. Such an encoding can never correct for errors, however;

some redundancy is necessary. Before we get to codes that achieve a good balance

between rate and error–correcting, let’s come up with a bound for the maximum

number of errors that a code can correct.

Definition 1.1.2. The Hamming distance ∆(c1, c2) between two codewords c1, c2

in a code C is the number of characters in which they differ. The minimum distance

d of C is the minimum Hamming difference between two distinct codewords in C.

Remark 1.1.3. The minimum distance of a code is frequently expressed as a fraction

δ = d/n. This number, called the relative distance of a code, is often preferred,

especially when studying what happens as n→∞.

From the above definition, we see that C can correct up to (d − 1)/2 errors if

d is odd and up to d/2 − 1 errors if d is even. For if a received message has at

least d/2 errors, it may be closer to a different codeword than to the correct one.

Therefore, we can say very informally that a good code is one that can correct close

to (d− 1)/2 errors while having a rate close to 1.

There is a very important class of codes, called linear codes, for which the

minimum distance is easier to check. A linear code is a code in which any linear

3

combination of codewords is also a codeword. In other words, with Σ = Fq, a linear

code of block length n is a linear subspace of Fn
q . In this setting, the minimum

distance reduces to the minimum positive integer d such that there exists a codeword

with d nonzero entries. Reed–Solomon codes, which will be defined below, are an

example of linear codes.

In addition to minimum distance and rate, we will also be concerned with the

total number of codewords in a code; the binary code consisting of two codewords,

one of all 0’s and one of all 1’s, has great minimum distance but will almost never

be useful. Let us bound how many codewords a code can have and from that

derive a bound on the minimum distance of a code in terms of its block length and

dimension. Both bounds are known as the Singleton Bound, named after Richard

C. Singleton ([5]).

Theorem 1.1.4 (Singleton Bound). If C is a code over an alphabet of size q with

block length n and minimum distance d, then C has at most qn−d+1 codewords.

Proof. Let C be any such code. Since each codeword in C differs from every other

in at least d positions, it must be the case that every codeword of C truncated after

the first n− (d− 1) characters must differ from every other in at least one position.

There are qn−d+1 distinct words of length n− (d− 1), so C can have at most qn−d+1

codewords.

This method of simply truncating codewords seems crude, but it turns out that

the Singleton Bound is strict. A linear code that meets this bound is called a

4

maximum distance separable code.

Let us see how big a code’s minimum distance can be in the usual case where

the message space is all of Σk.1

Corollary 1.1.5 (Singleton Bound). If C is a code with dimension k, block length

n, and minimum distance d, then d ≤ n− k + 1.

Proof. Let C be such a code over an alphabet of size q. Because encoding is an

injective function, C has qk codewords. Thus, by the Singleton Bound, qk ≤ qn−d+1,

so we must have k ≤ n− d+ 1. The result comes from rearranging.

Reed–Solomon codes, introduced in 1960 by the mathematicians after which they

are named ([3]), are the most well known example of maximum distance separable

codes; because of this, their versatility, and their efficient decoding, they are still

widely used today.

1.1.1 Reed–Solomon codes

Let Fq denote the finite field of q elements. With k ≤ n ≤ q, we define a Reed–

Solomon code of block length n and dimension k as follows.

Definition 1.1.6. To encode the message m = (m0, . . . ,mk−1), we map m 7→ fm,

a polynomial defined by fm(x) =
k−1∑
i=0

mix
i. We then pick α1, . . . , αn ∈ Fq distinct

elements, and encode m as (fm(α1), . . . , fm(αn)); this is our codeword.

1In practice, this is always be the case. From this point on, it will be assumed that the message

space is all of Σk unless otherwise specified.

5

Note that the degree of fm is k − 1, which implies if fm and fm′ agree on the

at least k points, they are the same polynomial. Thus, two codewords which agree

on at most n − (k − 1) points come from different messages; plugging this in to

the Singleton Bound, we see that Reed–Solomon codes achieve the bound and can

correct up to (n−k)/2 or (n−k− 1)/2 errors depending on the parity of n−k+ 1.

Example 1.1.7. Suppose that k = 6, n = 10, and q = 11, and say that we want

to transmit the message m = (1, 2, 3, 4, 5, 6). This corresponds to the polynomial

fm(x) = 1+2x+3x2+4x3+5x4+6x5. If we choose α1, . . . , α10 = 1, . . . , 10, then the

codeword corresponding to m is (fm(1), . . . , fm(10)) = (10, 2, 3, 4, 10, 1, 3, 5, 8, 8).

No polynomial besides fm will take the same values on more than five of the αi, so a

decoding algorithm could restore say (0, 0, 3, 4, 10, 1, 3, 5, 8, 8) to (10, 2, 3, 4, 10, 1, 3, 5, 8, 8)

and determine that the original message was (1, 2, 3, 4, 5, 6).

The PhD thesis [4] of Atri Rudra contains many applications of Reed–Solomon

codes to list decoding and list recovery which are outside the scope of this paper.

Still, it is useful to see that codes with many good properties exist and are mathe-

matically elegant. Now, let us enter the topic of this paper by describing the setting

of list recovery.

1.2 List–Recoverable Codes

Often, the transmitted message is corrupted to the point where there are multiple

codewords within the radius of error; in this case, choosing the closest codeword,

6

even when this is well–defined, may lead to an incorrect decoding. It may be better

to instead return a list of possible codewords. This is the goal of list–recoverable

codes. There are two main problems in this realm: list decoding and list recovery.

Colloquially, the list–decoding problem is as follows: Given a corrupted codeword,

return a list of possible codewords. This leads to the following definition:

Definition 1.2.1. Fix ε ∈ [0, 1], L ≥ 1. A code C of block length n is (ε, L)–list

decodable if for all received words w, |{c ∈ C|∆(c, w) ≤ εn}| ≤ L.

That is, there are no more than L possible codewords within ε fraction of any

received word. If L is 1, this is equivalent to saying that C can correct εn errors,

so list decodability is a generalization of decodability.

Example 1.2.2. Any code of block length n over an alphabet of size q is trivially

(1/n, nq − (n− 1))–list decodable, as any of the n characters in the received word

may be replaced by at most q characters, and we subtract off n− 1 to account for

over–counting the received word.

Example 1.2.3. Take as an example the message space of three–letter English words

with the encoding being the identity map. This code is not (1/3, 32)–list decodable

because there are 33 English words that differ from the word “pat” in at most one

character.

While the list–decoding problem aims to recover codewords from one received

word in which at most a given fraction of the characters are corrupted, the list–

recovery problem assumes corruption at every character in the codeword, but in a

7

structured way. That is, if every position in the codeword has a short list of possible

characters, return all codewords that interpolate through a high proportion of these

possible characters. We define this formally below, beginning with the definition of

a list–set.

Definition 1.2.4. For a code of block length n over an alphabet Σ, a list–set of

size ` is a sequence of sets (S1, . . . , Sn) with Si ⊂ Σ and |Si| = ` for all i.

This allows us to define a list–recoverable code:

Definition 1.2.5. Fix ε ∈ [0, 1] and `, L ≥ 1. A code C of block length n an

alphabet Σ is (1− ε, `, L)–list recoverable if for every list–set of size `, there are at

most L codewords c1, . . . , cL such that for all i, the jth character of ci is in Sj for

at least 1− ε fraction of the j.

Remark 1.2.6. We fix the parameters of list–recoverable codes from left to right:

First we choose what fraction of errors we’re willing to accept, then how large of

lists the code has to tolerate. From there, we try to minimize L, the number of

codewords that come from our sets.

Remark 1.2.7. We use 1− ε to be consistent with the definition for list–decodable

codes; in both cases, ε is likely to be small and the larger ε is the more errors are

allowed. Often, ε = 0.

Example 1.2.8. Consider again our first example, that of six–letter English words

and the identity encoding. Calculating the list–recoverable properties of this code

8

is difficult, even when we fix ε and `, but we show that this code is not (1, 2, 5)–list

recoverable. (It is probably not (1, 2, 6)–list recoverable either, but this may require

a different choice of messages to demonstrate.)

S1 S2 S3 S4 S5 S6

t h o r g s

s r i u t h

Figure 1.1: The codewords “shirts”, “shorts”, “shouts”, “though”, “trough”, and

“trouts” can all be interpolated through the Si, so this code is not (1, 2, 5)–list

recoverable.

When ε > 0, a code that is list–recoverable is sometimes called list–recoverable

from errors. There is a variant of list–recoverability, called list–recoverability from

erasures, defined below.

Definition 1.2.9. Fix ε ∈ [0, 1] and `, L ≥ 1. A code C is (1− ε, `, L)–list recover-

able from erasures if for every sequence of sets (S1 . . . , Sn), with Si ⊂ Σ and |Si| ≤ `

for at least (1− ε)n i and Si = Fq for the rest, there are at most L codewords c ∈ C

with c ∈ S1 × · · · × Sn.

Example 1.2.10. With the same example as above, we see that our code is not

(5/6, 2, 8)–list recoverable from erasures because, in addition to the six codewords

demonstrated above, an erasure in the fifth character would allow for the words

“shires”, “shirks”, and “shores” as possibilities. There are many more ways to

9

make words by erasing one character (not necessarily the fifth) from our current

lists, and this is only with the Si defined as we originally chose. So we continue

to see that the identity encoding on the set of six–letter English words is nowhere

close to being a good code from the standpoint of list–recoverability.

The difference between list recovery from errors and list recovery from erasures

may seem subtle; if there are errors or erasures in a received word, that is equivalent

to any character from the alphabet being a possibility at that index. The difference

comes only at the time of receiving the message: in the list recovery with errors

model, we will have a bound on the number of errors that occur, but we will not

know where they occur (as every Si has the same size). In the erasures setting, the

erasures may occur at any collection of indices, but we know which indices have

been erased at the time of receiving the word (because those Si will be equal to the

full alphabet).

A code that is (1−ε, `, L)–list recoverable is therefore (1−ε, `, L)–list recoverable

from erasures. We will show in the next chapter what we can say about a code that

is (1− ε, `, L)–list recoverable from erasures in terms of its list recoverability from

errors. Before then, we need a few more definitions to make writing and proving

things about list recovery smoother.

Definition 1.2.11. If C is a code of block length n over an alphabet Σ and S ⊂ C,

then the list–cover of S is a sequence of sets (S1, . . . , Sn) such that Si is the set

of characters that appear in the ith position of some codeword in S. We write

10

list–cover(S) = (S1, . . . , Sn).

Example 1.2.12. In Example 1.2.7, (S1, . . . , S6) = list–cover({shirts, trough}).

Definition 1.2.13. If C is a code of block length n over an alphabet Σ and Si ⊂ Σ

for i ∈ {1, . . . , n}, then the subcode of (S1, . . . , Sn), denoted subcode(S1, . . . , Sn),

is equal to the set of codewords in C whose ith character is in Si for all i.

Note that in general, if {ci} is a set of codewords, then the subcode of the

list–cover of {ci} contains {ci}.

Example 1.2.14. Again using Example 1.2.7, the subcode of the list–cover of the set

{shirts, trough} contains {shirts, shorts, shouts, though, trough, trouts}.

With these definitions, we can redefine list–recoverability more succinctly in the

case where ε = 0:

Definition 1.2.15. A code is (1, `, L)–list recoverable if the subcode of every list–

cover of size ` has size at most L.

Finally, we define uniquely defining indices and uniquely defining codes, concepts

which will show up in the next chapter.

Definition 1.2.16. Fix a list–set (S1, . . . , Sn). The index i ∈ {1, . . . , n} is a

uniquely defining index if for each σ ∈ Si there is a unique codeword in the subcover

of (S1, . . . , Sn) whose ith character is σ.

11

In other words, an index is uniquely defining if knowing the character at that

index tells us which codeword it comes from, subject to the constraint that the

codeword must interpolate through the list–set.

Example 1.2.17. In a list–set of size one, every index is trivially a uniquely defining

index.

Example 1.2.18. If our message space is the set of four–letter English words and

our encoding is the identity encoding, consider the example below. 1 is a uniquely

defining index, because knowing that the first character is “q” tells us that the

codeword is “quiz”, whereas knowing that the first character is “j” tells us that the

codeword is “jazz”. Likewise, the second and third indices are uniquely defining,

but the fourth is not, for two reasons. First, knowing that the fourth character is

“z” does not tell us what the codeword is. Second, there is no codeword in the

subcode of this list–set whose fourth character is “x”.

S1 S2 S3 S4

q u i z

j a z x

Definition 1.2.19. A code of block length n is called (`, ε)–uniquely defining if

every list–set of size ` has at least εn uniquely defining indices.

Visibly, every code is (1, 1)–uniquely defining. Almost any example of English

words with the identity encoding fails to be even (2, ε)–uniquely defining for ε > 0,

12

however; the set of English words of a given length is simply too dense for every list–

set of any size (greater than 1) to have a uniquely defining index. As we shall see in

the next chapter, however, list–recoverable codes are often non–trivially uniquely

defining.

13

Chapter 2

Fundamental Results of

List–Recoverable Codes

The majority of these results come from unpublished notes by Brett Hemenway; our

goal with this section is to facilitate the writing of future papers by saving authors

the trouble of proving again these results and by helping with intuition.

Throughout, we assume that ` is smaller than both the size of the alphabet and

the number of codewords in our code. Except in fringe cases, this is not a limiting

assumption.

2.1 Basic Results of List–Recoverable Codes

Proposition 2.1.1. A code C of block length n is (1, `, L)–list recoverable if and

only if the following holds: For c1, . . . , cL+1 ∈ C, if (S1, . . . , Sn) is the list–cover of

14

{c1, . . . , cL+1}, then maxi∈{1,...,n} |Si| > `.

Proof. The forward direction is clear: If there is some list–set of size r ≤ ` whose

subcode contains L+1 codewords, then C is not (1, r, L)–list recoverable and there-

fore cannot be (1, `, L)–list recoverable.

For the reverse direction, suppose that C is not (1, `, L)–list recoverable. Then

there is some list–set (S̃1, . . . , S̃n) of size ` whose subcode contains at least

L + 1 elements c1, . . . , cL+1. Let (S1, . . . , Sn) = list–cover({c1, . . . , cL+1}). Note

that Si ⊆ S̃i for all i. This of course implies that |Si| ≤ |S̃i| for all i, so in particular

maxi∈{1,...,n} |Si| ≤ `, which is what we wanted.

This result is not deep, but it provides, along with Definition 1.2.16, an alterna-

tive characterization of list–recoverable codes when ε = 0. It also gives us a sense

of what the following, slightly more complicated, proofs will look like. The next

result is perhaps intuitively clear, but proving it requires some formalism.

Proposition 2.1.2. If a code C is of block length n and is (1 − ε, `, L)–list recov-

erable, then ` ≤ L.

Proof. We may assume without loss of generality that ε = 0, as introducing errors

cannot decrease the number of possible codewords that agree with our lists.

Fix `; choose any ` codewords c1, . . . , c` ∈ C; and let (S̃1, . . . , S̃n) be their list–

cover. For each i, let Si be S̃i with enough characters (possibly zero) added so that

|Si| = `. Then (S1, . . . , Sn) is a list–set whose subcover is of size at least ` as it

15

contains c1, . . . , c`. Thus, C is not (1, `, `−1)–list recoverable. So if C is (1, `, L)–list

recoverable, then L ≥ `.

The next proposition shows in a simple way how choosing a smaller value of `

always allows us to choose a smaller value for L. Precisely,

Proposition 2.1.3. If C is (1 − ε, `, L)–list recoverable and ` > 1, then C is also

(1− ε, `− 1, L− 1)–list recoverable.

Proof. Suppose not. Then there exist c1, . . . , cL ∈ C and sets S̃1, . . . , S̃n of size `−1

such that for at least (1− ε)n of i, the ith character of cj is in S̃i.

Let cL+1 be a codeword distinct from c1, . . . , cL, and let Si be S̃i plus the ith

character of cL+1 if that character is not already in S̃i or plus some other character if

it is. This forms a list–set of size ` whose subcode contains at least L+1 codewords.

Thus, C is not (1− ε, `, L)–list recoverable either.

So our intuition doesn’t fail us. The converse of this statement, however, is

nowhere close to being true. We saw this implicitly in the previous chapter, looking

at English words of six characters. This code (as is any code) is trivially (1, 1, 1)–list

recoverable, as no two distinct codewords agree on every character. However, we

demonstrated in the example that our code is not even (1, 2, 5)–list recoverable.

Other codes fail much more dramatically. For instance, if our code C were the

set of binary sequences of length n with the identity encoding, then C would be

(1, 2, 2n)–list recoverable (but not (1, 2, 2n−1)–list recoverable) because at every one

16

of the 2n codewords interpolates through the only list–set of size 2. We generalize

this as follows.

Proposition 2.1.4. If C is a code of block length n over an alphabet of size q, then

C is (1− ε, `, L)–list recoverable for some L ≤
∑εn

i=0

(
n
i

)
(q − `)i`n−i.

Proof. In the worst case, every sequence of n characters forms a codeword, so we

assume that Σ = Fq and C = Σn. Fix a list–set (S1, . . . , Sn) of size `. Since C = Σn,

it doesn’t matter which list–set we choose.

We allow for a maximum of ε fraction errors. That is, we include every codeword

for which at least 1 − ε fraction of characters lie in the correct list in our list–set.

The index i in the summand in the statement of the proposition counts the number

of errors.

If there are exactly i errors, there are
(
n
i

)
ways to choose in which indices the

errors lie. Each of the i errors corresponds to a character at that index lying among

the q − ` characters not in that position in the list–set, and for each of the n − i

positions where there isn’t an error there are ` choices of characters.

As every sequence of n characters is a codeword, these choices are independent.

Summing up over all possible number of errors, we get the desired result.

A code coming anywhere close to this bound is not worthwhile from a list–

recovery standpoint. As one would expect, and as we shall show for small cases in

the next section, we can improve this bound tremendously by assuming that C has

a minimum distance of greater than 1.

17

2.2 Results Relating List Recovery to Minimum

Distance

Theorem 2.2.1. Every code C of block length n and minimum distance d over an

alphabet of size q is (1− ε, 1, L)–list recoverable for some

L ≤ d(q − 1)2q

(q − 1− qε)2(nq − dq − n)

provided that

1− qε

q − 1
>

√√√√1− d(
1− 1

q

)
n
.

Note that when ` = 1, as is the case here, list recovery reduces to list decoding;

this is a result about list decoding. A more general statement of this theorem

which allows for s erasures in addition to the e errors, along with the proof, appears

as Theorem 1 in [1]. Its proof is too technical for our purposes. Our statement

appears slightly different because we have translated the result into the language of

list recovery and simplified the result to the case in which no erasures are allowed.

Proposition 2.2.2. Every code C of block length n and minimum distance d is

(1, `, `n−d+1)–list recoverable.

Proof. This is simply the Singleton Bound in the setting of list recovery: Having at

most ` choices at each character is equivalent to being a code over an alphabet of

size `.

18

We can do much better than this when the minimum distance of C is high.

Specifically,

Proposition 2.2.3. If C is a code of block length n and minimum distance greater

than `−1
`
n, then C is (1, `, `)–list recoverable.

Proof. Let c1, . . . , c` be ` distinct codewords in C, and let v be any element in the

subcode of their list–cover. By the pigeonhole principle, v must agree with at least

one of the ` ci in at least 1
`

fraction of positions; since the minimum distance is

greater than `−1
`
n, any two codewords that agree on at least 1

`
fraction of characters

are the same codeword. Thus, v ∈ {c1, . . . , c`} and C is (1, `, L)–list recoverable for

some L ≤ `.

Since we showed in Proposition 2.1.2 that a code being (1− ε, `, L)–list recover-

able implies that ` ≤ L, we must therefore have that ` = L. That is, C is (1, `, `)–list

recoverable.

In the case d = `−1
`
n, the Proposition 2.2.2 only guarantees that C is (1, `, L)–

list recoverable for some L ≤ `n−
`−1
`

n+1; `n−
`−1
`

n+1 simplifies to ` · `n/`. Proposition

2.2.3 therefore improves our L by a factor of `n/`, which is substantial considering

that ` is often small compared to n.

We now generalize this by providing a condition relating minimum distance and

ε that assures that a code is (1− ε, `, `)–list recoverable:

Proposition 2.2.4. If C is a code with relative distance δ, then C is (1−ε, `, `)–list

19

recoverable provided that

d > 1− 1(
`+1
2

) +
2ε

`
.

Proof. Fix any `+ 1 codewords c1, . . . , c`+1 in C. We will use a counting argument

to show that their list–cover includes at least one list of size ` + 1. To do this it

suffices to show that
∑n

i=1 |Si| > `n. We construct the lists piecemeal.

To begin, assume that Si = ∅ for all i. Accounting for c1 adds at least (1 −

ε)n elements to the Si because c1 agrees with at least 1 − ε fraction of the lists.

Accounting for c2 adds at least (1−ε−(1−δ))n elements, since the overlap between

c1 and c2 is at most (1 − δ)n. By the same reasoning, accounting for ci therefore

adds at least (1− ε− (i− 1)(1− α))n elements to the lists.

After adding all of c1, . . . , c`+1, we have

n
`+1∑
i=1

((1− ε) + (i− 1)(1− δ)) = n

(
(`+ 1)(1− ε)− `(`+ 1)

2
(1− δ)

)

elements spread throughout the Si. We therefore must show that

(`+ 1)(1− ε)− `(`+ 1)

2
(1− δ) > `.

Solving for δ yields the desired result.

2.3 Results About List Recovery From Erasures

Last chapter, we posited that the main difference between list recovery from errors

and list recovery from erasures is that with list recovery from errors forces us to

20

account for the possibility of an erasure at any index, even after receiving the word.

In some sense, therefore, list recovery from errors is the union over all possible

erasures of the codewords that can be recovered from the list recovery from erasures

setting. We make this precise as follows. (In the statement of the proof, ci denotes

the ith character of c.)

Proposition 2.3.1. With C (1 − ε, `, L0)–list recoverable from erasures, define

CA = {c ∈ C|ci ∈ Si for all i /∈ A} for each A ⊂ {1, . . . , n} with |A| = εn. Also,

define L = |
⋃

A CA|. Then C is (1− ε, `, L)–list recoverable from errors, and the set

of recovered codewords is
⋃

A CA.

Proof. Let C be the set of codewords of C that interpolate through at least 1 − ε

fraction of the Si. If c ∈ C, that means that there is some A such that ci ∈ Si

outside of A; thus, c ∈ CA. This is true for every c ∈ C, so C ⊆
⋃

A CA.

To see that
⋃

A CA ⊆ C, fix A and fix c ∈ CA. This means that c is consistent

with all the Si outside of A, which is at least 1−ε fraction of the lists, so c ∈ C.

We have seen that list recovery from erasures is “easier” than list recovery from

errors. Although the above result does not tell us much a priori about how much

easier it is—all we can easily say about the relationship between L0 and L follows

from the union bound, which is not very good—it gives us some idea of the structure

of the relationship between list recovery and list recovery from errors. We now give

the analogy of Proposition 2.1.4 to the mode of list recovery from erasures, which

gives an upper bound on L given ` and the number of errors we allow.

21

Proposition 2.3.2. If C is a code of block length n over an alphabet of size q, then

C is (1− ε, `, L)–list recoverable from erasures for some L ≤ `n(1−ε)qεn.

Proof. This proof begins the same way as the proof of Proposition 2.1.4, by assuming

that Σ = Fq and C = Σn. C is all of Σn, so it doesn’t matter where the ε fraction

of erasures occur; choose them to be the last ε fraction of the positions. So we have

S1, . . . , Sn with |Si| = ` for i ≤ n(1− ε) and |Si| = q for the rest.

Since every word is a codeword, we can choose the characters independently to

find that there are a total of `n(1−ε)qεn codewords consistent with these lists. This

holds for every set of lists, so C is (1, `, `n(1−ε)qεn)–list recoverable.

2.4 Results Relating List Recovery to Rate

Proposition 2.4.1. If C is a linear (1, 2, 2)–list recoverable code of block length n

and dimension k over Fq, then the rate of C is less than 1
2

+ 1
n

.

Proof. Let R = k/n be the rate of C, and let C have minimum distance d. Note

that since C has dimension k, C is a k–dimensional subspace of Fn
q . We prove

the contrapositive: Suppose R ≥ 1
2

+ 1
n
; this implies that Rn ≥ n

2
+ 1, so that

Rn− 1 ≥ n
2
.

By the Singleton Bound, d ≤ n−k+ 1 = (1−R)n+ 1. Pick two witnesses c1, c2

to this minimum distance, and let A be the set of indices where they differ. Then

|A| ≤ (1−R)n+ 1.

22

Now let V be the set of z ∈ Fn
q such that z

∣∣
A

= 0. C is a linear code, so V is a

subspace of Fn
q of dimension at least n− ((1− R)n+ 1) = Rn− 1. Then C ∩ V is

a subspace of Rn
q of dimension

dim(C ∩ V) = dim(C) + dim(V)− dim(C + V)

≥ Rn+ (Rn− 1)− n

≥
(n

2
+ 1
)

+
n

2
− n

= 1

so there is some nonzero vector v ∈ C∩V . Since C is a linear code, we therefore

have c1 + v ∈ C; meanwhile, (c1 + v)
∣∣
A

= c1
∣∣
A

. In other words, c1 and c1 + v agree

everywhere that c1 and c2 differ. So, the list–cover of {c1, c2, c1 + v} is of size at

most 2. But this means that there are at least three codewords that interpolate

through a list–set of size 2, so C cannot be (1, 2, 2)–list recoverable.

Remark 2.4.2. The dimension of C, k = Rn, is an integer, so whether or not n is

even will determine whether or not it is possible for a (1, 2, 2)–list recoverable code

to have a rate greater than one half. If n is even, then Rn < n
2

+ 1 implies that

Rn ≤ n
2

or R ≤ 1
2
. Meanwhile, if n is odd and Rn = n

2
+ 1

2
, then the rate of C is

greater than one half.

Proposition 2.4.3. Let C is a maximum distance separable code of dimension k

23

and block length n ≥ 2k − 1. Then C is (1, 2, 2)–list recoverable.

Proof. The Singleton Bound gives us that the minimum distance d of C is equal to

n − k + 1. Thus, two codewords matching in at least n − (d − 1) = k characters

must be equal.

Fix c1, c2 ∈ C, and fix c3 ∈ subcode(list–cover({c1, c2})). Then c3 must agree

with either c1 or c2 in at least dn
2
e = k positions, so c3 ∈ {c1, c2}. Thus, C is

(1, 2, 2)–list recoverable.

Remark 2.4.4. Note that when the inequality in the proof statement is an equality,

that is, when n = 2k − 1, the rate of C is k
2k−1 > 1

2
. Since maximum distance

separable codes exist (Reed–Solomon codes are an example, as noted in the previous

chapter), there do exist (1, 2, 2)–list recoverable codes whose rate is greater than

one half.

Finally, we prove an upper bound on the rate that holds for (1, `, `)–list recov-

erable linear codes.

Proposition 2.4.5. If C is a linear code of block length n that is (1, `, `)–list re-

coverable, then we have R ≤ 1
`+1

+ `
n(`+1)

.

Proof. Fix ` codewords c1, . . . , c` ∈ C with the following specifications: The first

Rn− 1 characters of c1 are the same as the first Rn− 1 characters of c2, the next

Rn− 1 characters of c2 match the next Rn− 1 characters of c3, and so forth until

we run out of either characters (in which case the construction stops, potentially

24

partway through a batch of characters) or codewords (in which case we let the `th

batch of characters from c` match the `th batch of characters in c1).

Such a collection of codewords is always possible to find by the following rea-

soning: Suppose that C is a code over Fq. Choosing a list–set of size ` for a code

of block length n is a priori choosing elements from an Fq–vector space of dimen-

sion `n. For each i, requiring that ci be a codeword in C requires (1 − R)n linear

constraints, as C is a subspace of Fn
q of dimension Rn. Each congruence of Rn− 1

characters introduces another Rn− 1 constraints. Adding up over the ` codewords,

this is a total of at most `((1−R)n+ (Rn− 1)) = `(n− 1) < `n linear constraints,

so a solution exists.

Now, let A be the set of indices in the list–cover of the ci whose elements have

at most `− 1 symbols. By our construction, |A| ≥ min{n, `(Rn− 1)}: In the case

in which we ran out of characters, |A| = n; in the other, |A| ≥ `(Rn− 1). Let V be

the subspace of Fn
q consisting of words that are zero on the complement of A. Then

the dimension of V is at least the minimum of n and `(Rn− 1).

Suppose for the sake of contradiction that R > 1
`+1

+ `
n(`+1)

. This simplifies to

`(Rn− 1) +Rn > n, and note that (obviously) n+Rn > n. We aim to show that

V ∩C 6= {0}. The dimension of C is Rn, so in either case the sum of the dimensions

of V and C is greater than n; so they must have nontrivial intersection.

Now, fix v ∈ V ∩ C \ {0}, and consider the set {c1, . . . , c`, c1 + v}. These ` + 1

codewords have a list–cover of sets of size at most `; this contradicts the fact that

25

C is (1, `, `)–list recoverable, so we must have had that R ≤ 1
`+1

+ `
n(`+1)

.

2.5 Results About Uniquely Defining Indices

Proposition 2.5.1. If C is a (1, `, `)–list recoverable code, then any collection of

t ≤ `+ 1 codewords has a uniquely defining index.

Proof. Suppose {c1, . . . , ct} has no uniquely defining index, and let (S1, . . . , Sn) be

their list–cover. This means that in every Si there is a character that is the ith

character of at least two codewords in {c1, . . . , ct}. Therefore, maxi∈{1,...,t} |Si| < t,

so C cannot be (1, t− 1, t− 1)–list recoverable: There are at least t codewords that

interpolate through a list–set of size at most t− 1.

However, by applying Proposition 2.1.3 repeatedly, C is (1, t − 1, t − 1)–list

recoverable; this is a contradiction. Therefore, {c1, . . . , ct} must have a uniquely

defining index.

We can do even better when the code is (1− ε, `, `)–list recoverable. This is not

surprising, as it is a stronger statement for any `, L for a code to be (1− ε, `, L)–list

recoverable than to be (1, `, L)–list recoverable, but the way that our lower bound

for the number of uniquely defining indices scales with the errors allowed makes

this result interesting nonetheless.

Proposition 2.5.2. If C is a (1− ε, `, `)–list recoverable code, then any collection

of t ≤ `+ 1 codewords has more than ε fraction of uniquely defining indices.

26

Proof. Suppose that {c1, . . . , ct} is a collection of codewords with at most ε fraction

of uniquely defining indices, and let (S1, . . . , Sn) be their list–cover. This means

that in the remaining 1−ε (or more) fraction of the Si, there is at least one element

that is the ith character in at least two codewords in {c1, . . . , ct}.

Again by Proposition 2.1.3, C must be (1− ε, t− 1, t− 1)–list recoverable. We

can therefore delete the remaining ε fraction of lists (so that all that remain have

size at most t − 1) and use list recovery to find a list–set of size t − 1 for which

only t − 1 codewords agree with at least 1 − ε fraction of the lists. However, we

already have that c1, . . . , ct all agree with at least 1−ε fraction of the lists. This is a

contradiction, so C must have more than ε fraction of uniquely defining indices.

27

Chapter 3

Further Reading

This paper has considered only basic results of list recovery with no concern for

how to construct list–recoverable codes and how efficient they are. Although list

recovery is a very young topic in coding theory, several very useful codes already

exist with good list recovery properties. See in particular [2] for codes with high

rate based on expander graphs and [4] for many examples including derivatives of

Reed–Solomon codes.

28

Bibliography

[1] V. Guruswami and M. Sudan. List Decoding Algorithms for Certain Concate-

nated Codes. Proceedings of the thirty-second annual ACM symposium on The-

ory of computing, p. 181–190, 2000.

[2] B. Hemenway and M. Wooters. Linear–Time List Recovery of High–Rate Ex-

pander Codes. Automata, Languages, and Programming, vol. 9134, p. 701-712,

2015.

[3] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal

of the Society for Industrial and Applied Mathematics, vol. 8, p. 300–304, 1960.

[4] A. Rudra. List Decoding and Property Testing of Error Correcting Codes.

Ph.D. thesis, University of Washington, 2007.

[5] R.C. Singleton. Maximum Distance q–nary codes. IEEE Trans. Inform. The-

ory, vol. 10, p. 116-118, 1964.

29

	Background Material
	Error–correcting Codes
	Reed–Solomon codes

	List–Recoverable Codes

	Fundamental Results of List–Recoverable Codes
	Basic Results of List–Recoverable Codes
	Results Relating List Recovery to Minimum Distance
	Results About List Recovery From Erasures
	Results Relating List Recovery to Rate
	Results About Uniquely Defining Indices

	Further Reading

