
CIS3990-002: Mathematics of Machine Learning Fall 2023

Lecture: SGD Convergence

Date: November 27th, 2023 Author: Eric Wong

In stochastic gradient descent (SGD), we assumed that the objective function was decomposable
into a sum of N objectives, i.e.

min
x

f(x) = min
x

1

N

∑
i

fi(x)

where f(x) =
∑

i fi(x). Then, the SGD update randomly samples one of these sub-objectives and
performs a gradient descent update as follows:

xt+1 = xt − γt∇fn(xt)
⊤, n ∼ Uniform[1, . . . , N ]

Recall that the classic gradient descent step can ensure improvement by taking a small enough of a
step size. In contrast, SGD is not guaranteed to always improve the objective because the gradient
with respect to a single fn may not decrease the total sum f(x) = 1

N

∑
i fi(x). So why does SGD

even work in the first place? In this final example, we will prove why it works. Even better, we
will prove a convergence rate—a measure of how fast it takes for SGD to converge.

These notes are based upon the follwoing notes:

https://www.cs.cornell.edu/courses/cs4787/2019sp/notes/lecture5.pdf

For an in-depth plunge into many convergence proofs, see

https://arxiv.org/abs/2301.11235

1 Taylor’s Theorem

Before we prove the convergence of SGD, we first need one additional tool. In particular, we need
a variation of the Taylor series approximation, which is a more exact formalization of the Taylor
series.

• Recall the multivariate Taylor series around x0:

f(x) =
∞∑
k=0

Dkf(x0)

k!
δk

where δ = x− x0 and Dkf(x0) is the kth total derivative tensor.

• Also recall that the first three terms are the following:

1. k = 0 we have D0f(x0)δ
0 = f(x0) ∈ R

1

https://www.cs.cornell.edu/courses/cs4787/2019sp/notes/lecture5.pdf
https://arxiv.org/abs/2301.11235


2. k = 1 we have D1f(x0)δ
1 = ∇f(x0)δ ∈ R

3. k = 2 we have D2f(x0)δ
2 = δ⊤∇2f(x0)δ ∈ R

• For a second order approximation we have

f(x) ≈ f(x0) +∇f(x0)(x− x0) +
1

2
(x− x0)

⊤∇2f(x0)(x− x0)

• The above approximation does not say explicitly how close or far the approximation is from
the true function f . Taylor’s theorem formalizes the exact approximation of f around x0.
For example, for a first order approximation of

fapprox(x) = f(x0) +∇f(x0)(x− x0)

, we want to quantify the remainder R(x):

R(x) = f(x)− fapprox(x) = f(x)− (f(x0) +∇f(x0)(x− x0))

• Taylor’s Theorem: Let f be k+1 times differentiable and Dkf be continuous on the interval
[x0, x]. Then, the remainder is

Rk(x) =
Dk+1f(ξ)

(k + 1)!
(x− x0)

k+1

for some ξ ∈ [x0, x]

• For a first order approximation, this means that

f(x) = f(x0) +∇f(x0)(x− x0) +
1

2
(x− x0)

⊤∇2f(ξ)(x− x0)

for some ξ ∈ [x0, x]

2 SGD Analysis

Proof sketch: The proof will consist of three main steps. The end goal of this proof is to drive the
gradient to zero—if the gradient is zero, then the algorithm has converged.

1. First, we’ll use a Taylor approximation to calculate the error of the SGD update (e.g. how
far off the update is from the true value).

2. Then, we’ll use an expectation to handle the randomness of the SGD update.

3. Third, we’ll use a telescoping sum to combine the progress from all T steps, and bound the
norm of the gradient.

4. Finally, we’ll pick a smart step size to drive the norm of the gradient to zero.

• To analyze SGD, we need to make a few assumptions on the function. In particular, these
assumptions will ensure that the function is not too “crazy” and behaves with some regularity.

2



• Bounded gradient: we first assume that the norm of the gradient is globally bounded, i.e.
there exists some G > 0 such that

∥∇fi(x)∥ ≤ G

for all functions fi and all inputs x.

• Without this assumption, the gradient could grow infinitely, which would result in an un-
bounded SGD step.

• Bounded Hessian: we next assume that the Hessian is similarly well-behaved, i.e. there exists
an L such that

u⊤∇2f(x)u ≤ L∥u∥2

for all u, x. In other words, the inner product with the Hessian is at most L times the standard
inner product (i.e. the Hessian does not explode the inner product by an infinite amount).

A typical way to approach convergence in optimization is to apply the Taylor series approximation
and combine it with additional regularity assumptions. Putting aside the issue of stochasticity for
now, this results in the following:

• The first step here is to apply the Taylor approximation to the SGD update around xt.
Plugging in the SGD update, we have:

f(xt+1) = f(xt − γt∇fn(xt)
⊤)

and a direct application of Taylor’s theorem results in

f(xt+1) = f(xt)−∇f(xt)(γt∇fn(xt)
⊤) +

1

2
(γt∇fn(xt))∇2f(ξ)(γt∇fn(xt)

⊤)

Re-arranging a bit we get

f(xt+1) = f(xt)− γt∇f(xt)∇fn(xt)
⊤ +

γ2t
2
∇fn(xt)∇2f(ξ)∇fn(xt)

⊤

• Under the regularity assumption for the Hessian, we have

f(xt+1) ≤ f(xt)− γt∇f(xt)∇fn(xt)
⊤ +

Lγ2t
2

∥∇fn(xt)
⊤∥2

• Under the bounded assumption for the gradient, we have

f(xt+1) ≤ f(xt)− γt∇f(xt)∇fn(xt)
⊤ +

LG2γ2t
2

Note here that the sign of the middle term, ∇f(xt)∇fn(xt)
⊤ is unclear (since fn is a randomly

selected fnction), and so f(xt+1) is not guaranteed to improve upon f(xt).

The key will be to show improvement in expectation.

• Let us take the expected value of both sides over the random index selection n:

E[f(xt+1)] ≤ E[f(xt)]− γtE[∇f(xt)∇fn(xt)
⊤] +

LG2γ2t
2

3



• Let’s tackle the middle term. Using the law of iterated expectation, we have that

E[∇f(xt)∇fn(xt)
⊤] = E[En[∇f(xt)∇fn(xt)

⊤|xt]]

where the inner expectation is

En[∇f(xt)∇fn(xt)
⊤|xt] = ∇f(xt)En[∇fn(xt)

⊤|xt]

and the expectation with respect to n is

En[∇fn(xt)
⊤|xt] =

N∑
i=1

∇fi(xt)
⊤P (i = n|xt) =

1

N

N∑
i=1

∇fi(xt)
⊤ = ∇f(xt)

⊤

Plugging this back in, we get

E[∇f(xt)∇fn(xt)
⊤] = E[∇f(xt)∇f(xt)

⊤] = E[∥∇f(xt)∥22]

• Re-arranging this sum to put the norm of the gradient on the left, we have

γtE[∥∇f(xt)∥22] ≤ E[f(xt)]− E[f(xt+1)] +
LG2γ2t

2

• Next we will do what is called a telescoping sum. That is,

N∑
i=1

(ai − ai+1) = aN − a0

• Sum all the gradients and take a sum over all iterations to get:

T−1∑
t=0

γtE[∥∇f(xt)∥22] ≤
T−1∑
t=0

(E[f(xt)]− E[f(xt+1)]) +
LG2

2

T−1∑
t=0

γ2t

and applying the telescoping sum, we get

T−1∑
t=0

γtE[∥∇f(xt)∥22] ≤ E[f(x0)]− E[f(xT )] +
LG2

2

T−1∑
t=0

γ2t

• Since f∗ = minx f(x) ≤ E[f(xT )] and since f(x0) is not random, we have

T−1∑
t=0

γtE[∥∇f(xt)∥22] ≤ f(x0)− f∗ +
LG2

2

T−1∑
t=0

γ2t

This is almost there, but we need to handle the term on the left. The simplest is to just take the
minimum norm over all time steps:

min
t

E[∥∇f(xt)∥22]

(
T−1∑
t=0

γt

)
≤ f(x0)− f∗ +

LG2

2

T−1∑
t=0

γ2t

and then divide both sides by the sum of the step sizes to get the bound:

min
t

E[∥∇f(xt)∥22] ≤
f(x0)− f∗∑T−1

t=0 γt
+

LG2

2

∑T−1
t=0 γ2t∑T−1
t=0 γt

4



• A constant step size brings the first term to zero, but the second term stays as a non-zero
constant!

• Constant step-size: γt = γ for some γ > 0, then

1.
∑

t γt = Tγ

2.
∑

t γ
2
t = Tγ2.

3. Then, the norm of the gradient is O(1/t) + O(γ). This doesn’t go to zero! In practice,
if you use a constant step size, you’ll notice that SGD oscillates around the minimum.
This is why, and is sometimes called the noise ball.

• Instead, convergence is dictated by the fraction of step sizes. We need the ratio
∑T−1

t=0 γ2
t∑T−1

t=0 γt
→ 0,

or in other words, we need
∑T−1

t=0 γt to grow much faster than
∑T−1

t=0 γ2t .

• Classic decreasing step size: γt = γ/t for some γ > 0, then

1.
∑

t γt = γHT = O(log T ) where HT is the T th Harmonic number

2.
∑

t γ
2
t = γπ2/6 = O(1).

3. Then, the norm of the gradient is O(1/ log T ). This goes to zero, but is quite slow. In
practice, you can use this but you’ll find that SGD makes very, very slow progress.

• Bigger decreasing step sizes: γt = γ/
√
t for some γ > 0, then

1.
∑

t γt = γ
∑

t
1√
t
≈ γ · 2

√
T = O(

√
T ) (can check this by noting that

∑
t

1√
T
is the lower

Reimann sum of the integral
∫ T
0 t−1/2dt = 2t1/2|T0 = 2

√
T )

2.
∑

t γ
2
t = γ

∑
t
1
t = γHT = O(log T ).

3. Then, the norm of the gradient is O(log T/
√
T ) = Õ(1/

√
T ). This is faster than

O(1/ log T ).

5


	Taylor's Theorem
	SGD Analysis

