Online Multi-Task Learning via Sparse Dictionary Optimization

Paul Ruvolo

Eric Eaton

This work was supported by ONR Grant #N00014-11-1-0139

Motivation

Goal: Develop intelligent systems that

- 1. Quickly learn new tasks
- 2. Learn continually with experience
- 3. Exhibit versatility over multiple tasks

Accomplish these goals by sharing knowledge between tasks and with other agents

Sharing Knowledge Between Tasks

Multi-Task Learning

Train task models simultaneously

Transfer Learning

 Transfer knowledge from source tasks to learn a new target task

Overview

	Transfer Learning	Batch Multi-Task Learning
Optimizes performance over	Target task	All tasks
Learns tasks consecutively	Yes, efficiently	Very inefficiently
Computational cost	Low	High

- This work investigates <u>online</u> multi-task learning (MTL) based on sparse dictionary optimization
 - Evaluated in lifelong learning settings
 - Builds upon our earlier work on the Efficient Lifelong Learning Algorithm (ELLA) [Ruvolo & Eaton, ICML '13]

Online Multi-Task Learning

Task Structure Model

- We assume a parametric model for each task t $f^{(t)}(\mathbf{x}) = f(\mathbf{x}; \boldsymbol{\theta}^{(t)}) \quad \boldsymbol{\theta}^{(t)} \in \mathbb{R}^d$
- The parameters $\boldsymbol{\theta}^{(t)}$ are linear combinations of a shared basis L $\boldsymbol{\theta}^{(t)} = \mathbf{L}\boldsymbol{s}^{(t)} \quad \mathbf{L} \in \mathbb{R}^{d \times k}, \, \boldsymbol{s}^{(t)} \in \mathbb{R}^{k}$

Multi-Task Learning Objective Fn:

$$e_{T} (\mathbf{L}) = \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{s}^{(t)}} \left\{ \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} \mathcal{L} \left(f \left(\mathbf{x}_{i}^{(t)}; \mathbf{L}\mathbf{s}^{(t)} \right), y_{i}^{(t)} \right) + \mu \|\mathbf{s}^{(t)}\|_{1} \right\} + \lambda \|\mathbf{L}\|_{\mathsf{F}}^{2}$$
#tasks seen so far
model fit to data

Sparse Coding Connection

We can re-write this MTL objective as a sparse coding problem [Ruvolo & Eaton, ICML '13]

$$e_T \left(\mathbf{L} \right) = \frac{1}{T} \sum_{t=1}^T \min_{\boldsymbol{s}^{(t)}} \left\{ \frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L} \left(f \left(\boldsymbol{x}_i^{(t)}; \mathbf{L} \boldsymbol{s}^{(t)} \right), y_i^{(t)} \right) + \mu \| \boldsymbol{s}^{(t)} \|_1 \right\} + \lambda \| \mathbf{L} \|_{\mathsf{F}}^2$$

$$g_T \left(\mathbf{L} \right) = \frac{1}{T} \sum_{t=1}^{T} \min_{\boldsymbol{s}^{(t)}} \left\{ \| \boldsymbol{\theta}^{(t)} - \mathbf{L} \boldsymbol{s}^{(t)} \|_{\mathbf{D}^{(t)}}^2 + \mu \| \boldsymbol{s}^{(t)} \|_1 \right\} + \lambda \| \mathbf{L} \|_{\mathsf{F}}^2$$

where $\theta^{(t)}$ is the optimal single-task model for task t $D^{(t)}$ is ½ the Hessian of the single-task loss evaluated at $\theta^{(t)}$ $\|\mathbf{x}\|_{\mathbf{D}}^2 = \mathbf{x}^{\top} \mathbf{D} \mathbf{x}$

Sparse Coding Connection

$$g_T \left(\mathbf{L} \right) = \frac{1}{T} \sum_{t=1}^{T} \min_{\boldsymbol{s}^{(t)}} \left\{ \| \boldsymbol{\theta}^{(t)} - \mathbf{L} \boldsymbol{s}^{(t)} \|_{\mathbf{D}^{(t)}}^2 + \mu \| \boldsymbol{s}^{(t)} \|_1 \right\} + \lambda \| \mathbf{L} \|_{\mathsf{F}}^2$$

Question: Are there dictionary learning algorithms we can borrow from the sparse-coding literature to efficiently solve g_T ()?

K-SVD [Aharon et al. 2006]

Objective Function:

$$\arg\min_{\mathbf{L}} \sum_{i=1}^{n} \min_{\mathbf{s}^{(i)}} \left\{ \left\| \mathbf{L} \mathbf{s}^{(i)} - \mathbf{x}_{i} \right\|_{2}^{2} + \mu \left\| \mathbf{s}^{(i)} \right\|_{0} \right\}$$

The k-SVD algorithm iterates two steps until convergence:

Step 1: update codes for each point

$$\mathbf{s}^{(i)} \leftarrow \arg\min_{\mathbf{s}} \left\{ \|\mathbf{L}\mathbf{s} - \mathbf{x}_i\|_2^2 + \mu \|\mathbf{s}\|_0 \right\}$$

Step 2: update each basis vector and the weights of the data points that utilize this basis vector

$$m \in \mathcal{A} \Leftrightarrow \mathbf{s}_{j}^{(m)} \neq 0$$
$$\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})} \leftarrow \arg\min_{\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})}} \sum_{i=1}^{n} \left(\|\mathbf{L}\mathbf{s}^{(i)} - \mathbf{x}_{i}\|_{2}^{2} + \mu \|\mathbf{s}^{(i)}\|_{0} \right)$$

K-SVD [Aharon et al. 2006]

Step 2 Objective Function:

$$\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})} \leftarrow \arg\min_{\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})}} \sum_{i=1}^{n} \left(\|\mathbf{L}\mathbf{s}^{(i)} - \mathbf{x}\|_{2}^{2} + \mu \|\mathbf{s}^{(i)}\|_{0} \right)$$

Step 2 Solution:

$$\mathbf{e}_{i} = \mathbf{x}_{i} - \sum_{r \neq j} s_{r}^{(i)} \mathbf{l}_{r}$$

$$(\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}) = \text{svd} (\mathbf{E}_{\mathcal{A}}) \qquad m \in \mathcal{A} \Leftrightarrow \mathbf{s}_{j}^{(m)} \neq 0$$

$$\mathbf{l}_{j} \leftarrow \mathbf{u}_{1}$$

$$\mathbf{s}_{j}^{(\mathcal{A})} \leftarrow \sigma_{1,1} \mathbf{v}_{1}$$

Surprisingly we can efficiently find the global minimum!

Adapting K-SVD to Multi-Task Learning

$$\begin{aligned} & \mathsf{MTL} \ \mathsf{Objective} \ \mathsf{Function:} \\ & \arg\min_{\boldsymbol{L}} \sum_{t=1}^{T} \min_{\boldsymbol{s}^{(t)}} \left\{ \|\boldsymbol{\theta}^{(t)} - \boldsymbol{L}\boldsymbol{s}^{(t)}\|_{\boldsymbol{D}^{(t)}}^2 + \mu \|\boldsymbol{s}^{(t)}\|_0 \right\} + \lambda \|\boldsymbol{L}\|_{\mathsf{F}}^2 \\ & \mathsf{K}\text{-}\mathsf{SVD} \ \mathsf{Objective} \ \mathsf{Function:} \\ & \arg\min_{\boldsymbol{L}} \sum_{t=1}^{T} \min_{\boldsymbol{s}^{(t)}} \left\{ \|\boldsymbol{\theta}^{(t)} - \boldsymbol{L}\boldsymbol{s}^{(t)}\|_{\boldsymbol{D}}^2 + \mu \|\boldsymbol{s}^{(t)}\|_0 \right\} \end{aligned}$$

Key Idea: Use K-SVD to efficiently solve the MTL objective

• Need to use the generalized SVD $(\mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V}) = \operatorname{gsvd}(\mathbf{E}_{\mathcal{A}}, \mathbf{M}, \mathbf{W})$ instead of SVD to account for 2nd order information, where

$$\mathbf{M} = \frac{1}{|\mathcal{A}_j|} \sum_{t' \in \mathcal{A}_j} \mathbf{D}^{(t')} \qquad w_t = \frac{\mathbf{1}^\top \mathbf{D}^{(t)} \mathbf{1}}{\sum_{t' \in \mathcal{A}_j} \mathbf{1}^\top \mathbf{D}^{(t')} \mathbf{1}}$$

feature relationship matrix

task relationship matrix

ELLA-SVD

Per-Task Computational Complexity

ELLA-SVD: O(base learner + $d^2k + k^2d + qd^3 + qr^2d$) q = sparsity of $s^{(t)}$

r =# tasks utilizing same basis component

ELLA: O(base learner + d^3k^2)

ELLA-SVD is much more efficient than the original ELLA

Applications

Facial Expression Recognition: identify presence of facial action units (#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

Land Mine Detection from radar images [Xue et al. 2007]

29 Classification Tasks:

- 29 regions
- 2 terrain types
- 14,820 instances total

Exam Score Prediction for London schools [Kumar et al. 2012]

- 139 Regression Tasks:
- 139 schools
- 15,362 students total
- 4 school-specific features
- 3 student-specific features
- Exam year + bias term

Experiments

- We tested four methods
- Each method has the same first step of updating the weights, s^(t), for the current task
- The second step depends on the algorithm
 - **ELLA** [Ruvolo & Eaton, ICML '13]: update all columns of L jointly
 - ELLA Incremental: update columns of L one at a time (a more efficient but suboptimal version of ELLA)
 - ELLA-SVD: update each column of L and the corresponding entries of S jointly
 - ELLA Dual Update: execute ELLA-SVD update and then ELLA Incremental update (a hybrid approach)

Results

In some cases ELLA-SVD works really well...

Paul Ruvolo and Eric Eaton

Results

ELLA-SVD can suffer if the feature similarity matrix is set incorrectly (in this case, due to school-specific features in this data set)

London Schools Data

Paul Ruvolo and Eric Eaton

Results

Summary

- The k-SVD algorithm can be adapted to the multi-task learning setting
- Combining two update methods yields an algorithm with good computational complexity and accuracy (ELLA Dual Update)

Thank you!

Paul Ruvolo paul.ruvolo@olin.edu

Eric Eaton eeaton@seas.upenn.edu

This work was supported by ONR Grant #N00014-11-1-0139

Backup Slides

Adapting K-SVD to Multi-Task Learning

Multi-task Learning Objective Function:

$$g_T \left(\mathbf{L} \right) = \frac{1}{T} \sum_{t=1}^T \min_{s^{(t)}} \left\{ \| \boldsymbol{\theta}^{(t)} - \mathbf{L} s^{(t)} \|_{\mathbf{D}^{(t)}}^2 + \mu \| s^{(t)} \|_0 \right\} + \lambda \| \mathbf{L} \|_{\mathsf{F}}^2$$

Two-step procedure:

Step 1 is almost identical to k-SVD

$$\mathbf{s}^{(t)} \leftarrow \arg\min_{\mathbf{s}} \left\{ \|\mathbf{L}\mathbf{s} - \boldsymbol{\theta}^{(t)}\|_{\mathbf{D}^{(t)}}^2 + \mu \|\mathbf{s}\|_0 \right\}$$

Adapting K-SVD to Multi-Task Learning

Multi-task Learning Objective Function:

$$g_T \left(\mathbf{L} \right) = \frac{1}{T} \sum_{t=1}^T \min_{s^{(t)}} \left\{ \| \boldsymbol{\theta}^{(t)} - \mathbf{L} s^{(t)} \|_{\mathbf{D}^{(t)}}^2 + \mu \| s^{(t)} \|_0 \right\} + \lambda \| \mathbf{L} \|_{\mathsf{F}}^2$$

Step 2 Goal:

$$\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})} \leftarrow \arg\min_{\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})}} \sum_{t=1}^{T} \left(\|\mathbf{L}\mathbf{s}^{(t)} - \boldsymbol{\theta}^{(t)}\|_{\mathbf{D}^{(t)}}^{2} + \mu \|\mathbf{s}^{(t)}\|_{0} \right)$$
$$m \in \mathcal{A} \Leftrightarrow \mathbf{s}_{j}^{(m)} \neq 0$$

Problem: the SVD step in the k-SVD algorithm minimizes

$$\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})} \leftarrow \arg\min_{\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})}} \sum_{i=1}^{n} \left(\|\mathbf{L}\mathbf{s}^{(i)} - \mathbf{x}_{i}\|_{2}^{2} + \mu \|\mathbf{s}^{(i)}\|_{0} \right)$$

Generalized K-SVD

Step 2 Goal:

$$\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})} \leftarrow \arg\min_{\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})}} \sum_{t=1}^{T} \left(\|\mathbf{L}\mathbf{s}^{(t)} - \boldsymbol{\theta}^{(t)}\|_{\mathbf{D}^{(t)}}^{2} + \mu \|\mathbf{s}^{(t)}\|_{0} \right)$$

By replacing the SVD in step 2 with the generalized SVD we can efficiently minimize:

$$\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})} \leftarrow \arg\min_{\mathbf{l}_{j}, \mathbf{s}_{j}^{(\mathcal{A})}} \sum_{t=1}^{T} \left(w_{t} \| \mathbf{L} \mathbf{s}^{(t)} - \boldsymbol{\theta}^{(t)} \|_{\mathbf{M}}^{2} + \mu \| \mathbf{s}^{(t)} \|_{0} \right)$$

Where M is PSD and w has all positive entries:

$$\mathbf{M} = \frac{1}{|\mathcal{A}_j|} \sum_{t' \in \mathcal{A}_j} \mathbf{D}^{(t')} \qquad w_t = \frac{\mathbf{1}^\top \mathbf{D}^{(t)} \mathbf{1}}{\sum_{t' \in \mathcal{A}_j} \mathbf{1}^\top \mathbf{D}^{(t')} \mathbf{1}}$$