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Another area in which the ML pipeline can go wrong is distribution shift.

• What is a distribution shift?

• Why does distribution shift happen?

• How can you measure or detect shifts?

1 Types of distribution shift

Typically in ML, we assume that the data is independent and identically distributed (i.i.d.), and
that the test distribution matches the train distribution. So if our training data is drawn from
ptrain, and our test data is drawn from ptest, we assume that all samples are drawn i.i.d. and that
ptrain = ptest.

Distribution shift describes what happens when this assumption no longer holds, or ptrain 6= ptest.
How this occurs is usually described in one of three settings, depending on whether it affects the
features, labels, or both:

1. Covariate shift: a change in p(x). In this case, the feature distribution changes, while the label
distribution does not. This includes subproblems such as domain shift and subpopulation shift,
or sampling bias and representation bias. For example, for a cats vs. dogs classifier, in one
location, dogs may be primarily photographed outdoors, while cats are primarily photographed
indoors, whereas in another location, cats may be more commonly seen outdoors. The label
of the cat and dog does not change whether it is indoors or outdoors, so the features shift in
isolation. Another example is changes in languages across regions (i.e. dialects or slang, such
as soda vs. pop).

2. Label shift: a change in p(y). This can occur when, for example, our knowledge about the
world changes (either over time or via expert knowledge). In the cats vs. dogs example, a
contrived example for this could be when experts realize we’ve been mis-identifying a dog as a
cat this entire time. A more natural example is the COVID-19 pandemic: a model predicting
the positivity rate of COVID tests will experience label shift as the pandemic goes through
waves over time. In this case, we could (roughly) assume that the population isn’t drastically
changing, and that the infection mechanism linking people to positive tests remains the same,
so the labels shift in isolation.

3. Concept shift: a change in p(y|x). This can occur when the mechanism, or underlying model
linking our predictions and features, changes. For example, a model predicting sentiment or
emotions on social media can have different mechanisms that affect people that change, such
as shifts in political climates or major world events.
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2 Covariate shift

Covariate shift is often studied under domain adaptation, which studies how to train models that
remain robust or accurate when covariate shift occurs. For example, in supervised learning, we first
train a model f on training data Dtrain, and then test our model on shifted data Dtest.

Usually this assume a factorization of the distribution as p(x, y) = p(x)p(y|x). Learning under
covariate shifts can be viewed as a form of causal learning, i.e. learning the effect, or the underlying
causal mechanism p(y|x) that remains correct even when p(x) changes.

∫
x,y
f(x, y)p(x, y)dxdy

=
∫
x,y
f(x, y)p(y|x)p(x)dxdy

=
∫
x,y
f(x, y)p(y|x)p(x)

q(x)q(x)dxdy

=
∫
x,y
f(x, y)p(y|x)α(x)q(x)dxdy

(1)

Types of covariate shift can usually be categorized into one of the two:

1. Domain shift: different distributions are organized according several domains, i .e. pi for
i = 1 . . . k. For example, clipart vs. real photos vs. paintings. In this case, the entire
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distribution typically changes. A distribution shift is thus a change from one domain to
another, i.e. training on p1 and testing on pk.

2. Subpopulation shift: the support of the distribution does not change, but the distribution
over subgroups or subpopulations does. For example, going from 50% dogs and 50% cats to
90% dogs and 10% cats.

In the future we will discuss how to train models robust to these shifts.

3 Label shift

In contrast to covariate shift, assumes that the the label distribution p(y) changes. This is based
on a factorization of the distribution as p(x, y) = p(y)p(x|y), which can be viewed as a form of
anti-causal learning, i.e. predicting the cause of the label.

∫
x,y
f(x, y)p(x, y)dxdy

=
∫
x,y
f(x, y)p(x|y)p(y)dxdy

=
∫
x,y
f(x, y)p(x|y)p(y)

q(y)q(y)dxdy

=
∫
x,y
f(x, y)p(x|y)α(y)q(y)dxdy

(2)
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4 Concept shift

Finally, concept shift assumes that the mechanism connecting the features to the label changes.
This assumes a forward causal relationship as in the covariate setting.

5 Other types of shifts

You may have heard of other kinds of shifts:

• Temporal - changes over time

• Environmental - changes in the environment

• Group - changes over subgroups

For the most part these are an orthogonal property of possible shifts, and could be in addition to
any of the previous categories, or in isolation.

6 Detecting distribution s hift

Distribution shift can be monitored anywhere in the ML pipeline—from the data down to the
predictions. But how do we determine when this occurs? There are a ton of methods for detecting
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distribution shift. In these notes we’ll cover three statistical methods. These methods test the
question “What is the probability that two sets of samples were drawn from the same (unknown)
probability distribution”?

6.1 Kolmogorov-Smirnov

The Kolmogorov-Smirnov (KS) test is a nonparametric statistical test. It makes no assumptions,
but only works for one-dimensional data. When it is applicable, it is one of the most useful and
general tests as it can detect differences in both support and shape of the distribution.

Let’s begin with the standard KS test statistic. For a sample x1, . . . , xn drawn from a distribution
with CDF F (x), we do the following:

1. Calculate the empirical CDF Fn(x) =
∑

i
1(xi≤x)
n

2. Calculate the KS statitistic Dn = supx |Fn(x)− F (x)|

Via the fundamental theorem of statistics (or the Glivenko-Cantelli theorem), we know that Fn(x)
converges almost surely to F (x) if xi are drawn from F (x) (the null hypothesis). The goodness-of-fit
test, which tests of the empirical CDF matches the true CDF rejects the null hypothesis if

√
nDn > Kα (3)

where Kα = P (K ≤ Kα) = 1 − α and K is a random variable drawn from the Kolmogorov
distribution. Note that K = sup[0,1]|B(t)| where B(t) is a Brownian bridge.

To make this a two-sample test, we simply use the empirical CDF of both datasets. If we no longer
have the true distribution F but a sample zi, we can do the following:

1. Calculate the empirical CDF F1,n(x) =
∑

i
1(xi≤x)
n and F2,m(z) =

∑
i

1(zi≤z)
m

2. Calculate the KS statitistic Dn,m = supx |F1,n(x)− F2,m(x)|

where we reject the null hypothesis if

Dn,m > c(α)
√
n+m

nm
(4)

where c(α) =
√
− ln(α/2) · 1

2 .

6.2 Maximum Mean Discrepancy

The MMD is a two sample test statistic that represents distance between distributions as the
distance between the mean embedding. It also makes no assumption, and can apply to multivariate
data.

The MMD is typically calculated in a reproducing kernel Hilbert space (RKHS). Let H be a Hilbert
space of real valued functions on X. An RKHS is a space of functions where closeness in RKHS
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implies pointwise closeness in the functions, and that the space has a reproducing property. By the
Riesz representation theorem, for all x, there exists a unique kx ∈ H such that

f(x) = 〈f, kx〉 (5)

Then we can say the reproducing kernel is k(x, z) = 〈kx, kx〉.

For two distributions p, q and a feature map φ, we have

MMD(P,Q) = ‖Ep[φ(x)]− Eq[φ(z)]‖H (6)

To compute this, we can use what is called the kernel trick:

MMD2(P,Q) = ‖Ep[φ(x)]− Eq[φ(z)]‖2Hc
= 〈Ep[φ(x)],Ep[φ(x)]〉+ 〈Eq[φ(z)],Eq[φ(z)]〉 − 2〈Eq[φ(z)],Ep[φ(x)]〉
= Ex,x′∼p[k(x, x′)] + Ez,z′∼q[k(z, z′)]− 2Ex,z∼p,q[k(x, z)]

(7)

One kernel that leads to an RKHS is the Gaussian kernel, k(x, z) = e
−‖x−y‖2

2σ2 . There is no
theoretically nice threshold, however we can bootstrap the distribution of MMD distances under
the null hypothesis via resampling to estimate the distribution under the null (also known as
permutation testing). Then, accept/reject based on a 95% threshold.

6.3 Least-squares density difference

Here, the goal is to estimate the dfiference between two densities, f(x) = p(x)− q(x). Here we will
fit a linear model g(x) where

g(x) = θTψ(x) (8)

where ψ(x) is a vector of basis functions, i.e. the Gaussian kernel exp(−‖x− cl‖2/(2σ2)) for centers
cl. Then, the optimal linear classifier can be fit by minimizing the least squares difference:

min
θ

∫
(g(x)− f(x))2dx = min

θ

∫
(g(x)2dx−

∫
g(x)f(x)dx

= min
θ
θTHθ − 2θTh

= H−1h

(9)

where

H(x) =
∫
ψ(x)ψ(x)Tdx

h(x) =
∫
ψ(x)p(x)dx−

∫
ψ(x′)q(x′)dx′

(10)
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With this estimator, we can then estimate the least squares difference between the two densities as
follows: ∫

(p(x)− q(x))2dx = intf(x)(p(x)− q(x))dx

= intf(x)(p(x)− q(x))dx
= intθTψ(x)(p(x)− q(x))dx
= θTh

= hTH−1h

(11)

We can then test significance with a permutation test as we did in the MMD setting.

7 References

Parts of these notes are drawn from Chelsea Finn’s talk given at the UpML ICML 2022 workshop
https://upml2022.github.io/.

Parts of these notes are drawn from Chip Huyen’s course CS 329S: Machine Learning Systems Design
https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html

Many distribution shift metrics are implemented in the open source alibi detect library https:
//github.com/SeldonIO/alibi-detect
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