Freedom for Proofs!

Representation Independence is More than Parametricity
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Abstract

Representation independence allows programmers to give different
implementations for an abstract interface. Reynolds’ characterization
of representation independence for System F uses parametricity, and
free theorems derived from parametricity give an elegant formulation of
how types limit the behavior of functions. This survey paper overviews
the recent efforts to effectively bring representation independence re-
sults to dependent type theories. The surveyed works demonstrate that
extensional notions of equality, through means of extensional equality,
univalence, and cubical type theory, can be fruitful for bringing expres-
sive representation independence to dependently-typed programming.

1 Introduction

In Reynolds’ seminal paper [27], a fable of Professor Descartes and Bessel il-
lustrates the usefulness of representation independence. Professor Descartes
and Bessel had given different definitions for complex numbers, and their
seminars were accidentally interchanged. Luckily, this did not matter for
the students’ understanding because they had explained their mathematical
properties at the level of abstraction that encompassed both of their defi-
nitions. The moral is that types should enforce levels of abstraction, which
leads to the definition of the abstraction theorem. The abstraction theorem
asserts that parametrically polymorphic functions behave uniformly, which
leads to free theorems [36] about such functions. This result is commonly
proven by stating the fundamental theorem or fundamental property of a log-
ical relation, where a logical relation provides a relational interpretation of
types.

The use of the abstraction theorem is commonly known as parametric-
ity, where parametrically polymorphic functions such as Va.7 will “behave
the same” for all possible implementations a for a given «. This leads to
a representation independence result, where programmers can give different



implementations for the same abstract interface, i.e. the API of a library.
Parametricity is also useful in defining practical notions of equality, where
one can reason relationally about the behavior of programs. Reynolds-style
parametricity (i.e. relational parametricity) has been initially studied for
System F, the polymorphic lambda-calculus, and over the past ten years
there has been a flourishing body of work in gaining parametricity and rep-
resentation results to richer systems such as full-spectrum dependent type
systems.

Dependent type theories are formal languages where a type can rely on
the value of a term. They are commonly enjoyed by programmers through
interactive proof assistants, and there are many such proof assistants, in-
cluding Coq, Agda, Idris, Isabelle/HOL, and Nuprl, which respectively have
different underlying type theories. Dependent types offer the power of rich
program specifications, where users can formalize expressive safety guaran-
tees and mathematical properties about program behavior. There is a catch:
writing mechanized proofs is notoriously labor-intensive, which motivates
the need for proof reuse. In an ideal world, programmers would be able to
program and prove modulo equivalences so that proofs of equivalence of pro-
grams can be transported for reuse. Representation independence provides a
solution for proof reuse. For a dependently-typed setting, using parametric-
ity also means that values of a given type can be translated to proofs that
the values satisfy the relational interpretation. This results in free proofs
[11] for dependent type theories, which can be of practical use.

As it will become evident, many have witnessed that this necessitates a
behavioral notion of equality which is internal to the theory. In particular,
parametricity is wholly compatible with the Calculus of Inductive Construc-
tions (CIC) but cannot be internalized (i.e. it is not a theorem that can be
proved within CIC, but a meta-translation can show that it is compatible).
Even with the meta-translation step, parametricity alone is not enough for
gaining a flexible and easy-to-use form of representation independence re-
sults in CIC because of its limited notion of equality. Type theories such as
the CIC offer a syntactic notion of equality of terms, which is limited. Most
famously, functional extensionality which is consistent with type theories
must be added as an axiom for many intensional type theories. A naive look
would suggest that adding such properties axiomatically (See Section
would solve the problem, but this still does not satisfy the need for an obser-
vational equational theory, where an "outside" view of equality can equate
syntactically different programs that are behaviorally indistinguishable.

In this survey, we give an overview of the recent efforts of bringing rep-
resentation independence results to dependent type theories. We will focus



on three settings: (1) Dreyer and Krishnaswami’s extensional Calculus of
Constructions with internalized parametricity [21], (2) Tabareau et al.’s uni-
valent parametricity defined over CIC with axiomatized univalence [29], and
(3) Angiuli et al.’s internalized representation independence result which uses
univalence and higher inductive types in the de Morgan cubical type theory
of Cubical Agda [3].

2 Preliminaries

In this section, we will prime the readers with some background information
that will set grounds for basic definitions used.

2.1 Equality Types

There are two methods of defining equality between two terms in a type
theory. One method is to define a set of typing judgments to inductively
describe the rules of equality, known as judgmental equality. This can be used
to describe a decidable type-checking algorithm, where coercions between
equal types can be silently done. This method of automated coercions is
known as definitional equality.

A second method is propositional equality, where two terms are equivalent
with an evidence that the two are equal. Equality types may carry more
information than the proposition that two terms are equal. For instance,
if we have a proposition A V B, the proof of this proposition contains the
information that either A is true or that B is true. Similarly, the proof of
an equality A = B as a type may carry information on how the two types
can be equal.

2.2 Intensional vs. Extensional Type Theories

The term "extensionality" is often overused in the literature of type theories.
The difference between intensional and extensional type theories comes from
how they treat the interplay between judgmental and propositional equality.
Intensional type theories offer a restrictive view of judgmental equality, where
the identity type ld4(x,y) is the proof that z and y are equal, and can only
implicit coerce between terms with «/f/n equality. The identity type is
characterized by the following rules:



ELIM-J1

INTRO-ID Lox: Ay A z:lda(z, y) = C(x,y, Z) type
'a:A T'kp:lda(a, a) yoz:AFc:C(z, o, refl(z))
I+ refl(a) : 1da(a, a) 't Jey.cp;z.c): Cla, a, p)
ELIM-J2

' gy zc(refl(a); z.c) = [a/z]c: C(a, a, refl(a))

The elimination form J described by the ELIM and ELIM-EQ rule gives
Ida(a, a’) many expected properties of an equality relation, such as sym-
metry, transitivity, and coercion. An intensional type theory has decidable
judgments through requiring explicit coercions for non-a/(/d/n equations.

On the other hand, in an extensional type theory, a proof of equivalence
between two elements x and y, Eq4(x,y), can be reflected in the notion of
judgmental equality (=). There are two ways in which a type theory can be
an extensional type theory: definitionally and propositionally.

Definitional extensionality is where we have an "equality reflection rule"
of the form (where = is the definitional equality of the respective theory):

INTRO-EQ ELIM-EQ
'Fa=d:A I'Fp:Eqy(z,y)

[ trefl(a) : Equ(a,d’) Thrz=y

The extensional type theory in Krishnaswami and Dreyer’s work that we
discuss in Section [4] has definitional extensional equality.

The alternative is to have a propositionally extensional equality, where no
two terms can be propositionally equal in more than one way. It is common
to add axioms to an intensional type theory (such as the vanilla Coq type
theory) to gain this property. One option is to add Streicher’s Aziom K [2§)],
and another is to add uniqueness of identity proofs (UIP) [24]. Axiom K and
UIP are equally expressive, i.e. logically equivalent.

"Extensionality" also sometimes refers to functional extensionality, which
states that two functions are equal iff they output the same results for equal
inputs (i.e. Vry,z =y = fx=g9gvy) = f=g). However, this is an
orthogonal definition which does not necessarily coincide with the notion of
extensionality we have discussed above.



2.3 Univalence

In common mathematical practice, isomorphic types are treated as the "same",
as isomorphic objects often enjoy the same structural properties. Vladimir
Voevodsky’s univalence principle [34] formalizes this practice by stating that
isomorphic types are indeed equal. More specifically, it states that every
equivalence between two types A and B brings about an identity proof
Ids(A, B). Thus, equal types may be equal in many ways because isomor-
phisms are contentful. Note that Axiom K/UIP implies propositional exten-
sionality, but univalence refutes UIP. Propositional extensionality is also a
provable theorem if we have univalence.

Realizing Univalence. There are two main approaches for realizing
univalence: one is by adding the principle as an axiom to the type theory,
which is commonly used for various Martin-Lof Type Theories (MLTT) and
the Calculus of Inductive Constructions. While seemingly convenient, ax-
ioms do not have computational content and lead to stuck terms, i.e. type
theory with axioms results in a programming language where closed terms
of a natural number type cannot reduce to a numeral expression. More pre-
cisely, the property where all closed expressions reduce to their canonical
form representation is known as computational adequacy, where axiomatized
theories lack computational adequacy.

Another is the constructive account of realizing univalence through cu-
bical type theories [15], which gives computational content to univalence.
Cubical type theories allow full expressivity of using univalence, such as
gaining computational content for functional extensionality. The techniques
discussed in this survey, Tabareau et al.’s (See Section univalent para-
metricity and Angiuli et al.’s (See Section |§[) use of the structure identity
principle (SIP), is agnostic to the method of how univalence is realized.

3 Parametric Type Theories

Reynolds’ relational parametricity for System F captures the uniform behav-
ior of polymorphic functions. However, Reynolds later showed that this the-
ory can only be formalized in a meta-theory with an impredicative universe,
such as the Calculus of Inductive Constructions. Parametric type theories are
an exploration of how to formalize parametricity in such dependently-typed
setting. The initial efforts to introduce parametricity into a dependently-
typed setting were through using syntactic logical relations. Starting from
the parametricity proof for System F by Girard [19], Johann and Voigtlander
[20] transported the approach to the calculus extended with explicit strict-



ness, then Vytiniotis and Weirich [35] to F,, extended with representation
types, Takeuti [30] to the A-cube, and Neis et al. [23] to a calculus with
dynamic casting.

Bernardy et al. showed through a series of work [10, 12, [9] that pure
type systems [6], which classify simple dependent type systems in the style
of Barendregt, respect the parametricity theorem but are not able to inter-
nalize the theorem and then show subsequent extensions to the systems that
will allow for the internalization of parametricity. A surprising artifact is a
demonstration by Bernardy et al. [10] that the syntax of CIC is compatible
with parametricity but it cannot internalize the theorem, i.e. the abstrac-
tion theorem cannot be stated and proved within the type theory and thus
requires a meta-theoretic translation step. E|

[Type,] AB 2 A — B — Type;
[H(a: A).B] fg 21(a: A)(d : A)(a®: [A] a d').[B] (f a) (g d)
[2] £ af
IMax:A)t] 2 XNa: A)(z': A)(2f: [A] = 2).[t]
[tu] = [t] uv[u]
[1=-
[T, (z: A)]
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>

IT], (z: A), (2" = A7), (2f : [A] = ")

Figure 1: Parametricity translation for CC,, by Bernardy et al. [12]

To overview the syntactic approach, the Bernardy approach goes as fol-
lows. In order to set grounds for the parametricity translation in Section
we focus on CC,,, the Calculus of Constructions with predicative universes
E|. The syntax has a hierarchy of universes Type;, variables, applications,
lambda expressions, and dependent function types.

A,B,M,N ::=Type; |z | M N | Xz:A).M |II(z: A).B

Showing parametricity results occur through defining a relational inter-
pretation of types. A logical relation of a type A is given as [A], which can

'In particular, the issue in internalizing parametricity is that giving such a parametric
interpretation does not preserves types, and thus breaks subject reduction [22].

2Adding an impredicative universe has little impact, and thus CC,, is used for ease of
presentation.



relate two terms at the type. [A] a1 ao states that terms a; and ag are
related at type A. Figure[I] describes the parametricity translation for CC,,.
The translation for universe Type; is defined as binary relations of types.
The prime notation (*) denotes duplication with renaming, where each free
variable z is replaced by x’. The dependent function type Ila : A.B transla-
tion states that related inputs at A lead to related outputs at A as witnessed
by e. ¢ is the witness that free variables give related outputs from the
translation. The function type Ax : A.t translation is a function that takes
two arguments and the witness that the two are related. The application
t u translation applies the translation of ¢ to the original argument and its
renamed duplicate along with the translation of u. The type environment
translation gives a duplicate renaming for each variable and the relational
witness x°€.

With this translation, a Reynolds-style parametricity theorem can be
proven, stated as the following as a meta-theorem:

Theorem 1 (Abstraction Theorem). If Tt : A then U] F[t] : [A] ¢t ¢'.

This means that if ¢ has type A under context I', then related interpre-
tations of ¢ are related by A in related environments I'.

The Abstraction Theorem follows a standard logical relation result of
showing the fundamental property. If the abstraction theorem can be stated
and proved within the type theory, it is said to have internalized parametric-
1ty. This is as opposed to an externalized parametricity, where the theorem
is stated through a meta-theoretic translation.

There is a limit to this approach: in an intensional type theory, one can
use the abstraction theorem to prove propositionally that two programs are
equivalent to each other. However, propositional equality is not reflected
onto definitional equality in an intensional theory. This means that the
coercion between these two programs are not automatic, and is a practical
issue when wanting automated transport between proofs about equivalent
terms. Section 5| will describe how to restrict the notion of parametricity
with univalence for automated proof transport.

Another issue in integrating parametricity theory to dependent type the-
ories is that parametricity in type theory (in its simple form) does not admit
an identity extension lemma. The identity extension lemma is crucial for
proving theorems involving equality—it ensures that if an identity type is
passed as relations for the arguments of a type constructor, the resulting re-
lation is equivalent to the identity. This has been addressed by considering
the reflexive graph model on small types [5], and then with an extension of
type theory with a parametric function type [25].



4 Parametricity and Realizability Semantics

Bernardy et al. [I0] show that for a dependently-typed pure type system
(PTS) every term in the type theory respects parametricity results, but that
there is no way to internalize this fact. The goal of internalized parametricity
to allow the already compatible parametricity theorem to be provable within
the type theory. One method for this is a purely syntactic approach: a syn-
tactic extension of the system [12] with operators appealing to parametricity
can internalize parametricity. Specifically, theorem (Abstraction Theorem)
gives for each variable ¢ : A in I', an explicit witness that t is parametric
in the environment is needed ([t] : [A] ¢ t'). The operator [[z] denotes the
witness that x satisfies the parametricity condition on its type. Essentially,
the following typing rule which expresses that if x is found in the context,
then it is valid to use [[z]] is added to the type theory.

PARAM
I'FA:s

T,z: AF[z]] sz € [A]

However, this approach is limited in that it only applies to closed terms
and that it cannot be used to internalize program equivalences as equalities.

Krishnaswami and Dreyer give a relationally parametric model for an
extensional calculus of constructions through a realizability-style interpre-
tation of types, as described in the following section. What this offers is
the ability to validate strong equality axioms and induction principles using
parametricity. The validated axioms can then be soundly added into the type
theory (i.e. internalized), which is justified by parametric reasoning. The
main technical innovation in this work is the use of quasi-PFERs for a hetero-
geneous representation of equality. This gives a more faithful representation
independence result because it allows the theory to relate representations
of data that may have different type representations (e.g. Peano nats and
Church numerals).



4.1 BHK Interpretation and Realizability Semantics

If you want to convince yourself
of the fact that it is raining,
there is no other way than to
expose yourself directly to the
falling rain.

Per Martin-Lof

The Brouwer—-Heyting—Kolmogorov interpretation (BHK interpretation),
well-known for its proposition-as-types mantra is one of the most profound
insights in type theory. A pleasant result of this interpretation is the cor-
respondence of a derivable type of a program to a logical proposition. At a
cursory glance, this looks similar to the Curry-Howard correspondence, but
a closer look reveals a deeper notion. When we pay closer attention, there
is a proposition-, or truth-, forward insight: true propositions, that may not
already be part of the set of syntactic rules of a program (e.g. through its
pre-defined typing rules), should be realizable as valid types of a program.
This understanding of what types are meant to be (as truthful propositions
of programs) is what lies at the heart of a realizability semantics.

In a realizability semantics, every type of a program has a semantic inter-
pretation given by its realizer, corresponding to a valid proposition according
to the program execution. We can, on the converse, construct a semantically
valid realizer for a program to extend the set of possibly incomplete typing
rules of a program. The power of parametricity allows us to gain free theo-
rems of a program and add rules in a dependently-typed setting which would
otherwise have not been possible to prove in the type theory. Through the
realizability semantics that Krishnaswami and Dreyer present, consequences
that are derivable from parametricity can be added as sound axioms. Note
that adding an axiom using this method would possess computational con-
tent (corresponding to the realizer), where the realizer is the untyped term
inhabiting the semantic interpretation of that axiom’s type.

Their realizability-style model interprets types as relations through logical
relations. The standard result for the logical relations technique, commonly
known as the fundamental theorem or fundamental property, shows only a
reflexive congruence for well-typed terms and does not provide a model of
equality, which should be symmetric and transitive. Typically, the relational
interpretation of types given by the logical relation is required to be a partial
equivalence relation (PER), a symmetric and transitive relation. There is
trouble in how we mandate symmetry in the relations because by definition



symmetry requires a relation to be homogeneous and thus cannot relate
unequal types that may be representationally equivalent.

4.2 Quasi-PERs

The need for a PER representation that is heterogeneous is solved through
the use of quasi-PERs (a.k.a. difunctional or zigzag-complete relations) as
the model of types. As we’ll see, it generalizes PERs to the asymmetric case
in a convenient way.

Definition 1 (Quasi-PER). A relation between two
sets X and Y is a quasi-PER (zigzag-complete) rela-
tion R C X XY when: if (x,y) € R, (',y") € R, and
(2',y) € R, then (z,y') € R.

The zigzag-completeness is best understood pictorially, with the diagram
above. A QPER R C X xY induces a PER on X with Ro R_l, and a PER
onY with R~'o R.

Thanks to its asymmetry, QPERs can relate terms of different types
while also having a canonical equivalence relation. Dreyer and Krishnaswami
define their canonical equivalence on pairs of related terms on a QPER, where
this induced paired equivalence is a PER.

Definition 2 (Canonically induced PER). Every QPER Q C R x S induces
an equivalence relation ~g C Q x Q (and hence a PER on R x S), defined

as (a1, az) ~q (b1,b2) iff the zigzag {(a1,az), (b1,b2), (a1, b2), (b1,a2) C Q}.

Quasi-PERs give a significantly coarser notion of equality due to their
inherent notion of asymmetry. It can give a single relational model support-
ing symmetry and transitivity while being able to relate terms with different
type representations. This is an advancement to prior approaches, which
require building a PER model of types as well as a relational model between
such PERs.

4.3 Extensional Calculus of Constructions

The calculus at hand is an explicitly-typed extensional calculus of construc-
tions with an identity type and an elimination rule for equality based on
equality reflection. Equality reflection is supported: if I' - e, : Eq, (e, €),
then I' - e = ¢/ : X. The definitional equality is Sn—theory of lambda cal-
culus, plus the equality types in their calculus enjoy uniqueness of identity
proofs (UIP). An extensional CoC is used in this work because reflection
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allows the use of equality axioms (such as n equality for Church encoding of
pairs) that are computationally adequate/well-behaved, as opposed to an in-
tensional system where equality axioms make subject reduction fail, resulting
in stuck terms.

4.4 Semantic Interpretation and Fundamental Property

The interpretation of contexts [I" ok], where I' ok are well-formed contexts, is
the set of grounding environments v which satisfy it. There are no syntactic
well-formedness constraints on the interpretation because the operational
semantics does not examine the types of the term, as the relation on terms
will contain the necessary semantic constraints. The notion of equivalence
on environments forms a PER.

V(er, e2) € R.oer L Aea L A
V(e}, eb) € R, (¢}, eh) € Exp?.
e1 & el Ney & €

= (e],eh) € R

[T F *: kind] v £ { R € QPER(EXP, EXP)

Figure 2: Candidate relations, which form the semantic interpretation of
base kinds.

The interpretation of kinds happens in two steps: first, a pre-interpretation
is given as an approximate interpretation, and then a main interpretation
relative to a context «y is given. The main interpretation of the base kind,
[T F x : kind] is given in Figure [2| where it is a QPER of terminating terms
that is closed under expansion and reduction.

The interpretation of types is mostly unsurprising, where lambda-abstraction
and types of a base kind follow the usual rule for function types in logical
relations. The identity type is interpreted by a relation containing at most
one pair of values, which validates Axiom K.

The fundamental property requires that the environments - are well-
formed, and then all well-typed terms are self-related by the corresponding
relational interpretation of types. This theorem justifies the use of para-
metricity and implies consistency such that only inhabited relational inter-
pretations have a syntactically inhabited type. There are many judgment
forms in the model, and thus the property has clauses for each judgment
form. For instance, the fundamental property base kinds is as following:
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Theorem 2 (Fundamental Property for Kinds). Suppose T' ok, and v,7' €
[T ok] such that~y ~~'. Then, (1) If D :: T+ & : kind, then [D] v = [D] 7/,
and (2) If T+ k = &/ : kind, then [D] v € [I'F & : kind] .

4.5 Free Theorems and More

In this setting, dependent records, the induction principle for natural num-
bers, existential types, and quotient types can be internalized within the
extensional calculus of constructions. Details on how to provide realizers for
each construction are provided in [2I], and this section presents the realizers
for dependent records.

Dependent Records. While the cartesian product can be defined easily
in CoC, dependent records (X-types) are not and are realizable in this model.

Yr: XY 2Ta:+(llz: X.Y = a) =«
and its introduction form:
pairzy £ da:*x Me.llz: XY wakzy

This corresponds to a weak pair type, because its eliminator form is let (z,y) =
p in € instead of projective eliminators such as 7;(p). With parametricity,
one can realize strong eliminators [I7] with the following realizers, which are
semantically well-typed but syntactically ill-typed:

fst: (Xx: X.Y) = X = Ap.p X(A\z. \y.x)
snd : p: (Zz: X.Y).[fst p/z]Y =
Ap.p (Bz : X.Y) pair ([fst p/z]Y)(Az. Ay. y)

The projective second eliminator snd is not syntactically well-typed. In-
stead, it has the correct semantic type and thus is guaranteed to have good
computational behavior and can be soundly added as an axiom to the sys-
tem. The proof for semantic well-typedness for snd is direct, and relies on
the well-formedness of the contexts in order to appeal to the fundamental
property.

Church numerals can be defined with polymorphism in CoC, but there is
no syntactically typable term for the induction principle for Church numer-
als. Namely, there is no syntactically typable term of:

ind : IIP : N — %.P(z) — (IIn : N.P(n) — P(Sn)) — IIn : N.P(n)

12



Surprisingly, the realized dependent records can be used to prove the seman-
tic well-typedness of this term. Specifically, the following term is related to
itself at the above type.

AP)i, f,n. leto=pairziin

let h = Ap. pair (S (fst p)) (f (fst p) (snd p)) in
snd (n(Xx : N. P(z)) o h)

Using a dependent pair, the two arguments of IIn : N. P(n) — (P (S n))
can be packaged into a single argument, which is the expected argument for
the step function of the Church encoding. Then, parametricity can be used
to prove that for all n, applying the iterator n (Xz : N. P(x)) o h results in
a record where its first component is n, and its second component is of type
P(n). More details of the proof are available in the appendix of [21].

5 Parametricity and Univalence

A practical result from having parametricity in a dependent type setting is
its ability to transport proofs between equivalent representations. Tabareau
et al. [29] show that parametricity alone may not be enough for automated
proof transport, and make the connection of its usage to univalence. Univa-
lence, a principle proposed by Voevodsky [33], concretizes the mathematical
intuition that isomorphic types should be treated as the “same” type since
isomorphic objects enjoy the same structural properties. Univalence and
parametricity are similar in that they can both be used to transport proofs
across isomorphic types.

The limits of parametricity are as follows. First is the problem of using
parametricity in an intensional type theory, where two parametrically related
functions are propositionally equal to each other. Because an intensional
type theory does not reflect propositional equality to definitional equality
(which offers silent coercions between equal types), this is problematic for
showing automatic coercions between parametrically equivalent programs.
This issue is solved by limiting the parametric translation to relations that
respect univalence, which is called univalent parametricity.

Second, parametricity requires the user to define a common interface a
priori (e.g. a module signature for natural numbers needs to be defined
in advance before giving it a Church numeral representation and a binary
representation which are interchangeable). Cohen et al. claim that stating
an abstract interface a priori can be difficult engineering-wise [16], which
Tabareau et al. state as the anticipation problem of parametricity. Typically,
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a polymorphic interface requires a common abstract type «, where various
implementations ¢ : « can be given (this is the notion of a homogeneous
parametricity).

Tabareau et al. suggest a heterogeneous parametricity which has two
concrete types o and o/, where given two implementations ¢ : o and o : o/,
one can demonstrate the parametric relation between these different con-
crete types directly, without having a common abstract type. Because a
common abstract type between implementations is not necessary in order to
show parametricity results, the anticipation problem is solved. In addition
to solving the engineering concern that is posed, this approach gains addi-
tional expressivity because concrete types enjoy many definitional equalities
that abstract types do not. For instance, if one parameterizes proofs by an
implementation of N with 4, the abstract + will not reduce on any input,
whereas a concrete implementation will reduce on 0.

In short, this results in a univalent parametricity that can relate terms at
different types and can automatically coerce between parametrically equiva-
lent terms and provide proof transport. The framework presented by Tabareau
et al. emphasizes the practical use of univalent parametricity, implementing
an automated tool for proof transport in Coq. This work has two main con-
tributions: (1) wnivalent parametricity, which combines parametricity with
axiomatic univalence while preserving computational content, and (2) a so-
lution to the anticipation problem. The goal is to automatically transport
representationally independent, but equivalent, data. Parametric transport
is aware of the syntactic structure of the term and thus can do structural
rewriting of observationally equivalent terms. Univalent transport, on the
other hand, induces a proof obligation where the user must prove the iso-
morphism between two programs, but is not aware of the type structure of
the given term. Univalent parametricity is the amalgam between these ideas,
where user-provided equivalences are used when possible while solving the
computational problem for parametric transport.

5.1 Heterogeneous Parametricity

Parametricity results typically suffer from the anticipation problem, where
a common interface needs to be defined a priori for parametricity to take
effect. For instance, if a user would like to relate N to a binary representation
of numbers, they must rely on a common interface that captures their alge-
braic structure. This is largely because the fundamental property result from
logical relations is usually a reflexive homogeneous relation. When relying
on a homogeneous instance, one needs to relate the type of naturals to the
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type of binary numbers at the interpretation of Type at an appropriate uni-
verse level (i.e. [Type;] N Bin). However, a heterogeneous parametricity can
relate inhabitants of these different, but related, types to each other directly.
For instance, we can use parametricity to relate the inhabitants 0 and Og;j,
which are at different types.

5.2 Limits of Parametricity in an Intensional Type Theory

The computation problem arises from using parametricity in an intensional
type theory. The type theory is kept intensional in this setting to keep
type-checking decidable. Parametricity in this setting relates the behavior
of functions propositionally, but this does not imply that the functions are
definitionally equal. Thus, parametricity does not scale to computation at
the type level, since the proof of parametricity between types cannot be used
for their definitional coercion (whereas in an extensional theory, one can use
equality reflection to use parametricity results for type-level coercions).

5.3 Univalence to the Rescue

To gain back definitional equality for parametrically related types, we can
use univalence. With univalence, which is added axiomatically in this setting
(we’ll return to this later), propositional type equalities are type equalities,
which means that there are computationally relevant transports between iso-
morphic types.

A function f : A — B is an equivalence iff there exists a function g : B —
A paired with proofs that f and g are inverses of each other. The section
property states that Va : A, g(f(a)) = a and the dual retraction property
states that Vb : B, f(g(b)) = bE| Additionally, the equivalence is uniquely
determined by the function f.

Definition 3 (Type Equivalence). Two types A and B are isomorphic to
each other iff there exists a function f : A — B that is an equivalence.

The isomorphic functions, also known as transport functions, construct
terms of one type to the other, which can be provided as evidence for show-
ing judgmental equality between two types. The transport functions must
be provided manually, i.e. it will generate a proof obligation for the user,

3For expository purposes, regard the notion of equality (=) used here as propositional
equality. More precisely, the definition uses a notion of a path that indicates how two
types are equal. A detailed explanation of the univalence principle can be found in the
HoTT Book [31].
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but solves the computation problem with parametricity in an intrinsic type
theory.

Univalence concretizes the intuition that isomorphic types are proposi-
tionally equal. More precisely:

Definition 4 (Univalence). For any two types A, B, the canonical map
Id(A, B) — (A ~ B) is an equivalence.

Univalence makes the promise of immediate transport, where if A and
B are equivalent, any P A can be converted to an equivalent P B. Since
there is no syntactic restriction on the types or the transport functions, what
this gives is a black-box transport which does not care about the syntactic
structure of the term and type that are being related to.

5.4 Limits of Univalence for Automatic Transport

For automatic transport, univalence needs to be extended into a heteroge-
neous setting. This is a problem for automation, because every time that
two representations with different types need to be proven equal, the coercion
requires an extra generalization step. This generalization step can become
quickly complicated and does not scale to automation so programmers must
explicitly provide evidence of a transport function.

In addition, because univalence is axiomatized in this setting, it is nec-
essary to provide additional information during coercion because the use of
axioms leads to stuck terms that do not reduce to their canonical forms.
To get around this, a use of typeclasses that mimic computational rules in
cubical type theory allows for proof transport that retains computational
content. The details of the typeclass implementation of the tool are elided
here and can be found in Tabareau et al.’s report[29].

5.5 Univalent Parametricity

The goal of univalent parametricity is to solve all of these above problems: (1)
solve the anticipation problem of homogeneous parametricity, (2) solve the
computational problem of using parametricity in an intrinsic type theory, and
(3) use univalence only when desired, as it solves the computational problem
but adds additional programmer burden to provide the transport evidence.
This idea, transport & la carte, refine automatic transport by establishing
additional univalent relations. We retrieve a parametricity property that
can relate terms of different types when the global environment provides
evidence that they are in univalent relation. Univalent parametricity uses
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parametricity to infer new univalent relations from existing ones, and then
exploit induced equivalences to transport proofs and terms. When types A
and B are in univalent relation, any open term t : A is in univalent relation
to its transport at type B.

Take Your Equivalence with You. E| Univalent parametricity takes
equivalences into account when the types are translated. The translation
for a universe, [Type;] , is given by a relation R : A — B — Type; (just
as Bernardy did for their parametric translation), which is fortified with an
equivalence e: A ~ B and a coherence condition for the equivalence w.r.t.
the relation. Coherence states that the relation coincides with propositional
equality up to the equivalence. More precisely, for all a : A and b : B for
types Aand B, Ra b~ (a = 1. b). The up-to-equivalence is formulated with
the transport defined on the equivalence (T¢).

The translation at the term position, [T], must be distinguished from a
translation at the type position, [T] . Translating Type; at the type position
is what we have discussed so far:

[Type,] ABEX(R:A— B — Type,)(e: A~ B).Tlab. (Rab) =~ (a="1eb)

Types in CIC can only be "observed" through being in type position (i.e.
inhabited), so translations in a term position can collect more information.
In this instance, when translated at the term position (i.e. left of the ":"),
we have a triple which provides the proofs for the information about type
isomorphisms we carry in our type translation. The first line of Figure
shows the term translation, where idrype, is the identity equivalence on the
universe, and univrype, : [IA B.[Type;] A B ~ (A = B), a proof that the
univalent relation in the universe is coherent with equality on the universe.

Full univalent parametricity translation is shown in Figure[3| The trans-
lation targets CIC,, CIC augmented with the univalence axiom. In addition
to [A], we need the equivalence [A]°? and witness for coherence [A]®". The
abstraction theorem is as follows, where I' I, ¢ : T states that the term is
typable in CIC,,:

4Notice that this is an explicit, by-hand simulation of univalence. Compare this with an
extensional type theory, where it is not necessary to provide such an equivalence and co-
herence condition explicitly. More precisely, in an extensional type theory does not induce
the problem that propositional equality as shown by parametricity cannot be reflected in
judgmental equality. Thus, this approach of univalent parametricity is similar to intro-
ducing setoids in an intensional type theory where a type carries an equivalence relation.
Instead, as we’ll see here, the relational interpretation of a type carries an equivalence
relation.
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Theorem 3 (Abstraction Theorem). If 't : A then [[] by [t] : [A] ¢t t'.

Heterogeneous univalent parametricity. The methodology behind
heterogeneous parametricity can be used for univalent parametricity. A
global context =, stated as a telescope =, allows the fundamental prop-
erty to be extended heterogeneously. The context = is defined as a constant
triple, where each triple consists of two constants ¢® and ¢® (such as zero
(0) in Church numeral representation, and zero (0Ogjn) in binary number rep-
resentation), and a witness ¢® that the two constants are parametrically
related. The telescope =, defining the context is as follows:

[1]
<
|

[1]

1= (c] ATyl s AT [AR 6 o)

[1]
I
[1]

o1, (€2 0 A et T A% D [ApE ¢ )

n’-n n)-n u

The definition on Figure [3]is extended for constants as:

[1]

[°]F == c® when (¢°: _;¢®: :¢®: )e

As a result, with univalent parametricity, we retrieve both (1) heteroge-
neous parametricity property and a (2) univalent pmpertyﬂ which is oblivious
to the structure of the term, and states that if two types A and B are univa-
lently related, there is a canonical term in B related to a transported term ¢
of type A. In their development, univalent property is internal to the theory,
while the parametricity property is not. Thus, the univalent property may
be used in any context on open terms, which fits their purpose of defining
automatic transport.

6 Representation Independence in Cubical Type The-
ory

The motivation behind cubical type theory is to have a theory of univalence
with computational content. Equality in the theory will have "computa-
tional" information about how the two objects in question are equal. Intu-
itively, this information is necessary and available because two objects can
be isomorphic in many ways. As a consequence, univalence will be derivable

5In the paper, the authors state these as "white box fundamental property", and "black
box fundamental property", respectively.

18



[Type;] £ M(A B : Type,), (R :A — B — Type;)(e: A~ B).
Hab.(R a b) ~ (a =T b); idType,; UNivType,
[[(a: A).B] 2 \(f : (a : A).B)(g : 1(d" : A').B).
(a: A)(a": A')(a: [A] ad).[B] (f a) (g a);
Equiv;A A'[A] B B'[B];univiiA A'[A]B B'[B]
2] 2 2
Az : A)t] 2 XN A) (2" : A) (2 : [A] = 2).[t]
[t u] = [t] u ' [u]
[A] = [A]1 [A] €2 = [A].2 [A] " & [A].3
[']
[0, (z:A)] 2], (x: A), (2 :A),(z°: [A] z 2)

[>

Figure 3: Univalent Parametricity translation for CC,, by Tabareau et al.
The blue text indicates the univalent information added to the translation

(See Figure [1).

inside the theory, without needing to be axiomatized. This is as opposed
to Homotopy Type Theory (HoTT) [31], which axiomatizes univalence. The
use of axioms results in stuck terms that are not able to reduce. For instance,
in Tabareau et al.’s work (See Section , the tool must painstakingly ma-
neuver coercions between typeclasses that simulate computational rules that
are at the foot of cubical type theory. Even worse, stuck terms lack compu-
tational adequacy, the property that all closed terms of natural number type
compute numerals.

In this section, we will focus on how a principle derived from univa-
lence alone can be used to bring representation independence results. More
specifically, we would like to have representation independent results that are
internal to the theory, without having to rely on the use of axioms. Thus, we
focus on a cubical type theory, which gives a computational interpretation
to the univalence principle. Angiuli et al. [3] use the structure identity prin-
ciple in a cubical type theory to obtain equality of implementations. There
have been other noteworthy expeditions to bringing parametricity, internal
and external, to the cubical type theory. For cubical type theory, Cavallo
and Harper [14]’s parametric cubical type theory, and Nuyts et al.’s internal
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parametricity [25] take inspiration from Bernardy et al.’s presheaf model [§]
for internal parametricity.

6.1 Crash Overview of Cubical Type Theory

In this overview, we provide a brief sketch of the key ideas in cubical type
theory. Specifically, this will present the view of path types from a de Mor-
gan cubical type theory, following Cohen et al.’s system [I5]. This is also
commonly used as the underlying theory of Cubical Agda [32]. There exists
another cubical theory that develops a different structure of cubes, called
cartesian cubical type theory, developed by Angiuli et al [4]. ﬁ This section
follows syntax and notation in the style of Cubical Agda.

Path Types. Path types give the information for how two types are
equal. Paths are maps out of an interval type I which has two elements
i0 : I and il : I that are behaviorally equal (i.e. no function f : I — A
can distinguish them) but are not definitionally equal. We say that functions
f : I — A are evidence that f(i0) and f(il) are equal in A. A path type
specifies the behavior of their elements at i0 and il:

PathP: (A: 1 — Typel) — Ai0 — Ail — Typel

Notice that these types represent a heterogeneous equality, as the "end-
points" ag : A i0 and a; : A il have different types. Using the path types,
functional extensionality, the property that pointwise equal functions are
equal, is definable in the type theory. With a homogeneous instantiation of
the path type, the statement and proof of funExt follows directly:

_{A:Typel} > A— A — Typel

= {A=A}zy=PathP(A\_ - A)zy

funExt: {fg: A= B} > ((z:A) = fx=gz) > f=g
funExtpixz=px1

Transport. Transport allows for coercions between two equal types. The
type is stated as transport : A = B — A — B, and the term is instantiated
with a transport primitive within the type theory.

Higher Inductive Types. Higher Inductive Types (HITs) are a gen-
eralization of inductive types and quotient types. Each constructor of the

5See Angiuli [I] or Angiuli et al. [2] for a detailed exposition of Cartesian Cubical
Type Theory, and Cohen et al. [I5] for a detailed exposition of De Morgan Cubical Type
Theory.
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type is not only a free generator but carries paths between elements. It can
be used to take quotients of types by equivalence relations. One HIT that is
especially useful is the set quotient, which quotients a type by an arbitrary
relation, resulting in a set.

data / {A:Type} - {R: A— A — Type} — Type where
[ ]:{a:A} - A/R
eq/:{ab: A} = {r: Rab} — [a] =[b]
squash/ : isSet(A/R).

underlying type, eq/, which equates all pairs of related elements, and
squash/, which ensures that the resulting type is a set. Note that in the
context of homotopy type theory, as with the univalence axiom, the compu-
tational behavior of HITs is not specified. In a cubical setting, however, the
computational behavior can be described, as shown by Cavallo and Harper
[13].

6.2 Isomorphisms are Not Enough

Univalence asserts that isomorphic types are equal, and thus Tabareau et
al.’s univalent parametricity can transfer theorems between isomorphic types.
This is a limitation because implementations that share the same abstract
interface might not be isomorphic to each other. A standard queue interface
can demonstrate this clearly. The naive implementation of a queue is the
ListQueue, which enqueues an element to the head of the list, and dequeues an
element from the tail of the list. A more efficient implementation is Okasaki’s
[26] BatchedQueue, which represents a queue with a tuple Q = ListA x ListA,
where the first queue is used for enqueueing and the second is used to de-
queue. This results in an amortized constant-time queue implementation, as
opposed to the linear time complexity of the ListQueue implementation.
Observe that BatchQueue has the same extensional behavior as the ListQueue

through the mapping appendReverse. appendReverse is a structure-preserving
correspondence, as it commutes with enqueue and dequeue and preserves
empty. Since representation independence states that two implementations
sharing the same abstract interface are interchangeable when there is an
operation-preserving correspondence, ListQueue and BatchedQueue are con-
textually equivalent. Yet these two implementations are not isomorphic to
each other! The mapping, appendReverse is not injective, even for the sim-
plest example: ([2],[]) and ([], [2]) both map to [2]. While univalence cannot
be used for non-isomorphic instances, the structure identity principle (SIP),
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ListQueue (A : Type) — Queue A

ListQueue A = queue (List A) [] _::_ last
BatchedQueue : (A : Type) — Queue A
BatchedQueue A =
queue (List A x List A) ([1, [1)
(fun x (xs, ys) — fastcheck (x :: xs, ys))
(fun {(_, []) — nothing ; (xs, x :: ys) — just (
fastcheck (xs, ys), x)1})
where
fastcheck : {A : Type} — List A x List A — List A x*
List A
fastcheck (xs, ys) = if isEmpty ys then ([], reverse xs

) else (xs, ys)

appendReverse : {A : Type} — BatchedQueue A Q —
ListQueue A Q
appendReverse (xs, ys) = xs ++ reverse ys

Figure 4: Contextually equivalent, but non-isomorphic implementations of
Queue. appendReverse show the structure-preserving correspondence be-
tween the two implementations.

a result of univalence, can be used to alleviate this concern. Angiuli et al. [3]
use the SIP in a cubical type theory setting (more specifically, Cubical Agda),
to establish representation independence results. The strength of this work is
two-fold: (1) this insight that transport between isomorphisms is not enough
and using the SIP gives added expressivity for showing representation inde-
pendence, and (2) using cubical type theory requires less engineering work,
as there is no need to axiomatize univalence and declare tricky typeclass
instances as in the Coq implementation of Tabareau et al. The key contri-
bution results from the SIP paired with higher inductive types, along with a
heterogeneous notion of equality using quasi-PERs results. Note that their
use of the SIP is independent of their use of cubical type theory since SIP is
a result of univalence.

In standard mathematical practice, properties over structures are as-
sumed to be invariant up to isomorphisms on the same structure. The SIP
brings this mathematical intuition to life, and the definition can vary de-
pending on the notion of structure. Angiuli et al. commit to a definition
of structure that uses dependent paths, which is convenient for the cubical
setting. Structures are defined over a carrier type which has a notion of
structure-preserving equivalence.
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A structure is a function S : Type — Type, and an S-structure is a
dependent pair of a type and its application to the structure.

TypeWithStr S = 3[X € Type](S X)

An S-structure-preserving equivalence StrEquiv is a term with two S-
structures and an equivalence between their underlying types, and it char-
acterizes the proofs that the equivalence of underlying proofs is S-structure-
preserving. A ~ [ ¢ |B is the type of S-structure-preserving equivalences
between A and B, shown as the following:

StrEquiv S = (A B : TypeWithStr S) — fst A ~ fst B — Type
A~[1v]|B=X[ecfst A~fst B](t A Be)

And finally, we say that (S,¢) defines a univalent structure if we have a term
of the following type.

UnivalentStr S ¢« = {A B : TypeWithStr S}(e : fst A ~ fst B)
— (¢ A B e) >~ PathP(\i — S(ua e i))(snd A)(snd B)

Escardo [I8] also characterizes this same definition as the standard notion of
structure, modified with the use of dependent paths. Given these definitions,
the SIP can be defined, which can be trivially proven using univalence.

Theorem 4 (SIP). For S : Type — Type and ¢ : StrEquiv S, we have a term
SIP : UnivalentStr S« — (A B : TypeWithStr S) — (A ~[. | B) ~ (A = B).

This characterization of mathematical structure is similar to an algebraic
theory [7], which is a pair of signatures and equations over structures 7' =
(X7, &r). Similarly, structures are defined with a raw structure, which has
operations on the carrier type, and propositional azioms.

As an example, consider a monad as a raw structure. One can pair
this raw structure with an axiom stating that bind is unital and associative.
Thus, a structure can be defined as this pair of raw structure and axiom
and its structured equivalence will be the usual notion of a bijective monad
homomorphism. This definition of the SIP and the use of set quotients
defined by higher inductive types is sufficient for representation independence
results.

Applying the SIP. The SIP can be used to transfer axioms between
two non-equivalent implementations of Queues. Given a set A fixed, the
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raw queue structure contains the empty queue, and the enqueue/dequeue
functions.

RawQueueStructure X = X (A — X — X) x (X — Maybe(X * A))

Then, some axioms specifying the behavior of these operations, that @ is a
set, and dequeue of the empty queue is nothing, and how dequeue followed by
a enqueue operates. The axiom is as follows (the notation = is the notation
for homogeneous paths as described in Section :

dequeueEnqueueAxiom Q (empty, enqueue, dequeue) =
Va g — dequeue (enqueue a q) = just (returnOrEng a (dequeue q))
returnOrEng : A — Maybe(Q x A) - Q x A
returnOrEng a nothing = (empty, a)
returnOrEng a (just (¢, b)) = (enqueue a g, b)

The RawQueueStructure and dequeueEnqueueAxiom can be combined to form
a univalent QueueStructure. Recall the two contextually equivalent Queue im-
plementations, ListQueue and BatchedQueue. These implementations do not
form an isomorphism, and even worse, ListQueue satisfies dequeueEnqueueAx-
iom while BatchedQueue does not. For instance, dequeue (enqueue ¢ ([b,al,[])) =
just(([], [b, ]), a), but just(returnOrEngq ¢ (dequeue ([b,al,[]))) = just (([c], [0]), a).
Set quotients, with the use of the following HIT, can resolve this issue, by
identifying any two BatchedQueues sent to the same list by appendReverse.

data BatchedQueueHIT : Type where
Q( , ):List A— List A — BatchedQueueHIT
tilt : Vas ys a — Q(xs ++ [a], ys) = Q(xs, ys ++ [a])
squash : isSet BatchedQueueHIT

The BatchedQueueHIT is equipped with a QueueStructure. The empty queue
is Q([], []), and enqueue and dequeue are defined to respect the tilt construc-
tor. Since tilt can move elements between the end of the lists, this will
ensure that any two BatchedQueueHIT with the same ListQueue can be iden-
tified. The structure-map between the structures, appendReverse, can be
extended to an equivalence BatchedQueueHIT =~ List A which induces a raw
queue structure on BatchedQueueHIT. Finally, applying the SIP transfers the
ListQueue axioms to the quotiented BatchedQueue operations.
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Figure 5: Summarized overview of the surveyed works

7 Conclusion

In this survey, we have overviewed several works that bring representation
independence results in several dependent type theories. Dreyer and Krish-
naswami’s work on internalizing relational parametricity in the extensional
Calculus of Constructions showed that induction principles and equality ax-
ioms can be soundly added back to the theory based on its realizability
model. Tabareau et al.’s univalent parametricity offer transport a la carte,
where basic univalent transport is strengthened with parametricity to allow
for more proof transport and yield more efficient terms. Angiuli et al.’s use
of the structure identity principle, a derivable property from univalence, al-
low for proof transport between non-isomorphic types which is useful for
practical programming.

Regardless of how univalence is realized, Tabareau et al.’s univalent para-
metricity and Angiuli et al.’s SIP and set quotients strongly suggest that uni-
valence plays an important role in bringing representation independence re-
sults. For a constructive account of type theory, Dreyer and Krishnaswami’s
QPER realizability model and the cubical type theory used by Angiuli et al.
are salient. Although both Angiuli et al.’s work and Tabareau et al.’s work
provide automated tools for proof transport in both of their frameworks,
there is more burden in the tool for Tabareau et al.’s approach, because
it engineers typeclass coercions to behave similarly to computation rules in
cubical type theory. On the other hand, Angiuli et al.’s work is limited
because of the anticipation problem where the abstract interface needs to
be demonstrated a priori. (i.e. the representation independence result is in
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terms of an abstract type), as opposed to Tabareau et al.’s approach which
uses a heterogeneous relation to directly relate two concrete types with each
other instead of relying on an abstract type. Concrete types enjoy defini-
tional equality that abstract types do not (e.g. where an abstract + does
not reduce on any input, but a concrete + defined on N will reduce on 0).
In Angiuli et al.’s setting, the representation independence results considers
programs that are parameterized by an interface that determines the notion
of structure-preservation, which makes this concern less significant.
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