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ASL-to-Text is a real-time American Sign Language 
(ASL) to English text transcriber. The user signs a letter 
in a webcam’s frame and the program will display the 
corresponding English letter in a text box. 

American Sign Language (ASL) was developed as non-
verbal communication for the Deaf/Hard of Hearing 
community. On the other hand, ASL also creates a 
language barrier between signers and non-signers. To 
ASL users in the Deaf/Hard of Hearing community, 
writing English is often their second language. Those 
users may feel the pressure to adapt to larger society 
by using English. Therefore, this community feels more 
comfortable expressing their ideas in their first 
language: ASL. Currently, the technology available to 
bridge this gap between signers and non-signers 
involves a human third party translator, such as Video 
Relay Service (VRS).  

ASL-to-Text a program that aims to bridge the 
communication gap between the Deaf/Hard of Hearing 
and Hearing Communities without the assistance of a 
human interpreter and while letting each user speak in 
their native language.
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Computer vision and gesture recognition are two rapidly advancing sects of computer science. They aim to allow computer systems to identify visual queues and objects. ASL-to-Text is a video interface 
program that uses image processing and machine learning techniques to transcribe the beginning of the American Sign Language (ASL) alphabet into English text, taking in visual queues and identifying their 
English meaning. The goal of our program is to ease communication between Deaf communities and hearing communities by allowing the ASL user to sign and the English speaker to see the textual meanings 
of those signs. In the future, we plan to increase the amount of letters that the program can process and implement a video-chat interface so that ASL-to-Text can be used for its intended purpose.

References
• http://www.cs.waikato.ac.nz/ml/weka/
• http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
• Witten, I. H., Frank, E., Trigg, L., Hall, M., Holmes, G., & Cunningham, S. J. (1999). Weka: Practical Machine Learning Tools and 

Techniques
• Cavender, A., Ladner, R. E., Riskin, E. A. (2006). MobileASL: Intelligiblity of Sign Language Video as Contrained by Mobile 

Phone Technology
• Henderson-Summet, V., Grinter, R. E., Carrol, J., & Starner, T. (2010). Electronic Communication: Themes from a Case Study of 

the Deaf Community.
Acknowledgements
Professor Jami N. FIsher

User sits in front of a green screen with black gloves on 
facing a web camera. User signs a letter and presses 
the space bar. In the text box, the program will show 
the translation of the sign.

The screen that they will see has two components:
1. Video feed of user with a red box indicating where 

the user should sign
• The screen displays the users full upper body 

because facial gestures are an important 
feature of ASL.

2. Text box is located on the right of the video feed
• We chose this location because it is regarded 

as disrespectful to lower your eyes from the 
face of the person signing. This is because they 
feel that the audience is ignoring them. 
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Figure 2:  A screen shot of the ASL-to-Text interface.

Figure 1: Flow of information of ASL-to-text

1. Assumptions: According to our set-up (see Set-Up), we eliminate possible  
environmental differences by using the green screen and black glove.

2. Frame Capture: We used javaCv, a Java wrapper for OpenCV the largest open  
source computer vision library, to capture single frames from a webcam.

3. Frame Manipulation: Using Java, we then translate each frame into grayscale 
and then downsize it allowing us to make simpler, smaller vectors.

4. Vectors: We get the average value (from 1-10) of each pixel in the frame. Those 
values are then appended in order into a vector. The vectors serve as input for 
the machine learning algorithms.

[7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 8, 6, 7, 3, 1, 4, 7, 7, 7, 7, 7, 7, 7,

7, 7, 8, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7,

7, 8, 7, 8, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 6,

8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6,

8, 8, 7, 8, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6,

8, 8, 8, 8, 8, 8, 1, 8, 1, 1, 1, 1, 3, 7, 7, 6,

8, 8, 8, 8, 8, 8, 1, 7, 1, 1, 1, 7, 7, 7, 7, 7,

8, 8, 8, 8, 8, 8, 7, 1, 1, 7, 7, 7, 7, 7, 7, 7,

8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7]

Image to Vector

Figure 3: Sample Output  Vector of Image (Letter “f”)

Image Processing

• Created a working video interface that takes a 
capture of the user signing the beginning of the ASL 
alphabet

• Implemented a machine learning algorithm that can 
recognize and return the corresponding letter to the 
user

• Frame Capture using Java on Linux
• Manipulating the image in order to output the most 

detailed, learnable vector
• Deciding on the best classifier for our data

• Train the ASL-to-Text software to know the whole ASL 
alphabet including letters that are motion signs

• Run tests with fluent ASL users
• Create a Skype-like video chat interface
• Implement canny edge detection on our image 

captures
• Explore more machine learning options such as using 

boosting to make our training more robust
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The vector of pixels is input into a machine learning 
program that is written using Waikato Environment for 
Knowledge Analysis (WEKA).This program uses 
Sequential Minimal Optimization (SMO), a very 
powerful learning algorithm which is used during the 
training of Support Vector Machines (SVMs), to build a 
model that will predict what class the inputted vector 
belongs to. An SVM model is a representation of the 
examples as points in space, mapped so that the 
examples of the separate classes (the training data) are 
divided by a clear gap that is as wide as possible. New 
examples are then mapped into that same space and 
predicted to belong to a class based on which side of 
the gap they fall on. Once a class is determined for the 
vector, it is outputted and printed in the interface

Figure 4:  A picture of the ASL-to-Text station set up.
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