CIS3990-002: Mathematics of Machine Learning Fall 2023

Lecture: Overview
Date: August 30, 2023 Author: Eric Wong

Website. https://www.cis.upenn.edu/~exwong/moml/
Time & Location. Mondays & Wednesdays from 3:30-5PM in Towne 313

Staff & Office Hours.

e Instructor: Eric Wong, Thursdays from 2-3PM in Levine 506
e TA: Shreya Havaldar, Friday from 2-3:30PM in Towne 297

e TA: Chae Kim, Tuesday from 3:30-5PM in Levine 3rd floor bump space
Textbook. Mathematics for Machine Learning by Deisenroth, Faisal, and Ong

Canvas. https://canvas.upenn.edu/courses/1744359

1 What is Machine Learning?

From Tom Mitchell’s classic textbook, Machine Learning is the study of algorithms that

e Improve their performance P
e At some task T

e With experience FE

A classic example (spam detection).

e Task T detecting spam from ham (not-spam)
e Performance measure P: percent of emails correctly classified as spam or ham

e Experience E: a database emails labeled as either spam or ham

https://www.cis.upenn.edu/~exwong/moml/
https://mml-book.github.io/
https://canvas.upenn.edu/courses/1744359
http://www.cs.cmu.edu/~tom/mlbook.html

A contemporous example (ChatGPT).

e Task T Generate responses in a conversation
e Performance measure P: High quality responses as measured by humans

e Experience E: dataset of prompts and demonstrations of responses

1.1 Components of an ML Algorithm

An ML algorithm has three parts: data, models, and learning.

Data. ML derives all of its power from experience, or data.

e While data can be many things (videos, images, text, radar, etc.), we typically abstract away
the specifics as a dataset of N examples z1,...,zxy € X. A common choice is to work in the
space of real-valued vectors X = RP.

e Sometimes, these are paired with labels y1,...,yxy € Y. A common choice is to work with
real valued labels, so the whole dataset is (x1,%1),..., (zx,yn) € RP x R.
i Y1
e Often, we compactly represent this as X = : and Y =
37% YN

e The data that an ML algorithm has access to is typically referred to as training data.

Hypothesis class. Given a dataset, an ML algorithm then defines a hypothesis class, which is a
set of possible functions (sometimes referred to as models).

e ML models are functions that, when given an input z, produces an output y.
e If the output is a real valued scalar, we write a predictor as f : RP? — R
e Here, f(x) applies the predictor f to an example x and returns a real number.

e We often write fy to denote that f has a set of parameters § € © that can be varied to get
different functions, and the hypothesis class is therefore F = {fy : 6 € O}

e Example: fy(z) = 07z is a linear predictor with parameters § € R”. The set of linear
functions F = {fy : § € RP} defines a possible hypothesis class.

Learning. Given a dataset and a hypothesis class, the ML algorithm then tries to find the “best”
function in the hypothesis class. This process is called learning.

e The goal of learning is to use the data to find a function fy« and its corresponding parameters
0* that performs well on the data.

e While “performing well” can be many things (i.e. accuracy, mean squared error), we typically
abstract away the specifics as a loss function £ :)Y x Y — R that captures how “wrong” an
output is. Then, performing well is equivalent to achieving low loss.

e For the hypothesis class of linear functions, the goal is to find a specific parameter 8* such
that predictions on the data §; = (%) x; have low error, i.e.

(i, yi) = (9 — vi)? (1)
is low for all i € [N].

e The total loss over all of the data is known as the empirical risk:

N
Remp(f7X7Y) = Zé(f(.%@),yz) (2)
=1

ML Algorithm. In total, an ML algorithm does the following:

f* = arg min Remp(fv X’ Y) (3)
feF

e Improve their performance P, achieved by minimizing the total risk R (learning)
e At some task T, defined by the hypothesis class F (model)

e With experience F, given by examples {(z;, ;) }ic|n) (data)

1.2 Theoretical Questions for ML

Generalization. The ML algorithm will find a function f that minimizes the risk on the dataset
(X,Y). This is often referred to as having low risk on the training data. However, what we really
want is for the model f to perform well on new data, typically referred to as testing data. The
question of generalization asks the following:

Why does minimizing the risk on the training data result in good performance on new, unseen
testing data?

For example, why should my spam detector work on new spam emails? Why does ChatGPT work
on new prompts that I make up? Theorems proving the answer to this question are often referred
to as generalization bounds. Specifically, these aim to show the following result:

P (REmp(fv X, Y) - Rtrue(fopt) < 6) > 1-6 (4)
good event high probability

Here, a “good event” is when the performance of our model on our dataset (X,Y’) matches the best
theoretically possible performance. This is formalized as the empirical risk being e-close to the true
risk (for now, you can think of the true risk as the empirical risk estimated with an infinite number
of examples). When this happens, we say our model f generalizes to new data. Generalization
bounds aim to show that generalization happens with high probability.

The first module of this course will cover the fundamentals of probability, culminating in proving
the following generalization bound known as uniform convergence:

Theorem 1 (Generalization of Finite Hypothesis Classes). If the hypothesis class is finite (i.e.
|F| < 00) and the loss is bounded ¢ < B, then we have

()

210g(2 21log 6-1
]P’(Remp(f,X,Y)—Rme(fopt) <B\/ 0g(2|7]) +2log) >1—34.

n

Representation/approximation. The ML algorithm will search for a f from the hypothesis
class F that minimizes the empirical risk. But we may not know if there exists a function in the
hypothesis class that is a “good” solution in the first place. For example, consider trying fit a linear
model to data sampled from a quadratic function. No matter how hard you search the space of
linear functions and use an infinite amount of data, you will never achieve small error! The next
class of theorems in ML ask the following:

What kinds of functions can a hypothesis class represent or approzimate?

For example, the linear function class can only represent linear functions and not quadratic func-
tions. On the other hand, the neural network hypothesis have what is known as a universal ap-
proximation theorem—they can approximate any function to high accuracy. These kinds of results
characterize the type of functions that we can hope to learn with a given hypothesis class.

The second module of this course will cover fundamentals of linear algebra, culminating in proving
the classic representer theorem, which shows that a class of models called kernel SVMs can represent
optimal minimizers over complex, infinite-dimensional function spaces:

Theorem 2 (Representer Theorem). Fix a kernel k, and let H be the corresponding RKHS (a
hypothesis class). Then, for an empirical risk function Remp : H x X x Y — R and non-decreasing
Q:R — R, the minimizer for the empirical risk

£* = argmin Ren, (f, X, Y) + Q| 13, (6)
feH

can be expressed as

N
frx) = aik(wi,) (7)
i=1

In other words, the representer theorem says that all minimizers over the infinite hypothesis class
known as RKHS can be represented with a finite sum of kernels (i.e. a kernel SVM).

Convergence. The first theorem answered when models generalize to new data (and how much
data we need to do so). The second theorem answered what functions we can hope to model
in the first place. However, these results all ignore the problem of learning the model from the
data—solving the minimization problem. Convergence aims to answer the following question:

How long does it take to learn a model from data?

Different techniques for solving the minimization problem as well as different hypothesis classes can
drastically alter how long the learning process takes. For example, linear models often have a fo

regularizer term because certain techniques can provably solve this problem much faster with the
term. On the other hand, other hypothesis such as deep learning are known to have much slower
convergence rates, and hence take much longer to train.

The third module of this course will cover fundamentals of calculus, culminating in proving conver-
gence rates for learning algorithms used to minimize the empirical risk. Specifically, we will prove
classic convergence rate for gradient descent:

Theorem 3 (Convergence Rate of Gradient Descent). Suppose we run gradient descent on an
L-smooth function R with fized constant learning rate n = 1/L. Then, for all time t, we have

L|j61 — 013

R(0¢+1) — R(97) < of

(8)

where 0% is the global minimum.

In other words, if the empirical risk satisfies the assumptions, then running the gradient descent
algorithm is guaranteed to converge at a rate of O (%), i.e. in order to get € error, we must run
O(1/e) steps of gradient descent. This is in contrast to other approaches such as stochastic gradient
descent, which converge at a rate of O (ﬁ) and are known to be much harder and require many
more steps.

	What is Machine Learning?
	Components of an ML Algorithm
	Theoretical Questions for ML

