Explainability

Eric Wong
9/29/2022
Local Linearity

Marco Tulio Ribeiro “Local Interpretable Model-Agnostic Explanations (LIME): An Introduction”
Superpixels for "interpretable" features

Original Image

Interpretable Components

Marco Tulio Ribeiro "Local Interpretable Model-Agnostic Explanations (LIME): An Introduction"
Perturb superpixels

Original Image
P(tree frog) = 0.54

<table>
<thead>
<tr>
<th>Perturbed Instances</th>
<th>P(tree frog)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>0.00001</td>
</tr>
<tr>
<td></td>
<td>0.52</td>
</tr>
</tbody>
</table>

Locally weighted regression

Explanation

Marco Tulio Ribeiro "Local Interpretable Model-Agnostic Explanations (LIME): An Introduction"
Explaining images

Marco Tulio Ribeiro "Local Interpretable Model-Agnostic Explanations (LIME): An Introduction"
Explaining words

Text with highlighted words
From: johnchad@triton.unm.edu (jchadwic)
Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 11
NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.
This is the same question I have and I have not seen an answer on the net. If anyone has a contact please post on the net or email me.

Marco Tulio Ribeiro "Local Interpretable Model-Agnostic Explanations (LIME): An Introduction"
A closer look at dog
Local linearity?

Mask=0 Mask=0.5 Mask=1
Local linearity?

![Graph showing the relationship between score of dog and mask of top features]

- **X-axis:** Mask of top features
- **Y-axis:** Score of dog
Feature viz
Exemplars vs Optimization

Baseball—or stripes? mixed4a, Unit 6
Animal faces—or snouts? mixed4a, Unit 240
Clouds—or fluffiness? mixed4a, Unit 453
Buildings—or sky? mixed4a, Unit 492

Olah et al. 2017 “Feature Visualization”
Standard gradient ascent is not useful

Olah et al. 2017 “Feature Visualization”
But can work with lots of tricks

Olah et al. 2017 “Feature Visualization”
Objectives

- **Neuron**
 \(\text{layer}_n[x,y,z] \)

- **Channel**
 \(\text{layer}_n[:,:,z] \)

- **Layer/DeepDream**
 \(\text{layer}_n[:,::,::] \)
 \(\text{layer}_n[:,::,::]^2 \)

- **Class Logits**
 \(\text{pre}_\text{softmax}[k] \)

- **Class Probability**
 \(\text{softmax}[k] \)

Olah et al. 2017 “Feature Visualization”
What direction?

mixed3a, random direction
mixed4c, random direction
mixed4d, random direction
mixed5a, random direction

Olah et al. 2017 “Feature Visualization”
Robust models

Engstrom et al. 2019 “Adversarial Robustness as a Prior for Learned Representations”