CIS 7000-005: Debugging Data & Models Fall 2022

Explainabilty — September 29
Prof. Eric Wong

To find problems in our models, we need ways to inspect and debug them. How can we do this for
complex models often seen as opaque? This problem is called explainability in machine learning.

e What is an ideal explainability method?

e What do explainability methods currently provide?

1 Desiderate for explainabilty

What do we want out of an explanation? There are tons of different criteria one could hope for.
Here’s a few:

o Faithfulness - explanations should reflect an actual change in the model

Usability - explanation should be meaningful to the end user
e Necessity - model needs the identified explanation to do a prediction

o Sufficient - explanation covers the entire model’s prediction

1.1 Interpretabile by design

Some models are "interpretable by design".

Linear models
y=BTr+ B

What is the claim of interpretability here? it depends on the feature and the RZ.
R>=1-SSE/SST

where SSE = 3,(y* — §")? and SST = Y";(y* — 4)?. If the R? value is high, then the the weights
of the linear model reflect the variation in the data. Otherwise, if R? is low, then little variance
is explained by the linear. In this case, the weights of the linear model can still technically be
interpreted but the interpretation is virtually meaningless.

Logistic regression Linear models are typically used for regression tasks. In the case of clas-
sification, we usually use a logistic regression model instead. Is this as interpretable as a linear

regression model?
1

P =1 = o=

How to interpret the weights now? Take a log transform of the odds:

Ply=1) T
— 1
no— Py =1) w'x (1)
Lets call this the log odds. What happens if we increase the unit of 8; by one?
J _ . 2
Oddej exp</8.7) ()

So one unit of change corresponds to an increase in the “log odds ratio” by f;.

1.2 Local surrogates
LIME Suppose we are happy with linear models. We can try to fit a local surrogate linear model

to explain local decision boundaries. For a specific example x, model f, and linear model class G,
we can solve

min U f g;7) +Qg)

Select = to explain

o Perturb z locally to get a dataset of (z;, f(x;))

o Weight each x; according to its distance to z with w;
e Train a g on the weighted dataset

o Interpret g

For example, we can use LASSO:
min [Jw” X —y|| + [Jwl;

The first term here fits a linear model to the dataset, while the second ¢ regularizer encourages a
simple solution via sparsity.

Assumptions of LIME. At a first glance, interpreting with LIME appears to be a simple
task—simply interpret the linear model. What assuptions are we making here?

1. We are assuming that the linear model is a good fit for the perturbed data, i.e. tha the R? is
high and that the linear model achieves good accuracy. In other words, that the network is
locally linear in the region of perturbed inputs. Does this imply faithfulness?

2. We assume a specific sparsity threshold to interpret, i.e. the number of features with non-zero
weights in the linear model. This is hopefully sparse enough to imply usability.

But how many features do we interpret, or how sparse should we make the linear model? Selecting
number of features is going to affect necessity and sufficiency. Furthermore, the number of datapoints
you sample can affect the linear model—different runs of LIME can then output different results.
Typically the feature space is too high dimensional to be able to exhaustively cover all possible
perturbations. Can you construct an example where even a perfect linear model on the perturbations
deviates from the neural network?

Kernel SHAP Kernel SHAP follows a similar process to LIME:

e Select = to explain

o Perturb z locally to get a dataset of (z;, f(x;))
e Weight each x; according to the SHAP kernel
e Train a g on the weighted dataset

e Interpret g

Here, the main difference is that we weight each perturbed example by the SHAP kernel instead of
its distance to the original datapoint. This kernel distributes the score fairly amongst the features
(in a game theoretic sense). The SHAP kernel is

M—-1

)= L)

This turns out to have some nice properties, such as

f@) = Bl @) + Y05

where ¢; are the SHAP values.

1.3 Saliencies and counterfactuals

paragraphSaliency maps Another class of method is called saliency maps. These types of methods
assign a score to various input features of the model. For an input x and a model f, a saliency
method assigns a score s; for each x; that indicates some measure of “importance” of the feature.
One common way to generate scores is via the gradients of the function:

S = vmf(x) (3)

However, the notion of “importance” is ambiguous: what counts as important? One might expect
that important features significantly contributed towards the prediction. Can you construct an

example where a gradient saliency map assigns features a high score (gradient) that has low
importance, or a low score that has high importance?

There is a swarth of saliency map methods, using either gradient-information or other model
information to generate scores. For each of these methods, what exactly is the score measuring?
Are you convinced that the score is correlated with importance?

Briefly, we’ll go over two other classes of local explainability methods.

Counterfactuals A fourth class of explanations are counterfactual explanations. These approaches
try to explain the model’s prediction by answering “what if” questions. For example, what is the
smallest change that a loan applicant can make that would have resulted in a credit approval instead
of rejection? The main question here is how to generate such counterfactuals. One natural approach
is to solve the following optimization problem:

min A(f(z') = y')* + d(z, 2") (4)

z

where d is a distance metric such as the weighted manhattan distance,

|zj — @}

9j

2 Neural representations

The previous explanations were local, in the sense that they explained the prediction of a model for
a particular input. We’ll next discuss some global explanations—those that attempt to explain the
general decision process for a model.

2.1 Feature visualization

Feature visualizations are a way to interpret the neurons within a deep network. Intuitively, these
methods search for inputs that strongly activate a specifiuc neuron. For example, for images this is:

max h(x) (6)

where h(z) is a subnetwork of f that outputs just one neuron. One can solve for this via optimization
tools like gradient ascent to craft synthetic visualizations, or search over the dataset to find realistic
"exemplars" from natural examples. Typically this is done in the vision setting.

Searching over natural images to find highly activating images is attractive as natural images are
directly understandable. Directly optimizing doesn’t work out of the box and requires a lot of
handy tricks (such as regularization, generative priors, removal of high frequency signals) to make
them output something human understandable, so its best to use existing libraries. Aside: standard
gradient ascent actually produces more semantically meaningful results on adversarially robust
models.

e Neurons can encode many different features that may be different from the top-most activating
pattern. There is some work towards generating "multi faceted" visualizations, but how many
visualizations do you need to truly understand one neuron?

e Are visualizations actually reflecting real patterns in data, or are we just hallucinating? Many
of these visualizations are unrecognizable.

e Even if you have a perfect feature visualization, what do you do with it? Did the neural
network even react to this pattern?

e There are too many neurons to look at.

2.2 Linear probing

Another tool people use to interpret deep representations is to use a linear probe. Specifically, for
a given representation h(z), and an auxiliary task (z,y), we fit a linear layer g(z) = w? h(z) to
predict y. If the layer has high accuracy on this task, then we argue that the neural network has
learned the concepts encoded in the task (x,y). This is popular in natural language, for example
for predicting parts of speech or partial dependencies. The claim is that high accuracy in predicting
these properties implies that the property is encoded in the representation, and that the probe
found it.

e Need to be careful to have control tasks that measure the ability of a probe to independently
memorize learned outputs, regardless of the actual properties.

o Use a control task: outputs that are structured (learnable by probe) but random (independent
of linguistic properties)

Consider a part of speech tagging task. An example of a control task would be to assign a fixed
but random part of speech mapping C where y; = C(z;) is randomly sampled. This could be made
more complex by sampling a different C' for different types of words. Then, it is argued th at the
actual property of the representation to learn the task is given by the difference of the linear probe
on the given task from the randomized control.

3 References

Notes largely sourced from https://christophm.github.io/interpretable-ml-book/
For lots of examples on feature visualization, take a look at https://distill.pub/2017/feature-visualization/

For more information on linear probes, see Jjohn Hewitt’s page https://nlp.stanford.edu/
~johnhew/interpreting-probes.html.

https://christophm.github.io/interpretable-ml-book/
https://distill.pub/2017/feature-visualization/
https://nlp.stanford.edu/~johnhew/interpreting-probes.html
https://nlp.stanford.edu/~johnhew/interpreting-probes.html

	Desiderate for explainabilty
	Interpretabile by design
	Local surrogates
	Saliencies and counterfactuals

	Neural representations
	Feature visualization
	Linear probing

	References

