CIS3990-002: Mathematics of Machine Learning
Lecture: Concentration
Date: September 6th, 2023
Author: Eric Wong

Attribution. These notes are extremely similar to the beginning lectures of Larry Wasserman's Intermediate Statistics course from CMU (https://www.stat.cmu.edu/~larry/=stat705/), with some slight notation tweaks to match the course.

1 Concentration Basics

Recall our goal of generalization:

$$
\mathbb{P}\left(R_{\text {emp }}(f, X, Y)-R_{\text {true }}(f)<\epsilon\right)>1-\delta
$$

where

$$
R_{\mathrm{emp}}(f, X, Y)=\frac{1}{N} \sum_{i} \ell\left(f\left(x_{i}, y_{i}\right)\right)
$$

and

$$
R_{\text {true }}(f)=\mathbb{E}_{x, y}[\ell(f(x), y)]
$$

In other words, we want the empirical average to be close to the mean. This is called concentration, i.e. the empirical mean concentrates around the true mean.

1.1 Coin flips

Instead of risk, let's consider a much simpler example. Suppose I toss a fair coin n times, and record $x_{i}=1$ if heads and $x_{i}=0$ otherwise. Consider the average,

$$
\hat{\mu}_{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

It is easy to see that $\mathbb{E}\left[\hat{\mu}_{N}\right]=1 / 2$. How far away is $\hat{\mu}_{N}$ from its expectation? For example, if $x_{i}=1$ for all N flips, then $\hat{\mu}_{N}=1$ and it is very far.

Concentration of measure phenomenon says that $\hat{\mu}_{N}$ "concentrates" closer to $\mathbb{E}\left[\hat{\mu}_{N}\right]$, i.e.
The average of N i.i.d. variables concentrates within an interval of length roughly $1 / \sqrt{N}$ around the mean.

- Intuitively, if the average is far from the expectation, then many independent variables need to work together which is extremely unlikely.
- The concentration result is actually stronger: $\hat{\mu}_{N}$ has an approximately Normal distribution.
- This result underlies pretty much all of statistics and machine learning.

1.2 Tail inequalities

- Markov's inequality: for positive random variable $x \geq 0$ and $\mathbb{E}[X]=\mu<\infty$ then

$$
P(X \geq t) \leq \frac{\mu}{t}=O\left(\frac{1}{t}\right)
$$

- Very crude, but no distributional assumption, only non-negativity and finite mean!
- "If mean is small, then it is unlikely to be large."
- Proof: basic probability

$$
\mathbb{E}[X]=\int_{0}^{\infty} x p(x) d x \geq \int_{t}^{\infty} x p(x) d x \geq t \int_{t}^{\infty} p(x) d x=t \mathbb{P}(X \geq t)
$$

- Chebyshev's inequality: for random variable X with finite variance $V(X)=\sigma^{2}$, for any $t>0$ we have

$$
\mathbb{P}(|X-\mu| \geq t \sigma) \leq \frac{1}{t^{2}}=O\left(\frac{1}{t^{2}}\right)
$$

- Proof: apply Markov's inequality

$$
\mathbb{P}(|X-\mu| \geq t \sigma)=P\left(|X-\mu|^{2} \geq t^{2} \sigma^{2}\right) \leq \frac{\mathbb{E}\left[|X-\mu|^{2}\right]}{t^{2} \sigma^{2}}=\frac{1}{t^{2}}
$$

- With more assumptions (finite variance) we can get a better rate $1 / t^{2}$ instead of $1 / t$.

Weak Law of Large Numbers (almost). Returning to $\hat{\mu}_{N}=\frac{1}{N} \sum_{i} X_{i}$ (i.e. the coin flip example), note that this has mean μ and variance σ^{2} / N. Apply Chebyshev's inequality to $\hat{\mu}_{N}$ and we get:

$$
\mathbb{P}\left(\left|\hat{\mu}_{N}-\mu\right| \geq \frac{t \sigma}{\sqrt{N}}\right) \leq \frac{1}{t^{2}}
$$

So, with probability at least 0.99 (i.e. by taking $1 / t^{2}=0.01$ for $t=10$), then the average is within $10 \sigma / \sqrt{N}$ of the expectation. This is something called the Weak Law of Large Numbers. The key property is the $\frac{1}{\sqrt{N}}$ behavior, with better refinements having dramatically better constants than 10.

- Chernoff Method: introduce a parameter t and an exponential function to refine the Chebyshev inequality.
- For any $t>0$, we have that

$$
\mathbb{P}((X-\mu) \geq u)=P(\exp (t(X-\mu)) \geq \exp (t u)) \leq \frac{\mathbb{E}[\exp (t(X-\mu))]}{\exp (t u)}
$$

by applying Markov's inequality.

- Chernoff's bound:

$$
\mathbb{P}((X-\mu) \geq u) \leq \inf _{0 \leq t \leq b} \frac{\mathbb{E}[\exp (t(X-\mu))]}{\exp (t u)}
$$

where b is such that $\mathbb{E}[\exp (t X)]$ (the moment generating function, or mgf) is finite for all $t \leq b$.

- This can be rewritten as

$$
\mathbb{P}((X-\mu) \geq u) \leq \inf _{0 \leq t \leq b} \exp (-t(u+\mu)) \mathbb{E}[\exp (t X)]
$$

which is now in terms of the MGF.

Aside: The moment generating function is called such because it can be used to "generate" all the "moments" (i.e. the expected value of X^{t} for all integer powers of t). Simply write out the Taylor series as

$$
M_{X}(t)=\mathbb{E}[\exp (t X)]=\mathbb{E}\left[1+t X+\frac{t^{2} X^{2}}{2!}+\ldots\right]=1+t \mathbb{E}[X]+\frac{t^{2} \mathbb{E}\left[X^{2}\right]}{2!}+\ldots
$$

Then differentiate i times with respect to t and set $t=0$ to get the i th moment (i.e. $\mathbb{E}\left[X^{i}\right]$). Fun fact: the form of the MGF specifies the entire distribution (i.e. if you know the MGF then there is only one density it could be). This proof is a bit more technical and can be found in "An Introduction to Probability Theory and Its Applications, Vol. 2" by Feller using Laplace transform theory.

- MGF of a standard normal $N(0,1)$:

$$
m_{X}(t)=\mathbb{E}[\exp (t X)]=\int \exp (t x) \frac{1}{2 \pi} e^{-\frac{1}{2} x^{2}}=\int \frac{1}{2 \pi} e^{t x-\frac{1}{2} x^{2}} d x
$$

- Completing the square gets us

$$
\int \frac{1}{2 \pi} e^{-\frac{1}{2} x^{2}+t x-\frac{1}{2} t^{2}+\frac{1}{2} t^{2}}=\int \frac{1}{2 \pi} e^{-\frac{1}{2}(x-t)^{2}+\frac{1}{2} t^{2}} d x=e^{\frac{1}{2} t^{2}}
$$

- Example: Gaussian tail bound. Suppose $X \sim N\left(\mu, \sigma^{2}\right)$. Then, if Z is standard Normal, then $X=\sigma Z+\mu$. Then,
$\mathbb{E}[\exp (t X)]=E[\exp (t(\sigma Z+\mu))]=E[\exp (t \sigma Z) \exp (t \mu)]=\exp (t \mu) m_{Z}(t \sigma)=\exp \left(t \mu+\frac{1}{2} t^{2} \sigma^{2}\right)$
- To apply Chernoff's bound, we compute the minimum over all t :

$$
\inf _{t \geq 0} \exp (-t(u+\mu)) \exp \left(t \mu+\frac{1}{2} t^{2} \sigma^{2}\right)=\inf _{t \geq 0} \exp \left(-t u+\frac{1}{2} t^{2} \sigma^{2}\right)
$$

which is minimized at $t=\frac{u}{\sigma^{2}}$

- Plug this in to get

$$
\mathbb{P}((X-\mu) \geq u) \leq \exp \left(-\frac{u^{2}}{\sigma^{2}}+\frac{u^{2}}{2 \sigma^{2}}\right)=\exp \left(-\frac{u^{2}}{2 \sigma^{2}}\right)
$$

- This is a one-sided tail bound. Combining with the other side of the tail bound

$$
\mathbb{P}(|X-\mu| \geq u) \leq 2 \exp \left(-\frac{u^{2}}{2 \sigma^{2}}\right)
$$

- This bound is much tighter than Chebyshevs. For $\hat{\mu}=\frac{1}{N} X_{i}$, where $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, we have $\hat{\mu} \sim \mathcal{N}\left(\mu, \sigma^{2} / N\right)$.
- Then, the Gaussian tail bound for this where $u=t \sigma / \sqrt{N}$ is

$$
\mathbb{P}\left(\left|\hat{\mu}_{N}-\mu\right| \geq t \sigma / \sqrt{N}\right) \leq 2 \exp \left(-\frac{t^{2}}{2}\right)
$$

- Compare to the WLLN variant from before:

$$
\mathbb{P}\left(\left|\hat{\mu}_{N}-\mu\right| \geq \frac{t \sigma}{\sqrt{N}}\right) \leq \frac{1}{t^{2}}
$$

Aside: Both bounds say the deviation goes down at $\frac{1}{\sqrt{N}}$. However, Gaussian tail bound goes down with exponentially fast. Previously Chebyshev told us with probaiblity 0.99 , the average is within $10 \sigma / \sqrt{N}$. With the exponential tail bound, with probabilty 0.99 we have that the average is within

$$
\sqrt{2 \ln (1 / 0.005)} \sigma / \sqrt{N} \approx 3.25 \sigma / \sqrt{N}
$$

More generally, Chebyshev says:

$$
|\hat{\mu}-\mu| \leq \frac{\sigma}{\sqrt{n \delta}}
$$

whereas Gaussian tails tell us

$$
|\hat{\mu}-\mu| \leq \sigma \sqrt{\frac{2 \ln (2 / \delta)}{n}}
$$

where the first is polynomial in δ and the second is logarithmic.

- The previous Gaussian tail inequality actually applies more generally to a class of random variables known as sub-Gaussian random variables
- Intuitively, a sub-Gaussian distribution is one whose tails decay faster than a Gaussian
- This includes many of the examples we saw before, such as Bernoulli or Beta
- A random variable X with mean μ is sub-Gaussian if there exists a $\sigma>0$ such that

$$
\mathbb{E}[\exp (t(X-\mu))] \leq \exp \left(\sigma^{2} t^{2} / 2\right)
$$

- Note this upper bound is the same as the Gaussian tail bound with zero mean, i.e.

$$
\mathbb{E}[\exp (t X)] \leq \exp \left(t \mu+\frac{1}{2} t^{2} \sigma^{2}\right)=\exp \left(\frac{1}{2} t^{2} \sigma^{2}\right)
$$

if X has mean zero. .

- Gaussian random variables with variance σ^{2} trivially satisfy this relation as a σ-sub-Gaussian random variable. Hence, the random variable is sub-Gaussian if its moment generating function is dominated by a Gaussian with variance σ^{2}
- You can repeat the same Chernoff procedure for the Gaussian tails to conclude that subGaussians hve the same two-sided exponetial tail bound (so we won't repeat it here)

$$
\mathbb{P}(|X-\mu| \geq u) \leq 2 \exp \left(-u^{2} /\left(2 \sigma^{2}\right)\right)
$$

- Recall that if $X_{1}, \ldots, X_{N} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ then $\frac{1}{N} \sum_{i} X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2} / N\right)$. We proved this with properties of Gaussian random variables.
- Similarly, if X_{1}, \ldots, X_{N} are σ-sub-Gaussian, then their average $\frac{1}{N} \sum_{i} X_{i}$ is σ / \sqrt{N}-sub-Gaussian.
- Proof:

$$
\begin{gathered}
\mathbb{E}[\exp (t(\hat{\mu}-\mu))]=\mathbb{E}\left[\exp \left(\frac{t}{N} \sum_{i}\left(X_{i}-\mu\right)\right)\right] \\
=\prod_{i} \mathbb{E}\left[\exp \left(\frac{t}{N}\left(X_{i}-\mu\right)\right)\right] \leq \prod_{i} \exp \left(\frac{t^{2}}{N^{2}} \sigma^{2} / 2=\exp \left(t^{2} \sigma^{2} /(2 N)\right)\right.
\end{gathered}
$$

and hence it is σ / \sqrt{N}-sub-Gaussian.

- This directly implies the following two-sided tail bound for the average of sub-Gaussian random variables. Plugging it in gets

$$
\mathbb{P}(|\hat{\mu}-\mu| \geq u) \leq 2 \exp \left(-u^{2} N /\left(2 \sigma^{2}\right)\right)
$$

and substituting $u=k \sigma / \sqrt{N}$ gets the familiar form from the Gaussian two-sided tail bound:

$$
\mathbb{P}(|\hat{\mu}-\mu| \geq k \sigma / \sqrt{N}) \leq 2 \exp \left(-k^{2} / 2\right)
$$

Aside: Recall that the property we really cared about for concentration was that the mass in the tails shrinks exponentially. This was formalized in the previous section as "faster than a Gaussian", and implies an exponentially decaying concentration bound $2 \exp \left(-t^{a} n d 2 / 2\right)$ as opposed to the Chebyshev concentration bound of $\frac{1}{t^{2}}$, which only assume finite variance.

- Hoeffding's bound: a special case of sub-Gaussian random variables is bounded random variables. This will be our final concentration bound.
- Intuition: if a random variable only takes values within a fixed range of $[a, b]$, then their tails decay faster than a Gaussian (the tails are zero).
- Bounded random variables are definitely sub-Gaussian, but for what parameter σ ?
- Example: Rademacher random variable, is $\{+1,-1\}$ with equal probability.
- Then, Rademacher random variables are $\sigma=1$-sub-Gaussian:

$$
\mathbb{E}[\exp (t X)]=\frac{1}{2}[\exp (t)+\exp (-t)]=\frac{1}{2}\left[\sum_{k \geq 0} \frac{t^{k}}{k!}+\sum_{k \geq 0} \frac{(-t)^{k}}{k!}\right]
$$

$$
=\sum_{k \geq 0} \frac{t^{2 k}}{(2 k)!} \leq \sum_{k \geq 0} \frac{t^{2 k}}{2^{k} k!}=\exp \left(t^{2} / 2\right)
$$

and therefore we can use the sub-Gaussian tail bound (plug in $\sigma=1$).

- Can we do this more generally for random variables X that take on values between some bounded interval $[a, b]$?
- Jensen's inequality: a useful inequality seen in many places (convex optimization).
- Basic 1D definition of convexity: a function g is convex if

$$
g(\alpha x+(1-\alpha) y) \leq \alpha g(x)+(1-\alpha) g(y)
$$

for all x, y and $\alpha \in[0,1]$. Intuitively, this means that any line connecting two points on g lies above g.

- Example: $g(x)=x^{2}$ is convex.
- Jensen's inequality states that for a convex function $g: \mathbb{R} \rightarrow \mathbb{R}$, then

$$
\mathbb{E}[g(x)] \geq g(\mathbb{E}[X])
$$

- "A linear function before g is at most a linear function after g "
- Proof: Let $\mu=\mathbb{E}[X]$, and let $L_{\mu}(x)=a x+b$ be the tangent line to the function g at μ, at i.e. $L_{\mu}(\mu)=g(\mu)$. By convexity $(*)$, we know that $g(x) \geq L_{\mu}(x)$ at all x. Therefore,

$$
\mathbb{E}[g(x)] \geq \mathbb{E}\left[L_{\mu}(X)\right]=\mathbb{E}[a X+b]=a \mu+b=L_{\mu}(\mu)=g(\mu)
$$

- Proof of $(*)$: WLOG suppose $y>x$.

$$
\begin{gathered}
g(\alpha x+(1-\alpha) y) \leq \alpha g(x)+(1-\alpha) g(y) \\
g(\alpha x+(1-\alpha) y)-g(x) \leq(\alpha-1) g(x)+(1-\alpha) g(y) \\
g(\alpha x+(1-\alpha) y)-g(x) \leq(1-\alpha)(g(y)-g(x)
\end{gathered}
$$

Note that $[\alpha x+(1-\alpha) y]-x=(1-\alpha)(y-x) \geq 0$, so divide both sides by this quantity

$$
\frac{g(\alpha x+(1-\alpha) y)-g(x)}{[\alpha x+(1-\alpha) y]-x} \leq \frac{g(y)-g(x)}{y-x}
$$

Take the limit as $\alpha \rightarrow 1$ and we get

$$
\begin{gathered}
g^{\prime}(x) \leq \frac{g(y)-g(x)}{y-x} \\
g^{\prime}(x)(y-x)+g(x) \leq g(y)
\end{gathered}
$$

so the tangent line lies below g.

- Next: MGF of bounded random variables. Let X have zero mean and takes values on the bounded interval $[a, b]$.
- Zero mean assumption doesn't matter (can always subtract the mean and use $Y=X-\mathbb{E}[X]$ instead).
- Let X^{\prime} be an independent copy of X. Then using Jensen's inequalty (and the exponential function being convex),

$$
\mathbb{E}_{X}(\exp (t X)]=\mathbb{E}_{X}\left(\exp \left(t\left(X-\mathbb{E}\left[X^{\prime}\right]\right)\right)\right] \leq \mathbb{E}_{X, X^{\prime}}\left(\exp \left(t\left(X-X^{\prime}\right)\right)\right]
$$

- Furthemore let ϵ be a Rademacher random variable, then, $X-X^{\prime}$ is identical to the distribution of $X^{\prime}-X$, which is identical to $\epsilon\left(X-X^{\prime}\right)$. Then, using the Hoeffding bound for Rademacher random variables,

$$
\mathbb{E}_{X}(\exp (t X)] \leq \mathbb{E}_{X, X^{\prime}}\left[\exp \left(t^{2}\left(X-X^{\prime}\right)^{2} / 2\right)\right]
$$

The goal of this step is to make the bound agnostic to whether $X>X^{\prime}$ or vice versa. Using boundedness, we have

$$
\mathbb{E}_{X}(\exp (t X)] \leq \exp \left(t^{2}(b-a)^{2} / 2\right)
$$

and so bounded random variables are $(b-a)$-sub Gaussian.

- There is a stronger version called Hoeffding's Lemma which has a denominator of 8 instead of 2 .
- Concentration bound: Suppose X_{1}, \ldots, X_{N} are bounded iid random variables with $a \leq X_{i} \leq$ b. Let $\hat{\mu}=\frac{1}{N} \sum_{i} X_{i}$. Then, applying Markov's followed by the MGF bound, we get

$$
\begin{gathered}
\mathbb{P}(\hat{\mu} \geq u)=\mathbb{P}\left(\exp \left(t \sum_{i} X_{i}\right) \geq \exp (t N u)\right) \leq e^{-t N u} \mathbb{E}\left[\exp \left(\sum_{i} t X_{i}\right)\right] \\
\mathbb{P}(\hat{\mu} \geq u) \leq e^{-t N u} \prod_{i} \mathbb{E}\left[\exp \left(t X_{i}\right)\right] \leq e^{-t N u} \exp \left(N t^{2}(b-a)^{2} / 2\right)=\exp \left(N\left(\frac{(b-a)^{2}}{2} t^{2}-t u\right)\right)
\end{gathered}
$$

The RHS is minimized at

$$
t(b-a)^{2}-u=0 \Rightarrow t=\frac{u}{(b-a)^{2}}
$$

and so therefore the one sided bound is

$$
\mathbb{P}(\hat{\mu} \geq u) \leq \exp \left(N\left(\frac{(b-a)^{2}}{2} \frac{u^{2}}{(b-a)^{4}}-\frac{u^{2}}{(b-a)^{2}}\right)\right)=\exp \left(-\frac{N u^{2}}{2(b-a)^{2}}\right)
$$

- The two sided bound is thus

$$
\mathbb{P}(|\hat{\mu}| \geq u) \leq 2 \exp \left(-\frac{N u^{2}}{2(b-a)^{2}}\right)
$$

- A slightly stronger bound with Hoeffding's Lemma gives

$$
\mathbb{P}(|\hat{\mu}| \geq u) \leq 2 \exp \left(-\frac{2 N u^{2}}{(b-a)^{2}}\right)
$$

Aside: Hoeffding's Lemma allows us to give concentration inequalities for bounded random variables. This takes the key idea of a Gaussian for concentration (the exponentially decreasing tails) and generalizes it to a broad class of random variables (bounded) that makes the concentration inequality applicable in real-world settings. In many settings, we can assume our data is bounded.

2 Generalization Bound

Finally, we can prove our first generalization bound! We will prove that the empirical estimator $\hat{f}=\arg \min _{f} R_{\mathrm{emp}}(f, X, Y)$ has true risk close to the true optimal risk.

$$
\mathbb{P}\left(R_{\text {true }}(\hat{f})-R_{\text {true }}\left(f^{*}\right)<\epsilon\right)>1-\delta
$$

where

$$
R_{\mathrm{emp}}(f, X, Y)=\frac{1}{N} \sum_{i} \ell\left(f\left(x_{i}, y_{i}\right)\right)
$$

and

$$
R_{\text {true }}(f)=\mathbb{E}_{x, y}[\ell(f(x), y)]
$$

Note this is slightly different from what we looked at earlier, as we want to to match the true risk of the optimal predictor $f^{*}=\arg \min _{f} R_{\text {true }}(f)$ with the true risk of the estimated predictor $\hat{f}=\arg \min _{f} R_{\text {emp }}(f, X, Y)$. This is an even stronger statement.

To start, we can decompose the difference in risk into three parts:

$$
\left[R_{\text {true }}(\hat{f})-R_{\text {emp }}(\hat{f})\right]+\left[R_{\text {emp }}(\hat{f})-R_{\text {emp }}\left(f^{*}\right)\right]+\left[R_{\text {emp }}\left(f^{*}\right)-R_{\text {true }}\left(f^{*}\right)\right]
$$

- The first term is difficult, as \hat{f} is a random variable that is not i.i.d.
- The second term is ≤ 0 because by definition, \hat{f} minimizes the empirical risk.
- The third term is an i.i.d. sum since f^{*} is deterministic.

To prove generalization, we'll use a concept known as uniform bounds. Upper bounding with absolute values we get

$$
\begin{gathered}
R_{\text {true }}(\hat{f})-R_{\text {true }}\left(f^{*}\right) \leq\left|R_{\text {true }}(\hat{f})-R_{\text {emp }}(\hat{f})\right|+0+\left|R_{\text {emp }}\left(f^{*}\right)-R_{\text {true }}\left(f^{*}\right)\right| \\
R_{\text {true }}(\hat{f})-R_{\text {true }}\left(f^{*}\right) \leq \sup _{f}\left|R_{\text {emp }}(f)-R_{\text {true }}(f)\right|+\sup _{f}\left|R_{\text {emp }}(f)-R_{\text {true }}(f)\right| \\
R_{\text {true }}(\hat{f})-R_{\text {true }}\left(f^{*}\right) \leq 2 \cdot \sup _{f}\left|R_{\text {emp }}(f)-R_{\text {true }}(f)\right|
\end{gathered}
$$

In other words, we are bounding the excess risk (LHS) with the worst case difference between the empirical and true risk over all possible functions f. The RHS is sometimes called an empirical process in statistics. If we can control this, then we can control the generalization error.

Then, our generalization bound becomes

$$
\mathbb{P}\left(R_{\text {true }}(\hat{f})-R_{\text {true }}\left(f^{*}\right) \geq \epsilon\right) \leq \mathbb{P}\left(\sup _{f}\left|R_{\text {emp }}(f)-R_{\text {true }}(f)\right| \geq \frac{\epsilon}{2}\right)
$$

2.1 Generalization for finite function classes, $|\mathcal{F}|<\infty$

We will now prove the following: If a function class is finite, $|\mathcal{F}|<\infty$, and loss is bounded $(0 \leq \ell \leq B)$, then we have

$$
\mathbb{P}\left(R_{\text {true }}(\hat{f})-R_{\text {true }}\left(f^{*}\right)<B \sqrt{\frac{2 \log (2|\mathcal{F}|)+2 \log \delta^{-1}}{n}}\right)>1-\delta
$$

The proof has three main steps.

1. Hoeffding's inequality and since the loss is bounded, we know that

$$
\mathbb{P}\left(\left|R_{\mathrm{emp}}(f)-R_{\text {true }}(f)\right| \geq \frac{\epsilon}{2}\right) \leq 2 \exp \left(\frac{N \epsilon^{2}}{2 B^{2}}\right)
$$

2. Finite function class assumption with union bound:

$$
\begin{gathered}
P\left(\sup _{f}\left|R_{\mathrm{emp}}(f)-R_{\text {true }}(f)\right| \geq \frac{\epsilon}{2}\right)=P\left(\bigcup_{f}\left\{\left|R_{\mathrm{emp}}(f)-R_{\text {true }}(f)\right| \geq \frac{\epsilon}{2}\right\}\right) \\
\leq \sum_{f} P\left(\left\{\left|R_{\mathrm{emp}}(f)-R_{\text {true }}(f)\right| \geq \frac{\epsilon}{2}\right\}\right) \\
\leq 2|\mathcal{F}| \exp \left(\frac{N \epsilon^{2}}{2 B^{2}}\right)
\end{gathered}
$$

3. Finally, connect the uniform convergence bound back to generalization to get

$$
\begin{aligned}
\mathbb{P}\left(R_{\text {true }}(\hat{f})-R_{\text {true }}\left(f^{*}\right)\right. & \geq \epsilon) \leq \mathbb{P}\left(\sup _{f}\left|R_{\text {emp }}(f)-R_{\text {true }}(f)\right| \geq \frac{\epsilon}{2}\right) \\
& \leq 2|\mathcal{F}| \exp \left(\frac{N \epsilon^{2}}{2 B^{2}}\right)
\end{aligned}
$$

Setting this equal to δ and solving for ϵ we get

$$
\epsilon^{2}=\frac{2 B^{2}}{N} \log \left(2|\mathcal{F}| \delta^{-1}\right)
$$

Plugging this in we get

$$
\mathbb{P}\left(R_{\text {true }}(\hat{f})-R_{\text {true }}\left(f^{*}\right) \geq B \sqrt{\frac{2 \log (2|\mathcal{F}|)+2 \log \delta^{-1}}{n}}\right) \leq \delta
$$

which recovers the end result.

