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1 Probability Basics

• Probability space (Ω,A, P ) is a real-world process with random outcomes (i.e. an experiment).
Ex. Flip two coins and see how many heads show up.

• Sample space Ω: set of all possible outcomes of the experiment. Ex. {hh, tt, ht, th}

• Event space A: the space of potential results (events). Ex. the power set of of Ω.

• Probability P : With each event A ∈ A, we associate a number P (A) that measures the belief
that the event will occur. Ex. P{hh, tt} = 0.5

• Target space T : target quantities of interest. Ex. T = {0, 1, 2} possible heads.

• Random Variable X : Ω → T lets us convert probabilities on the sample space Ω to proba-
bilities on targets T (i.e. T = R).

• If S ⊆ T , then PX(S) = P ({ω ∈ Ω : X(ω) ∈ S}). PX is the distribution of random variable
X.

• If T is finite, X is a discrete random variable. If T is continuous, X is a continuous random
variable.

Aside: Data points x1, . . . , xN are observations of a random variable (i.e. each observation is the
result of an experiment). Probability lets us reason over these random experiments as n → ∞.
This will be key for studying generalization.

• Probability mass function: For a discrete random variable and a a potential observation
x ∈ T , we can write PX(x) = P (X = x). We often take X to be implicit and people just
write P (x).

• Joint probability: we can consider probabilities of multiple random variables, i.e. P (X =
x, Y = y) = P (X = x ∩ Y = y), often abbreviated as p(x, y).

• For example: for a dataset of examples with labels (x1, y1), . . . , (xN , yN ) we can let X be a
random variable for examples xi, and Y be a random variable for the labels yi. This lets us
formalize the probability of observing an example and its label as p(xi, yi).

• Marginal probability: the marginal of X is P (X = x), which is irrespective of the random
variable Y , often lazily written as p(x)

• Conditional probability: the conditional probability of Y given X is P (Y = y|X = x), often
lazily written as p(y|x)
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Aside: In ML we will want to be modeling predictions from your data, i.e. p(y|x) where x is the
input to your model and y is the prediction. We’ll now consider real valued continuous distributions,
where T = RD.

• Probability density function: A function f : RD → R is a PDF if (1) ∀x ∈ RD : f(x) ≥ 0 and
(2)

∫
RD f(x)dx = 1.

• This is like the probability mass function, where the integral is replaced by a sum.

• We can associate a PDF with a random variableX, in the 1D case, P (a ≤ X ≤ b) =
∫ b
a f(x)dx

where a, b, x ∈ R. In this case, P is the distribution of X.

• The multi-dimensional PDF is similar:

P (a1 ≤ X1 ≤ b1, . . . , aD ≤ XD ≤ bD) =

∫ b1

a1

· · ·
∫ bD

aD

f(x1, . . . , xD)dxD . . . dx1

We will often abbreviate these to vectors a, b, x ∈ RD as
∫ b
a f(x)dx

• P (X = x) no longer makes sense here as it is equal to 0 (equivalent to taking the interval
[a, b] where a = b = x.).

• Typically we use a one-sided interval: for a particular outcome x ∈ T , we often refer to to
FX(x) = P (X ≤ x) as the cumulative density function (CDF).

• For a vector of random variables (i.e. the joint distribution), this can be explicitly written out
as P (X1 ≤ x1, . . . , XD ≤ xd), but will typically also be abbreviated as FX(x) = P (X ≤ x).

Aside: all probabilities, discrete or continuous, are positive and sum to one. But for continuous
distributions, the PDF may be more than one at some points. See Example 6.3 in the textbook on
the uniform distribution.

• There are really only two fundamental rules in probability for reasoning about distributions:
the sum and the product rule.

• The sum rule is also known as the marginalization property (recall the marginal of x is p(x))
and relates the joint distribution to the marginal distribution

• Sum rule (discrete):

p(x) =
∑
y∈Y

p(x, y)

• Sum rule (continuous):

p(x) =

∫
y∈Y

p(x, y)dy

• Note that, as always, x, y can be vectors

• Example: for a joint distribution p(x) = p(x1, . . . , xD), we can sum out all but one to get
p(xi) =

∫
p(x)dx\i
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• The product rule says that every joint distribution can be factorized into a product of a
conditional and marginal.

• Product rule (discrete and continuous):

p(x, y) = p(y|x)p(x)

• Ordering of x, y is arbitrary, and uses PDF/PMF for continuous/discrete distributions

• Bayes theorem:

p(x|y) = p(y|x)p(x)
p(y)

• Consequence of the product rule

• In ML terms, this relates the posterior with the likelihood, prior and evidence (Eq 6.23 from
the textbook)

• Prior p(x): subjective belief about target of interest x without observing anything

• Likelihood p(y|x) relates the evidence y and the target of interest x (likelihood of x given y)

• Posterior p(x|y) is what we know about x after seeing the evidence y and is usually what we
care about

• Evidence p(y) keeps the distribution normalized, sometimes called the marginalized likelihood
since p(y) =

∫
p(y|x)p(x)dx. This can be hard to compute for vector valued x.

• Bayes theorem lets use “invert” a conditional. This can be useful when the target we care
about x is not directly observable, other evidence y is observable. By choosing a prior p(x),
we can reason about p(x|y) in terms of only the evidence y without explicitly observing x.

Aside: A common application of this section of probability is to reason about the parameters of
your hypothesis class and find the most likely set of parameters given the data (hence maximum
likelihood). Recall that in ML, we try to select the “best” function from the hypothesis class fθ ∈ F
where θ is a set of parameters that determines the exact function. Some hypothesis classes directly
parameterize a probability.

• Recall that in ML, we try to minimize the risk on a dataset:

min
θ

Remp(fθ, X, Y ) =
N∑
i=1

ℓ(f(xi), yi)

where θ is a set of parameters that determines a particular function from the hypothesis
class, fθ ∈ F

• Often, in ML we define a function class that directly predicts fθ(x) = p(y|x; θ)
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• For example, a simple linear model that predicts one of two classes is

f(x) = p(1|x) = σ(θTx)

where σ is the sigmoid function

σ(x) =
1

1 + e−x

• The sigmoid function parameterizes a smooth function that transitions between [0, 1]

• One common choice for loss function is called the negative log likelihood : ℓ(f(x), y) = − log p(y|x; θ).

• Maximizing/minimizing the log of a function results in the same solution as maximizing/minimizing
the original function

• This results in maximum likelihood estimation (MLE):

min
θ

Remp(fθ, X, Y ) = max
θ

N∑
i=1

log p(y|x; θ)

• Example: MLE for the linear model is

max
θ

N∑
i=1

log p(y|x; θ) = max
θ

N∑
i=1

log σ(θTxi) = max
θ

N∑
i=1

− log(1 + eθ
T xi)

• In ML we call this (MLE + linear model + binary classification) logistic regression. Note
that even though this is called logistic regression, it is confusingly predicting a classification
problem.

In this example, MLE/negative log likelihood defines the objective, while linear binary classifier
defines the model. This is just one possible example—many different machine learning models
simply vary the the type of model. However, we can also vary the objective. A common choice is
to use Bayes rule and is called maximum a posterior estimation (MAP).

• An alternative type of risk to minimize is the Bayes risk:

min
θ

RBayes(fθ, X, Y ) = min
θ

− log p(θ|X,Y ) = max
θ

log p(θ|X,Y )

• This is in contrast to the empirical risk:

min
θ

Remp(fθ, X, Y ) = max
θ

log p(Y |X, θ)

• To calculate the Bayes risk, we simply apply Bayes rule to get something similar to the
empirical risk:

p(θ|X,Y ) =
p(Y |X; θ)p(θ|X)

p(Y |X)

• Minimizing the Bayes risk is known as maximum a posterior estimation (MAP):

max
θ

log p(Y |X; θ) + log p(θ|X)− log p(Y |X) ∝ max
θ

log p(Y |X; θ) + log p(θ)

4



• This differs from MLE only via the prior term log p(θ)

• The posterior in MAP in this case is p(θ|X,Y ), hence maximum a posterior

• Whereas the MLE maximizes the likelihood, p(Y |X, θ)

Aside: Up to this point, we’ve used random variables to represent examples from a given dis-
tribution, such as (X1, Y1), . . . , (XN , YN ) to represent N datapoints with N labels. However, we
typically want to summarize these sets of random variables with a single quantity. This is called
a statistic, which is a deterministic function of random variables. These statistics describe how
random variables behave.

• Two common statistics: mean and variance

• Expected value of a function g : R → R of random variables is the average over many random
draws. For continuous distributions this is:

EX [g(x)] =

∫
X
g(x)p(x)dx

For discrete distributions, this is:

EX [g(x)] =
∑
X

g(x)p(x)dx

• Sometimes, this is written as EX [g(x)] = Ex∼X [g(x)] = E[g(x)]

• If X is a random variable with probability p, then we can also write this as EX [g(x)] =
Ep(x)[g(x)] or Ep[g(x)] or Ex∼pp[g(x)]

• A conditional expectation is the same, using a conditional probability distribution:

EX [g(x)|y] =
∫
X
g(x)p(x|y)dx

• An expectation of a vector of random variables is the vector of expectations of each random
variables:

EX [g(x)] =

 EX1 [g(x1)]
...

EXN
[g(xN )]


• The mean statistic is the special case where g(x) = x, for example E[x] =

∫
X xp(x)dx

• Often we use the symbol E[x] = µ

• Intuitively, the mean is the “average” value. We will use averages when summing many
random variables together from the same distribution.

• The expected value is a linear operator. This means that if f(x) = ag(x) + bh(x), then

E[f(x)] = aE[g(x)] + bE[h(x)]
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• Covariance is the expected product of deviations of two random variables from their means.

CovX,Y [x, y] = EX,Y [(x− EX [x])(y − EY [y])

• Covariance measures how dependent two random variables are. If it is high, they more
dependent

CovX,Y [x, y] = EX,Y [xy]− EX [x]EY [y]

• The covariance of a variable with itself is the variance VarX [x] = V[x] = CovX,X [x, x]

• Often we use the symbol V[x] = Σ

• For a single random variable, the square root of the variance is the standard deviation,
σ(x) =

√
VarX [x]

• Using the second form of the covariance, we can generalize this to vectors x, y ∈ RD ×RE as

CovX,Y [x, y] = EX,Y [xy
T ]− EX [x]EY [y]

T ∈ RD×E

and the variance is
V[x] = Cov[x, x]

, also called the covariance matrix (measures spread)

• Correlation is a normalized form of covariance between two random variables (i.e. the covari-
ance is divided by the variance of the two random variables and measures how closely two
variables change together):

corr[x, y] =
Cov[x, y]√
V [x]V [y]

• Variance can be done in three ways:

1. V[x] = E[(x− µ)2] measures spread of a random variable

2. V[x] = E[x2] − E[x]2 is the “raw score formula” that can be done in one pass but is
numerically unstable

3. 1
N

∑
ij(xi − xj)

2 = 2
[
1
N

∑
i x

2
i −

(
1
N

∑
i xi

)]
is the sum of pairwise differences

• E[x+ y] = E[x] + E[y]

• E[x− y] = E[x]− E[y]

• V[x+ y] = V[x] + V[y] + Cov[x, y] + Cov[y, x]

• V[x− y] = V[x] + V[y]− Cov[x, y]− Cov[y, x]

• If y = Ax+ b where x, y are random variables, then

E[y] = E[Ax+ b] = AE[x] + b = Aµ+ b

and
V[y] = V[Ax+ b] = V[Ax] = AV[x]AT = AΣAT
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Aside: In practice, we don’t typically have the true distributions of X,Y but instead have a
finite number of observations of the random variables (x1, y1), . . . , (xN , yN ). Therefore, we will
often estimate the an expected value with these samples by replacing the expected value with a
summation:

E[g(x)] ≈ 1

N

N∑
i=1

g(xi)

Therefore, the empirical mean and empirical covariance are simply

x̄ =
1

N

N∑
i=1

xi

and

Σ =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T

• Independence: Two random variable X,Y are statistically independent if and only if p(x, y) =
p(x)p(y)

• This implies the following:

1. p(y|x) = p(y)

2. p(x|y) = p(x)

3. V[x+ y] = V [x] + V [y]

4. Cov[x, y] = 0

• The converse is not true, i.e. if E[x] = 0 and E[x3] = 0 and let y = x2, then Cov[x, y] =
E[xy]− E[x]E[y] = E[x3] = 0 (they are dependent but not correlated)

• A standard assumption in ML is that random variables are independent and identically dis-
tributed (i.i.d.), typically for the random variables representing the observations in the dataset
(X1, . . . , XN )

• This means that each random variable has the same distribution p, and that each random
variable is independent from each other

• We used this earlier when defining the empirical risk: p(Y |X; θ) =
∏N

i=1 p(yi|xi; θ)

• Conditional independence: X,Y are conditionally independent given Z if and only if p(x, y|z) =
p(x|z)p(y|z) for all z ∈ Z

• Alternatively, p(x|y, z = p(x|z). This can be seen by using the product rule on the LHS and
comparing it to the definition of conditional independence.

Aside: In the previous linear example, recall that we wrote the empirical risk as a sum of losses
over N examples:

min
θ

Remp(fθ, X, Y ) =

N∑
i=1

− log p(yi|xi; θ)
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where the loss was the negative log likelihood. Where did this loss come from? We actually
cheated a little bit: this is only true if we assume that the random variables are i.i.d. Without any
assumptions, our starting point is to actually maximize the joint likelihood of the entire dataset
under the model parameterized by θ (maximum likelihood):

max
θ

p(Y |X; θ)

However, modeling an entire dataset jointly is complicated! To simplify this, we assume that the
vectors of (xi, yi) are independent and identically distributed. Independence allows us to consider
the product over N random variables:

max
θ

N∏
i=1

pi(yi|xi; θ)

and then identical allows us to use a single model to represent all data points:

max
θ

N∏
i=1

p(yi|xi; θ)

Lastly, we take a log for numerical stability since the solution to the maximum is the same:

max
θ

N∑
i=1

log p(yi|xi; θ)

Flipping to minimizing the negative objective gets us the minimum likelihood formulation:

min
θ

N∑
i=1

− log p(yi|xi; θ)

2 Distributions

• (Multivariate) Gaussian/Normal distribution is one of the most commonly used distributions
in ML

• It represents having most samples clustered around the mean with the ability to have outliers

• Univariate Gaussian - p(x|µ, σ2) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
for x ∈ R

• Multivariate Gaussian - p(x|µ,Σ) = (2π)−
D
2 |Σ|−

1
2 exp

(
−1

2(x− µ)TΣ−1(x− µ)
)
for x ∈ RD

• We write p(x) = N (x|µ,Σ), p(x) = N (µ,Σ), p ∼ N (x|µ,Σ) or X ∼ N (µ,Σ)

• N (0, I) is the standard normal distribution where I is the identity matrix

• Joint distribution of MVN. Suppose we represent a MVN as the concatenation of two vectors
of MVN:

p(x, y) = N
([

µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
where Σxy = Cov[x, y] and Σxx,Σyy are the marginal variances of x and y
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• Then the marginals p(x) =
∫
p(x, y)dy = N (µx, σxx) and py =

∫
p(x, y)dx = N (µy, σyy) are

Gaussian

• And the conditional distribution p(x|y) is also Gaussian

p(x|y) = N (µx|y,Σx|y)

where
µx|y = µx +ΣxyΣ

−1
yy (y − µy)

and
Σx|y = Σxx − ΣxyΣ

−1
yy Σyx

Aside: Applications of the conditional Gaussian distribution are classic algorithms such as the
Kalman filter (which does nothing but compute Gaussian conditions from joints) and Gaussian
processes (assume that observations from a function are jointly Gaussian to get a Gaussian posterior
over functions).

• Products of Gaussians is Gaussian:

N (x|a,A)N (x|b, B) = c′N (x|c, C)

where
C = (A−1 +B−1)−1

c = C(A−1a+B−1b)

c′ = (2π)−D/2|A+B|−
1
2 exp

(
−1

2
(a− b)T (A+B)−1(a− b)

)
= N (a|b, A+B)

• Note that in the definition of c′, it is convenient to write it as the density of another Normal
distribution even though c′ is not random

• Sums of Gaussians is Gaussian:

p(x+ y) = N (µx + µy,Σx +Σy)

• Same for a weighted sum:

p(ax+ by) = N (aµx + bµy, a
2Σx + b2Σy)

• This is related to but different from the sum of the densities: if p(x) = αp1(x) + (1−α)p2(x)
where p1, p2 are Gaussian. In this case, p is not Gaussian. The mean is similar, i.e. E[x] =
αµ1 + (1− α)µ2, but the variance is different (Theorem 6.12):

V[x] = [ασ2
1 + (1− α)σ2

2] +
(
[αµ2

1 + (1− α)µt
2]− [αµ1 + (1− α)µ2]

2
)

• This is an example of the law of total variance, i.e.

V[x] = E[V[x|y]] + V[E[x|y]]
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• Linear transform of a Gaussian is Gaussian. If x ∼ N (µ,Σ), and y = Ax is Gaussian where

E[y] = E[Ax] = AE[x] = Aµ

and
V[y] = V[Ax] = AV[x]AT = AΣAT

so p(y) = N (Aµ,AΣAT )

Aside: The Gaussian is a distribution that has a lot of very nice properties. Many operations of
Gaussians also return Gaussians. However, there are many things in this world are not Gaussian
(i.e. even the simple mixture of Gaussians is not Gaussian). There is a generalization of Gaussians
called the exponential family that has similarly nice properties but allows for a more expressive set
of distributions.

• Bernoulli distribution: for a random variable X with target state x ∈ {0, 1}, Ber(µ) is defined
as

p(x;µ) = µx(1− µ)1−x

where E[x] =
∑

x xp(x) = µ and V[x] =
∑

x(x− µ)2p(x) = (1− µ)2µ+ µ2(1− µ) = µ(1− µ)

• Bernoulli simulates flipping a coin with probability µ of being heads.

• This trick of using exponents for Boolean variables is often used in ML

• Binomial distribution: for a random variable X with target states 1, . . . , N , Bin(N,µ) is
defined as

p(m;N,µ) =

(
N

m

)
µm(1− µ)N−m

where E[m] = Nµ and V[m] = Nµ(1− µ)

• Binomial simulates flipping a coin with probability µ N times and counting the number of
heads

• Beta distribution: for a random variable µ with target states [0, 1], Beta(α, β) for α, β > 0 is
defined as

p(µ;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
µα−1(1− µ)β−1

where E[µ] = α
α+β and V[µ] = αβ

(α+β)2(α+β+1)
.

• Γ(t) is the Gamma function defined as

Γ(t) =

∫ i

0
nftyxt−1exp(−x)dx

where Γ(t+ 1) = tΓ(t).

• The Gamma function serves to normalize the Beta distribution.

• Beta models a continuous distribution on the interval [0, 1] often used to simulate the proba-
bility of a binary evennt (i.e. the parameter of the Bernoulli distribution).
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Figure 1: Beta distribution from Figure 6.2

• α = β = 1 is the Uniform distribution

• α, β < 1 is bimodal with spikes at 0 and 1

• α, β > 1 is unimodal. If α = β then it is symmetric and centered with mean/mode at 0.5.

Aside: We can define a whole slew of additional distributions. However there is a group of dis-
tributions that has a nice property like the Gaussian distribution, where combining two different
distributions results in another known distribution. Remember that for the posterior, we have:

p(θ|X,Y ) ∝ p(Y |θ,X)p(θ)

If we say, model the likelihood as a Binomial and the prior as a Beta, it turns out that the posterior
is a Beta distribution! This relation is known as conjugacy and shows up in the exponential family.
Because the form of the posterior is nice and simple, ML algorithms like to use conjugate priors.

• Example 6.11 (Beta-Binomial Conjugacy)

• Suppose x ∼ Bin(N,µ) (likelihood). Then consider a Beta prior on µ ∼ Beta(α, β). Then

p(µ|x,N, α, β) ∝ p(x|N,µ)p(µ|α, β) ∝ µx(1− µ)N−xµα−1(1− µ)β−1

= µx+α−1(1− µ)N−x+β−1 ∝ Beta(x+ α,N − x+ β)

• Similarly, Beta is also a conjugate prior for Bernoulli (Example 6.12). See Table 6.2 for more
example of conjugate priors for common likelihoods.

Aside: We can generalize these “nice” distributions to a larger family known as the exponential
family. Exponential families interact nicely with the log operator (i.e. when calculating log prob-
abilities) and have small tails (i.e. good for concentration around the mean). We’ll abstract our
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distributions from parametric distributions with fixed parameters (i.e. N (0, 1)) to parametric with
learned parameters (i.e. N (µ, σ2) where µ, σ are estimated from the data with MLE) to families of
distributions that capture multiple parametric forms (the exponential family).

• Sufficient statistic (Theorem 6.14, Fisher-Neyman): Let X ∼ p(x|θ). Then, ϕ(x) is a sufficient
statistic for θ if and only if p(x|θ) can be written as

p(x|θ) = h(x)gθ(ϕ(x))

where h(x) is independent of θ and gθ captures all dependencies on θ via ϕ(x)

• Exponential family is characterized by

p(x|θ) = h(x)exp(θTϕ(x)−A(θ)) ∝ exp(θTϕ(x))

This is just a particular expression of gθ for sufficient statistics.

• To see the last proportional equivalence, move h(x) into the dot product by adding log h(x)
to the sufficient statistics and add θ0 = 1 to the parameters, and A(θ) is just a normalizing
constant, i.e.

A(θ) = log

∫
eθ

Tϕ(x)dx

• Gaussian, Bernoulli are exponential families and have nice log probabilities. Example 6.13
(univariate Gaussian) and 6.14 (Bernoulli).

• Key property: every member of the exponential family has a conjugate prior (Brown, 1986):

p(θ|γ) = hc(θ)exp

(〈[
γ1
γ2

]
,

[
θ

−A(θ)

]〉
−Ac(γ)

)
• With this property, we can derive the conjugate prior without knowing it in advance for
distributions in the exponential family
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