
99

Formal Reasoning about Layered Monadic Interpreters

IRENE YOON, University of Pennsylvania, USA
YANNICK ZAKOWSKI, Inria & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), France
STEVE ZDANCEWIC, University of Pennsylvania, USA

Monadic computations built by interpreting, or handling, operations of a free monad are a compelling
formalism for modeling language semantics and defining the behaviors of effectful systems. The resulting
layered semantics offer the promise of modular reasoning principles based on the equational theory of the
underlying monads. However, there are a number of obstacles to using such layered interpreters in practice.
With more layers comes more boilerplate and glue code needed to define the monads and interpreters involved.
That overhead is compounded by the need to define and justify the relational reasoning principles that
characterize the equivalences at each layer.

This paper addresses these problems by significantly extending the capabilities of the Coq interaction trees

(ITrees) library, which supports layered monadic interpreters. We characterize a rich class of interpretable
monads—obtained by applying monad transformers to ITrees—and show how to generically lift interpreters
through them. We also introduce a corresponding framework for relational reasoning about “equivalence of
monads up to a relation 𝑅”. This collection of typeclasses, instances, new reasoning principles, and tactics
greatly generalizes the existing theory of the ITree library, eliminating large amounts of unwieldy boilerplate
code and dramatically simplifying proofs.

CCS Concepts: • Software and its engineering→ Software libraries and repositories; • Theory of
computation→ Logic and verification; Equational logic and rewriting; Denotational semantics.

Additional Key Words and Phrases: Coq, monads, coinduction, compiler correctness

ACM Reference Format:
Irene Yoon, Yannick Zakowski, and Steve Zdancewic. 2022. Formal Reasoning about Layered Monadic Inter-
preters. Proc. ACM Program. Lang. 6, ICFP, Article 99 (August 2022), 29 pages. https://doi.org/10.1145/3547630

1 INTRODUCTION

Since their inception, monads and monadic interpreters have been recognized as appealing and
mathematically elegant ways to define programs and their semantics, especially in the presence
of I/O, state, nondeterminism, failure, or other effects [Liang and Hudak 2000; Liang et al. 1995;
Moggi 1989; Steele 1994]. The monad laws, suitably extended with domain-specific equations that
capture the semantics of effects, enable reasoning about the equivalence of monadic programs, and,
more generally, yield powerful relational program logics (such as Dijkstra monads [Ahman et al.
2017; Maillard et al. 2019, 2020]) that can be used to prove properties ranging from the correctness
of program optimizations to information-flow noninterference [Benton 2004].
It is no surprise, then, that when it comes to formalizing the behavior of complex language

semantics or the behavior of interactive systems, monads play a crucial role. They are particularly
well suited for defining the semantics of effects when themetalanguage is pure and total, which is the

Authors’ addresses: Irene Yoon, University of Pennsylvania, USA, euisuny@cis.upenn.edu; Yannick Zakowski, Inria &
LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France, yannick.zakowski@inria.fr; Steve Zdancewic, University of
Pennsylvania, USA, stevez@cis.upenn.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/8-ART99
https://doi.org/10.1145/3547630

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

HTTPS://ORCID.ORG/0000-0003-3388-1257
HTTPS://ORCID.ORG/0000-0003-4585-6470
HTTPS://ORCID.ORG/0000-0002-3516-1512
https://doi.org/10.1145/3547630
https://orcid.org/0000-0003-3388-1257
https://orcid.org/0000-0003-4585-6470
https://orcid.org/0000-0002-3516-1512
https://doi.org/10.1145/3547630

99:2 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

case when embedding a language semantics into dependent type theory, such as in Coq. Moreover,
by working with free monads [Swierstra 2008] and monadic interpreters, one can obtain a flexible,
general-purpose reasoning framework for effectful computations. Variations of this idea have
appeared throughout the literature, for instance as the programmonad in the FreeSpec project [Letan
et al. 2018], as I/O-trees [Hancock and Setzer 2000], and as McBride’s general monad [McBride
2015].
In this paper, we focus on interaction trees [Xia et al. 2020] (ITrees), a recent realization of this

approach as a Coq library. ITrees are defined as a coinductive variant of the freer monad [Kiselyov
and Ishii 2015] and are also closely related to resumption monads [Piróg and Gibbons 2014]. The
core data structure, itree E, represents a computation as a possibly-infinite tree with nodes labeled
by events e drawn from an event signature E. An event e can be thought of as a point at which
the computation interacts with its environment, allowing the environment to supply a response r.
The node corresponding to e in the ITree also has the continuation of the computation, given as a
function of r.
Several other features of ITrees make them well suited to defining semantics. First, event sig-

natures can be combined through a disjoint union operation: an ITree of type itree (E +' F) can
have events drawn from either E or F, allowing for a modular definition of computations. Second,
it is possible to write interpreters for the events in an ITree. We write h : E ; M to mean that h
is an event handler that maps events in the signature E into computations in the monad M. Then
interp h : ∀ A, itree E A→ M A maps an ITree computation into a monadic computation by
“handling” the events in E, which gives them a semantic definition according to the operations of
M. For instance, one might interpret “read” and “write” events into a state monad. Taken together,
the signature of events and event handlers allows for the decomposition of effects into stages,
modularizing the semantics in a style akin to algebraic effects [Plotkin and Power 2003]. Third, by
implementing the itree E monad coinductively, divergence is given native support, allowing for
generic fixed-point combinators to be defined without compromising the (lazy) computability of the
resulting definitional interpreters. The type itree voidE (where voidE is the empty event signature,
and is the unit of +') is isomorphic to Capretta’s delay monad [Capretta 2005], which was designed
specifically to represent nonterminating computations in type theory. Finally—and perhaps most
importantly for the purposes of formal verification—ITrees come equipped with a rich relational

theory: t ≈𝑅 u means that ITrees t and u are weakly bisimilar and produce answers related by 𝑅.
This relational theory generalizes the notion of program equivalence (given an equivalence relation
𝑅), and the relational theory can be lifted to the other monads obtained by interpretation of ITrees,
yielding a way to reason formally about monadic semantics.
Past experience suggests that ITrees provide a very comfortable semantic toolbox, whether to

reason about the functional correctness of programs or the correctness—in terms of equivalence or
refinement—of program transformations. The original paper [Xia et al. 2020] illustrated the approach
by proving the correctness of a toy compiler from imp, an imperative language, to asm, a simplified
assembly language. The story is pleasantly clean: a termination-sensitive result is established
without the need for any explicit coinduction; the compiler is proved in a compositional fashion
(open pieces of programs can be related to their compilation in isolation); and the proof method is
heavily equational, relying on ≈𝑅 to allow tedious but easy-to-produce proofs by rewriting.

The ITrees approach has also been shown to scale. The most ambitious project in this realm, to
date, is Vellvm [Zakowski et al. 2021]. In this project, the semantics of the sequential fragment of
LLVM IR has been formalized using ITrees, leading to a remarkably simplified semantics when
contrasted with the previous iteration of the project [Zhao et al. 2012], which was based on a more
traditional operational semantics. In particular, the program counter and the heavy invariants it
entails have disappeared. When it comes to reasoning, the benefits of the ITree semantics have

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:3

been evaluated in several dimensions. With respect to LLVM IR transformations, simple peephole
optimizations admit local, simple proofs, and proving a block fusion transformation correct can
be done at a high level of abstraction—verifying a transformation that only impacts control-flow
does not depend on the implementation of the state. With respect to front-ends targeting LLVM IR,
the HELIX [Zaliva et al. 2020] project formalizes parts of a system called SPIRAL, and it compiles
down to Vellvm.
While the results above are a promising testament to the viability of ITree-based monadic

interpreters for formal verification, things do not remain as smooth at the scale of Vellvm and
HELIX as they were for imp and asm (and even at the small scale, the situation can be improved).
In this paper, we identify and provide solutions to the following pain points that are impediments
to using ITrees at scale:
(1) Asmentioned above, the primary feature of the freemonad is its extensibility: there is a natural

inclusion of type itree E into itree (E +' F)with an event signature enriched via a coproduct.
That inclusion necessitates a renaming (to add the left injection), and such renamings can
be discharged with a simple typeclass (provided by the ITree library). However, when it
comes to using interp, which handles all of the events of an ITree, the existing typeclasses
are inadequate: a handler h : E ; M cannot readily be lifted to a handler h' : (E +' F) ; M

(and such a lifting may not always be possible), which means that the user has to hardcode the
syntactic structure of the event signatures for handlers and interpreters, breaking modularity.
Existing techniques, for instance the automatic injections used in Swierstra’s data types à la
carte [Swierstra 2008] (and re-implemented in the ITree library), do not provide an adequate
solution.

(2) When modularly structuring a semantics as complex as Vellvm’s, interpretation takes place in
layers: several interpreters are successively composed, each handling different events. How-
ever, while free monads, and ITrees in particular, give the freedom to interpret into anymonad,
we are now left to ponder how to interpret from other structures. For example, consider a han-
dler h : E ; stateT S (itree F) that interprets E events into the monad stateT S (itree F),
where S is the notion of state considered and stateT S is the state monad transformer defined
as fun M R⇒ S→ M (S * R) and interp h is of type itree E ; stateT S (itree F). If we
have another handler f : F ; M, we would like to compose the interpreters: (interp f) ◦
(interp h) should have type itree E ; stateT S M, but the left-hand use of interp works
over a state-transformed ITree, not an ITree, so this code does not typecheck—we require
a much more general notion of “interpreter” to build such interpretation stacks. With the
existing ITree library, such compositions must be constructed painfully and repetitiously by
hand.

(3) Beyond these issues that arise when building complex interpreter stacks, we also need to
be able to reason about the resulting computations. Consequently, we need versions of the
relational theories (monad laws, etc.) for every monad in sight! In practice, this means that we
need mechanisms to lift the equational theory of one monad through a monad transformer
to obtain a transformed theory. It is not enough to be able to construct proofs of equivalences
or refinements, we also need inversion principles to extract information from such proofs. It
is not at all obvious how to build such a relational reasoning framework generically.

Contributions. In this paper, we propose solutions to the problems described above. After giving
the necessary background about the ITree library and its current pain points in Section 2, we tackle
the problem of building layered monadic interpreters.

Section 3 introduces several novel typeclasses: Trigger, Subevent, and Interp, along with a generic
operation called over, that collectively address the issues with modularity of event signatures and

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:4 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R) (* computation terminating with value r *)
| Tau (t: itree E R) (* "silent" tau transition with child t *)
| Vis {A: Type} (e : E A) (k : A → itree E R). (* event e yielding an answer in A *)

Notation "E ; F" := (∀ X, E X → F X).
(* Embedding of pure computations *)
Definition ret {E : Type → Type} {R : Type} (v : R) : itree E R.
(* Sequencing computations *)
Definition bind {E : Type → Type} {T U : Type} (u : itree E T) (k : T → itree E U) : itree E U.
(* Atomic itrees triggering a single event. *)
Definition trigger {E : Type → Type} : E ; itree E.
(* Fixed-point combinator *)
Definition iter {E : Type → Type} {R I: Type} (body : I → itree E (I + R)) : I → itree E R.

Fig. 1. Interaction trees: definition and type signature of its main combinators

construction of layered interpreters. Along the way, we see how to define instances of our new
typeclasses for a variety of frequently-used monads: itree E, state, error, and Prop.

Section 4 develops new tools for relational reasoning, centered on a typeclass eqmR (for “equiva-
lence of monads up to R”)—a generalization of ITrees weak bisimulation, ≈𝑅 . We identify a suitable
axiomatization of its properties and define operations that lift it through monad transformers. A
key, and, we believe, novel idea here is the concept of the image of a monadic computation, which
precisely characterizes its possible results. The image is defined purely in terms of eqmR, and it is a
key ingredient needed to define the equational theory.
Section 5 uses eqmR to define the properties of the new typeclasses introduced in Section 3,

providing a rich framework for reasoning about layered monadic computations.
Section 6 describes how this framework pans out in practice, where a key contribution is a

collection of tactics that provides type instantiations to help disambiguate typeclass resolution. We
evaluate the effectiveness of this new infrastructure by porting the imp-to-asm proofs from the
original ITrees development—we find that the resulting proofs are substantially less ad hoc, more
compositional, and considerably simpler.

Section 7 situates our contributions with respect to related work, and Section 8 concludes with a
discussion about further techniques and future work.

Implementation. The ideas in this paper are packaged as a Coq development [Yoon et al. 2022] and
all of the properties presented here have been proved in Coq. 1 Although some of our contributions
are Coq-specific (e.g., the need to deal with Proper instances for Coq’s setoid rewriting and the
details of our tactics), we believe that most of the typeclasses and constructs proposed here could
be profitably implemented in other settings as well.

2 INTERACTION TREES AND MONADIC INTERPRETERS: BACKGROUND AND

SHORTCOMINGS

Interaction Trees [Xia et al. 2020] (ITrees) have recently emerged in the Coq ecosystem as a rich
toolbox to build compositional and modular monadic interpreters. One of its main benefits comes
from its equational framework that allows reasoning about equivalence and refinement of compu-
tations. Through this section, we introduce the necessary background information to understand
the theoretical and practical limitations that arise when using the framework at scale.

2.1 Interaction Trees: a Free Monad Supporting General Recursion

1The accompanying material is available at: https://zenodo.org/record/6604908

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:5

Interaction Trees are a data structure for representing computations interacting with an external
environment through visible events. It has a coinductive datatype, modeling potentially diverg-
ing computations. Unlike other ways of specifying semantics in Coq (e.g. relational operational
semantics), ITrees can be extracted into executable programs.

The definition of the ITree datatype, as well as the type signatures of its main combinators, are
shown in Figure 1.2 The datatype takes as its first parameter a signature—described as a family
of types E : Type→ Type—that specifies the set of interactions the computation may have with
the environment. The Vis constructor builds a node in the tree representing such an interaction,
followed by a continuation indexed by the return type of the event. The second parameter, R, is
the result type, the type of values that the computation may return if it halts. The constructor
Ret builds such a pure computation, represented as a leaf. Finally, the Tau constructor models an
internal, non-observable step of computation, allowing the representation of silently diverging
computations; Tau is also used for guarding corecursive definitions.

ITrees are equipped with four main primitive combinators. As expected, itree E forms a monad at
any signature E: pure computations can be embedded with ret, and computations can be sequenced
with bind. The trigger e combinator builds the minimal computation performing the event e,
which immediately returns the answer from the environment.3 Finally, ITrees support fixed-point
combinators such as iter which encodes terminal recursion.
To illustrate how to model computations with ITrees, consider a signature describing print-

ing on one hand, and interaction with a single memory cell storing a natural number on the
other. The cell can be read or updated, and values can be sent to the external printer: notice how
each event specifies the nature of the answer it expects from the environment in the index type.

Variant printE :=
| Print : nat → printE unit.

Variant cellE :=
| Get : cellE nat
| Put : nat → cellE unit.

A computation that writes the value 3 to the cell, reads the content of the cell, and prints it to
stdout can be represented as follows:4

_ � trigger (inr1 (Put 3));; x � trigger (inr1 Get);; trigger (inl1 (Print x))

This computation has type itree (printE +' cellE) unit, where +' is the disjoint sum operator.
ITrees are an implementation of the freer monad with a coinductive model of divergence. The

events contained in a tree are uninterpreted; they assume no predetermined semantics. For instance,
the traditional algebraic law ensuring that the Get operation in the previous example should return
3 is not accounted for at this stage. Such semantics of the effects manipulated is given in a separate
step that enriches the structure by interpreting events into appropriate monads.

The notion of equivalence of computations over interaction trees (before interpretation) is a weak
bisimulation observing the uninterpreted events and the returned values. This relation is referred
to as equivalence up-to taus, or eutt for short, and ensures co-termination and trace equivalence.
Congruence, monadic, and iterative laws are proved with respect to eutt.
The iterative laws used in ITrees, which imply that continuation trees of type A→ itree E B

form a traced monoidal category [Bloom and Ésik 1993], can be also generalized for any arbitrary
monad. It corresponds to Kleisli arrows (i.e. functions of type A→ M B given a monad M) forming a

2The signature of ITrees is presentedwith a positive coinductive datatype for expository purposes. The actual implementation
is defined in the negative style.
3In Section 3, we introduce a more general version of trigger, and the overloading is handled by module namespaces (i.e.
this ITree-specific trigger will be referred as ITree.trigger)
4We write (x � t;; k) and t ≫= k as notations for (bind t (fun x⇒ k)) and (bind t k).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:6 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

traced monoidal category. We call any such monad which satisfies the iterative laws an iterative

monad.

2.2 Monadic Implementation of Effects

The modularity of ITree-based semantics is embodied by the interp function. Through interp, a
handler, which maps events into an iterative monad, can be freely lifted to a whole tree, essentially
folding over the tree to produce a monadic computation.
To illustrate this idea, consider a handler that implements the memory cell events via a state

monad, while leaving print events as uninterpreted.
Definition handle_cell : printE +' cellE ; stateT nat (itree printE) :=
fun _ e n ⇒ match e with

| inl1 (Print x) ⇒ trigger Print x;; Ret (n, tt)
| inr1 Get ⇒ Ret (n, n)
| inr1 (Put m) ⇒ Ret (m, tt)
end.

This handler gives a semantics to printE and cellE events through pattern matching on the sum
type. Such handlers can then be lifted by interp.

Definition interp_cell : itree (printE +' cellE) ; stateT nat (itree printE) :=
interp handle_cell.

2.3 Scaling Up: The Shortcomings of Layered Monadic Interpreters

This promise of modularity is deceitful when used at scale: layering monadic interpreters can
become unwieldy. Let’s look at an example of a realistic semantics to see what can go wrong: for
instance, the Vellvm project [Zakowski et al. 2021] uses ITrees to formalize a large sequential subset
of LLVM IR, an industrial-strength intermediate representation.

LLVM IR

Intrinsics itree E0

itree VellvmE

EnvGGlobal env stateT (itree E1)

Local env EnvLstateT (itree E2)*EnvG

propositional model

itree E4 (* (* (*))) → Pℙ
itree E5 (* (* (*))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

Memory MemstateT (itree E3)* EnvL * EnvG

Fig. 2. Vellvm’s semantics: a stack of interpreters

When dealing with large languages, the
naïve interpretation scheme sketched above,
which interprets all of its events at once, is
undesirable for a couple reasons. First, some
effects may be implemented in terms of others:
memory operations, for instance, may intro-
duce undefined behavior events. Second, decou-
pling the interpretation of different categories
of events modularizes the monadic structure
they introduce, improving the modularity of
the semantics and the robustness of the formal-
ization. Such decoupling leads to proof tech-
niques allowing for some of the effects to re-
main uninterpreted during a proof—Zakowski,
et al. [Zakowski et al. 2021] illustrate this idea
by proving a simple block fusion optimization
correct independently of the implementation of the memory model.
Thus, it is desirable that complex monadic interpreters be organized as layers of interpretation.

Figure 2 reproduces the structure of Vellvm’s interpreter: a piece of LLVM IR syntax is first
represented as an ITree over a rich signature before its effects are successively implemented, leading
to a richer monadic structure at each layer. Intuitively, this sequence of interpreters implement:
(1) calls to pure intrinsics interpreted as pure Coq functions, (2) the global state interpretation,

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:7

Definition handle_state {E} :
stateE ; stateT S (itree E) :=
fun _ e s ⇒ match e with

| Get ⇒ Ret (s, s)
| Put s' ⇒ Ret (s', tt)
end.

Definition pure_state {S E} :
E ; stateT S (itree E) :=
fun _ e s ⇒ Vis e (fun x ⇒ Ret (s, x)).

Definition interp_state {E} :
itree (stateE +' E) ; stateT S (itree E) :=
interp (case_ handle_state pure_state).

Fig. 3. State interpreter from the ITree library

(3) the local state interpretation, (4) the memory model interpretation, (5) the nondeterministic
concretization of undef values, and (6) the nondeterministic refinement of undefined behaviors.
However, there are two glaring issues for both defining and working with layered interpreters,

which are presented as follows.

2.3.1 Problem 1: Lifting Partial Handlers for Whole Signatures. The first difficulty is defining a
handler for partial interpretations, i.e., interpreting a particular effect out of a sum of events while
leaving the others uninterpreted. The toy example that interprets away the cellE signature while
preserving printE should be factored into a part that handles cellE in isolation and a generic part
that injects the remaining events.

The ITree library provides some applicable tools. Figure 3 reproduces the standard interpreter for
memory events, stateE, where S is the notion of state considered and stateT S is the state monad
transformer defined as fun M R⇒ S→ M (S * R). To be reusable, the stateE handler corresponding
to our example cellE handler is defined in handle_state, which is parametric in the leftover ambient
signature E. The branch implementing printE is captured generically in pure_state, since the
implementation does not depend on the effect that remains uninterpreted. Finally, since +' forms a
coproduct for an indexed function, a generic case_ combinator builds the handler used to interpret
an arbitrary computation containing stateE events, as shown in interp_state.
So surely we should be able to happily simplify the definition of handle_cell by using the

standard library’s stateE events instead of specialized cellE, and directly defining interp_cell as
interp_state? Unfortunately, we cannot! A slight mismatch creeps in: our previous computations
have been defined over the printE +' cellE signature, while interp_state forces stateE to be in
the head position: stateE +' printE. We are forced to either change our definitions to line up the
signatures, or to duplicate the definitions.
These structural constraints add up to create bureaucratic clutter in large-scale developments.

Figure 4 reproduces the Vellvm interpreter layer implementing the register map—this interpreter
defines the translation from the Global env level to the Local env level of Figure 2. With this setup,
events in the register map, defined in the LocalE signature, are structurally in the third position of
the signature (see Effin) at the site where the interpreter of this handler is used, and three auxiliary
definitions for triggering E, F, and G events along with fiddly uses of case_ are needed to define
interp_local_h.

Also, notice the constraint Failure -< G in the context, which morally represents “any event G
that supports failure”. This corresponds to the constraint mechanism introduced by Swierstra’s
Data Types à la Carte [Swierstra 2008] to automate the renaming of triggered events. We discuss
its limitations and introduce a more expressive substitute in Section 3.3.
Simply reorganizing the shape of the signature is impossible due to constraints that do not

compose in various places of the semantics, forcing developers to painstakingly handcraft special-
case interpreters. Naturally, this definition is very fragile to the introduction of additional effects,
in blatant contradiction to the modularity otherwise achieved.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:8 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

Definition handle_local {E} {̀FailureE -< E} :
(LocalE k v) ; stateT map (itree E) :=

fun _ e env ⇒
match e with
| LocalWrite k v ⇒ ret (add k v env, tt)
| LocalRead k ⇒
match lookup k env with
| Some v ⇒ Ret (env, v)
| None ⇒ fail
end

end.

Variable (E F G H: Type → Type).
Context {̀FailureE -< G}.
Notation Effin := (E +' F +' LocalE +' G).
Notation Effout := (E +' F +' G).

Definition E_trigger {M} : ∀R, E R → stateT
M (itree Effout) R :=

fun R e m ⇒ r � trigger e ;; ret (m, r).

Definition F_trigger {M} : ∀R, F R → stateT
M (itree Effout) R :=

fun R e m ⇒ r � trigger e ;; ret (m, r).

Definition G_trigger {M} : ∀R , G R →
stateT M (itree Effout) R :=

fun R e m ⇒ r � trigger e ;; ret (m, r).

Definition interp_local_h := (case_
E_trigger (case_ F_trigger (case_
handle_local G_trigger))).

Definition interp_local : itree Effin ;
stateT map (itree Effout) :=

interp_state interp_local_h.

Fig. 4. Interpreting Vellvm’s register map

2.3.2 Problem 2: Building Layered Interpreters. The second issue in building layered interpreters
is the complete lack of a theory for interpreting computations from monads other than ITree.
The existing interp implementation is parametric in its target monad, but it is not in its source:
interp (h : E ; M) : itree E ; M is defined for any iterative monad M.

Sticking to the same implementation of the register map, we see in Figure 2 that it occurs after
the implementation of the global state. As a consequence, the domain of computation manipulated
at this stage is already not a plain ITree, but rather stateT EnvG (itree E1) for some signature E1.
This problem reoccurs at each subsequent level.

The previous approach to this issue is defining ad hoc solutions for each situation. One can
“interpret” a computation in stateT EnvG (itree E) by exposing the definition of the stateT trans-
former as a pure function of the initial state, and therefore interpreting the computation pointwise.
Such construction breaks the abstraction of layered monadic interpretation.
In Section 3, we introduce the appropriate abstract structures necessary for the principled

construction of layered interpreters, providing a general and clean solution to both problems from
the programmatic perspective. Of course, defining monadic computations in this modular, layered
way is only half of the problem. For formalization, we also need to develop the corresponding
metatheory for reasoning equationally about these constructions. That is the subject of Section 4.

3 BUILDING LAYERED MONADIC INTERPRETERS

In this section, we introduce (1) a novel over combinator for lifting partial handlers to whole
signatures, (2) a general characterization of the trigger combinator, which interplays with a novel
interp combinator for building layered interpreters. In addition, we propose a new kind of event
constraint which characterizes isomorphisms between sums of events, where we use typeclass
resolution to infer the correct type injections for the over and trigger combinators.

The interpreter from Figure 3 is unsatisfactory because of the need for manual annotations of inr1
and inl1. To simplify this interpreter, we define a generic function that injects handle_state into an
arbitrary signature containing stateE. There are two main challenges in defining this automatic
injection.
First, injecting the handle_state handler induces auxiliary handlers, such as pure_state, that

perform no action on the events: these auxiliary handlers must be inferred and applied to the

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:9

uninterpreted remainder of the sum. Second, when the injected handler handle_state acts on a
signature containing stateE (where the signature may contain other events), it needs to return the
remainder of the signature. This is trivially achieved when hard-coding the shape of the signature
as stateE +' E, but cannot be captured by the current inclusion constraint stateE -< F.

These challenges motivate respectively the definition of triggerable monads (Section 3.1) and the
generalization of the inclusion of signature into a decomposition of signatures (Section 3.2). These
two building blocks are sufficient to define the automatic injection of handlers addressing Problem 1
(Section 3.3). Problem 2 finds its resolution by the additional introduction of Interpretable monads

(Section 3.4). While motivated by concrete problems, over, interp, and trigger also form a cohesive
equational theory: Section 4 and 5 describe the equational properties of these combinators.

3.1 Triggerable Monads

Recall the trigger combinator from Section 2. It is defined as trigger e := Vis e (fun x⇒ x),
capturing the idea of a “minimal” impure computation performing an uninterpreted event—in this
case, specialized to the ITree monad. The pure_state function from Figure 3 mirrors this intent,
but in the monad stateT S (itree E); it additionally makes explicit that this minimal computation
does not affect the state.
We capture this notion into a Trigger typeclass, corresponding to an action (event) having a

specific monad M as its domain of action.

Class Trigger (E: Type → Type) (M: Type → Type) := trigger: E ; M.

On the implementation side, it is worth mentioning that this trigger operator does not explicitly
mention the monadic structure of M. This is inspired by the “unbundled” approach of Spitters
and van der Weegen [Spitters and van der Weegen 2011], that proves beneficial for mathematical
formalizations in type theory. All typeclasses in our framework use this unbundled style.

Naturally, ITree.trigger is an instance for itree E, and pure_state for stateT S (itree E). How-
ever, it is possible to capture a broader class of instances at once, as we will see shortly.
Since we also want to reason about the structures we introduce, this new definition raises

the question of the axiomatization of the trigger operation. In the case of ITrees, there are two
characteristic equations supported by trigger. First, when seen as a handler, its interpretation is
the identity, i.e., that ∀ t, interp trigger t ≈ t. Second, when seen as an interpreted computation,
it coincides with the effect of the handler on the event, i.e. ∀ h e, interp h (trigger e) ≈ h e. At
this point, we lack the tools to generalize these equations; in particular, we would need to be able
to interpret a computation in the monad of interest, rather than an itree specifically. Therefore, we
delay the question of axiomatizing these properties until Section 5.

3.2 Automatic Injection and Decomposition of Signatures

Let us temporarily set aside triggerable monads to turn our attention to the second issue: how to
remove the hard-coded shape of the source event signature, yet reconcile that with a requirement
that the target signature removes the handled event.
We achieve this by first enriching the typeclass responsible for expressing that a signature is

a super-set of another. The current constraint, E -< F, simply requires an embedding of E into F.
Instead, we introduce a typeclass that explicitly computes the complement to E in F.

The resulting relation is therefore three-placed: the constraint Subevent E F G, written E +? G -< F,
provides an isomorphism between the types E +' G and F:

Class Subevent {E F G : Type → Type} : Type := { split : F ; E +' G ;
merge : E +' G ; F }.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:10 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

Instance Trigger_ITree_base {E} : Trigger E (itree E) := fun _ e ⇒ trigger e.
Instance Trigger_ITree {E F G} {̀E +? F -< G}: Trigger E (itree G) :=
fun _ e ⇒ trigger (merge (inl1 e)).

Instance Trigger_MonadT {E F G} {̀E +? F -< G} {T : (Type → Type) → Type → Type}
{T_MonadT: MonadT T} : Trigger E (T (itree G)) :=
fun _ e ⇒ lift (trigger e).

Fig. 5. The trigger typeclass

From a resolution standpoint, one should think of it as taking as input the ambient signature F—
from the return type of the computation being built—and the sub-signature E—from the concrete
object manipulated, typically a triggered event or a handler—and infering from this information
the complement G.

Instance Subevent_Base {A B}: A +? B -< A +' B.
Instance Subevent_refl {A} : A +? void1 -< A.
Instance Subevent_Sum_In {A B C D}
`{A +? D -< B} : (C +' A) +? D -< C +' B.

Instance Subevent_Sum_Out {A B C D}
`{A +? D -< B} : A +? C +' D -< C +' B.

Instance Subevent_commute {A B C}
{Sub: A +? B -< C} : B +? A -< C.

Instance inference gets more involved that
with Swierstra’s injection, especially when com-
bining several constraints. We characterize to this
end the algebraic properties of this abstract sum
operation +? as instances. Essentially, we state
that it extends +', admits void1 as a unit, allows
for injections of +' on either side of the decom-
position, and commutes. We constraint the use
of these instances — commutation in particular —

to prevent the inference mechanism to diverge: we refer the interested reader to our formal devel-
opment. Each of these instances come with a proof of isomorphism, thus guaranteeing soundness
of the inference.
With this definition of Subevent in place, we can use it to generically define, once and for all,

Trigger instances as shown in Figure 5. Events of type E can be triggered into ITrees either at the
same signature, or an extension of it. Moreover, rather than painfully (and manually) introducing ad
hoc instances such as pure_state, we can transport Trigger instances through arbitrary monad trans-
formers. The lift operator is defined on all monad transformers T : (Type→ Type)→ Type→ Type,
where lift transforms a monad M : Type→ Type into a monad T M.

3.3 Automatic Injection for Handlers

We now have all the necessary tools to properly solve Problem 1 by injecting handlers of a restricted
signature into a larger ambient one.
Consider a handler h : E ; M implementing a set of effects described by E into an arbitrary

monad M. The function over h transports h into an implementation of a larger signature F into the
same monad:

Definition over {E F G M : Type → Type} {̀E +? G -< F} {̀Trigger G M}
(h : E ; M) : F ; M :=
fun _ f ⇒ match split f with
| inl1 e ⇒ h e
| inr1 g ⇒ trigger g
end.

The function relies on the constraint E +? G -< F to know how to case analyze on a F event
whether it corresponds to the embedding of an E event or not. In the former case, it simply calls its
implementation h. In the latter case, it relies on the Trigger G M constraint to know how to embed
this event into M.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:11

Definition interp_state {E F} {̀stateE +? E -< F} : itree F ; stateT S (itree E) :=
interp (over handle_state).

Definition interp_local {E1 E2 F} {̀LocalE +? E1 -< F} {̀FailureE +? E2 -< E1}
: itree F ; stateT map (itree E1) := interp (over handle_local).

Fig. 6. State interpreter and Vellvm’s register map interpreter using over

Figure 6 illustrates the cleaned-up definitions for the ITree’s state interpreter and Vellvm’s
register map implementation. The interp_state definition is straightforwardly simplified: no explicit
extension of the handler is needed, and the return type uses the complement specified in the
typeclass constraint. In the second case, notice that we can easily enforce that the source signature
contains both LocalE and FailureE, while the target signature is only stripped of the former. As
intended, these interpreters can consequently be used regardless of the structural position of the
interpreted signature in the ambient context. The equational theory of over is discussed in Section 5.

3.4 Interpretable Monads

We now focus on the second obstacle to the compositional definition of layeredmonadic interpreters:
interpreting monadic structures other than pure ITrees. When staging a stack of interpreters, we
end up having to interpret from monads such as “stateT S (itree E)”: this is the motivation for a
notion of interpretable monads, which are layered monads that satisfy the structural properties for
interpretation. Interpretable monads must encompass monads built from ITree through layers of
interpretation: they should essentially be iterative monads that can trigger events. Furthermore,
interpretable monads must interpret into interpretable monads, as we aim to stack layers of
interpretation. The typeclass we need to provide generic constructions and axiomatizations over
the computational structure suitable to be part of a monadic interpreter more specifically generalizes
the ITree.interp function.

Class Interp (IM T: (Type → Type) → Type → Type) (M : Type → Type) :=
interp : ∀(E : Type → Type) (h: E ; M), T (IM E) ; T M.

Intuitively, an instance of this class expresses that a structure akin to ITrees can lift handlers
into a structure M. The shape of the source structure is, however, further specified. At its base, it
should contain a family of monads IM indexed by signatures—itree is one example. Intuitively,
this minimal structure is the one upon which the implementation of the effects will be lifted. To
compose cleanly, a monad transformer T is assumed on the source, and preserved into the target:
previously introduced effects are left untouched.5

The interp function provided by the ITree library is a particular instance of this typeclass, where
IM is itree, T is the identity transformer, and M is an arbitrary iterative monad.

With this definition, very generic instances can be provided to build layered interpreters com-
positionally. Following [Johann and Ghani 2009], we make explicit the higher-order functorial
structure of monad transformers: they directly transport indexed functions via hfmap, as well as
functions through any functor, per the operations shown below.

Class HFunctor (f : (Type → Type) → Type → Type) :=
{ ffmap : ∀A B g, Functor g → (A → B) → f g A → f g B;
hfmap : ∀g h, (g ; h) → (f g ; f h) }.

This functorial structure is sufficient to ensure that monad transformers preserve the fact that a
structure is a valid source of interpretation, as is captured by the following instance:
5Because of the ’unbundled’ approach, the structural constraints (such as well-formedness properties of their operators) on
this multi-parameter typeclass are not apparent here.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:12 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

Instance stack_interp {T IM : (Type → Type) → Type → Type} {M : Type → Type}
{HFunctor T} {IterativeMonad M} {Interp IM Id M} : Interp IM T M :=

fun E h R t ⇒ hfmap (interp h) t.

Requiring in the Interp assumption the transformer parameter to be Id forces the stack to be
built by adding new effects at the bottom, eliminating ambiguity when inferring types — alternate
usages can be manually recovered. In practice, we work with a more specialized instance, fixing IM

to be itree, to lighten up the unification problems arising when using these highly overlapping and
ambiguous typeclasses. Combined with interp as a base instance, we can build interpreters from
any structure built by applying monad transformers atop of the ITree monad, resolving Problem 2.

Through this section, we have introduced principled tools that clean up the definitions of layered
stacks of interpreters. To do so, we have identified general structures whose particular instances
were used in the ITree library: triggerable monads, decomposition of signatures, and interpretable
indexed monads. What remains to be defined is the infrastructure needed to reason about these
definitions. In the following section, we start introducing their equational theory.

4 A COMPOSABLE EQUATIONAL THEORY FOR MONADS

Monadic interpreters come with an alluring promise: equivalences or refinements of computations
can be established equationally. Part of this reasoning naturally relies on the domain-specific
algebraic laws that a given monad satisfies. But a significant structural equational theory—relevant
to essentially all of the monads in our layered interpretations—is equally necessary. These theories
can be painfully (re-)discovered and manually implemented for each monad, but that approach
does not scale in practice.

To alleviate this problem, we provide through this Section a rich equational axiomatization of the
monadic structures that arise from the construction of layered monadic interpreters. This theory
both refines the one provided by ITrees, and generalizes it greatly, notably by axiomatizing the
new constructions introduced in Section 3. We present in Section 4.4 and 5 how these theories can
be cleanly transported by monad transformers and interpretation, lightening the burden put on a
user when building their own layered interpreter.

More specifically, Section 4.1 introduces eqmR, the family of relations over monadic computations
we consider—one can think of it as a generalization of eutt. Section 4.2 defines the image of a
monadic computation, allowing for the definition of the enriched set of monadic laws we axiomatize
and prove to hold for standard monads in Section 4.3. Finally, we describe in Section 4.4 the transport
of these structure through monad transformers to ease once and for all the construction of the
structures used in layered interpreters, before discussing cross-monad relations.

4.1 Equivalence and Relations Between Monadic Computations

A monad only deserves its name if it satisfies the well-known three monad laws. The ret operation
should be a unit to the left of the bind (𝑥 ← ret 𝑎 ;; 𝑘 𝑥 = 𝑘 𝑎) and to its right (𝑥 ←𝑚𝑎 ;; ret 𝑥 =

𝑚𝑎). The bind operation should additionally be associative (𝑏 ← (𝑎 ← 𝑚𝑎 ;; 𝑓 𝑎) ;; 𝑔 𝑏 = 𝑎 ←
𝑚𝑎 ;; (𝑏 ← 𝑓 𝑎 ;; 𝑔 𝑏)).

This statement is however too naive, hiding a major difficulty: these equations have no hope to
hold up-to equality. In the case of a coinductive structure such as ITrees, for instance, even eta-laws
do not hold with respect to eq, Coq’s equality. One therefore needs to switch to a different notion
of equivalence, namely, (strong) bisimulation, which is defined the the ITree library as eq_itree.
While eq_itree can be used to prove the monad laws, it is still too strong for some iterative laws and
interpretation laws; for these, we need weak bisimilarity, i.e., eutt. The conclusion is not surprising:
monads should come equipped with their own notion of equivalence of computations.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:13

𝑅𝑒 𝑓 𝑙𝑒𝑥𝑖𝑣𝑒 𝑅

𝑅𝑒 𝑓 𝑙𝑒𝑥𝑖𝑣𝑒 (≈𝑅)
Refl 𝑃𝐸𝑅 𝑅

𝑃𝐸𝑅 (≈𝑅)
PER

𝑚𝑎 ≈𝑅1 𝑚𝑏
𝑚𝑏 ≈𝑅2 𝑚𝑐

𝑚𝑎 ≈𝑅2◦𝑅1 𝑚𝑐
RelComp

𝑒𝑞𝑚𝑅(†𝑅) ≃ †(𝑒𝑞𝑚𝑅 𝑅) Transpose

𝑚𝑎 ≈𝑅1 𝑚𝑏 𝑅1 ⊆ 𝑅2
𝑚𝑎 ≈𝑅2 𝑚𝑏

Mono

𝑚𝑎 ≈𝑅 𝑚𝑏 𝑚𝑎 ≈𝑅′ 𝑚𝑏
𝑚𝑎 ≈𝑅∧𝑅′ 𝑚𝑏

Conj

𝑚1 ≈𝑅𝐴⊗𝑅𝐵 𝑚2
fmap fst𝑚1 ≈𝑅𝐴 fmap fst𝑚2

ProdFst

𝑚1 ≈𝑅𝐴⊗𝑅𝐵 𝑚2
fmap snd𝑚1 ≈𝑅𝐴 fmap snd𝑚2

ProdSnd

fmap fst 𝑚1 ≈𝑅𝐴 fmap fst 𝑚2
fmap snd𝑚1 ≈𝑅𝐵 fmap snd𝑚2

𝑚1 ≈𝑅𝐴⊗𝑅𝐵 𝑚2 Prod

𝑚1 ≈𝑅𝐴 𝑚2
fmap inl𝑚1 ≈𝑅𝐴⊕𝑅𝐵 fmap inl𝑚2

SumL1

𝑚1 ≈𝑅𝐵 𝑚2
fmap inr𝑚1 ≈𝑅𝐴⊕𝑅𝐵 fmap inr𝑚2

SumR1

𝑚1 ≈𝑅𝐴⊕𝑅𝐵 𝑚2
∀ 𝑎1 𝑎2, 𝑅𝐴 𝑎1 𝑎2 → 𝑅𝐶 (𝑓1 𝑎1) (𝑓2 𝑎2)
∀ 𝑏1 𝑏2, 𝑅𝐵 𝑏1 𝑏2 → 𝑅𝐶 (𝑔1 𝑏1) (𝑔2 𝑏2)

fmap (case 𝑓1 𝑔1) 𝑚1 ≈𝑅𝐶 fmap (case 𝑓2 𝑔2) 𝑚2
Sum

Fig. 7. OK eqmR Laws (Well-formedness Laws of EqmR)

But monadic interpreters are used to prove more than program equivalence. For instance, the
original ITree paper [Xia et al. 2020] establishes the correctness of a compiler. This is achieved by
parameterizing eutt by a relation on computed values: eutt specifies that weak bisimilarity is the
prime notion to compare computations, and lifts an arbitrary relation on the computed values in the
process. This extension not only allows for relating heterogeneous computations, but provides the
foundations for establishing bisimilarity results following a relational program logic style [Benton
et al. 2009].
We therefore work with monads M equipped with an “equality of monads up to 𝑅”, a family of

relations: eqmR A B (R : A→ B→ Prop) : M A→ M B→ Prop. We write ≈𝑅 in lieu of eqmR R.
Figure 7 axiomatizes the required behavior for eqmR. Equivalences should be lifted into equiva-

lences, ensuring, in particular, that ≈𝑒𝑞 —written ≈ in the following — behaves as a suitable tightest
notion of equality of computations. We derive this transport from the slightly stronger request
that partial equivalence relations (PERs) and reflexivity be preserved independently: PERs are used
to define the notion of an image as introduced in Section 4.2. The RelComp and Transpose rules
express the standard heterogeneous extensions of transitivity and symmetry (we write †𝑅 for the
transposition of 𝑅 and ⊆ for inclusion of relations).
As mentioned, eqmR is meant to be thought of as the basis of a relational program logic.

The indexed relation should therefore be monotone, providing a weakening rule, and ensuring
compatibility with the equivalence of relations. From Mono, one trivially derives the usual disjunction
rule, but the Conj rule must be additionally required.
Finally, anticipating Section 4.4, we wish to transport our equational theories via monad trans-

formers. Since examples such as the state and error transformers expand the return type of the
computation with respectively a product and a coproduct, eqmR should respect those too—the
right column in Figure 7 specifies the necessary introduction and elimination rules.

We conclude this section by illustrating valid instances of eqmR over concrete monads.

Example 4.1. ITree.
At any signature E, itree 𝐸 is known to be a monad. But more specifically, we prove that the

strong (eq_itree) and weak bisimulation (eutt) are instances of eqmR and satisfy its laws.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:14 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

Example 4.2. State.
Computations in the state monad are state-passing functions over a domain of states 𝑆 :
(stateM𝑆 𝑋 ≜ 𝑆 → 𝑆 ∗𝑋).We consider the standard operations: pure computations leave the state
untouched while sequencing threads the states.

ret𝑆𝑡 𝑣 ≜ 𝜆 𝑠 ⇒ (𝑠, 𝑣) bind𝑆𝑡 𝑚 𝑘 ≜ 𝜆 𝑠 ⇒ let (𝑠′, 𝑎′) := 𝑚𝑠 in 𝑓 𝑎′ 𝑠′

Since computations in the state monad are functions, the family of relations we consider relaxes
equivalence to functional extensionality, and further lifts the relation overt the returned values. The
relation of state considered here is equality, but could be additionally relaxed to other equivalences.

𝑚𝑎 ≈𝑅 𝑚𝑏 ≜ ∀𝑠, 𝑅 (𝑠𝑛𝑑 (𝑚𝑎 𝑠)) (𝑠𝑛𝑑 (𝑚𝑏 𝑠)) ∧ (𝑓 𝑠𝑡 (𝑚𝑎 𝑠)) = (𝑓 𝑠𝑡 (𝑚𝑏 𝑠))

We prove that this definition of eqmR satisfies the required laws.

Example 4.3. Error.
Potentially failing computations over a type of errors 𝐸 can be implemented as a sum type

errorM𝐸 𝑅 ≜ 𝐸 + 𝑅 and equipped with the usual sequencing passing by valid computed value and
propagating erroneous states, as depicted to the left in the following:

ret𝐸𝑟𝑟 𝑣 ≜ inr 𝑣

bind𝐸𝑟𝑟 𝑚 𝑘 ≜ match𝑚 with

| inl 𝑒 ⇒ inl 𝑒
| inr 𝑣 ⇒ 𝑘 𝑣
end

𝑥 ≈𝑅 𝑦 ≜ match 𝑥, 𝑦 with

| inl _ inl _⇒ ⊤
| inr 𝑣1, inr 𝑣2 ⇒ 𝑅 𝑣1 𝑣2
| _, _⇒ ⊥
end

To the right is an eqmR satisfying the required laws: it lifts the relation over valid related results,
and accepts co-failure disregarding the value of the error.

Example 4.4. Nondeterminism.
Nondeterministic computations can be represented as sets of outcomes using Prop: propM 𝑅 ≜

𝑅 → Prop. This propositional account of nondeterminism gives up its computational content, but
is in exchange flexible to manipulate, allowing for modelling nondeterminism over infinite sets, as
well as for specifying a computation.

The pure computation is a deterministic one, so it builds the singleton set: ret𝑁𝐷 ≜ 𝜆 𝑎′ ⇒
𝑎 = 𝑎′. The bind should flatten into a single set all possible outcomes for each nondeterministically
reachable branch of the computation, i.e., bind𝑁𝐷 𝑚 𝑘 ≜ ∃ 𝑎, 𝑚 𝑎 ∧ 𝑘 𝑎 𝑏. A notion of bijection
up-to relation defines an eqmR satisfying most of the laws :

𝑚𝑎 ≈𝑅 𝑚𝑏 ≜ (∀𝑎,𝑚𝑎 𝑎 → ∃𝑏,𝑚𝑏 𝑏 ∧ 𝑅 𝑎 𝑏) ∧ (∀𝑏,𝑚𝑏 𝑏 → ∃𝑎,𝑚𝑎 𝑎 ∧ 𝑅 𝑎 𝑏)

We highlight the situation of propM due to a use of a related structure in Vellvm, as depicted at the
bottom of Figure 2. However, it is instructive to notice that it does not quite satisfy the interface:
the Conj rule and the rules related to the product of relations are invalid.

4.2 Image of Monadic Computations

The proposition𝑚𝑎 ≈𝑅 𝑚𝑏 intuitively asserts that𝑚𝑎 and𝑚𝑏 are compatible computations—weakly
bisimilar in the case of ITrees, for instance—and that the relation 𝑅 is a valid relational postcondition
over returned values. The axioms from Figure 7 provide the basis to justify this interpretation
of 𝑅 as a postcondition. To conduct relational reasoning, one needs additional structural rules
that compositionally relate computations built from combinators. For instance, the ITree library
provides an equation relating sequences of computations: ma ≈𝑆 mb→ (∀ x y, S x y→ ka x ≈𝑅
kb y)→ ma ≫= ka ≈𝑅 mb ≫= kb. This rule mirrors the familiar Hoare-style rule for sequence by
quantifying existentially over S, the intermediate postcondition.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:15

Monadic computations expressed as sequences have a more subtle structure, though. A typical
monadic computation might return only a strict subset of the values of its return type, R, while its
continuation is always defined over all of R. By way of illustration, consider themonad itree ChoiceE

where the signature ChoiceE provides an event, choice : ChoiceE bool, encoding a binary branch-
ing indexed by a boolean. The computation c ≜ b � trigger choice;; if b then ret 1 else ret 0

triggers this external choice event, and converts the returned boolean into a natural number. Be-
cause c has type itree ChoiceE nat, any continuation k bound to c will be indexed over all natural
numbers, but the only relevant branches should be (k 0) and (k 1). The proof rule above may lead
to spurious proof obligations. While S can naturally always be taken sufficiently tight to rule out
these spurious cases, there should be a systematic way to strengthen it.
Following this intuition, we introduce the notion of the image of a monadic computation:

interpreting the diagonal of eqmR as a unary logic, we want to define uniformly a notion akin to a
strongest postcondition of a computation. For an ITree, the image is, intuitively, the set of values
that appear at its leaves, so the image of c will be the set {0, 1}.

4.2.1 Image: a Semantic Characterization. We wish to capture abstractly the set of values possibly
returned by a monadic computation. Thus we seek to associate to each computation m : M A a
predicate image m : A→ Prop over its return type. Concretely, for an ITree t, image t should be
the set of leaves of t; for a nondeterministic monad, the image should be the set of values it may
return. The challenge is defining the image without referring to the particular structure of a given
monad, a necessity for incorporating it into general structural laws.

A first intuition on this path is to consider the diagonal of eqmR: suppose m: M R is a computation
in somemonad M and R is a relation at which m self-relates: m≈𝑅 m. Since𝑅 is a relational postcondition,
all pairs of returned values should belong to R, and the square of the image m, i.e.,
{ (a, a) | image m a } should be included in R.

Following this idea, one could be tempted to carve out the extra junk in R by defining the image
as the diagonal of the intersection of all relations at which m self relates:

image𝑚 𝑣
?
= ∀ 𝑅,𝑚 ≈𝑅 𝑚 → 𝑅 𝑣 𝑣

Interestingly enough, this first attempt turns out to be too naïve when considering nondetermin-
ism; it leads, in general, to a strict subset of the image we seek to capture. To see why, we focus our
attention to the case of propM, with eqmR defined as in Example 4.4.
Let (m : propM bool) be the computation that nondeterministically returns a boolean, that is,

m = fun x⇒ x = true∨ x = false. We naturally expect the image of m to contain both booleans
as well. However, by taking for relation R = {(true,false);(false,true)}, we easily see that m ≈𝑅 m

holds despite R’s diagonal being empty!
Intuitively, considering all relations is inadequate: we should only consider those whose diagonal

contains the elements it relates. To look on the side of equivalences would however be too drastic:
all reflexive relations have their diagonal coincide with the whole return type. In particular, the
ITree representing a silently diverging computation self-relates at all postconditions, we would fail
to ascribe an empty image to it.
The right intuition echoes the idea of modeling the codomain of partial functions as Partial

Equivalence Relations (PERs). PERs at which self-relation is possible always contain in their diagonal
a superset of the image we seek to define, without being forced to contain the whole type. The
image is precisely the diagonal of the smallest PER at which the computation self-relates:

imageH𝑚 𝑎1 𝑎2 ≜ ∀ 𝑅, PER 𝑅 →𝑚 ≈𝑅 𝑚 → 𝑅 𝑎1 𝑎2 image𝑚 𝑎 ≜ imageH𝑚 𝑎 𝑎

We write 𝑎 ∈𝑚 as a short-hand for image𝑚 𝑎.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:16 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

4.2.2 Image for itree: a Concrete Characterization. The semantic characterization of the image
of a monadic computation only relies on eqmR, and can be leveraged to axiomatize the desired
theory. However, this definition gives few reasoning principles. Therefore, we prove that in the
case of the ITree monad, it coincides with the concrete original intuition: a predicate collecting the
reachable leaves. This predicate is defined inductively over the structure of the tree, existentially
collecting all branches:

Inductive Leaves {E} {A: Type} (a: A) : itree E A → Prop :=
| LeavesRet: ∀t, t ≈ Ret a → Leaves a t
| LeavesTau: ∀t u, t ≈ Tau u → Leaves a u → Leaves a t
| LeavesVis: ∀{X} (e: E X) (x: X) t k, t ≈ Vis e k → Leaves a (k x) → Leaves a t.

The structural and semantic definitions are proved equivalent, justifying the abstract definition,
and providing inductive reasoning to establish membership to the image.

Lemma 4.1. 𝑎 ∈𝑚𝑎 ⇐⇒ Leaves 𝑎 𝑚𝑎

4.2.3 The Case of stateM. We prove that the image of a stateM𝑆 computation captures exactly
the set of values that can be returned for some initial state, regardless of the final state.

Lemma 4.2. 𝑣 ∈𝑚 ⇐⇒ ∃ 𝑠𝑖 𝑠𝑓 , (𝑚 𝑠𝑖) = (𝑠𝑓 , 𝑣)

Notice the existential quantification on both the initial and final state.
Anticipating the axiomatization introduced in the following section, we consider how the image

predicate and the bind construct interact. Following the analogy of a strongest postcondition, it
could be hoped that the following rule universally hold:

𝑢 ∈𝑚 𝑣 ∈ (𝑘 𝑢)
𝑣 ∈ (𝑚 ;; 𝑘) ImageBind

However, this would be misunderstanding what the image expresses: while it universally captures
the tightest postcondition over the set of returned value, it cannot do so w.r.t. the effects the
computation perform. Since the reachability of branches of the postcondition may depend on the
history of effects, it is therefore expected that it will not behave as uniformly w.r.t. bind.
To illustrate more concretely this intuition, we build over this state monad instance a counter

example to ImageBind. Fixing the state to bool, consider the following computation that returns
the initial state as value, but always sets the final state to true.

m ≜ fun b⇒ if b then (true, true) else (true, false)

The image of m contains both booleans since either can be found as returned value for a certain
initial state. In particular, false ∈ m. Now consider the continuation k ≜ fun v b⇒ (v,b) updating
the state with its argument and returning the previous state. One can think of this computation as a
balanced tree with four leaves, where each subtree admits both booleans in its image: in particular,
false ∈ k false. The branches carrying false are, however, reachable only from a state set at false:
since m does not return such state, they are unreachable branches. To sum up, false ∈ m, false ∈
(k false), but yet false ∉ (m ≫= k), contradicting ImageBind.

Intuitively, the image characterizes what values a monadic computation might possibly return,
but does so in a way that is parametric in the monad definition itself. As illustrated by this
example, it does not account for information internalized by the monad, such as unreachable states.
Nevertheless, the refined (if still approximate) reasoning enabled by the image is an essential
ingredient for defining precise reasoning principles in the equational theory.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:17

𝑥 ← ret 𝑎 ; ; 𝑓 𝑥 ≈ 𝑓 𝑎 RetL
𝑥 ←𝑚𝑎 ; ; ret 𝑥 ≈𝑚𝑎 RetR

𝑅𝐴 𝑎1 𝑎2
ret 𝑎1 ≈𝑅𝐴

ret 𝑎2
Ret

(𝑎 ←𝑚𝑎 ; ; 𝑏 ← 𝑓 𝑎) ; ; 𝑔 𝑏 ≈ 𝑎 ←𝑚𝑎 ; ; (𝑏 ← 𝑓 𝑎 ; ; 𝑔 𝑏) BindAssoc

𝑚𝑎1 ≈𝑅𝐴
𝑚𝑎2 ∀𝑎1, 𝑎2, 𝑅𝐴 𝑎1 𝑎2 → 𝑘1 𝑎1 ≈𝑅𝐵

𝑘2 𝑎2

𝑥 ←𝑚𝑎1 ; ; 𝑘1 𝑥 ≈𝑅𝐵
𝑥 ←𝑚𝑎2 ; ; 𝑘2 𝑥

Bind
𝑚𝑎 ≈(imageH𝑚𝑎) 𝑚𝑎

ImageSelf

𝑚𝑎1 ≈𝑅𝐴
𝑚𝑎2 𝑎1 ∈𝑚𝑎1

∃ 𝑎2, 𝑅𝐴 𝑎1 𝑎2 ∧ 𝑎2 ∈𝑚𝑎2
ImageL

𝑚𝑎1 ≈𝑅𝐴
𝑚𝑎2 𝑎2 ∈𝑚𝑎2

∃ 𝑎1, 𝑅𝐴 𝑎1 𝑎2 ∧ 𝑎1 ∈𝑚𝑎1
ImageR

Fig. 8. EqmRMonad Laws

4.2.4 Image for errorM. As can be expected, the image over the error monad is much simpler to
capture: it is either empty if the computation fails, or the singleton of the computed value otherwise.

Lemma 4.3. 𝑎 ∈𝑚𝑎 ⇐⇒ 𝑚𝑎 = inr 𝑎.

4.2.5 Image for propM. For nondeterminism, the computation itself coincides with the image:

Lemma 4.4. 𝑎 ∈𝑚𝑎 ⇐⇒ 𝑚𝑎 𝑎.

4.3 Beyond Monadic Laws

We have all the tools required to define a first minimal axiomatization of the monads we accept to
consider. This interface is described on Figure 8 and contains three kinds of properties. As expected,
the three traditional monad laws are still required, but are expressed up-to ≈.
Next are three rules constraining properties of the image of a monadic computation. Rules

ImageL and ImageR systematically link the images of two computations that can be proved to be
related by eqmR: any point in one of the images can be related to the other via the postcondition.
Rule ImageSelf ensures part of the intuition we started from: the image should capture all possibly
returned values, it should therefore itself be a valid postcondition when self-relating. As illustrated
in Section 4.2.3, the ImageBind rule should not be an axiom.

Finally come the two proof rules enriching our relational logic. They directly mirror the ones used
in the ITree standard library, but generalized to work over arbitrary monads: the Ret rule describes
how to relate pure computation; the Bind rule how to relate two sequences. We have mentioned at
the beginning of this Section that the Bind rule puts all the stress of constraining the image of the
computations being related on the choice of 𝑅𝐴. Using the ImageSelf and RelComp rules, we can
now prove abstractly the following principle, systematically enriching 𝑅𝐴 by intersecting it with
both images.
𝑚𝑎1 ≈𝑅𝐴

𝑚𝑎2 ∀𝑎1, 𝑎2, 𝑎1 ∈𝑚𝑎1 → 𝑎2 ∈𝑚𝑎2 → 𝑅𝐴 𝑎1 𝑎2 → 𝑘1 𝑎1 ≈𝑅𝐵
𝑘2 𝑎2

𝑥 ←𝑚𝑎1 ; ; 𝑘1 𝑥 ≈𝑅𝐵
𝑥 ←𝑚𝑎2 ; ; 𝑘2 𝑥

CloBindGen

We illustrate the adequacy of this axiomatization by providing instances.

Lemma 4.5. The itree, stateM𝑆 , errorM𝐸 and propM monads satisfy the eqmR laws.

Furthermore, we capture the fact that the sequencing operation over ITrees depends exclusively
on the computed value:

Lemma 4.6. The itree monad additionally satisfies the ImageBind rule.

4.3.1 Inversion Laws. Figure 8 provides the core forward reasoning rules associated to eqmR, useful
for establishing such relations. Reciprocally, backward reasoning is useful to derive information
from an established relation between two computations. We capture in Figure 9 the inversion laws
that hold true for all our structures of interest.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:18 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

ret 𝑎1 ≈𝑅𝐴 ret 𝑎2
𝑅𝐴 𝑎1 𝑎2

RetInv
fmap f𝑚𝑎 ≈𝑅 fmap g𝑚𝑏

𝑚𝑎 ≈𝜆𝑎𝑏, 𝑅 (𝑓 𝑎) (𝑔 𝑏) 𝑚𝑏.
FmapInv

𝑏 ∈ 𝑥 ←𝑚𝑎 ; ; 𝑘 𝑥
∃𝑎, 𝑎 ∈𝑚𝑎 ∧ 𝑏 ∈ 𝑘 𝑎 BindImageInv

Fig. 9. EqmRMonadInverses Laws

The two first rules derive information from an hypothesis that two computations of a certain
shape are related. The RetInv rule ensures that related pure values are in the postcondition while
the FmapInv rule expresses that when fmap computations are related, the mapped functions can be
pushed down the postcondition.
Interestingly, while we have seen that forward compatibility of the image with bind is invalid

in monads as common as stateM𝑆 , backward compatibility is always valid. If we know that a
value is in the image of a bind, BindInv decomposes this hypothesis by exhibiting a branch of the
continuation whose image contains this same value.

And indeed, we show:
Lemma 4.7. The itree, stateM𝑆 , errorM𝐸 and propM monads satisfy the eqmR inversion laws.

Furthermore, in any monad satisfying both eqmR interfaces, the image of a pure computation is
exactly the singleton:

Lemma 4.8. Over any eqmR monad satisfying all well-formedness laws, 𝑎 ∈ ret 𝑏 ↔ 𝑎 = 𝑏.

We have carefully defined the semantic definition of eqmR as the smallest PER at which a
computation self relates, as opposed to an arbitrary relation. This subtlety has been motivated by
the case of the propMmonad: over this instance, one can self relate at a relation whose diagonal does
not contain the image. We show that this restriction can be dropped for the three other example
considered:
Lemma 4.9. Over the itree, stateM𝑆 and errorM𝐸 monads, the diagonal of any self-relating

postcondition contains the image:

𝑚𝑎 ≈𝑅 𝑚𝑎 𝑎 ∈𝑚𝑎
𝑅 𝑎 𝑎

BindImageInv

We have not considered any backward reasoning principle for related bind computations. Indeed,
no such rule hold in general, but the notion of image allows us to provide one in specific cases:

Lemma 4.10. Over the itree monad, the following rule, inverting relations between binds sharing

a common prefix, holds true:

𝑡≫=𝑘1 ≈𝑅 𝑡≫=𝑘2 𝑟 ∈ 𝑡
𝑘1 𝑟 ≈𝑅 𝑘2 𝑟

BindInv

Such an inversion principle is in particular crucial when assuming an invariant of a computation
expressed using the diagonal of eqmR.

4.4 Transporting eqmR via Monad Transformers

We have specified a minimal equational theory that any target domain for a monadic interpreter
must satisfy, and illustrated that it holds on specific monads. These domains are, however, typically
built by stacking successive monad transformers atop of a base triggerable monad—ITrees typically—
as echoed by the structure of Vellvm’s stack on Figure 2. In the absence of a clean abstract interface
as the one we contribute here, users had no choice but to manually re-establish such a theory for
each structure they consider. To alleviate this painful work, we provide the tools to systematically
transport the eqmR structure and its theory via appropriate monad transformers. We spell out all
the requirement through an additional series of typeclasses.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:19

𝑅 𝑎 𝑏

lift (ret 𝑎) ≈𝑅 ret 𝑏
LiftRet

𝑚𝑎 ≈𝑅𝐴 𝑚𝑎′ ∀𝑎 𝑎′, 𝑅𝐴 𝑎 𝑎′ → 𝑘 𝑎 ≈𝑅𝐵 𝑘′ 𝑎′

lift (𝑥 ←𝑚𝑎; ;𝑘 𝑥) ≈𝑅𝐵 𝑥 ← lift𝑚𝑎′; ; lift (𝑘′ 𝑥) LiftBind

𝑚𝑎 ≈𝑅 𝑚𝑏
lift𝑚𝑎 ≈𝑅 lift𝑚𝑏

LiftEqmR

Fig. 10. Monad morphism laws

EqmROK 𝑀

EqmROK (lift 𝑀) OK
EqmRMonad 𝑀

EqmRMonad (lift 𝑀) OKMon
EqmRMonadInverses 𝑀

EqmRMonadInverses (lift 𝑀) OKInv

Fig. 11. Monad transformer well-formedness conditions

On the operational side first, a monad transformer 𝑀𝑇 : (Type → Type) → Type → Type

must provide the traditional lift function embedding computations of an arbitrary monad into
the transformed structures:

lift : ∀(𝑀 : Type→ Type) (𝐴 : Type), 𝑀 𝐴→ 𝑀𝑇 𝑀 𝐴

For any monad𝑀 , lift𝑀 must define a monad morphism, i.e., an indexed function commuting
with the ret 𝑎nd bind operations. While standard, these two laws, depicted on the upper part of
Figure 106, must be stated with respect to eqmR in our setup. Furthermore, lift must itself respect
eqmR, which we capture in the LiftEqmR rule. Monad transformers must additionally construct
valid monads: lifted monads should satisfy the monad laws. Since we request a richer minimal
equational theory of our monads, we spell out their preservation (Figure 11): the well-formedness
of eqmR, its forward rules and its backward rules should all be preserved.

Example 4.5. stateT . The state monad can be generalized into an appropriate transformer
stateT𝑆 𝑀 𝐴 ≜ 𝑆 → 𝑀 (𝑆 ×𝐴). The return and bind definitions are standard, mirroring the ones
from stateM𝑆 , but leveraging the underlying monadic operations: 𝑟𝑒𝑡 𝑣 ≜ 𝜆 𝑠 ⇒ ret (𝑣, 𝑠) and
𝑏𝑖𝑛𝑑 𝑐 𝑘 ≜ 𝜆 𝑠 ⇒ (𝑣, 𝑠) ← 𝑐 𝑠 ;; 𝑘 𝑣 𝑠 . The lift operator relies on the underlying fmap to reinject
the unchanged state: lift 𝑐 ≜ 𝜆 𝑠 ⇒ fmap (𝜆 𝑥 ⇒ (𝑠, 𝑥)) 𝑐 .

We parameterize the definition of eqmR at any monad transformed by the state transform by a
relation on states 𝑅𝑠𝑡 . The relation on computations is then obtained by lifting pointwise 𝑅𝑠𝑡 and a
relation on values through the underlying eqmR— it is reminiscent of Goubault-Larrecq’s charac-
terization [Goubault-Larrecq et al. 2008] of the state transformer logical relation, and Maillard’s
relational Dijkstra monads [Maillard et al. 2020]:

𝑚𝑎 ≈𝑅 𝑚𝑏 ≜ ∀𝑠1 𝑠2, (𝑠1, 𝑠2) ∈ 𝑅𝑆𝑡 →𝑚𝑎 𝑠1 ≈𝑅𝑠𝑡⊗𝑅 𝑚𝑏 𝑠2
where 𝑅 ⊗ 𝑅′ is defined as 𝜆 𝑥 𝑦 ⇒ 𝑅 𝑥 𝑦 ∧ 𝑅′ 𝑥 𝑦. Assuming related input states, eqmR unfolds
the definition of the state monad to see it explicitly as a computation in the underlying monad over
the product type, and enforces both the state relation on output state and the relation on values by
taking as a postcondition the product of both relations.

The image admits a similar characterisation as in the case of stateM𝑆 , but expressed in terms of
the underlying notion of image:

Lemma 4.11. 𝑎 ∈𝑚𝑎 ⇐⇒ ∃ 𝑠 𝑠′, (𝑚𝑎 𝑠) ∈ (𝑠′, 𝑎)
We prove that stateT𝑆 transports all interfaces, providing our equational theory for free for

structures such as the ones introduced in the first three layers of Figure 2 or in both languages of
the compiler described in the original ITree paper [Xia et al. 2020].

6We omit the implicit argument𝑀 in this Figure, writing lift in lieu of lift𝑀 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:20 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

interp ℎ (ret 𝑥) ≈ ret 𝑥
InterpRet

interp ℎ (𝑥 ← 𝑡 ; ; 𝑘 𝑥) ≈ 𝑥 ← interp ℎ 𝑡 ; ; interp ℎ (𝑘 𝑥) InterpBind

interp ℎ𝐸 (trigger 𝑒𝐸) ≈ lift (ℎ𝐸 𝑒𝐸)
InterpTrigger

∀ 𝑗, interp ℎ (𝑓 𝑗) ≈ 𝑓 ′ 𝑗

interp ℎ (iter 𝑓 𝑖) ≈ iter 𝑓 ′ 𝑖
InterpIter

𝐹 +?𝐺-<𝐻 𝐸 +?𝐻 -<𝐼
interp𝐼 (over ℎ𝐸) (trigger 𝑒𝐹) ≈ lift (trigger 𝑒𝐹)

IgnoreTrigger

Fig. 12. Interpretation Laws (we write ℎ𝐸 for a handler of type 𝐸 ; 𝑀 and 𝑒𝐸 for an event of 𝐸)

Example 4.6. errorT . Similarly, we support the standard generalization of errorM to a monad
transformer: errorT𝐸 𝑀 𝐴 ≜ 𝑀 (𝐸 + 𝐴) . The return and bind operators, omitted here, are
standard. The lift simply injects the result of the underlying computation into a successful one:
lift ≜ 𝜆 𝑚𝑎 ⇒ fmap inr 𝑚𝑎. Finally, eqmR is parameterized by an arbitrary relation over errors
and feeds the coproduct of both relations to the underlying eqmR:𝑚𝑎 ≈𝑅 𝑚𝑏 ≜ 𝑚𝑎 ≈𝑅𝑒𝑥𝑛⊕𝑅 𝑚𝑏.
We prove that errorT𝐸 preserves all interfaces. The characterization of the image still holds:

they are the successful elements of the underlying image.
Lemma 4.12. 𝑎 ∈𝑚𝑎 ⇐⇒ (inr 𝑎 ∈𝑚𝑎)

4.5 Relating Computations across Distinct Monads

For clarity of exposition, we have presented eqmR as a heterogeneous relation over the return
type, but assuming the same monad on each side, which is the most direct analog to the ITree
library’s notion of eutt. However, in many situations—e.g., when expressing the correctness of a
pass of compilation, such as for the imp-to-asm compiler (see Section 6)—we need to work across
languages and relate computations in distinct monads. We therefore also provide in our formal
development a more general notion of family of relations, heqmR, parameterized by two monads
𝑀 and 𝑁 , and lifting relations at return types (A→ B→ Prop) to relations at computation-level
across monads (M A→ N B→ Prop). Such relations are typically specific to the proof at hand: each
monad still comes with its own eqmR that the cross-monad relation must be proved to respect.

5 LAYERING EQMRWITH INTERPRETERS

In the previous section, we have discussed how to build equational theories for monads and monad
transformers, where we exposed several semantic characterizations such as element inclusion
(using image) and equational laws that certain monads satisfy.

How does this relate to building layered interpreters? The monadic equational framework is the
basis for expressing structural properties for interpretation. When we layer the interp combinator
(from Section 3), we will also like certain structural properties to hold at each layer of interpretation.
For instance, interp should respect monadic operators such as ret and bind, and interact well
with iteration. Now, given an interpretable monad (see Section 3.4), equipped with an appropriate
instance of eqmR, we can state what laws the trigger, over, and interp functions should obey.
These laws are structural properties for the Interp typeclass and are shown in Figure 12.

The InterpRet and InterpBind laws say that interp h is a monad homomorphism.
The InterpTrigger rule applies when the event being triggered belongs to the signature handled

by the handler—it simply says that the interpretation (morally) is the result of the handler applied
to the event. The lift on the right-hand-side is the one from the functor associated with the
interpretable monad, and it coerces the handler’s output to the right form (see the type of interp in
Section 3.4, and the definition of lift in Section 4.4). Note that the handler might itself contain
over, which means that this rule can still apply for a function that injects a handler for a program
with a larger signature.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:21

IgnoreTrigger covers the case when the handler cannot act on the triggered event. For example,
for interp handle_mem (trigger Print), where handle_mem is a handler for memory operations, and
Print is the event for I/O. Print cannot be handled by handle_mem, and thus is propagated by
re-triggering the event in the target monad, in this case, as lift (trigger Print).

The last rule, InterpIter formalizes the interaction between iteration and interpretation. It says
that if the interpreter respects the loop body for every iteration 𝑗 , then it commutes with iter. This
provides a kind of lock-step simulation principle that is useful in practice when reasoning about
the equivalence of two computations defined by iteration.

5.1 Higher-order Functors Lift Structural Properties : Interp Laws for any Stack

The key contribution in our framework is that these interpretation laws about monads need to be
proven only once and for all, regardless of the stack of interpretation. Specifically, we have proved
that the laws in Figure 12, which are specified via a typeclass in Coq, hold for ITrees as a base
instance, with its standard definitions of interp, iter, etc.. To account for layered interpretations,
we then define a set of well-formedness conditions on the monads and monad transformers, which
let us derive further instances of the interpretation laws by applying monad transformers.
Recall the definition of stacking interpretation from Section 3.4—it derives instances of Interp.

Instance stack_interp {T IM : (Type → Type) → Type → Type} {M : Type → Type}
{HFunctor T} {IterativeMonad M} {Interp IM Id M} : Interp IM T M :=

fun E h R t ⇒ hfmap (interp h) t.

One constraint imposed by this definition is that M is an IterativeMonad, a property that must
be lifted to T M for a correct interpretation to exist. The other key well-formedness conditions
express the functorial properties of the higher-order functor, hfmap, used in this definition. Such
structural properties of higher-order functors, and their use in nesting monadic types, is known
in the literature (see [Johann and Ghani 2009]); and we adapt those definitions for use in our
setting. Select higher-order functor laws are presented in Figure 13, which shows that hfmap
transports identity, commutes with composition, and preserves monad morphisms. These are
unsurprising properties for higher-order functors, but they are useful in our setting when lifting
ret, bind, iter, and lift combinators. The remaining requirements follow from general facts about
compositionality: the function composition of monad transformers, iterative monad transformers,
and higher-order functors preserve the operations and well-formedness properties, as shown in
Figure 14, where≫ is function composition. The structural properties MonadT, IterativeMonadT,
and so on, correspond to the typeclasses that capture the structures and well-formedness laws.
The complete set of hfmap-related laws and the details of these typeclasses is included in the Coq
development.

Although there is a fair amount of effort needed to instantiate these well-formedness requirements
for a given monad transformer, that work needs to be done only once, after which we can build
interpretable monads by applying the transformer. We have shown that the interpretation laws,
iterative monad laws, and higher-order functor laws hold for the identity monad transformer, state
monad transformer, and error monad transformer. These form a useful basis for building language
semantics; we expect that additional monad transformers could also be verified to satisfy these
requirements, but leave that to future work.

6 EQMR IN PRACTICE : IMPLEMENTATION AND CASE STUDY

This section surveys our Coq formalization, briefly describing the typeclasses necessary for pack-
aging the equational theory (Section 6.1), the custom tactics necessary for implicit type resolution
(Section 6.1.1), and a case study of an imp to asm compiler to see how eqmR can be used in practice.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:22 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

hfmap (𝜆𝑥 ⇒ 𝑥)𝑡 ≈ 𝑡 HfmapId
hfmap (𝑓1 ≫ 𝑓2) 𝑡 ≈ (hfmap 𝑓1 ≫ hfmap 𝑓2) 𝑡

HfmapComp

MonadMorphism𝑓

MonadMorphism(hfmap𝑓) HfmapNat

Fig. 13. Select HFunctor Laws

MonadT 𝑆 MonadT 𝑇

MonadT (𝑆 ≫ 𝑇) ComposeMonadT

IterativeMonadT 𝑆
IterativeMonadT 𝑇

IterativeMonadT (𝑆 ≫ 𝑇) ComposeIterativeMonadT

HFunctor 𝑆 HFunctor 𝑇

HFunctor (𝑆 ≫ 𝑇) ComposeHFunctor

IterativeMonadTLaws 𝑆
IterativeMonadTLaws 𝑇

IterativeMonadTLaws (𝑆 ≫ 𝑇) ComposeIterativeMonadTLaws

HFunctorLaws 𝑆
HFunctorLaws 𝑇

HFunctorLaws (𝑆 ≫ 𝑇) ComposeHFunctorLaws

Fig. 14. Composable Structures and Laws

6.1 Typeclasses for EQM and Interp Laws

HFunctor	Laws
IterativeMonadT	Laws

IterativeMonad	Laws

MonadMorphism

EqmR	Laws

Monad

HFunctor
IterativeMonadT

MonadIter

Iterative

Kleisli	Equivalence

MonadT

MonadT	Laws

EqmR

IterativeMonad

InterpLaws

Interp

Over

Subevent Trigger

Interaction	Trees	library

Standard	

EqmR	framework	

Fig. 15. Typeclass dependencies in the EqmR framework

Figure 15 summarizes the col-
lection of typeclasses supported
by our interpretation framework.
The red nodes are the cate-
gory theory-relevant typeclasses
from the Interaction Trees library
(most notably the theory of it-
erative monads and equivalence
on Kleisli arrows), the yellow
nodes are standard functional
programming typeclasses (func-
tor, monad, monad transformers,
higher-order functors), and the
green nodes represent the struc-
tural properties that we have for-
malized in this framework. A dot-
ted line connects an “operational” typeclass to its corresponding laws, and solid arrows represent
dependencies.

6.1.1 Custom Tactics for Extending Coq Typeclass Inference. Without explicit support, the Coq
typeclass inference algorithm often fails to infer the implicit arguments for interp, over, and trigger
when using the interp laws. We solve this issue by providing custom tactics for each of the relevant
lemmas for our interp laws: these are dubbed i-tactics for “interp law tactics”. For each of the
interp laws, there is a corresponding i-tactic, and we also have a specialized setoid-rewriting
tactic irewrite for inferring the necessary setoid rewriting we need for the laws.
This is necessary because (1) there are multiple overlapping instances of equational laws (for

instance, both the strong and weak bisimulation in the ITree library satisfy eqmR rules), (2) the
decomposition of stack of monad transformers is not unique (for instance, the identity monad
transformer fun x⇒ x is a trivial instance of a monad transformer), and (3) the type annotation for
the sums of events of the over combinator in the IgnoreTrigger law (recall Figure 12) presents a
difficult typeclass-resolution problem, and we would like the users to not use so many explicit type

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:23

annotations while using these laws. We have developed a small custom tactic library for inferring
the typeclass instances. Here we sketch (a simplified version of) the implementation of ibind, which
corresponds to the application of the InterpBind law.

Ltac ibind_body TR h t k :=
match type of h with
| ∀ T : Type, ?E T → _ T ⇒

let Hbind := fresh "Hbind" in
pose proof
(interp_bind (T := TR) (E := E)

h k t) as Hbind;
try (irewrite Hbind)

end.

Ltac ibind_rec TR h x :=
match x with
| interp (T := ?TR) ?h ?x_

⇒
ibind_rec TR h x_

| bind ?t ?k ⇒
ibind_body TR h t k

end.

Ltac ibind :=
match goal with
| ⊢ eqmR _

(interp (T := ?TR) ?h ?x)
_ ⇒
ibind_rec TR h x

end.

Fig. 16. Custom tactics for using the InterpBind rule

The custom tactics for using the InterpBind rule are shown in Figure 16. The base case is
ibind_body, which instantiates the InterpBind law with explicit type arguments for the monad
transformer TR, triggered event type E, handler h, continuation k and prefix t of the bind operator.
In ibind_body, we must explicitly match the type of the handler, h, because, given a program
interp h (interp h' (x � ma ;; k x)), the typeclass inference in Coq cannot determine whether
it should attempt to apply the commutation lemma to the inner or the outer interp function. The
irewrite tactic infers the specific setoid instance needed in order to perform the rewriting. The
ibind_rec recursively matches against the argument of interp to specify the innermost monad in
the interp function, and the top-level tactic ibind, simply calls into ibind_rec to start the process.

6.2 Case Study : imp to asm Compiler

We have re-verified the correctness of a simple imperative language (imp) to a simple assembly
language (asm) compiler, the case study presented in the original Interaction Trees paper [Xia et al.
2020], in this equational framework to illustrate how the equational laws are lifted in the stack of
interpretation. In the following subsection we discuss the benefits to using the framework that we
have observed.

6.2.1 Elegant Staged Interpretations : the asm Example. Recall from Section 3.3 how the automatic
injection of handlers eliminates the need for extra manual annotations. The benefit for our layered
interpretation is larger when it comes to larger stacks of interpretations as presented in 2, but we
present here a simplified version for expository purposes. We illustrate this point again in asm, and
illustrate another benefit: writing layered interpreters is more straightforward.

The ASM language has two event signatures: Reg, for registers, and Memory, for the heap, and has
two handlers respectively, h_reg and h_memory. Let’s look at the original definition of interp_asm,
which uses bimap in order to manually inject the handlers for each of the events.

(* [interp_asm] definition without [over] and [interp] *)
Definition interp_asm {E A} (t : itree (Reg +' Memory +' E) A) :=
let h := bimap h_reg (bimap h_memory (id_ _)) in
let t' := interp h t in fun mem regs ⇒ interp_map (interp_map t' regs) mem.

The bimap h_reg (bimap h_memory (id_ _))manually injects the handlers for Reg and Memory for the
signature of the program itree (Reg +' Memory +' E) A. The application of interp_map and interp

does not accurately reflect the intuition that we are staging interpretation: in fact, the interpreters
are being applied simultaneously. In addition, the event signature is very concrete, in the sense
that the signature must provide the ordering of Reg +' Memory +' E for this interp_asm to apply.
The code below is the staged interpretation using over and the new interp combinators.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:24 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

Definition interp_asm {D E F A} {̀Reg +? D -< E} {̀Memory +? E -< F} (t : itree F A) :=
(interp (T := stateT memory) (over handle_reg) (interp (T := fun x ⇒ x) (over handle_mem) t)).

Observe the benefits in writing the interpretation in this manner: now, each stage of interpreting
Reg and Memory are clearly distinct, and are compositional. The over annotation also eliminates
the need for manual annotation. It is also extensible in the sense that adding another stage of
interpretation is straightforward—the event signature is not rigid.

6.2.2 Structural Rules for Free. In the original imp-to-asm proof of correctness, one had to show
that structural properties hold for each layer of interpretation. For instance, if one wanted to use
the InterpRet law with layers stateT reg (stateT memory (itree E)), an instance would need to
be proven for each of itree E, stateT memory (itree E), and stateT reg (stateT memory (itree E))

(or, less compositionally, one single, ad hoc instance that essentially combines all three proofs
into one). This does not scale, especially when given a large stack interpreters with many laws.
However, now we get these properties for free.
This illustrates how definitions can be simplified. What about proofs? Consider the following

structural lemma stating how the interpretation function for asm commutes with bind.

Lemma interp_asm_bind: ∀{R S} (t: itree E R) (k: R → itree E S),
interp_asm (bind t k) ≈ (x � interp_asm t ;; interp_asm (k x)).

OLD PROOF:
intros.
unfold interp_asm, interp_map.

cbn.
repeat rewrite interp_bind.
repeat rewrite interp_state_bind.

repeat rewrite bind_bind.
eapply eutt_clo_bind; [

reflexivity | ..].
intros. rewrite H.
destruct u2 as [g' [l' x]].
reflexivity.

NEW PROOF:
intros; unfold interp_asm.
do 2 ibind.

Now compare the old proof to the new proof, as shown to
the right. The old proof of the lemma had to refer explicitly
to the bind commutation property at each layer (interp_bind
and interp_state_bind), which are specific to the layers and
cannot be composed with each other. In addition, it used the
eutt_clo_bind lemma to perform rewriting under the monadic
bind, while the intuitive reasoning principle should be “com-
mute the bind operator under interp twice”.
The new proof only has to apply the same bind commuta-

tion lemma using the ibind tactic, which essentially unfolds
to invoking ‘irewrite interp_bind‘ twice, while inferring the
correct setoid instances for rewriting the InterpBind rule.
At each layer of interpretation, we have the same bind

commutation property that holds, and we do not need to con-
jecture the structural property to hold or reprove it for each
combination of layers.

6.2.3 Commuting layers of interpretation. To determine that we indeed have flexibly composable
structural rules, we can modify the structure of an existing development and see how hard it
is to “port” the proofs to the new structure. To that end, we modified the existing imp to asm
compiler development by swapping the order in which registers and memory events are interpreted.
Of course such a change necessitates certain modifications: for instance, we had to re-order the
arguments to the relation connecting the imp and asm state monads. However, beyond those simple
changes, most of the proofs go through with minimal differences—the most complicated change
being instances where the IgnoreTrigger rule applies at a different position in the stack.7 The old
proofs (like the one shown above) would be far less resilient to such changes, and therefore much
more difficult to maintain than the new ones enabled by this framework.

7The supplementary Coq material contains the proofs.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:25

7 RELATEDWORK

Monads, Monad Transformers, and Modular Interpreters. The approach of building modular in-
terpreters from monads and monad transformers derives from an expansive literature. Moggi’s
seminal papers [Moggi 1989, 1991] about using monads to characterize imperative features in
a pure, functional setting was consequently popularized by Wadler [Wadler 1990] and Peyton
Jones [Peyton Jones and Wadler 1993]. Monad transformers [Moggi 1990] were then adopted as
a way of composing various effects: notably Liang, et al. [Liang et al. 1995] showed how to build
modular interpreters in that style, which we have adopted and formalized here. Swierstra [Swier-
stra 2008], Apfelmus [Apfelmus 2010], Kiselyov, et al. [Kiselyov et al. 2013], and Kiselyov and
Ishii [Kiselyov and Ishii 2015] have showed how to use the free and freer monads to define modular
monad instances. A related data structure to freer monads are Tlön Embeddings [Li and Weirich
2022], which use program adverbs as a basis to allow more flexibility in computational modeling of
effects. Interaction Trees [Xia et al. 2020] are a coinductive freer monad, and provide an instance
where each interpretation layer forms an iterative monad. In our framework, we maintain that the
range of interpretation is a stack of iterative monads and show how, in this practical setting, the
laws for iteration can be composed and lifted through monadic interpreters.

Nesting interpreters are also a prominent feature of Johann and Ghani’s work [Johann and Ghani
2009]. That work introduces two separate constructs for building layered monads: a base interpreter
and a second interpreter for nesting. Our general interp definition subsumes both definitions, but
uses a distinct base instance. Our eqmR framework shows how to build a formalized equational
theory that works nicely with the lifting and plays well with Coq-style typeclasses, and so can be
seen as a mechanized version of their results.
Algebraic Effects and Handlers. Interaction trees and languages with support for algebraic ef-

fects [Bauer and Pretnar 2013; Hyland et al. 2006; Plotkin and Pretnar 2009; Plotkin and Power
2003; Plotkin and Pretnar 2013] share similar goals, namely flexible, programmable construction
of semantics. As such, our work has taken inspiration from that literature. There are significant
differences, however. Programming languages that implement algebraic effects, like Eff [Bauer
and Pretnar 2015], are working in an ambient environment that allows nontermination, whereas
ITrees are crafted to fit with the total semantics of Coq. The handlers for algebraic effects are more
general than those possible with ITrees. In particular, the ITree handlers do not have access to
the continuation of the event, which makes them less expressive (giving the handler access to the
continuation would be hard to realize in Coq because its termination checker would not be able to
observe that manipulations of the continuation are sufficiently guarded to define valid cofixpoints).

The algebraic reasoning of algebraic effects is often used in that setting to characterize equations
that hold for particular effects; for instance, for state effects the sequence put s; put t is equivalent
to put t (since the second put overwrites the first). Such equivalences can be proven as theorems
about particular monads used for interpreting events. In our context, such a theorem would justify
a rewriting rule with respect to the state monad notion of eqmR. This paper, however, focuses not
on such monad-specific properties. Instead, we are looking at how to automatically construct the
generic, structure-preserving, parts of equational theories compositionally.

Relational Logics. Benton’s Relational Hoare Logic [Benton 2004] and Nanevski, et al.’s Relational
Hoare Type Theory [Nanevski et al. 2013] have been shown to be useful for reasoning about program
transformations and properties such as information flow. The subsequent work on predicate
transformers [Swierstra and Baanen 2019], Dijkstra Monads [Ahman et al. 2017; Maillard et al.
2019, 2020], and F* [Swamy et al. 2016] give a general framework for building program logics for
arbitrary monadic effects. The Dijkstra Monad setting is especially relevant to our approach and
is similar in that it builds a general logic for reasoning about monads, but is different in that it

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

99:26 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

does not focus on composing reasoning about effects (i.e., building a compositional theory using
interpretation).

Logical Relations and Bisimulations for Monadic Types. There are many techniques for relational
reasoning, including binary logical relations [Ahmed 2004; Benton et al. 2009; Dreyer et al. 2009]
and bisimulations [Koutavas and Wand 2006; Lago et al. 2017; Sangiorgi 2012], and their combi-
nation [Hermida et al. 2020; Hur et al. 2012]. The eqmR framework defines relations for monads
that technically form logical relations. Logical relations over monadic types were developed by
Goubault-Larrecq, et al. [Goubault-Larrecq et al. 2008], giving a sound basis for a monadic equiv-
alence akin to a notion of bisimilarity. As in our approach, these techniques build an expressive
basis for program logics and program verification [Jung et al. 2015].
PER Models. The notion of image is inspired from PER models of computation, as used in, e.g.,

models of the lambda calculus with recursion and recursive types [Mitchell 1996, Chapter 5], for
reasoning about operational equivalences [Appel and McAllester 2001], or for giving different
views of information [Abadi et al. 1999]. In our setting, we use a PER model to gain set-theoretic
reasoning about elements in a monadic types, as a way to refine our reasoning principles.

8 DISCUSSION AND CONCLUSION

We have presented a novel and principled approach to the construction of monadic interpreters built
in layers from a free(r) monad structure such as ITrees. The tools we have introduced and formalized
in Coq greatly reduce the boilerplate and glue code needed to construct such interpreters, and also
provide for free the backbone of the equational theory necessary for any relational reasoning over
the resulting structure. Our current implementation provides instances for the structures most
commonly used in existing ITree projects, lifting the equational theory through state and error
transformers. However, there is a zoo of monads: expanding the library to cover additional effects
and monads would be a valuable extension.
Among those effects, nondeterminism is particularly worthy of attention. Indeed, we have

presented in Section 4 the propM monad, but looking back at Figure 2, the Vellvm developers use
a more general structure that models not just nondeterministic sets of values, but rather sets of
computations. This approach relies on a hypothetical propM transformer, propT𝑀 𝐴 ≜ 𝑀 𝐴→ Prop.
For Vellvm, the authors have fixed𝑀 to be itree E, defining a new ad hoc structure rather than a
transformer. Interestingly, the reason for this was because they lacked a generic notion of image for
a monadic computation, which we introduced through this paper. Indeed, they define the bind over
this structure as: bind 𝑃 𝐾 𝑡𝑏 ≜ ∃ 𝑡𝑎, 𝑘, 𝑃 𝑡𝑎∧𝑡𝑏 ≈ bind 𝑡𝑎 𝑘∧(∀𝑎, Leaves 𝑎 𝑡𝑎 → 𝐾 𝑎 (𝑘 𝑎)). This
should be read as judging whether an ITree 𝑡𝑏 belongs to the bind: there should be a computation
𝑡𝑎 in the prefix 𝑃 and a continuation 𝑘 such that at any leaf of 𝑡𝑎 (i.e., in the image of 𝑡𝑎 to use our
terminology), the continuation belongs to the nondeterministic set. Without the restriction to the
image, this construction is completely ill-behaved. The reason we don’t include propT here is that,
even using the image, propT𝑀 doesn’t lift the monad laws properly—this definition of bind does
not associate to the left (an expected artifact of the nondeterminism [Maillard et al. 2020]). Thus,
developing clean nondeterministic transformers for monadic interpreters remains an interesting
prospect.
With these extensions to the ITree library in place, we lighten the bureaucratic boilerplate of

structural rules when programming and reasoning about nested monadic interpreters. Of course,
monadic reasoning can be about more than its structural rules: the extensions in this paper express
nothing about monad-specific algebras. This aspect of the reasoning is still fairly ad hoc in the ITree
landscape; combining our contribution with other techniques, such as Dijkstra monads [Maillard
et al. 2019, 2020], would likely further improve the viability of relational reasoning for monadic
interpreters at scale.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

Formal Reasoning about Layered Monadic Interpreters 99:27

9 ACKNOWLEDGMENTS

We thank Paul He for reading and providing comments on our paper, and we thank the anonymous
reviewers for their feedback. This material is based upon work supported by the National Science
Foundation under Grant No. 1521539 and the ONR under Grant No. N00014-17-1-2930. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of the National Science Foundation or the ONR.

REFERENCES

Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A Core Calculus of Dependency. In Proceedings of

the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Antonio, Texas, USA) (POPL
’99). Association for Computing Machinery, New York, NY, USA, 147–160. https://doi.org/10.1145/292540.292555

Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon Plotkin, Jonathan Protzenko, Aseem Rastogi, and
Nikhil Swamy. 2017. Dijkstra Monads for Free. SIGPLAN Not. 52, 1 (jan 2017), 515–529. https://doi.org/10.1145/3093333.
3009878

Amal Jamil Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. USA. AAI3136691.
Heinrich Apfelmus. 2010. The Operational Monad Tutorial. The Monad.Reader Issue 15 (2010).
Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying

Code. ACM Trans. Program. Lang. Syst. 23, 5 (sep 2001), 657–683. https://doi.org/10.1145/504709.504712
Andrej Bauer and Matija Pretnar. 2013. An Effect System for Algebraic Effects and Handlers. Logical Methods in Computer

Science 10. https://doi.org/10.1007/978-3-642-40206-7_1
Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and Algebraic

Methods in Programming 84, 1 (2015), 108–123. https://doi.org/10.1016/j.jlamp.2014.02.001 Special Issue: The 23rd Nordic
Workshop on Programming Theory (NWPT 2011) Special Issue: Domains X, International workshop on Domain Theory
and applications, Swansea, 5-7 September, 2011.

Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. SIGPLAN Not.

39, 1 (jan 2004), 14–25. https://doi.org/10.1145/982962.964003
Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2009. Relational Semantics for Effect-Based Program

Transformations: Higher-Order Store. In Proceedings of the 11th ACM SIGPLAN Conference on Principles and Practice of

Declarative Programming (Coimbra, Portugal) (PPDP ’09). Association for Computing Machinery, New York, NY, USA,
301–312. https://doi.org/10.1145/1599410.1599447

Stephen L. Bloom and Zoltán Ésik. 1993. Iteration Theories - The Equational Logic of Iterative Processes. Springer. https:
//doi.org/10.1007/978-3-642-78034-9

Venanzio Capretta. 2005. General Recursion via Coinductive Types. Logical Methods in Computer Science Volume 1, Issue 2
(July 2005). https://doi.org/10.2168/LMCS-1(2:1)2005

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2009. Logical Step-Indexed Logical Relations. In Proceedings of the 2009

24th Annual IEEE Symposium on Logic In Computer Science (LICS ’09). IEEE Computer Society, USA, 71–80. https:
//doi.org/10.1109/LICS.2009.34

Jean Goubault-Larrecq, Slawomir Lasota, and David Nowak. 2008. Logical relations for monadic types. Math. Struct. Comput.

Sci. 18, 6 (2008), 1169–1217. https://doi.org/10.1017/S0960129508007172
Peter Hancock and Anton Setzer. 2000. Interactive Programs in Dependent Type Theory. In Proceedings of the 14th

Annual Conference of the EACSL on Computer Science Logic. Springer-Verlag, Berlin, Heidelberg, 317–331. https:
//doi.org/10.1007/3-540-44622-2_21

Claudio Hermida, Uday S. Reddy, Edmund P. Robinson, and Alessio Santamaria. 2020. Bisimulation as a Logical Relation.
CoRR abs/2003.13542 (2020). arXiv:2003.13542 https://arxiv.org/abs/2003.13542

Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012. The marriage of bisimulations and Kripke logical
relations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 59–72. https:
//doi.org/10.1145/2103656.2103666

Martin Hyland, Gordon Plotkin, and John Power. 2006. Combining effects: Sum and tensor. Theoretical Computer Science

357, 1 (2006), 70 – 99. https://doi.org/10.1016/j.tcs.2006.03.013 Clifford Lectures and the Mathematical Foundations of
Programming Semantics.

Patricia Johann and Neil Ghani. 2009. A principled approach to programming with nested types in Haskell. High. Order
Symb. Comput. 22, 2 (2009), 155–189. https://doi.org/10.1007/s10990-009-9047-7

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/3093333.3009878
https://doi.org/10.1145/3093333.3009878
https://doi.org/10.1145/504709.504712
https://doi.org/10.1007/978-3-642-40206-7_1
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/982962.964003
https://doi.org/10.1145/1599410.1599447
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1007/3-540-44622-2_21
https://doi.org/10.1007/3-540-44622-2_21
https://arxiv.org/abs/2003.13542
https://arxiv.org/abs/2003.13542
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1007/s10990-009-9047-7

99:28 Irene Yoon, Yannick Zakowski, and Steve Zdancewic

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
Sriram K. Rajamani and David Walker (Eds.). ACM, 637–650. https://doi.org/10.1145/2676726.2676980

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. SIGPLAN Not. 50, 12 (aug 2015), 94–105.
https://doi.org/10.1145/2887747.2804319

Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible effects: an alternative to monad transformers. In Proceedings
of the 2013 ACM SIGPLAN Symposium on Haskell, Boston, MA, USA, September 23-24, 2013, Chung-chieh Shan (Ed.). ACM,
59–70. https://doi.org/10.1145/2503778.2503791

Vasileios Koutavas and Mitchell Wand. 2006. Small bisimulations for reasoning about higher-order imperative programs.
In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006,

Charleston, South Carolina, USA, January 11-13, 2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM,
141–152. https://doi.org/10.1145/1111037.1111050

Ugo Dal Lago, Francesco Gavazzo, and Paul Blain Levy. 2017. Effectful applicative bisimilarity: Monads, relators, and Howe’s
method. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,

2017. IEEE Computer Society, 1–12. https://doi.org/10.1109/LICS.2017.8005117
Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet. 2018. Modular Verification of Programs with Effects

and Effect Handlers in Coq. In FM 2018 - 22nd International Symposium on Formal Methods (LNCS, Vol. 10951). Springer,
Oxford, United Kingdom, 338–354. https://doi.org/10.1007/978-3-319-95582-7_20

Yao Li and Stephanie Weirich. 2022. Program Adverbs and Tlön Embeddings. Proc. ACM Program. Lang. 3, ICFP, Article 101
(2022). https://doi.org/10.1145/3547632

Sheng Liang and Paul Hudak. 2000. Modular Denotational Semantics for Compiler Construction. Lecture Notes in Computer

Science 1058 (05 2000). https://doi.org/10.1007/3-540-61055-3_39
Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and Modular Interpreters. In Proceedings of the 22nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’95).
Association for Computing Machinery, New York, NY, USA, 333–343. https://doi.org/10.1145/199448.199528

Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra
Monads for All. Proc. ACM Program. Lang. 3, ICFP, Article 104 (jul 2019), 29 pages. https://doi.org/10.1145/3341708

Kenji Maillard, Cătălin Hriţcu, Exequiel Rivas, and Antoine Van Muylder. 2020. The next 700 Relational Program Logics.
Proc. ACM Program. Lang. 4, POPL, Article 4 (dec 2020), 33 pages. https://doi.org/10.1145/3371072

Conor McBride. 2015. Turing-Completeness Totally Free. In Mathematics of Program Construction - 12th International

Conference, MPC 2015, Königswinter, Germany, June 29 - July 1, 2015. Proceedings (Lecture Notes in Computer Science,

Vol. 9129), Ralf Hinze and Janis Voigtländer (Eds.). Springer, 257–275. https://doi.org/10.1007/978-3-319-19797-5_13
John C. Mitchell. 1996. Foundations for Programming Languages. The MIT Press.
Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceedings of the Fourth Annual Symposium

on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer Society, 14–23.
https://doi.org/10.1109/LICS.1989.39155

Eugenio Moggi. 1990. An Abstract View of Programming Languages. Technical Report ECS-LFCS-90-113. Laboratory for the
Foundations of Computer Science, University of Edinburgh.

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55–92. https://doi.org/10.1016/0890-
5401(91)90052-4

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2013. Dependent Type Theory for Verification of Information
Flow and Access Control Policies. ACM Trans. Program. Lang. Syst. 35, 2 (2013), 6:1–6:41. https://doi.org/10.1145/2491522.
2491523

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative Functional Programming. In Proceedings of the 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Charleston, South Carolina, USA) (POPL ’93).
Association for Computing Machinery, New York, NY, USA, 71–84. https://doi.org/10.1145/158511.158524

Maciej Piróg and Jeremy Gibbons. 2014. The Coinductive Resumption Monad. In Proceedings of the 30th Conference

on the Mathematical Foundations of Programming Semantics, MFPS 2014, Ithaca, NY, USA, June 12-15, 2014 (Electronic

Notes in Theoretical Computer Science, Vol. 308), Bart Jacobs, Alexandra Silva, and Sam Staton (Eds.). Elsevier, 273–288.
https://doi.org/10.1016/j.entcs.2014.10.015

Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Proceedings of the 18th European Symposium on

Programming Languages and Systems: Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2009 (York, UK) (ESOP ’09). Springer-Verlag, Berlin, Heidelberg, 80–94. https://doi.org/10.1007/978-3-642-00590-
9_7

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Appl. Categorical Struct. 11, 1 (2003),
69–94. https://doi.org/10.1023/A:1023064908962

Gordon D Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (Dec.
2013). https://doi.org/10.2168/LMCS-9(4:23)2013

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2503778.2503791
https://doi.org/10.1145/1111037.1111050
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1007/978-3-319-95582-7_20
https://doi.org/10.1145/3547632
https://doi.org/10.1007/3-540-61055-3_39
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3371072
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2491522.2491523
https://doi.org/10.1145/2491522.2491523
https://doi.org/10.1145/158511.158524
https://doi.org/10.1016/j.entcs.2014.10.015
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.2168/LMCS-9(4:23)2013

Formal Reasoning about Layered Monadic Interpreters 99:29

Davide Sangiorgi. 2012. Introduction to Bisimulation and Coinduction (2nd ed.). Cambridge University Press, USA.
Bas Spitters and Eelis van der Weegen. 2011. Type classes for mathematics in type theory. Math. Struct. Comput. Sci. 21, 4

(2011), 795–825. https://doi.org/10.1017/S0960129511000119
Guy L. Steele. 1994. Building Interpreters by Composing Monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (Portland, Oregon, USA) (POPL ’94). Association for Computing
Machinery, New York, NY, USA, 472–492. https://doi.org/10.1145/174675.178068

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-
van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. 2016.
Dependent types and multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and
Rupak Majumdar (Eds.). ACM, 256–270. https://doi.org/10.1145/2837614.2837655

Wouter Swierstra. 2008. Data types à la carte. J. Funct. Program. 18, 4 (2008), 423–436. https://doi.org/10.1017/
S0956796808006758

Wouter Swierstra and Tim Baanen. 2019. A Predicate Transformer Semantics for Effects (Functional Pearl). Proc. ACM
Program. Lang. 3, ICFP, Article 103 (July 2019), 26 pages. https://doi.org/10.1145/3341707

Philip Wadler. 1990. Comprehending Monads. In Proceedings of the 1990 ACM Conference on LISP and Functional Programming

(Nice, France) (LFP ’90). Association for Computing Machinery, New York, NY, USA, 61–78. https://doi.org/10.1145/
91556.91592

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2020.
Interaction Trees. Proceedings of the ACM on Programming Languages 4, POPL (2020). https://doi.org/10.1145/3371119

Irene Yoon, Yannick Zakowski, and Steve Zdancewic. 2022. Formal Reasoning About Layered Monadic Interpreters. https:
//doi.org/10.5281/zenodo.6604908

Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic. 2021. Modular, Compositional,
and Executable Formal Semantics for LLVM IR. Proc. ACM Program. Lang. 5, ICFP, Article 67 (aug 2021), 30 pages.
https://doi.org/10.1145/3473572

Vadim Zaliva, Ilia Zaichuk, and Franz Franchetti. 2020. Verified Translation Between Purely Functional and Imperative
Domain Specific Languages in HELIX. In Proceedings of the 12th Working Conference on Verified Software: Theories, Tools,

and Experiments (VSTTE). https://doi.org/10.1007/978-3-030-63618-0_3
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM Intermediate

Representation for Verified Program Transformations. In Proc. of the ACM Symposium on Principles of Programming

Languages (POPL). https://doi.org/10.1145/2103621.2103709

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 99. Publication date: August 2022.

https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1145/174675.178068
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/3341707
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/3371119
https://doi.org/10.5281/zenodo.6604908
https://doi.org/10.5281/zenodo.6604908
https://doi.org/10.1145/3473572
https://doi.org/10.1007/978-3-030-63618-0_3
https://doi.org/10.1145/2103621.2103709

	Abstract
	1 Introduction
	2 Interaction Trees and Monadic Interpreters: Background and Shortcomings
	2.1 Interaction Trees: a Free Monad Supporting General Recursion
	2.2 Monadic Implementation of Effects
	2.3 Scaling Up: The Shortcomings of Layered Monadic Interpreters

	3 Building Layered Monadic Interpreters
	3.1 Triggerable Monads
	3.2 Automatic Injection and Decomposition of Signatures
	3.3 Automatic Injection for Handlers
	3.4 Interpretable Monads

	4 A Composable Equational Theory for Monads
	4.1 Equivalence and Relations Between Monadic Computations
	4.2 Image of Monadic Computations
	4.3 Beyond Monadic Laws
	4.4 Transporting eqmR via Monad Transformers
	4.5 Relating Computations across Distinct Monads

	5 Layering EqmR with Interpreters
	5.1 Higher-order Functors Lift Structural Properties : Interp Laws for any Stack

	6 EqmR in Practice : Implementation and Case Study
	6.1 Typeclasses for EQM and Interp Laws
	6.2 Case Study : imp to asm Compiler

	7 Related Work
	8 Discussion and Conclusion
	9 Acknowledgments
	References

