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Goal: Develop intelligent systems that
1. Quickly learn new tasks
2. Learn continually with experience
3. Exhibit versatility over multiple tasks \-.,
-
Accomplish these goals by sharing knowledge
between tasks and with other agents
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Sharing Knowledge Between Tasks
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Transfer Batch Multi-Task
Learning Learning
Optimizes performance over | Target task All tasks
Learns tasks consecutively Yes, efficiently Very inefficiently

Computational cost

Low

High

m This work investigates online multi-task learning (MTL)

based on sparse dictionary optimization

m Evaluated in lifelong learning settings

m Builds upon our earlier work on the Efficient Lifelong Learning
Algorithm (ELLA) [Ruvolo & Eaton, ICML "13]
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Online Multi-Task Learning
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Task Structure Model

m We assume a parametric model for each task ¢
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f(x) = f(x;0) 69 eR o0 L 5

m The parameters 0 are linear
combinations of a shared basis L
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Multi-Task Learning Objective Fn:
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Sparse Coding Connection

m We can re-write this MTL objective as a sparse
coding problem [Ruvolo & Eaton, ICML “13]

T ( T+
1 , 1
er (L) = = min < — g L (f (wgt);Ls(t)) (¢ )) +,LL||s(t)||1} + A||LE
ti=1

s(t)
1 T

or (L) = = mm{uw Ls(t)||123<t>+M||3(t)||1}+>\||L||g

T (t)
t=1

where 0() is the optimal single-task model for task ¢

D® is % the Hessian of the single-task loss evaluated at o)
Ix[|, = x ' Dx
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Sparse Coding Connection

T

gr (L) = r;l(gl{HH(“ —Ls[p + uHS“)Hl} + AL
t=1

Question: Are there dictionary learning
algorithms we can borrow from the sparse-
coding literature to efficiently solve g()?
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K-SVD [Aharon et al. 2006]

Objective Function°
arg mmme { HLs(i) — Xsz + ,LLHS(i) Ho}

The k-SVD algorlthm iterates two steps until convergence:
Step 1: update codes for each point

s « arg min {||Ls — x;]|2 + z]|s[lo}

Step 2: update each basis vector and the weights of the data
points that utilize this basis vector

mEA@S(-m)#O

s ang miny (L x5 + s o)

ljvsgA) =1
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K-SVD [Aharon et al. 2006]

Step 2 Objective Function:

1,5 arg mmz (IILs® — |3 + ps™lo )

ljys( ) 1=1

Step 2 Solution:
€, = X; — Z S?(ai)lr
r#J
(U, 3, V) =svd (E4) meAdss™ £0
l' <— U

g

J %0'1 1V1

Surprisingly we can efficiently find the global minimum!
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Adapting K-SVD to Multi-Task Learning

MTL Objective Function:

arg min min { |0 — Ls® |2+ ul/s® }—I—)\L2
5 ) Z {I Gy + wlls®llo | + AL

s(t)

K-SVD Objective Function:

arg min > min < [0 — Ls® 2L )1 s®) }
) Z { B ulls® o

s(t)

Key Idea: Use K-SVD to efficiently solve the MTL objective
* Need to use the generalized SVD (U, X, V) = gsvd (E4, M, W)

instead of SVD to account for 2" order information, where

Tt
S D v — — D(T)lt/
t'eA; Zt/eAj 1TD)1

feature relationship matrix task relationship matrix 12

!«43\



ELLA-SVD

MTL Objective Function: (fit via iterative optimization) "
T n¢
_isnll ®.7 0 O ) )
—T;%?{nt;ﬁ(f(wi Ls®) ,59) + s | + AL (V)

ELLA-SVD: Given a new task ¢,

1. Train a single-task model @(%) for task ¢
2. Reconstruct (%) in the current basis (LASSO)

s arg min { [ Ls — 03,0, + puls]lo }
3. Update the basis
Foreach j € {1... k} where S§-t> #~ 0

5 ang min' Y (Lt — 0]+ s

IJ,S(A) t=1

where: 101

D), = ,
\AJ\ 2 : DA, 1"D#)1

t'eA;
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Per-Task Computational Complexity

ELLA-SVD: O(base learner + d2k + k2d + qd® + qr2d)
q = sparsity of s
r = # tasks utilizing same basis component

ELLA: O(base learner + d°k?)

ELLA-SVD is much more efficient
than the original ELLA
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Applications

Facial Expression Recognition: identify presence of facial
action units (#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

100 features + bias E L I—A

21 Classification Tasks 2,880 Gabor Features Models

Land Mine Detection from  Exam Score Prediction for
radar images [xue et al. 2007] London schools [kumar et al. 2012]

139 Regression Tasks:

* 139 schools

* 15,362 students total

* 4 school-specific features
* 3 student-specific features
* Exam year + bias term

* 29 regions
* 2 terrain types

« 14,820 instances total £ 15




m We tested four methods

m Each method has the same first step of updating the
weights, s(*), for the current task

m The second step depends on the algorithm
m ELLA [Ruvolo & Eaton, ICML ‘13]: update all columns of L jointly

m ELLA Incremental: update columns of L one at a time
(a more efficient but suboptimal version of ELLA)

m ELLA-SVD: update each column of L and the
corresponding entries of S jointly

m ELLA Dual Update: execute ELLA-SVD update and then
ELLA Incremental update (a hybrid approach)

Paul Ruvolo and Eric Eaton 16



In some cases ELLA-SVD works really well...
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ELLA-SVD can suffer if the feature similarity matrix is set incorrectly

(in this case, due to school-specific features in this data set)

London Schools Data
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Accuracy (-rMSE)

Accuracy (-rMSE)

Synthetic Data
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m The k-SVD algorithm can be adapted to the
multi-task learning setting

m Combining two update methods yields an
algorithm with good computational
complexity and accuracy (ELLA Dual Update)
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Adapting K-SVD to Multi-Task Learning

Multi-task Learning Objective Function:
T

gr (L) = = rggl{\w“) —Ls" B + uus“wo} + AL
t=1

Two-step procedure:

Step 1 is almost identical to k-SVD

s® « arg min {HLS — 0|2, + uHsHo}

S
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Adapting K-SVD to Multi-Task Learning

Multi-task Learning Objective Function:

T
gr (L) = = mm{Hé’(t) LS“)H%m+MHS“)H0}+AHLH§

T (t)
t=1

Step 2 Goal:

L, i) arg mmZ(HLS(” 0|12, + pllso )

Problem: the SVD step in the k-SVD algorithm minimizes

b,y - are ?E“Z (s — ;3 + plls o)

lj,sj

=1
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Generalized K-SVD

Step 2 Goal:
1, + arg mmZ(HLs“) 02,0 + ulls®llo)

(A) 34

lj,sJ

By replacing the SVD in step 2 with the generalized SVD we can
efficiently minimize:

1,5 arg min 3 (1L — 00|+ )

(A v

lg,s‘7

Where M is PSD and w has all positive entries:
1" D®1
Z D(t) wt p— ;
t’GA Zt,EAj ]-TD(t )]-
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