
Caitlyn Clabaugh, Alex Funk, Asha Habib, Stephanie Tran
Bryn Mawr College – Computer Science Department – Faculty Advisor Eric Eaton

ASL-to-Text is a real-time American Sign Language
(ASL) to English text transcriber. The user signs a letter
in a webcam’s frame and the program will display the
corresponding English letter in a text box.

American Sign Language (ASL) was developed as non-
verbal communication for the Deaf/Hard of Hearing
community. On the other hand, ASL also creates a
language barrier between signers and non-signers. To
ASL users in the Deaf/Hard of Hearing community,
writing English is often their second language. Those
users may feel the pressure to adapt to larger society
by using English. Therefore, this community feels more
comfortable expressing their ideas in their first
language: ASL. Currently, the technology available to
bridge this gap between signers and non-signers
involves a human third party translator, such as Video
Relay Service (VRS).

ASL-to-Text a program that aims to bridge the
communication gap between the Deaf/Hard of Hearing
and Hearing Communities without the assistance of a
human interpreter and while letting each user speak in
their native language.

What is ASL-to-Text

Background

User Interface

Image
Capture

Image
Processing

Vector of
Pixels

SMO
(Machine
Learning)

Class:

Predicted
Letter

Computer vision and gesture recognition are two rapidly advancing sects of computer science. They aim to allow computer systems to identify visual queues and objects. ASL-to-Text is a video interface
program that uses image processing and machine learning techniques to transcribe the beginning of the American Sign Language (ASL) alphabet into English text, taking in visual queues and identifying their
English meaning. The goal of our program is to ease communication between Deaf communities and hearing communities by allowing the ASL user to sign and the English speaker to see the textual meanings
of those signs. In the future, we plan to increase the amount of letters that the program can process and implement a video-chat interface so that ASL-to-Text can be used for its intended purpose.

References
• http://www.cs.waikato.ac.nz/ml/weka/
• http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
• Witten, I. H., Frank, E., Trigg, L., Hall, M., Holmes, G., & Cunningham, S. J. (1999). Weka: Practical Machine Learning Tools and

Techniques
• Cavender, A., Ladner, R. E., Riskin, E. A. (2006). MobileASL: Intelligiblity of Sign Language Video as Contrained by Mobile

Phone Technology
• Henderson-Summet, V., Grinter, R. E., Carrol, J., & Starner, T. (2010). Electronic Communication: Themes from a Case Study of

the Deaf Community.
Acknowledgements
Professor Jami N. FIsher

User sits in front of a green screen with black gloves on
facing a web camera. User signs a letter and presses
the space bar. In the text box, the program will show
the translation of the sign.

The screen that they will see has two components:
1. Video feed of user with a red box indicating where

the user should sign
• The screen displays the users full upper body

because facial gestures are an important
feature of ASL.

2. Text box is located on the right of the video feed
• We chose this location because it is regarded

as disrespectful to lower your eyes from the
face of the person signing. This is because they
feel that the audience is ignoring them.

Interface

Set-Up

Figure 2: A screen shot of the ASL-to-Text interface.

Figure 1: Flow of information of ASL-to-text

1. Assumptions: According to our set-up (see Set-Up), we eliminate possible
environmental differences by using the green screen and black glove.

2. Frame Capture: We used javaCv, a Java wrapper for OpenCV the largest open
source computer vision library, to capture single frames from a webcam.

3. Frame Manipulation: Using Java, we then translate each frame into grayscale
and then downsize it allowing us to make simpler, smaller vectors.

4. Vectors: We get the average value (from 1-10) of each pixel in the frame. Those
values are then appended in order into a vector. The vectors serve as input for
the machine learning algorithms.

[7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 8, 6, 7, 3, 1, 4, 7, 7, 7, 7, 7, 7, 7,

7, 7, 8, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7,

7, 8, 7, 8, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 6,

8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6,

8, 8, 7, 8, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6,

8, 8, 8, 8, 8, 8, 1, 8, 1, 1, 1, 1, 3, 7, 7, 6,

8, 8, 8, 8, 8, 8, 1, 7, 1, 1, 1, 7, 7, 7, 7, 7,

8, 8, 8, 8, 8, 8, 7, 1, 1, 7, 7, 7, 7, 7, 7, 7,

8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7]

Image to Vector

Figure 3: Sample Output Vector of Image (Letter “f”)

Image Processing

• Created a working video interface that takes a
capture of the user signing the beginning of the ASL
alphabet

• Implemented a machine learning algorithm that can
recognize and return the corresponding letter to the
user

• Frame Capture using Java on Linux
• Manipulating the image in order to output the most

detailed, learnable vector
• Deciding on the best classifier for our data

• Train the ASL-to-Text software to know the whole ASL
alphabet including letters that are motion signs

• Run tests with fluent ASL users
• Create a Skype-like video chat interface
• Implement canny edge detection on our image

captures
• Explore more machine learning options such as using

boosting to make our training more robust

Accomplishments

Challenges

Future Work

The vector of pixels is input into a machine learning
program that is written using Waikato Environment for
Knowledge Analysis (WEKA).This program uses
Sequential Minimal Optimization (SMO), a very
powerful learning algorithm which is used during the
training of Support Vector Machines (SVMs), to build a
model that will predict what class the inputted vector
belongs to. An SVM model is a representation of the
examples as points in space, mapped so that the
examples of the separate classes (the training data) are
divided by a clear gap that is as wide as possible. New
examples are then mapped into that same space and
predicted to belong to a class based on which side of
the gap they fall on. Once a class is determined for the
vector, it is outputted and printed in the interface

Figure 4: A picture of the ASL-to-Text station set up.

Machine Learning

ASL – to – Text

Abstract

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html

